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Karhunen—-Leve Decomposition in
the Presence of Symmetry—Part |

Brigitte Lahme and Rick Miranda

Abstract—The Karhunen-Logve (KL) decomposition is widely V/" and Vj” wheni # j. Therefore, for data enjoying sym-
used to data which very often exhibit some symmetry, afforded by metry, we have two apparently competing decompositions of
a group action. For a finite group, we derive an algorithm using - yhe ampient vector space, one coming from the KL basis and
group representation theory to reduce the cost of determining one coming from the group representations. In this paper, we
the KL basis. We demonstrate the technique on a Lorenz-type . : : =
ODE system. For a compact group such as tori 0SO(3, IR) the ~analyze the relationship between these two decompositions and
method also applies, and we extend results to these cases. As prove the following.
short example, we consider the circle groups™. Theorem 1.1:The KL basis for the full vector spac¥

Index Terms—Data compression, dimension reduction, finite IS obtained by projecting the data set (via the orthogonal
groups, Karhunen-Logve decomposition, Lie groups, representa- projectors P/}) into the first symmetry subspacdg’ for
tion theory, symmetry. each p, and computing a KL basis for the projected data
set in V. These separate bases are then transferred (via the
. N _ isomorphismsP/}) to the other symmetry subspacgg, and

HE KARHUNEN-LOEVE (KL) decomposition (or prin- concatenated to form the full KL basis f6f.

cipal component analysis) is a powerful tool for linear The KL basis for a data set ilR" is obtained by forming
data compression [1]. This technique for analyzing a finite da§ge ,,-by-n covariance matrix of the data and taking the
set in a vector spacg finds the optimal basis for the ambieméigenvectors. We show that the above process of passing to
space in the sense that the truncation errors are minimized figs symmetry subspaces reduces the full KL problem to a
every desired compression dimension. series of subproblems, each of smaller dimension. The total

It is quite typical in data obtained from imaging or physcomputational complexity is correspondingly reduced.
ical modeling that the underlying set of images or patterns|n Section 11, we introduce basic facts about the KL de-
enjoys some symmetry. In the image processing domaghmposition. In Section I, we present the relevant facts
bilateral symmetry is nearly ubiquitous (see, for example, [8oncerning group representation theory which we require.
more complicated image symmetry is evident in many atm@gction IV is the main part of the paper; there we combine the
spheric data imaging applications (where spherical symmefty decomposition with the group theory to divide the problem
is present); and imaging of wave phenomena (where circu|gfo the subproblems. We will not present proofs of the lemmas
or translational symmetry is often apparent). The interestfgdre which are easy consequences of well-known results in
reader may consult [6], [10], [11], [15], and [16] for examplegroup representation theory and quantum physics [19].
of symmetry analyses in several chemical, electronic, naturaln Section Vv, we present the analysis of the computational
and biological applications; for specific recent applications efficiency of the method for a finite group, and in Section
symmetry in image analysis, one may consult [2], [7], [9| we present a simple example illustrating the technique. In
and [17]. Section VII, we remark on the application of these techniques

The model partial differential equations for many physicab compact Lie groups, but will only present the example of
processes exhibit inherent symmetry, which is generally welle circle groups?.

reflected in both experimental data and simulation data. Thein this paper (Part I) we focus on the general theory, and
concept of symmetry in data sets is always related to the aCt@é\,ebp it in detail for finite groups, giving an example in
of a group(Z on V', which carries the data set onto itself.  this case. In Part Il, we will concentrate on compact Lie
Whenever a group acts linearly on a vector space, teoups, and illustrate this theory by presenting the much
space splits into irreducible subspaces for the action; for ea@ldre interesting and therefore complicated case of the special
irreducible representatiop of the groupG there aredim(p) orthogonal groupSO(3).
corresponding projectotsf; whose images are the “symmetry The exploitation of symmetry in KL decomposition was first
subspaces'V”. There are natural isomorphisnt¥; between recognized by Sirovich in [13]; a recent article of Smaoui and
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assume that” is equipped with the standard Hermitian innefFor a proof, see [4] or [12].) Define, for any representation
product defined byx, ¥) = Z' - y. The KL decomposition V of G, the operator
of this setU of patterns provides an orthonormal basis for

V' which is optimal for arbitrary truncation errors, which we pPr— dim(p Z A
now explain. e Gl =
Let B = {v, ---, vq} be an ordered orthonormal basis for
V. Then for any vecton; € U, we may writew; uniquely \ye gefine VP = ImagdPt) for 1 < i < dim(p) and

asu; = )_; a;v;, without error. TheD-truncation ofu; with Ve — Edmll(p) Ve,

; o D
respect to this basiB is the vectoru”’ = > j<p @vj, and  The following now follows completely formally from the

the error vector of this truncation @D) = u; — uED). orthogonality relations.
Given the set of pattern vectoig, and the basi#3, we Proposition 3.2: These mappingsP{;: V — V have the
define themean square erroof the D-truncation to be following properties.
o L Z Ie (D)||2 1) Forp andr irreducible representations &f, P, oPM
Crmse |lf| .leép-,-éjk.

2) The operatord P/;} are orthogonal projectors.
The KL basis forV is that orthonormal basis for which the 3) The sum of these projectors is the identity &h

mean square errors.2) are minimized for evend between >, Zd‘m(”) Pl =1

1 andd. 4) The space V splits as the direct sumV =
The construction of the KL basis fdr is well-known and @, DI vy

given by the following theorem; recall that = %' . 5) Fori # j the operatodDi’} mapsV/ isomorphically onto
Theorem 2.1:The KL basis is given by the eigenvec- VY, and is zero oV} if 7 # p or k # j.

tors of the ensemble average covariance matfix = 6) For eachp the sumV? = E;l:f(p) v/ is a direct

(/U] 225 v - sum, and is d7-invariant subspace df, isomorphic to
For a reference, see [1]. the irreducible representatigntaken exactlydim(V;")
This covariance matrixC is positive definite Hermitian; times.

thus, it has only nonnegative real eigenvalues. We will say that a basis fol/ is G-adaptedif it is

formed by taking, for eactp, a basis{v{ ,} for V/, and
I1l. BASICS FROM GROUP REPRESENTATION THEORY app|y|ng the transfer Opera‘[oB” for eachl' with 2 < 1 <

In this section, we collect the basic results of the representkim(p) to obtain basegv! , = Pp (o] )} for VI, and then
tion theory of finite groups which we require. All of the resultgoncatenating these bases to obtain a b?%isy}/%],a for V.
are completely standard and may be found in many texts, e.g.\We may take each irreducible representation to be unitary,
[5], [12], [18], and [19]. so thatp*(g)p(g) = I for everyg; we will assume this in what
Let G be a finite group with identity and |G| elements. follows. If we choose, in each subspakg, the basis{v{ ,}
Let V be a finite dimensional complex vector space. A0 be orthonormal, and the irreducible representations afe
representatiorof G on'V is a homomorphism: G — GL(V) all taken to be unitary, then an easy computation shows that
of G to the group of linear automorphisms 6f Sometimed” the entire basis fol” constructed in this way is orthonormal,
is also called the representation@f We will often writeg-v SO that(vf ,)*v7 5 = 8,r8ij6ap
or gv for p(g)(v). The dimension ofi’ is sometimes called In this case, we also have th f(v))" = v Pf;, consid-
the dimension, or degree, of ering the operators as matrices.
A subspacéV of V isinvariantunderG if gw € W for all
g € Gandw € W. A representatiory is calledirreducible if
there is no proper nonzero invariant subspacéd’ ofA finite
group G admits only finitely many irreducible representations Let V' be a complex vector space ata finite group of
up to isomorphism; the number of irreducible representationgder|G| acting onV. Moreover let us assume that the action
of GG is equal to the number of conjugacy classes. is unitary, so thatg*g = I for everyg € G. [We will usually
Suppose thatV is a representation off and L: W — W  suppress the notation for the mapping@finto GL(V") and
is a linear transformation which ig&-equivariant, that is simply consider each € G as a unitary matrix operator dn.]
L{gw) = gL(w) for everyg € G andw € W. If W is an Let V' be the ambient space for a set of pattéipsve think
irreducible representation, Schur's Lemma implies that evedy ¢/ as the set of all possible patterns coming from the data

IV. KL D ECOMPOSITION WITH SYMMETRY

G-equivariant map is a multiple of the identity. being collected. The sef is typically a submanifold lying
For each irreducible representatipmve write A?(g) for the inside the vector spac¥.
matrix p(g); its entries are theﬂ” (g),for1 <4, j < dim(p). Our symmetry hypothesis is thai is invariant under the
We have the following basic orthogonallty relations for thection of G on V': for everyg € GG andu € U, the translate
entries of thesed” matrices: g-uis also inl.
1 Note that this symmetry assumptionniet that each pattern
|G| > Ali(hg) )= dimlp) AL (h)8jxbpr. (3.1) in U is G-invariant; only that a translate of a pattern is again
gcG a possible pattern.
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Suppose we have a finite set df patternsU = {u; }Y, Lemma 4.3:Let p be an irreducible unitary representation
which lie inZ{. We want to exploit the group action and theof G, with matricesAfj(g) for g € G.
symmetry assumption to extract information about the KL a) Forv € V andg € G we have
basis forl/.
This basis is given by the eigenvectors of the ensemble ‘Pi/;'(gv) = Z Afk(g)Pp
average covariance matriX = (1/N) > rl wul. ‘
Every pattern inl/ gives rise toG| other patterns by trans- b) Forv € V we have
lating by the elements of the group; all of these patterns also

will lie in the pattern spacé/ by our symmetry assumption. |G| Z Pl (gu)Pl(gv)*
We “symmetrize” the data by collecting thesgG| patterns gec;
in the setl/:

dlm Z

U={g-ulge G, uecU}.

A basis for the KL subspace based on this new set of Proof. To prove (a), we see that

patterns is given by the eigenvectors of the ensemble average Pro Z A Yagu
covariance matrixC which is defined using the enlarged set Fi |G| et
of patternsU:
|G| > AL v (settingb = ag)

C’:N|G|ZZg uw)(g - u)* bEG

gEG uel A )bv
LYy
N|G| Z Z guu*g®) |G| Z gCyqg*. ve@ k

e et 7= = Z Al >|G| > A
The matrixC is ad x d matrix, and as such can be viewed beG
as an operator on the vector spdcelt is easily seen to be = Z A

G-equivariant. ThisG-equivariance immediately implies the

following, which is a version of Wigner's Theorem. Now (b) foIIows since by (a) we haveP((gv) —

Theorem 4.1:
S AL (9)Pl(v) and so
1) The operato” commutes with the projectors and trans®
4
f~er. ope.ratorsP“, anq therefore each subspatg |s_ G Z Pl (gu) PP (gu)*
C-invariant. Hence, if we change toG@-adapted basis | | geG
for V, the matrixC will be in block form, with block R e
B! for the subspac&}”. In particular, the eigenvectors 1G] Z Z ATy (v) Pl (v)" A7 (9)
of C can be taken to lie in the subspadgs. 9ca kit
2) The blocksB/ are in fact independent daf B! = B’ .
for eachi. A vectorv € V/ is an eigenvector foC => |G| > AL AL (g7 | PLw)Pl(v)
with eigenvalue) if and only if the transferred vector k. g€G
Pl:(v) € V{ is an eigenvector fo€’ with eigenvalue). Z Pl (o) P (0
3) The eigenvalues af’ on V* = S8 v each occur dlm (V)P

with multiplicity equal to a multiple oflim(p).

. since in the second line the bracketed expression equals
The a3 entry of B is ! : ' xpressi qu

1/(dim(p))éx, using (3.1). Q.E.D.
(B")ap = (Uf(y)*évf@ Combining (4.2) with the previous lemma gives us that
1 * dim(p)
= e 2 () gw) (v, gu) .
& / B = Pf(u . 4.4
<] g, u dun dim(p)|U]| L% kzl il () (4.4)

The numbergv?,)*gu are exactly the coordinates, in tiie

adapted orthonormal basis, of the vectgis projected into
VY. Therefore, viewingP/; as a map fron¥’ to V/, we have
that

We note that this formula faB? is more efficient than (4.2);
the sum is over the dimension of the representationstead
of over the group elements. In order to use this to compute the
entries of the matrix for3”, we have the following lemma.
1 L 45:Let {v*,} be aG-adapted basis fob’” (so
p_ PP (qu) P’ (gu)* 4.2 emma 4.5:Let {vy;} p [
|G||U] Z (g Fiulgw) *.2) that {v{;} is an orthonormal basis for{"). Then the entries

b7, of B” in this basis are
and soB” can be viewed as the covariance matrix of the™

projected symmetrized data. The following Lemma will be dim(p)
useful in the implementation of the reduction algorithm which V5= I |U| Z Z Vpo) ULV 5.
will follow below. m(p w
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Proof: Since{v{,} is an orthonormal basis fdr{, the 4) For eacly, find thed, eigenvalues\’, and correspond-

of entry of Bf is ing eigenvectorsy?, (for 1 < « < d) of the matrixB7.
. Write each eigenvector as? = (w/, ---w’”, )T.
bg,a =(v1a) prfa 5) Define !
dim(p)
dlm |U| Z Z )" Pl () Pl (u)” Ufﬁ (4.6) oo = ngﬂvzﬂ
u 3
using (4.4). For anyy, we have for eachp, eachk = 1, ---, dim(p), and eacha =
0 ~ dim(p 1,---, d,. The KL basis forV consists of these vectors
(V1)) Ph(u) = TE Z A (g7 (] gu 20, each with eigenvalug?, (independent of).
] QEG We note that Step 1 is to be considered as the overhead of the
_ dim(p Z A7 () (g™ l) method, which can be done once, and subsequently applied to
|G| v many different KL problems in the spa¢& The power of the
gCG . . . .
dim(p method is that it replaces the eigenvector computation for the
= & Z Al *(g “m) large d x d matrix C' with several eigenvector computations
geG of the smaller matrice$3”.
— d
= im(p Z Al (a— 1 avlw
acG VI. COMPUTATIONAL EFFICIENCY
settinga = ¢* In order to calculate the efficiency of the proposed method,
o we assume that a general method such as QR is used to
=ur PZI(UT"/) compute the eigenvectors and eigenvalues of symmetric (or
:?K since the basis i§-adapted Hermitian) matrices; for & x k matrix, these methods are
o e typically of orderk?, that is, the number of flops required to
- (”kw) w find the eigenvectors and eigenvalues is approximaiketyfor
so that(vf, ) Pl (u) = (v7. ) and Pf, (u)* vfg _ U*UZ@- some constant (see [3] for example).

. Therefore, in our original problem, the cost of directly
domputing the KL basis igd?, sinced is the dimension of
the ambient spacé’.
The dimension of the symmetry subspadé$ for each
irreducible representation depends on the precise nature of
(uf)a = (V] ) u the representation of the grodp on the spacéd’. However,
) ) _ it is quite typical that this representation is a direct sum of
where{v;,, } is the givenG-adapted basis fdr'. Then Lemma geyeral copies of the regular representation, or varies from

Plugging these into (4.6) gives the result.

The previous lemma motivates the following notatlon F
each pattern, define the column vectar, (whose dimension
is equal todim V") by setting thew coordinate equal to

4.5 exactly says that this in a minor way often due to fixed points in a permutation
dim(p) representation. For the regular representation, which is of
Z Z ul) (ul)*. (4.7) dimension|G|, the dimension of the first symmetry subspace
dlm dim(p)|U| < v/ is dim(p). Therefore, ifV is approximately a direct sum

It is the above f lati hich bl __of regular representations, then the dimensionVgt will
tis the above formulation which enables us now to give g, approximatelyd, = d - dim(p)/|G|. Hence, the cost of

precise algorithm for exploiting the symmetry assumption iﬁhding the eigenvectors in this symmetry subspace will be
determining a KL basis folV. a : 3 1 3 3
pproximatelyad® dim(p)?/|G|°.
Solving this subproblem for eacgh and summing, we see
V. ALGORITHM FOR EXPLOITING that the approximate ratio of the cost of solving the original
SYMMETRY IN THE KL BASIS COMPUTATION problem to the cost of using the method outlined above is

Given: A complex vector spac&” of dimensiond, a set ad? GP?
of patternsU drawn from a pattern subséf, and a unitary a(G) =
symmetry groupG satisfyingg -« € U for all g € G and adgz dim(p)?/|G[? Z dim(p)?
uw € U. P

1) Determine the irreducible unitary representatipnsf For a cyclic groupC,, of orderm, all irreducible repre-

G, and aG-adapted basiguy, } for V. Let d, be the geniations, are one-dimensional (1-D) , and there aneof

dimension of V{". _ them. Hencep(Cp,) = m?.

2) For eachp, eachk: = 1,---, dim(p), and each pattern o 4 gihedral groud,,, ,» of orderm (wherem is even), all
u e U* form the vectonu;; of dimensiond,, by (ui)a = jrreducible representations are either one- or two-dimensional
(Vg ) - (2-D); there are at most four representations of degree one and

3) For eachp, form the d, x d, matrix B” of Cly; by  approximatelym /4 representations of degree two, the precise
Br = 1/(dim(p)|U]) 32, 2“‘“10’)( Py (uf)*. numbers depending on the value xf modulo 4. Therefore
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a(Dyny2) = m? /2. For the groupD, of symmetries of the S has three irreducible representations: the 1-D trivial rep-

square, the precise factor 128/3 ~ 42. resentatiori?’;, the one-dimensional alternating representation
Finally, we look at the groug of symmetries of the cube; W5, and the 2-D standard representatiéf3. The alternating

it has order 48 and there are four irreducible representatioiepresentation does not occur in our 7-D representation

of degree one, two of degree two, and four of degree threhe trivial representation occurs three times and the standard

Therefore occurs twice. Hence, there are three symmetry subsp&ges:
5 is three-dimensional (3-D)};®> and V;* are 2-D.G-adapted
a(0) = 48 = 110592/128 = 864. bases for these subspaces are
4-1342.2%244.33 /3
3
1 1 _ T
The other extreme situation is when eagh= 1. In this Vison = 3 (1,1,1,0,0,0,0)",
case, each submatriB” is simply a number, equal to the . V3 -
eigenvalue)?, and no eigenvector computations are required: U2 = 5- (0,0,0,1,1,1,0) ",
the _elgen_vectors are gxagtly v_ectqr@’ja} of the G-adapted vty =(0,0,0,0,0,0,1)7
basis. This very special situation actually occurs more often VG
than one might expect, especially for the compact Lie groups. V33, = v6 (2, -1, -1,0,0,0,0),
Finally, we remark that this method is useful when the 6
number of patternsV is much larger than the dimension of . S @ (0,0,0,2 —1, —1,0)"
the ambient spac#’. 27 v
2
Vs, = g (0,1, -1,0,0,0,0)7,
VII. EXAMPLE /2
As noted in the Introduction, it is typical that data ob- Uy =5 (0,0,0,0,1,-1,0)".

tained from physical modeling enjoys some symmetry, because
the underlying differential equations governing the evolution We find the 3x 3 matrix B) and the X 2 matrix B
of the pattern data is equivariant under a group action. far the two symmetry subspaces to be
particular, for an ODE system of the forth = F(x), if 160596 160.799 2.393
F(oz) = oF(x) for all & in a groupG, then whenever(t) @
- . : . BYY =1160.799 203.127 1.063
is a trajectory for the dynamical system, so wilk:(¢) be. .
e . . . 2.393 1.063  62.959
Hence, pattern data arising from time series of the evolution
of trajectories will enjoy the symmetry of the grodp B® — <4-868 4874)_
In this section, we present an example of this type using 4874 6.15
data generated by a seven-dimensional (7-D) ODE syste

which exhibits S5 symmetry. The ODE system we considermrhe eigenvalues and eigenvectors . are

has variables;, y; for ¢ = 1, 2, 3, andp; the system is given 344.08: wi = (0.659, 0.752, 0.008) "
by 62.97: w3 = (—0.0135, 0.023, —1)"
i = oy — 25) 19.63: w3 = (0.7519, —0.6589, —0.02537)".
Yi =TT = Y~ PTi The eigenvalues and eigenvectorsBf) are
3
p=—bp+ % >z 10.42: w? = (0.6594, 0.7518) T
=1

0.59: w3 = (0.7518, —0.6594)T.
(This system was kindly suggested to us by G. Dasngelmayr.)We can now form the resulting set of eigenvectorsCof
We use as parameters = 10, v = 28, b =

3, and by using the eigenvectors in the last step together with the

a = 1, which gives a symmetry-adapted Lorenz-type SyStem 5qanted basis fol’. We list the eigenvalues with their
exhibiting a strange attractor with a chaotic trajectory. We ho%?genvectors.

that the chaotic nature of the trajectory produces data which
“fills up” the attractor, allowing us to use one trajectory t0344.08: z}, =wi v, + wivi, + wizvi,
produce a good approximation to the attractor. =(0.38, 0.38, 0.38, 0.434, 0.434,
The groupSs acts simply by permuting the indices of the 0.434. 0 008)T
x;'s andy;’s; the variablep is fixed. It is clear that the ODE eh
is preserved by this action, and therefore solutions to the ODES2:96: 21y =wy107) + wyavly + wi3v1s
are carried into other solutions. =(—0.0078, —0.0078, —0.0078,
After choosing an initial condition randomly, a trajectory is 0.013, 0.013, 0.013, —1)7
generated for each time stepthis gives a 7-D vector(¢) for
each time step. A fourth-order Runge—Kutta scheme was use
to generate 5000 time steps; the first 1000 were discarded, =(0.434, 0.434, 0.434, —0.38, —0.38,
producing a data séf of 4000 vectors in the 7-D spadé. —0.38, —0.025) "

ool o101 11 1.1
&9-63- 213 = W31V]1 t WapUip + Wagly3
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10.42: 23 =wd vd) + wivd,
=(0.538, —0.269, —0.269, 0.614,
—0.307, —0.307, 0) "
23 =wi 3+ wivd
=(0, 0.466, —0.466, 0, 0.532, —0.532, 0) "
0.59: 20y = w3 v}) + wiyvly

=(0.614, —0.307, —0.307, —0.538,
0.269, 0.269, 0)

3 _ 3.3 3 3
X9 = Wa1 Vg1 + Waatso

=(0, 0.532, —0.532, 0, —0.466, 0.466, 0)T .
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This information tells us that all the generated patterns lie in
the 3-D subspace generated by the eigenvectors above. When
we look at the enlarged pattern set, we would expect that the
same thing is true, and we have indeed seen that the ergergy
concentrated in a 3-D subspace. The final step is to compare
these two 3-D subspaces.

A comparison of the eigenvectors of these two matrices
show that they span essentially the same 3-D subspale of
Taking the dot-product of the eigenvectors makes this clear as
in (7.3), shown at the bottom of the page.

In a perfect system, the above ¥ 3 matrix would
have a 3 x 3 identity block at the left, and zeroes

elsewhere. That this is not the case may be due to several
factors: the particular trajectory used may not fill up the

Finding this set of vectors was our goal because theytractor as well as desired, and the Runga—Kutta scheme
provide the full KL-basis for the enlarged pattern dét to compute the trajectory will introduce some errors also.

(consisting of 24 000 vectors) and the<77 enlarged ensemble However, the agreement between the two three-spaces is
average covariance matriX. For completeness, this matrix isconvincingly close.

presented below; all computations have been done with six-
digit precision, the results were then rounded to three decimal
places of accuracy as in (7.1), shown at the bottom of the page.

We note that 95% of the energy of the data is concentrate

VIIl. CoMPACT LIE GROUPS

in the eigenspaces of the three largest eigenvalues.

Let us now compare the eigenvalues and eigenvectors 0
C (which is the ensemble averaged covariance matrix bas[%
on the small set of patterrig), andC. We have as in (7.2)

shown at the bottom of the page.
The nonzero eigenvalues and their eigenvector§ aire

364.836: y; = (0.258, 0.37, 0.481, 0.295, 0.422,
0.548, 0.008) "
62.97: y» = (0.006, 0.008, 0.011, —0.009,
—0.013, —0.017, 1)
20.817: y3 = (0.295, 0.422, 0.548, —0.258, —0.369,

d]n this section, we extend the above theory, which was
developed for finite groups, to the case of compact Lie groups.
let G be a compact Lie group with identity; recall

at there is a unique normalized Haar measidgeon G.

" The representation theory @¥ is in many ways similar to
that of a finite group; the main difference is that averages
over the finite group are replaced with integrals in the Haar
measure, and that there are in general infinitely many finite-
dimensional irreducible unitary continuous representations up
to isomorphism. In particular Schur's Lemma still holds:
every GG-equivariant map on an irreducible representation is
a multiple of the identity.

For each finite-dimensional continuous irreducible represen-
tation p we again writed”(g) for the matrixp(g), with entries

—0.48, —0.027)7. Afj(g). The basic orthogonality relations (3.1) hold in this
56.778 51.909 51.909 56.849 51.975 51.975 1.382
51.909 56.778 51.909 51975 56.849 51.975 1.382
51.909 51.909 56.777 51975 51.975 56.849 1.382
C=156.849 51.975 51.975 71.809 65.659 65.659 0.614 (7.2)
51.975 56.849 51.975 65.659 71.809 65.659 0.614
51.975 51.975 56.849 65.658 65.658 71.809 0.614
1.382 1.382 1382 0614 0.614 0.614 62.96
26.172 37.429 48.691 26.205 37.476  48.752 .966
37.429 53.528 69.633 37.476 53.595 69.721 1.382
48.691 69.633 90.584 48.752 69.721 90.699 1.797
C=126.205 37476 48.752 33.103 47.341 61.585 0.429 (7.2)
37.476  53.595 69.721 47.341 67.703 88.074 0.614
48.752 69.721 90.699 61.585 88.074 114.573 0.799
0.966 1.382 1.797 0429 0.614 0.799 62.96
0971 00001 0 —0.207 —0.119 0 0
(yi -z;) = | 0.001 -1 0.001  0.002 0.001 —0.006 —0.003 (7.3)
0 0.002 0.971 0 0 —0.206 —-0.119



LAHME AND MIRANDA: KARHUNEN-LO EVE DECOMPOSITION 1189

context also for eachp, eachk = 1, ---, dim(p), and eacha =
o, S 1 , 1, ---, d,. The KL basis forF"*(Af) consists of these
/G Afj(hg)Aje(97) dg = dim(p) A (M)bjndpr. (8.1) vectors zf , each with eigenvalue’, (independent of
k)

We again define, for any finite-dimensional continuous repre-

sentationV of G, the operator Note that sinceZ has in general infinitely many irreducible

representations, the method actually is useful for finding that
Pfi(v) = dim(p) / Aji(g™ g - v dg. part of the KL basis which resides in any particular symmetry
e subspace, i.e., for fixed.
We setV/ = ImagdP!) for 1 < ¢ < dim(p) and V? =
S dime) yre, X. EXAMPLE: THE CIRCLE GROUP S*
The analog of Proposition 3.2 holds without any changes Consider the compact Lie grodp = S*. G acts onM = G
in this situation. In fact ifV is not finite-dimensional, the by translation, and we consider the spaEeof continuous
operatorsF; are still defined, and parts (a), (b), and (e) stiflunctions onM, which of course correspond to continuous
hold; moreover (f) also holds if each symmetry subspe€e periodic functions on the line.
is finite-dimensional. We have the identical definition for an The irreducible representations Gfare all 1-D, indexed by
orthonormalG-adapted basis foV'. integersn; p,,(6) = exp(2rind). For eachn, the symmetry
The typical application of the theory occurs when the Ligpace is also 1-D, andy, (z) = exp(—2rinz); d, = d, = 1
group & acts on a compact manifold/, and therefore acts for everyn. Since all dimensions are one, we will drop the
on the space of continuous™-valued functions?" (M), via subscripts; th&7-adapted basis is*(x) = exp(—2xinz). The
the formula(g - f)(m) = f(g~'m). The standard Hermitian functionalsy™ on F are
metric on F*(M) is .
1 V) = (", u) = o—
(f1, f2) = VoI(M) fi(m)” fo(m) dm. 2m
M
. . . For any pattern sdt, the KL basis consists of thesé&’s, and
Suppose that/ C " (M) is a submanifold of data. Undery,e onjy unknowns are the eigenvalues. Each marix= B”

the assumption that the symmetry subspaces™ofM) are iq |, | yith entry the eigenvalua,,: by the above, it is
all finite-dimensional, we have the identical theory applying )

in order to compute the KL basis fofF” (M) with respect to \ 1 / A ()7 (1) du.
U

27
/ exp(2mind)u(9) db.
0

the data set/. SincelU may be a submanifold of data, we " vol(U)

have that sums over are replaced by integrals; and with this  1pg theory then simply reproduces the Fourier analysis for
mild change the algorithm holds almost without change.  he seft/; the KL basis consists of exactly the Fourier modes

v"(x) = exp(—2ninz), with the eigenvalues given above.
IX. ALGORITHM FOR EXPLOITING SYMMETRY IN THE KL

BAsIis COMPUTATION IN THE COMPACT LIE GRouP CASE XI. SUMMARY AND LOOK AHEAD

Given: A manifold M, a submanifold of patterng drawn
from the space of functiond™(M ), and a compact Lie group us

¢ actlntg on]\b4 prese_rwp g.tthgl sev. .We lassume that eaChsymmetric data using group representation theory. We started
Symmetry subspace IS finite-dimensional. by exhibiting the results in the case of finite groups and

1) Determine the irreducible unitary representatignsf  extended the results to compact Lie groups. Examples for both
G, and aG-adapted basi¢vy, } for 7 (M). Letd, be cases were given.

In this paper, we have derived an algorithm which allows
to considerably reduce the cost of the KL analysis of

the dimension oft’/". _ _ We will exhibit an example of data withO(3) symmetry
2) For _each/e, eachk = 1,.--, dim(p), consider the j, part || which will follow shortly. This example is far more
function v;,,: /' — C defined by interesting but also far more complicated than any of those
1 . given here.
Vo (1) = (Vkas 1) = VoI(M) /M Uk () u(m) dm. It is also worth noticing that the given algorithm does not

, only reduce the computational cost of the KL analysis, but also
3) For eachy, form thed, x d, matrix B* by gives more insight into the structure of the decomposition.
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1 -
J— 14 4
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