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Abstract The experimental data from 
three space points are analyzed in terms 
of the qualitative theory of differential 
equations. Attractors were found which, 
within the experimental resolution, could 
be represented as a direct product of a 
"fast" one-dimensional torus corresponding 
to azimuthal waves and a "slow" two- 
dimensional torus corresponding to small 
interactions between them. The slow tori 
observed have rational values (13/31 and 
3 / 7 )  of the rotation number. 

A method for experimentally 
determining the coefficients in the 
phenomenological equation describing the 
interaction of azimuthal waves is 
proposed. The influence of instrumental 
noise on the uncertainty in the 
determination is estimated. 

INTRODUCTION 

It is now accepted that the simple Landau-Hopf 

model of the onset of turbulence does not 

correspond to reality in detail and that the 

concept of the stochastic attractor in the 

phase space of an appropriate dynamic system 

qualitative insight into the nature of 
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stochasticity in a hydrodynamic flow. Some 

experimental evidence for this hypothesis was 

found on the basis of a spectral analysis of 

one-point measurements in circular Couette 
flow with a rotating inner cylinder. 2,4 

In this paper, we report on the next two steps 

in the study of the nature of stochasticity in 

this flow. In the first step, using the 

multichannel ion-current technique and careful 

long-time measurements (for details, see 

reference I), we analyzed the topology of those 

sets which attract the phase trajectories of 

hydrodynamic flow and found attractors that 

look like windings a round a three-dimensional 

torus. In the second, we propose a new method 

to analyze the complete experimental time 

series, allowing us to establish the 

correspondence between a given flow and a 
dynamic model (chosen a priori from a class 

of ordinary differential equations) and to 

determine the coefficients and their 

dependences on Reynolds number. 

OBSERVATIONS OF RESONANT TORI 

We used a cell with inner diameter Dl = 35 mm, 
outer diameter D2 = 55 mm, and height H = 282 mm 

between fixed end plates. The number Re=um4 
46 -d4V 3 , where a, is the angular 
speed of the inner cylinder and J is the 

viscosity, was maintained within '0.01 5% during 
the few hours required for the flow to become 

steady state and the data to be acquired. 

The following transitions were observed. 

(1 ) At Re =75, the Taylor vortices fills the 
annular space from one end of the cylinder to 

the ofher. This process is not a difurcation 

in the strict sense. 39 The primary flow 
contains 14 pairs of vortices. (2) At @ =l030, 
the first difurcation occurs; it developes 

travelling azimuthal waves that produce fast 

oscillations ( $, = 1.6 Hz) of hydrodynamic 
variables in a fixed system of reference. The 
magnitude of waves grows gradually in accordance 

with the Landau law. In the phase space of our 
flow, this process is described by a Hopf 

bifurcation from a fixed point to a limit 

cycle, i.e., to a one-dimensional torus r ,*  
To study the following bifurcations, we 

obtained the envelopes of main frequency of 

signals from the three neighboring pairs of 

Taylor vortices. (The ion current probes were 
placed at 90,110, and 130 mm from the upper end 
plate.) This procedure corresponds to averaging 

Poincare maps along the fast limit cycle and 

zives I1slow" variables. This technique shows 

that, at Re = 1051, these variables begin 

to oscillate with frequency fn = 0.009 Hz, 
so the next difurcation is the appearance of 

a new limit cycle in slow variables. Taking 

the fast motion into account, we can say that 

the observed attractor is a two-dimensional 

torus with f = 1 6 ,  0.009) Hz. The ratio 

f4/Sp is about 200, so, in this case, the 
question of the existence of phase locking 
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requires a much more precise apparatus. 

This attractor is destroyed at = 1058. 

During a time interval of the order of 1000 s, 

each signal, taken separately, seens to be 
chaotic. But the composition of any two signals 

plotted on a graphic display during more that 

10000 s develops singularities that are typical 

of torus projection onto a plane. In particular, 

with a proper choice of projective plane P , 
this attractor has a hole. The points of 

intersection of the experimental trajectories 

with the plane 6 1 P are shown in figure 1 ,  

FIGURE 1. The cross-section of a slow torus. 

which shows that the motion in slow variables 

occupies a surface of a two-dimensional torus. 

Consequently, with fast motion taken into 

account, the flow studied here has an attractor 

on a three-dimensional torus. If we construct 

the period-one angle map 8 ( &+ 1 )= F( @ ( b)) 
(figure 2), it becomes clear that the mapping 

FIGURE 2. Plots of versus elG with 
) = I and = 31. 

of the torus meridian into itself is a single- 

valued invertible function. Any integer power 

of this function exhibits the same character, 
but there is a surprising feature if the power 

is equal to 31: all the experimental points 

occupy a diagonal of a square. This means that 

the phase trajectory is locked after 31 circuits 
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- must be equal to zero. A =(ci-cL)~c: -c,  ) 
The diagonalization of A using an unitary 

matrix gives the direction cosines of a 

hyperplane, which allow us to calculate the 

coefficients of the governing equation (2). In 

real situations, it can merely be assumed that 

the attractor will occupy a flat hyperellipsoid 

and that one of its dimensions will be 

comparatively small. In this connection, the 

question arises, Does instrumental noise have 

anyinfluence on the uniqueness of the solution 

of the inverse problem? To answer this question 

and to study the efficiency of the proposed 

method, we have made a series of numerical 

simulations. Equations (2) were solved by the 

use of a computer with various values of the 

parameters. An additional noise was then 

superimposed on the solutions obtained and the 

algorithm described above was applied to 

restore the coefficients. 

We found that the uncertainty of the 

determination of the coefficients can be better 

than if there is no noise and the time 

interval contains not fewer than 1000 

characteristic periods of motion. For example, 

at 0 =0.8, and r =r/a=0.05 (i.e., in the 
region of a two-dimensional torus), the vector 

of eigenvalues - was equal to (3.03, 0.093, 

0.03, 4x10-'0 and the determined coefficients 

were eC = 9.996 and b* = 0.798. The next 

interval of the same duration gives A; =(3.87, 
0.09, 0.03, and @*= 10014 and 

(3* = 0.795. It is seen that the statistics 

obtained are not rich enough to give a 

representative estimation of the correlation 

matrix, but that the coefficients and e) 
were determined quite well. This can be 

explained by the circumstance that the thickness 

of the hyperellipsoid X 4  = is much less 

than its transverse size A 3  = ~ x I o - ~ .  
As increases motion on the attractor 

becomes more complicated and less correlated, 

the transverse size grows, and the uncertainty 

diminishes. Thus, at 8 = 10, b =  0.8, and 
P = 0.15 in the regime of the developed 

chaotic attractor, Xi= (2.11, 1.11, 0.78, 
and o*= 9.975 and r=  0.7995. 

Let a small Gaussian noise now be added. 

a noisy matrix n/ will be added to the 

correlation matrix '!hi* . m general, is 
not diagonalized by the same transformation 

as A . It is clear that information about the 
diagonalization of the matrix in question 

completely disappears if & is of the same 

order as the minimum transverse size of the 

attractor. Therefore, the relative uncertainty 

can be estimated by the formula ~010~~016-&/Xj 
which has been confirmed by numerical simulation. 

It is essential that the increase in Re lead 

to an increase in the transverse size and a 
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decrease in the uncertainty. 

The application of this method to labora- 

tory experiment faces an additional difficulty. 

This difficulty is conditioned by the 
circumstance that the measured quantities are, 

in general, not the same as shose involved in 

the geverning equation (2); thus,, to closure 

the equations, it is necessary to extend the L 

number of measured variables. We hope that - -. - 

this difficulty will be circumvented. 
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