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Karhunen–Lòeve Decomposition in
the Presence of Symmetry—Part I

Brigitte Lahme and Rick Miranda

Abstract—The Karhunen–Loève (KL) decomposition is widely
used to data which very often exhibit some symmetry, afforded by
a group action. For a finite group, we derive an algorithm using
group representation theory to reduce the cost of determining
the KL basis. We demonstrate the technique on a Lorenz-type
ODE system. For a compact group such as tori orSOSOSO(3, IRIRIR) the
method also applies, and we extend results to these cases. As a
short example, we consider the circle groupSSS1.

Index Terms—Data compression, dimension reduction, finite
groups, Karhunen–Loève decomposition, Lie groups, representa-
tion theory, symmetry.

I. INTRODUCTION

T HE KARHUNEN–LOÈVE (KL) decomposition (or prin-
cipal component analysis) is a powerful tool for linear

data compression [1]. This technique for analyzing a finite data
set in a vector space finds the optimal basis for the ambient
space in the sense that the truncation errors are minimized for
every desired compression dimension.

It is quite typical in data obtained from imaging or phys-
ical modeling that the underlying set of images or patterns
enjoys some symmetry. In the image processing domain,
bilateral symmetry is nearly ubiquitous (see, for example, [8]);
more complicated image symmetry is evident in many atmo-
spheric data imaging applications (where spherical symmetry
is present); and imaging of wave phenomena (where circular
or translational symmetry is often apparent). The interested
reader may consult [6], [10], [11], [15], and [16] for examples
of symmetry analyses in several chemical, electronic, natural,
and biological applications; for specific recent applications of
symmetry in image analysis, one may consult [2], [7], [9],
and [17].

The model partial differential equations for many physical
processes exhibit inherent symmetry, which is generally well
reflected in both experimental data and simulation data. The
concept of symmetry in data sets is always related to the action
of a group on , which carries the data set onto itself.

Whenever a group acts linearly on a vector space, the
space splits into irreducible subspaces for the action; for each
irreducible representation of the group there are
corresponding projectors whose images are the “symmetry
subspaces” . There are natural isomorphisms between
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and when . Therefore, for data enjoying sym-
metry, we have two apparently competing decompositions of
the ambient vector space, one coming from the KL basis and
one coming from the group representations. In this paper, we
analyze the relationship between these two decompositions and
prove the following.

Theorem 1.1:The KL basis for the full vector space
is obtained by projecting the data set (via the orthogonal
projectors ) into the first symmetry subspaces for
each , and computing a KL basis for the projected data
set in . These separate bases are then transferred (via the
isomorphisms ) to the other symmetry subspaces, and
concatenated to form the full KL basis for.

The KL basis for a data set in is obtained by forming
the -by- covariance matrix of the data and taking the
eigenvectors. We show that the above process of passing to
the symmetry subspaces reduces the full KL problem to a
series of subproblems, each of smaller dimension. The total
computational complexity is correspondingly reduced.

In Section II, we introduce basic facts about the KL de-
composition. In Section III, we present the relevant facts
concerning group representation theory which we require.
Section IV is the main part of the paper; there we combine the
KL decomposition with the group theory to divide the problem
into the subproblems. We will not present proofs of the lemmas
here, which are easy consequences of well-known results in
group representation theory and quantum physics [19].

In Section V, we present the analysis of the computational
efficiency of the method for a finite group, and in Section
VI we present a simple example illustrating the technique. In
Section VII, we remark on the application of these techniques
to compact Lie groups, but will only present the example of
the circle group .

In this paper (Part I) we focus on the general theory, and
develop it in detail for finite groups, giving an example in
this case. In Part II, we will concentrate on compact Lie
groups, and illustrate this theory by presenting the much
more interesting and therefore complicated case of the special
orthogonal group .

The exploitation of symmetry in KL decomposition was first
recognized by Sirovich in [13]; a recent article of Smaoui and
Armbruster applies these methods to eigenfunction computa-
tions [14].

II. K ARHUNEN–LOÈVE DECOMPOSITION

Let be a complex vector space of dimensioncontaining
a finite set of pattern vectors, say . We
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assume that is equipped with the standard Hermitian inner
product defined by . The KL decomposition
of this set of patterns provides an orthonormal basis for

which is optimal for arbitrary truncation errors, which we
now explain.

Let be an ordered orthonormal basis for
. Then for any vector , we may write uniquely

as , without error. The -truncation of with

respect to this basis is the vector , and

the error vector of this truncation is .
Given the set of pattern vectors, and the basis , we

define themean square errorof the -truncation to be

The KL basis for is that orthonormal basis for which the
mean square errors are minimized for every between
1 and .

The construction of the KL basis for is well-known and
given by the following theorem; recall that .

Theorem 2.1:The KL basis is given by the eigenvec-
tors of the ensemble average covariance matrix

.
For a reference, see [1].
This covariance matrix is positive definite Hermitian;

thus, it has only nonnegative real eigenvalues.

III. B ASICS FROM GROUP REPRESENTATIONTHEORY

In this section, we collect the basic results of the representa-
tion theory of finite groups which we require. All of the results
are completely standard and may be found in many texts, e.g.,
[5], [12], [18], and [19].

Let be a finite group with identity and elements.
Let be a finite dimensional complex vector space. A
representationof on is a homomorphism
of to the group of linear automorphisms of. Sometimes
is also called the representation of. We will often write
or for . The dimension of is sometimes called
the dimension, or degree, of.

A subspace of is invariant under if for all
and . A representation is calledirreducible if

there is no proper nonzero invariant subspace of. A finite
group admits only finitely many irreducible representations
up to isomorphism; the number of irreducible representations
of is equal to the number of conjugacy classes.

Suppose that is a representation of and
is a linear transformation which is -equivariant, that is

for every and . If is an
irreducible representation, Schur’s Lemma implies that every

-equivariant map is a multiple of the identity.
For each irreducible representationwe write for the

matrix ; its entries are then , for .
We have the following basic orthogonality relations for the
entries of these matrices:

(3.1)

(For a proof, see [4] or [12].) Define, for any representation
of , the operator

We define Image for and
.

The following now follows completely formally from the
orthogonality relations.

Proposition 3.2: These mappings have the
following properties.

1) For and irreducible representations of,
.

2) The operators are orthogonal projectors.
3) The sum of these projectors is the identity on:

.
4) The space splits as the direct sum

.
5) For the operator maps isomorphically onto

, and is zero on if or .
6) For each the sum is a direct

sum, and is a -invariant subspace of , isomorphic to
the irreducible representationtaken exactly
times.

We will say that a basis for is -adapted if it is
formed by taking, for each , a basis for , and
applying the transfer operators for each with

to obtain bases for , and then
concatenating these bases to obtain a basis for .

We may take each irreducible representation to be unitary,
so that for every ; we will assume this in what
follows. If we choose, in each subspace, the basis
to be orthonormal, and the irreducible representations ofare
all taken to be unitary, then an easy computation shows that
the entire basis for constructed in this way is orthonormal,
so that .

In this case, we also have that , consid-
ering the operators as matrices.

IV. KL D ECOMPOSITION WITH SYMMETRY

Let be a complex vector space anda finite group of
order acting on . Moreover let us assume that the action
is unitary, so that for every . [We will usually
suppress the notation for the mapping ofinto and
simply consider each as a unitary matrix operator on.]

Let be the ambient space for a set of patterns; we think
of as the set of all possible patterns coming from the data
being collected. The set is typically a submanifold lying
inside the vector space .

Our symmetry hypothesis is that is invariant under the
action of on : for every and , the translate

is also in .
Note that this symmetry assumption isnot that each pattern

in is -invariant; only that a translate of a pattern is again
a possible pattern.
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Suppose we have a finite set of patterns
which lie in . We want to exploit the group action and the
symmetry assumption to extract information about the KL
basis for .

This basis is given by the eigenvectors of the ensemble
average covariance matrix .

Every pattern in gives rise to other patterns by trans-
lating by the elements of the group; all of these patterns also
will lie in the pattern space by our symmetry assumption.
We “symmetrize” the data by collecting these patterns
in the set :

A basis for the KL subspace based on this new set of
patterns is given by the eigenvectors of the ensemble average
covariance matrix which is defined using the enlarged set
of patterns :

The matrix is a matrix, and as such can be viewed
as an operator on the vector space. It is easily seen to be

-equivariant. This -equivariance immediately implies the
following, which is a version of Wigner’s Theorem.

Theorem 4.1:

1) The operator commutes with the projectors and trans-
fer operators , and therefore each subspace is

-invariant. Hence, if we change to a-adapted basis
for , the matrix will be in block form, with block

for the subspace . In particular, the eigenvectors
of can be taken to lie in the subspaces.

2) The blocks are in fact independent of:
for each . A vector is an eigenvector for
with eigenvalue if and only if the transferred vector

is an eigenvector for with eigenvalue .

3) The eigenvalues of on each occur
with multiplicity equal to a multiple of .

The entry of is

The numbers are exactly the coordinates, in the-
adapted orthonormal basis, of the vectors, projected into

. Therefore, viewing as a map from to , we have
that

(4.2)

and so can be viewed as the covariance matrix of the
projected symmetrized data. The following Lemma will be
useful in the implementation of the reduction algorithm which
will follow below.

Lemma 4.3:Let be an irreducible unitary representation
of , with matrices for .

a) For and we have

b) For we have

Proof: To prove (a), we see that

setting

Now (b) follows since by (a) we have
and so

since in the second line the bracketed expression equals
using (3.1). Q.E.D.

Combining (4.2) with the previous lemma gives us that

(4.4)

We note that this formula for is more efficient than (4.2);
the sum is over the dimension of the representationinstead
of over the group elements. In order to use this to compute the
entries of the matrix for , we have the following lemma.

Lemma 4.5:Let be a -adapted basis for (so
that is an orthonormal basis for ). Then the entries

of in this basis are
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Proof: Since is an orthonormal basis for , the
entry of is

(4.6)

using (4.4). For any , we have

setting

since the basis is -adapted

so that and .
Plugging these into (4.6) gives the result. Q.E.D.

The previous lemma motivates the following notation. For
each pattern , define the column vector (whose dimension
is equal to ) by setting the coordinate equal to

where is the given -adapted basis for . Then Lemma
4.5 exactly says that

(4.7)

It is the above formulation which enables us now to give a
precise algorithm for exploiting the symmetry assumption in
determining a KL basis for .

V. ALGORITHM FOR EXPLOITING

SYMMETRY IN THE KL BASIS COMPUTATION

Given: A complex vector space of dimension , a set
of patterns drawn from a pattern subset, and a unitary
symmetry group satisfying for all and

.

1) Determine the irreducible unitary representationsof
, and a -adapted basis for . Let be the

dimension of .
2) For each , each , and each pattern

, form the vector of dimension by
.

3) For each , form the matrix of by

.

4) For each , find the eigenvalues and correspond-
ing eigenvectors (for ) of the matrix .
Write each eigenvector as .

5) Define

for each , each , and each
. The KL basis for consists of these vectors

, each with eigenvalue (independent of ).

We note that Step 1 is to be considered as the overhead of the
method, which can be done once, and subsequently applied to
many different KL problems in the space. The power of the
method is that it replaces the eigenvector computation for the
large matrix with several eigenvector computations
of the smaller matrices .

VI. COMPUTATIONAL EFFICIENCY

In order to calculate the efficiency of the proposed method,
we assume that a general method such as QR is used to
compute the eigenvectors and eigenvalues of symmetric (or
Hermitian) matrices; for a matrix, these methods are
typically of order , that is, the number of flops required to
find the eigenvectors and eigenvalues is approximatelyfor
some constant (see [3] for example).

Therefore, in our original problem, the cost of directly
computing the KL basis is , since is the dimension of
the ambient space .

The dimension of the symmetry subspaces for each
irreducible representation depends on the precise nature of
the representation of the group on the space . However,
it is quite typical that this representation is a direct sum of
several copies of the regular representation, or varies from
this in a minor way often due to fixed points in a permutation
representation. For the regular representation, which is of
dimension , the dimension of the first symmetry subspace

is . Therefore, if is approximately a direct sum
of regular representations, then the dimension of will
be approximately . Hence, the cost of
finding the eigenvectors in this symmetry subspace will be
approximately .

Solving this subproblem for each and summing, we see
that the approximate ratio of the cost of solving the original
problem to the cost of using the method outlined above is

For a cyclic group of order , all irreducible repre-
sentations are one-dimensional (1-D) , and there areof
them. Hence, .

For a dihedral group of order (where is even), all
irreducible representations are either one- or two-dimensional
(2-D); there are at most four representations of degree one and
approximately representations of degree two, the precise
numbers depending on the value of modulo 4. Therefore
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. For the group of symmetries of the
square, the precise factor is .

Finally, we look at the group of symmetries of the cube;
it has order 48 and there are four irreducible representations
of degree one, two of degree two, and four of degree three.
Therefore

The other extreme situation is when each . In this
case, each submatrix is simply a number, equal to the
eigenvalue , and no eigenvector computations are required:
the eigenvectors are exactly vectors of the -adapted
basis. This very special situation actually occurs more often
than one might expect, especially for the compact Lie groups.

Finally, we remark that this method is useful when the
number of patterns is much larger than the dimension of
the ambient space .

VII. EXAMPLE

As noted in the Introduction, it is typical that data ob-
tained from physical modeling enjoys some symmetry, because
the underlying differential equations governing the evolution
of the pattern data is equivariant under a group action. In
particular, for an ODE system of the form , if

for all in a group , then whenever
is a trajectory for the dynamical system, so will be.
Hence, pattern data arising from time series of the evolution
of trajectories will enjoy the symmetry of the group.

In this section, we present an example of this type using
data generated by a seven-dimensional (7-D) ODE system
which exhibits symmetry. The ODE system we consider
has variables for , and ; the system is given
by

(This system was kindly suggested to us by G. Dangelmayr.)
We use as parameters , , , and

, which gives a symmetry-adapted Lorenz-type system
exhibiting a strange attractor with a chaotic trajectory. We hope
that the chaotic nature of the trajectory produces data which
“fills up” the attractor, allowing us to use one trajectory to
produce a good approximation to the attractor.

The group acts simply by permuting the indices of the
’s and ’s; the variable is fixed. It is clear that the ODE

is preserved by this action, and therefore solutions to the ODE
are carried into other solutions.

After choosing an initial condition randomly, a trajectory is
generated for each time step; this gives a 7-D vector for
each time step. A fourth-order Runge–Kutta scheme was used
to generate 5000 time steps; the first 1000 were discarded,
producing a data set of 4000 vectors in the 7-D space.

has three irreducible representations: the 1-D trivial rep-
resentation , the one-dimensional alternating representation

, and the 2-D standard representation. The alternating
representation does not occur in our 7-D representation;
the trivial representation occurs three times and the standard
occurs twice. Hence, there are three symmetry subspaces:
is three-dimensional (3-D), and are 2-D. -adapted
bases for these subspaces are

We find the 3 3 matrix and the 2 2 matrix
for the two symmetry subspaces to be

The eigenvalues and eigenvectors of are

The eigenvalues and eigenvectors of are

We can now form the resulting set of eigenvectors of
by using the eigenvectors in the last step together with the

-adapted basis for . We list the eigenvalues with their
eigenvectors.
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Finding this set of vectors was our goal because they
provide the full KL-basis for the enlarged pattern set
(consisting of 24 000 vectors) and the 77 enlarged ensemble
average covariance matrix. For completeness, this matrix is
presented below; all computations have been done with six-
digit precision, the results were then rounded to three decimal
places of accuracy as in (7.1), shown at the bottom of the page.

We note that 95% of the energy of the data is concentrated
in the eigenspaces of the three largest eigenvalues.

Let us now compare the eigenvalues and eigenvectors of
(which is the ensemble averaged covariance matrix based

on the small set of patterns), and . We have as in (7.2),
shown at the bottom of the page.

The nonzero eigenvalues and their eigenvectors ofare

This information tells us that all the generated patterns lie in
the 3-D subspace generated by the eigenvectors above. When
we look at the enlarged pattern set, we would expect that the
same thing is true, and we have indeed seen that the energyis
concentrated in a 3-D subspace. The final step is to compare
these two 3-D subspaces.

A comparison of the eigenvectors of these two matrices
show that they span essentially the same 3-D subspace of.
Taking the dot-product of the eigenvectors makes this clear as
in (7.3), shown at the bottom of the page.

In a perfect system, the above 7 3 matrix would
have a 3 3 identity block at the left, and zeroes
elsewhere. That this is not the case may be due to several
factors: the particular trajectory used may not fill up the
attractor as well as desired, and the Runga–Kutta scheme
to compute the trajectory will introduce some errors also.
However, the agreement between the two three-spaces is
convincingly close.

VIII. C OMPACT LIE GROUPS

In this section, we extend the above theory, which was
developed for finite groups, to the case of compact Lie groups.

Let be a compact Lie group with identity; recall
that there is a unique normalized Haar measureon .
The representation theory of is in many ways similar to
that of a finite group; the main difference is that averages
over the finite group are replaced with integrals in the Haar
measure, and that there are in general infinitely many finite-
dimensional irreducible unitary continuous representations up
to isomorphism. In particular Schur’s Lemma still holds:
every -equivariant map on an irreducible representation is
a multiple of the identity.

For each finite-dimensional continuous irreducible represen-
tation we again write for the matrix , with entries

. The basic orthogonality relations (3.1) hold in this

(7.1)

(7.2)

(7.3)
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context also

(8.1)

We again define, for any finite-dimensional continuous repre-
sentation of , the operator

We set Image for and
.

The analog of Proposition 3.2 holds without any changes
in this situation. In fact if is not finite-dimensional, the
operators are still defined, and parts (a), (b), and (e) still
hold; moreover (f) also holds if each symmetry subspace
is finite-dimensional. We have the identical definition for an
orthonormal -adapted basis for .

The typical application of the theory occurs when the Lie
group acts on a compact manifold , and therefore acts
on the space of continuous -valued functions , via
the formula . The standard Hermitian
metric on is

vol

Suppose that is a submanifold of data. Under
the assumption that the symmetry subspaces of are
all finite-dimensional, we have the identical theory applying
in order to compute the KL basis for with respect to
the data set . Since may be a submanifold of data, we
have that sums over are replaced by integrals; and with this
mild change the algorithm holds almost without change.

IX. A LGORITHM FOR EXPLOITING SYMMETRY IN THE KL
BASIS COMPUTATION IN THE COMPACT LIE GROUP CASE

Given: A manifold , a submanifold of patterns drawn
from the space of functions , and a compact Lie group

acting on preserving the set . We assume that each
symmetry subspace is finite-dimensional.

1) Determine the irreducible unitary representationsof
, and a -adapted basis for . Let be

the dimension of .
2) For each , each , consider the

function defined by

vol

3) For each , form the matrix by

vol

4) For each , find the eigenvalues and correspond-
ing eigenvectors (for ) of the matrix .
Write each eigenvector as .

5) Define

for each , each , and each
. The KL basis for consists of these

vectors , each with eigenvalue (independent of
).

Note that since has in general infinitely many irreducible
representations, the method actually is useful for finding that
part of the KL basis which resides in any particular symmetry
subspace, i.e., for fixed.

X. EXAMPLE: THE CIRCLE GROUP

Consider the compact Lie group . acts on
by translation, and we consider the spaceof continuous
functions on , which of course correspond to continuous
periodic functions on the line.

The irreducible representations ofare all 1-D, indexed by
integers ; . For each , the symmetry
space is also 1-D, and ;
for every . Since all dimensions are one, we will drop the
subscripts; the -adapted basis is . The
functionals on are

For any pattern set , the KL basis consists of these’s, and
the only unknowns are the eigenvalues. Each matrix
is , with entry the eigenvalue ; by the above, it is

vol

This theory then simply reproduces the Fourier analysis for
the set ; the KL basis consists of exactly the Fourier modes

, with the eigenvalues given above.

XI. SUMMARY AND LOOK AHEAD

In this paper, we have derived an algorithm which allows
us to considerably reduce the cost of the KL analysis of
symmetric data using group representation theory. We started
by exhibiting the results in the case of finite groups and
extended the results to compact Lie groups. Examples for both
cases were given.

We will exhibit an example of data with symmetry
in Part II which will follow shortly. This example is far more
interesting but also far more complicated than any of those
given here.

It is also worth noticing that the given algorithm does not
only reduce the computational cost of the KL analysis, but also
gives more insight into the structure of the decomposition.
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