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FIGURE 25. Flow structures visualized by fluid markers: (a) particles are generated along a line 
parallel to the z-axis at y+ x 10 (oblique top view); (b )  particles are initially distributed uniformly 
on a plane parallel to the wall at y+ x 10 (top view); (c) particles are generated along a line parallel 
to the y-axis (side view). 

6. Summary and discussion 
A direct numerical simulation of a turbulent channel flow was carried out with 

192 x 129 x 160 mesh points at a Reynolds number of 3300, based on the centreline 
velocity and channel half-width. A fully spectral method - Fourier series in the homo- 
geneous directions and Chebychev polynomial expansion in the normal direction - 
is used for the spatial derivatives in conjunction with a second-order time- 
advancement scheme. 

The computed results are compared with experimental results a t  comparably 
low Reynolds numbers (most of which were obtained from the oil channel at 
the Max-Planck-Institut fur Stromungsforschung of Gottingen, West Germany). 
Although the general characteristics of the computed turbulence statistics are in 
good agreement with the experimental results, detailed comparison in the wall 
region reveals consistent discrepancies. In particular, the computed Reynolds stresses 
- both the normal and the shear stresses - are consistently lower than the measured 
values, while the computed vorticity fluctuations at  the wall are higher than the 
experimental values. The same conclusion was drawn from the other two recent 
numerical simulations (Moser & Moin 1984 ; Spalart 1985). 

One source of the discrepancy might be related to the measurement of the 
wall-shear velocity u,. When the mean-velocity profiles are renormalized with the 
corrected (experimental) u,, excellent agreement among the experimental results and 
the computed results is obtained. When the turbulence intensities and the Reynolds 
shear stress are similarly rescaled, the overall agreement is better, but the computed 
turbulence intensities, except the streamwise fluctuations, remain lower than the 
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measured values. Whether or not the remaining differences are due to the cross- 
contamination mentioned by Perry et al. (1985) remains to be resolved. Furthermore, 
new measurements by J. H. Hartonidis & A. V. Johansson (1985, private communi- 
cation) indicate that measurements near the wall might be significantly affected by 
the heat-conduction problem experienced by hot-film probes used to measure the 
turbulence quantities in the proximity of the wall. 

Another source of the discrepancy may be the test section of the oil channel used 
in the aforementioned experiments. The test section is 22 cm wide and 7 m long, and 
is filled with oil to a depth of 85 cm, which gives an aspect ratio of 3.9 (depth to width), 
and the length of the test section is 32 channel widths. This aspect ratio is well below 
the recommended minimum value of 7 to be representative of ‘two-dimensional ’ flow 
(Dean 1978). In addition, it is not possible in general that a fully developed state can 
be reached over such a short length (Comte-Bellot 1963; Hussain & Reynolds 1975). 
Dean & Bradshaw (1976) pointed out that the mean velocity and turbulence 
intensities near the centreline overshoot their fully developed values in the developing 
section. On the other hand, experimental results of Comte-Bellot indicated that the 
turbulence intensities increased monotonically as the flow develops downstream 
without any overshoot. Eckelmann (1974) reported that the mean-velocity profiles 
were independent of streamwise locations, and the variation of the higher-order 
turbulence statistics (such as skewness and flatness factors of u and w) upstream of 
the measuring station was within his measurement accuracy ; and he concluded that 
the flow was fully developed. 

Although the disagreement between the computed and measured values does not 
seem to be serious-especially because most disagreements are confined to the 
immediate vicinity of the wall - it is important to resolve the differences if the use 
of the computer-generated databases or experimental data in studying turbulence 
structures and in developing improved turbulence models is to be continued. We hope 
more thorough investigations will be carried out in the near future to clarify the 
discrepancies discussed here. 

We are grateful to Drs R. S. Rogallo and R. V. Westphal for helpful comments on 
a draft of this manuscript, and to  Dr N. Mansour for numerous discussions we had 
during the course of this work. 
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