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Figure 10. Conceptual model of an array of CS and their spatial relationship with experimentally
observed events discussed in the text: (a) top view; (b) side view; (c) structures at cross-section FG
in (a); (d) expanded views of structures C and D in (a,b), showing the relative locations of Q1, Q2,
Q3, Q4, E and H. A schematic demonstrating the counteracting precession of SN in the (x, z)-plane
due to background shear is shown in (e). The arrows in (b) denote the sections of figure 9(a–e).
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figure 10a), since ejection (negative 〈u〉) occurs upstream of SP and sweep (positive
〈u〉) occurs downstream of SP, as is also the case for SN; i.e. positive ∂〈u〉/∂x occurs
at the centres of SP and SN. This event is well captured at the alignment point (i.e.
H in figure 10a) of ensemble average E1, as shown in figure 11(b). The asymmetry
of u-fluctuations about z = 0 in the internal shear layer (VISA events at E and H)
is clearly seen in contours of 〈u−U(y)〉 from ensemble average E2 (figure 11c); here
U(y) is the space- and time-averaged streamwise velocity. Some regions of E and H
are qualitatively shown in figure 11(a–c). The figure shows a strong resemblance to the
results of Johansson et al. (1991), who used a conditional VISA sampling technique
to study internal shear layers such as E and H. Note that these events were not
used a priori in the ensemble averaging; thus, their presence in our ensemble average
triggered by λ2-based CS detection confirms the validity of the proposed conceptual
model.

The positive ∂〈u〉/∂x (which implies negative ∂〈u〉/∂t from Taylor’s hypothesis)
regions in figure 11(b) are weaker than the negative ∂〈u〉/∂x (i.e. positive ∂〈u〉/∂t)
events in figure 11(a) (cf. contour levels and contour slope with respect to x), an
observation which can be explained as follows. Once a VISA event with positive
∂〈u〉/∂x (i.e. negative ∂〈u〉/∂t – a negative VITA event) occurs, the magnitude of
positive ∂〈u〉/∂x weakens due to the underlying velocity field. Namely, a low-speed
fluid particle upstream moves slower than a high-speed fluid particle downstream,
causing the distance between them to increase in time, so that ∂〈u〉/∂x decreases. For
negative ∂〈u〉/∂x regions, the high-speed fluid upstream moves faster than the low-
speed fluid downstream, thereby creating a steeper gradient. This is consistent with
the negative skewness factor of ∂u/∂x observed in most turbulent flows. The stronger
negative ∂〈u〉/∂x in our educed fields is also consistent with the experimental result
that the frequency of occurrence of negative VISA events (positive VITA events)
is higher than that of positive VISA events (negative VITA events) for the same
|∂〈u〉/∂x| threshold.

4.2. Effect of phase difference between velocity components

In this section, we discuss the relative spatial locations of large u- and v-fluctuations,
hereinafter called their phase difference (for the lack of a better descriptor), with
regard to Reynolds stress generation.

The velocity fields 〈u − U〉 and 〈v〉 in the x = 0 plane through SP have similar
patterns (figure 12a,b). Since variations in 〈u−U〉 result from the advection of fluid
across the shear region induced by CS, negative u tends to accompany positive v and
vice versa. Thus, in figure 12, we can assign a Q2 event to the left of the CS and a
Q4 event on its right. Nevertheless, a phase difference between the locations of peak
u- and v-fluctuations is evident in figure 12, which has important implications for the
Reynolds stress distribution, as discussed below.

To explain this phase difference, we consider an inviscid streamwise vortex em-
bedded in a homogeneous shear flow U(y) with a shear rate dU/dy = S . This
simplification enables an analytical solution, because Du/Dt = 0 and the particle
pathline has a simple analytical form. The evolutions of the u-, v- and w-fluctuations
can be shown to be

u(r, θ, t) = Sr
[
sin(f(r)t/r + θ)− sin θ

]
= 2Sr cos

(
θ +

f(r)t

2r

)
sin
(f(r)t

2r

)
,

v(r, θ, t) = f(r) cos θ, and w(r, θ, t) = f(r) sin θ.

Here r is the distance from the centre of the vortex, θ is the angle with respect
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Figure 11. (a) 〈u − U〉 in E2 at z+ = −40, contour levels = (0.4, −1.25, 2.14); (b) 〈u − U〉 in E1
at z+ = 0, contour levels = (0.3, −0.947, 1.68). (c) 〈u − U〉 in E2 at y+ = 15, contour levels =
(0.4, −1.21, 1.71). Locations of internal shear layers E and H in figure 10(a,b) are also qualitatively
indicated.

to the x-axis, and f(r) is the initial azimuthal velocity profile. When t is small,
u ≈ Sf(r)t cos θ, so that the u and v velocities are in phase; however, as t increases,
a phase difference emerges. By comparing u and v above, the phase difference ∆θ
between u and v velocities (computed from the locations of maximum u and v) is seen
to be ∆θ = f(r)t/(2r), indicating linear growth in time (at fixed r). For a developed
quasi-streamwise vortex, this phase difference is expected to be non-negligible; hence
the non-negligible Q1 and Q3 events. This effect also causes the negative peak of
〈u−U〉 to occur at a larger y+ than the positive peak of 〈u−U〉, irrespective of the
sign of ωx (figure 12a). Thus, Q4 is observed more frequently than Q2 near the wall
and vice versa away from the wall.
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Figure 12. Coherent velocities at x = 0 in E1: (a) 〈u − U〉, contour levels = (0.7, −2.60, 2.96);
(b) 〈v〉, contour levels = (0.2, −1.10, 0.978); (c) profile of 〈u−U〉 along the line in (a). Thick contours
denote the educed CS centre for ensemble average E1.

Coherent normal velocity 〈v〉 contours at x = 0 in figure 12(b) show positive and
negative values on the left- and right-hand sides of SP respectively, as expected.
However, ∂〈v〉/∂y is negative at the centre of SP; in other words, the zero crossing of
〈v〉, which bounds regions of Q1 and Q3 events, is rotated through a counterclockwise
angle. This feature is seen to be a consequence of the CS tilting in the following
way. Since the tilting of SP and SN creates negative 〈u − U〉 upstream and positive
downstream of both SP and SN, ∂〈u〉/∂x is positive at the structure centre (e.g.
point H in figure 10a). In addition, examination of the educed flow field reveals that
∂〈w〉/∂z near the structure centre is small (since 〈w〉 is symmetric in z at H) compared
to ∂〈u〉/∂x. Thus, it follows from the continuity equation that ∂〈v〉/∂y is negative at
the structure centre (figure 12b).

The coherent Reynolds stress −〈u−U〉〈v〉 is positive nearly everywhere (figure 13a),
as would be expected from Prandtl’s mixing length theory. Nevertheless, a small region
of negative coherent Reynolds stress is present due to the (spatial) phase difference
between 〈u−U〉 and 〈v〉. For example, 〈v〉 is negative above the structure centre, where
〈u−U〉 is also negative; the latter follows from the fact that fluid above the structure
has been advected from near the wall and thus contains smaller x-momentum. Thus,
Q3 events occur above the structure centre, and, by the same token, Q1 events occur
below the structure centre. The observation that Q1 and Q3 events are much less
probable than Q2 and Q4 events (Willmarth & Lu 1972; Kim et al. 1987) is consistent
with the relatively small area of negative coherent Reynolds stress observed in our
educed fields.

It is interesting to note that the other components of coherent Reynolds stress have
a different symmetry. Contours of −〈v〉〈w〉 show a cloverleaf pattern with alternating
sign (figure 13b), so that the net (i.e. spatial-averaged) Reynolds stress, −〈v〉〈w〉, nearly
vanishes. In contrast, −〈u−U〉〈w〉 is predominantly positive for SP (figure 13c) due
to a phase difference between 〈u − U〉 and 〈w〉. However, this positive value is
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Figure 13. Coherent Reynolds stresses at x = 0 in E1: (a) −〈u − U〉〈v〉 for SP, contour levels =
(0.3, −0.534, 1.94); (b) −〈v〉〈w〉 for SP, contour levels = (0.2, −0.868, 1.22); (c) −〈u−U〉〈w〉 for SP,
contour levels = (0.7, −1.34, 4.23); (d) −〈u−U〉〈w〉 for SN. Relative locations of Q1, Q2, Q3 and
Q4 events with respect to the CS center are shown in (a).

compensated by the negative −〈u − U〉〈w〉 produced by SN (figure 13d). Since, as
expected, SP and SN are distributed in the buffer region with equal probability and
their contributions are equal and opposite, the time-averaged Reynolds stress −uw
vanishes.

Thus, analysis of induced velocities can explain the regions around a CS which
cause Q1, Q2, Q3 and Q4 events. In addition, instantaneous coherent Reynolds stress
patterns with respect to the CS centre are documented. Although they have clear
spatial distributions, only −〈u − U〉〈v〉 produces a non-zero spatial average. The
−〈u−U〉〈w〉 and −〈v〉〈w〉 distributions have spatial variations but have small spatial
averages when both SP and SN are accounted for.

4.3. Vortex lines near CS

To investigate the vortex line geometry in our ensemble-averaged field, vortex lines are
traced upstream and downstream of SP (figure 14a). We observe that hairpin vortex
lines occur upstream of the structure and that inverted hairpin vortex lines occur near
its downstream end, even though the structure is neither hairpin nor inverted hairpin
shaped.

The inclination angle tan−1(〈ωy〉/〈ωx〉) of the vorticity vector at the centre of
SP, i.e. the location of peak λ2, is about 17◦. This is significantly higher than the
inclination angle of SP indicated by isosurfaces of 〈λ2〉, which is 9◦. The difference in
the angle of the vorticity vector and that of the structure axis is a simple consequence
of the intrinsic difference between vorticity surfaces and vortex surfaces (Melander
& Hussain 1994) and can be explained by the following considerations. Consider a
vortical structure aligned with x in the presence of a background shear U(y) (with
ωz < 0). The evolution of the normal (to the vortex axis) component of the vorticity
vector is given by

Dωn
Dt

= ωz
∂un

∂z
+ ωn

∂un

∂n
+ ωs

∂un

∂s
. (4.1)
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For simplicity, suppose that ωn = 0 initially and note that ∂un/∂s is negligible for
a streamwise-aligned elongated vortex (identically zero for an infinite vortex tube).
For a vortex with positive ωs (i.e. SP), its induced velocity un is negative (positive)
at larger (smaller) z than the plane of figure 14(b); thus, ∂un/∂z is negative across
the CS. Since ωz is negative everywhere due to the background shear, positive ωn is
generated according to (4.1) even if ωn is not present initially. Therefore, the vorticity
vectors inside a vortical structure in the presence of mean shear generally deviate
from the axis of the vortical structure itself. This effect is clearly demonstrated in
the ensemble-averaged flow in figure 14(c) for SP by vortex lines (lines everywhere
tangent to the vorticity vector) passing through several locations along the CS axis.
These vortex lines immediately deviate from the CS axis, exit the CS core at an
angle to the λ2 = 0 surface, and align with the nearly orthogonal vortex lines of
the background shear outside the core. This behaviour of vortex lines has also been
observed in homogeneous shear flow turbulence (Kida & Tanaka 1994). Similarly,
this effect is responsible for the vortex line shape in a (y, z)-projection shown in
figure 14(d).

In an alternative, more physical approach, this difference between the vortex core
angle and vorticity vector angle can be interpreted in terms of the inviscid turning
of vortex lines. For instance, consider vortex lines La, Lb and Lc in figure 14(e,f),
which are initially straight in a (y, z)-projection. Due to the induced vortical motion,
these lines deform as shown schematically in figure 14(g,h), producing a vortex line
geometry which is consistent with the ensemble-averaged field (see the similarities
of the vortex lines in figure 14g,h with those in figure 14c,d). Note that no change
is observed in the (x, z)-projection since ωx cannot be created nor destroyed in this
idealized x-independent, inviscid flow.

In summary, vortex lines starting even on the axis of the vortex immediately deviate
from this axis and eventually cross the vortex core boundary, i.e. the λ2 = 0 surface
(figure 14c,d). Therefore, it is not possible to accurately characterize a streamwise
vortical structure subjected to a strong background shear by a vortex line tracing
technique.

4.4. Effect of the structure on the background vorticity field

Swearingen & Blackwelder (1987) pointed out that spanwise inflectional profiles of
u(z) are common and suggested that inviscid instability of u(z) is responsible for the
genesis of near-wall turbulence; Antonia & Bisset (1990) experimentally found that
such a u(z) profile does in fact exist during the bursting process. To address this issue,
we relate the locations of ∂〈u〉/∂z peaks (spanwise inflection points of u) and 〈ωz〉 to
SP.

Contours of 〈ωz〉 at x = 0 (figure 15a) show high-shear (M) and low-shear (N)
regions resulting from cross-stream advection by SP. The spanwise vorticity fluctuation
〈ωz − Ωz〉 changes its sign in z near the wall (figure 15b); this is consistent with
predominantly negative near-wall values of the correlation Rωzωz (y,∆z; yref = 20) of
ωz fluctuations and the weaker positive Rωzωz with −z separation (figure 15c).

We find that the maximum ∂〈u〉/∂z occurs at the bottom left of the structure centre
(figure 15d), and that 〈ωy〉 ≈ ∂〈u〉/∂z, as can be seen by comparing figure 15(d,e) (i.e.
∂〈w〉/∂x is negligible). As mentioned in §4.3, ωy is created from the reorientation of
ωz by the induced motion of the structure (see figure 14f,h), which results in a positive
peak of ωy at the bottom left of the structure, producing the inflection of u(z) shown
in figure 12(c); this effect will be demonstrated in more detail below using an inviscid
model. In figure 15(f), a conditional two-point correlation Rωyωy (y,∆z; yref = 20),
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Figure 15. (a) 〈ωz〉 at x = 0 in E1, contour levels = (0.1, −1.24, 9.85× 10−3). (b) 〈ωz〉 − dU/dy. (c)
Rωzωz (y,∆z; yref = 20). (d) ∂〈u〉/∂z at x = 0 in E1. (e) 〈ωy〉 at x = 0 in E1, contour levels = (0.05,
−9.79× 10−2, 0.285). (f) Conditional correlation Rωyωy (y,∆z; yref = 20).

defined as

Rωyωy (y,∆z; yref = 20) =

∫
ωy(x, z; yref)ωy(x, z + i∆z; yref)dxdz,

where

i =

{
1 for ωx(x, yref, z) > 0;
−1 for ωx(x, yref, z) < 0,

shows that negative peaks exist on both sides of the structure; this is consistent
with the ensemble average 〈ωy〉, providing additional evidence that the educed flow
captures instantaneous flow features related to the presence of streamwise vortices.

To obtain a clearer picture of the evolutions of u, ωy , and ωz produced by a
quasi-streamwise vortex subjected to shear, we now consider the top half of an
inviscid streamwise Batchelor dipole embedded in a shear flow, with the same mean
streamwise velocity profile U(y) as in the turbulent channel flow (see schematic in

Figure 14. (a) Vortex lines traced outside CS from (x+, y+, z+) = (−100, 20, 170), (−70, 24, 170) and
(100,45,170). (b) Notation for the explanation of different inclination angles of a vortex core and
vortex lines; solid arrows denote initial vorticity vectors; dotted arrows denote later-stage vorticity
vectors. (c) Vortex lines traced through the CS axis. (d) Front view of vortex lines passing through
the vortex centre and its top and bottom. (e–h) Schematic evolution of vortex lines (La, Lb, Lc) for
a streamwise vortex in a pure shear flow U(y): (e–f) initial instant; (g–h) later stage.
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Figure 16. Evolution of an inviscid streamwise vortex in a non-uniform shear U(y) at t = 20. (a)
Schematic of Batchelor’s vortex. (b) (u − U), contour levels = (0.8, −5.57, 5.58). (c) ωy , contour
levels = (0.06, −0.32, 0.39). (d) ωz , contour levels = (0.2, −3.24× 10−2, 3.30).

figure 16a). The Batchelor dipole exhibits steady v- and w-velocities in a reference
frame moving with the dipole propagation velocity.

The streamfunction for the dipole is given by ψ = −cJ1(kr) sin θ (Batchelor 1967,
p. 535), where ∂ψ/∂z = −v, ∂ψ/∂y = w, with r = (y2 + z2)1/2 and θ = tan−1(y/z).
We prescribe the vortex centre (defined as the point of minimum ψ) to be located
at y+ = 20 in the non-uniform shear profile U(y). The parameters c and k are
set as 7 and 0.5 wall units respectively, in order to centre the Batchelor dipole at
y+ = 20 and to produce the same circulation as the ensemble-averaged structure.
With these parameters, the spanwise velocity of the dipole is 0.28u∗. The assumption
of an inviscid flow is justified for short times since the viscous time scale is about 200
wall units. For this flow, the inviscid momentum equations become

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= 0, (4.2)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
, (4.3)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
. (4.4)

Equations (4.3) and (4.4) are decoupled from (4.2), so that the flow in the (y, z)-plane
can be easily solved using the initial Batchelor dipole velocity field. From (4.2), the
u-velocity of a particle at time t is the same as its initial velocity, so that the u-velocity
for each point in the (y, z)-plane at time t is easily computed by integrating the
particle path backwards in time. Interestingly, the distributions of (u−U), ωy and ωz
at t = 20 in figure 16(b–d) resemble well those from the ensemble average educed from
the turbulent case (cf. figures 12a, 15e and 15a respectively), implying that the basic
mechanism responsible for their evolution is inviscid cross-stream vortical advection.
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Note that a non-zero spanwise slip velocity w at the wall in the inviscid model does
not produce significant differences from the ensemble-averaged data for u, ωy and
ωz; the slip velocity at the wall does not create u-fluctuations during advection since
no u-variation along the wall is present.

To summarize, we find that viscosity and CS three-dimensionality are not essen-
tial features influencing the background shear, ωy- and ωz-distributions. Instead,
these distributions are determined simply by inviscid, basically two-dimensional ad-
vection induced by SP and SN, and projected on the (y, z)-plane. Nevertheless,
three-dimensional effects (i.e. x-dependence) are crucial to the sustaining of CS, as
discussed in §4.7.

4.5. Turbulence production and intensity

To gain insight into near-wall incoherent (small-scale) turbulence production by CS,
we consider separately the turbulence production Pt (i.e. the production of incoherent
motion by coherent motion) and the production Pc of coherent motion due to the
mean flow, derived by Hussain (1983a) as

Pt = −
∑
i,j

〈uriurj〉〈Sij〉, Pc = −〈u−U〉〈v〉dU
dy

.

Since Pt, shown for the plane x = 0 of SP in figure 17(a), captures the creation of
incoherent motion (with smaller scales), peaks of Pt indicate probable locations of
secondary, irregularly appearing vortices. The peaks of incoherent turbulent kinetic
energy 〈q2

r 〉 = 〈u2
r + v2

r + w2
r 〉 (figure 17b) and those of Pt coincide, implying that

incoherent turbulence does not accumulate in the structure centre (unlike free shear
flows; see Hussain 1983b). Instead, incoherent turbulence, once produced, decays as
it is convected by the coherent motion. This is consistent with the scale dependence
of the propagation velocity of turbulence fluctuations near the wall found by Kim
& Hussain (1993). From two-point correlations of vorticity and velocity fluctuations
with time delay, they inferred that near-wall turbulence with large kz (small spanwise
scale) moves faster in z than that with small kz (large spanwise scale). For incoherent
turbulence to accumulate at the structure centre, the propagation velocity of the
small-scale turbulence would have to be comparable with that of the large-scale
structures, since both the large and small scales would be moving together in this
case. Thus, the fact that 〈q2

r 〉 has a local maximum outside the CS and closer to
the wall is consistent with this scale dependence of the propagation velocity. The CS
moves slower in the spanwise direction than the small scales advected by it along the
wall, because of the CS’s larger distance from the wall (and thus its image structure).

The location of peak Pt at y+ ≈ 30 does not match that of the time-averaged
turbulence production (i.e. production of fluctation kinetic energy, with Reynolds
averaging), which occurs at y+ ≈ 13 (Klebanoff 1954; Kline et al. 1967; Kim et al.
1987); this suggests that Pt is not a dominant contribution. On the other hand, peaks
of Pc in figure 17(c) occur on both sides of SP at y+ ≈ 13, implying that buffer-layer
CS are responsible for most of the mean turbulence production. Note that for triple
decomposition of the velocity field into mean, coherent, and incoherent components,
the mean turbulence production is equivalent to the sum of time-averaged coherent
and incoherent turbulence productions (Hussain 1983a). The negative Pc appearing
locally at the bottom of SP (figure 17c) is due to negative coherent Reynolds stress
Q1, which in turn results from the phase difference between 〈u〉 and 〈v〉, as discussed
in §4.2.
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Figure 17. Turbulence productions and incoherent turbulence intensity at x = 0 in E1. (a) Produc-
tion Pt of incoherent motion by coherent motion, contour levels = (0.05, −4.21 × 10−2, 0.313).
(b) Incoherent turbulence intensity 〈u2
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r 〉 contour levels = (0.4, 2.89 × 10−5, 2.82).
(c) Production Pc of coherent motion due to the mean flow, contour levels = (0.1, −0.222, 0.557).

4.6. The effect of near-wall CS on wall pressure

The wall pressure distribution reflects the presence of streamwise vortices in the buffer
region and can conceivably be used to sense their locations for developing adaptive
control techniques. For SP, the coherent pressure fluctuation is negative below the CS
and positive on both sides of the structure (figure 18a), where fluid is pumped either
toward or away from the wall. Note that the symmetry (dotted) line of negative 〈p〉
contours on the wall deviates from the 4◦ tilt of SP shown in figure 18(a). However,
since the wall pressure is the combined influence of overlapping SP and SN structures
(see figure 10a,b), the deviations at the front and back ends of 〈p〉 contours are to
be expected. The cross-correlation Rpp(∆x,∆z; yref = 0) in figure 18(b) shows negative
values for sufficient x-separation, which is consistent with the variation of 〈p〉 in x.
However, in contrast to 〈p〉, Rpp does not show negative values with separation in
z (figure 18b). This difference can be explained in terms of the long-range influence
of outer-scale structure on the wall pressure. Consider an outer-scale structure above
inner-scale buffer region vortices as shown in figure 18(c). In this case, the wall
pressure contribution from the near-wall structures is negative immediately below the
CS and positive farther away. The outer-scale structure contributes negative pressure
with a larger spanwise scale; thus, the resultant wall-pressure is negative for a large
spanwise extent (with some fluctuations) and the two-point correlation (figure 18b) is
not negative in the spanwise direction.

For the ensemble-averaged pressure 〈p〉, uncorrelated outer-scale pressure contri-
butions from outer structures are cancelled by the ensemble averaging of near-wall
vortical events, so that only the inner-scale pressure remains. To confirm this, we
removed the large-scale component of the wall pressure by removing the three small-
est spanwise wavenumbers in Fourier space. The correlation of filtered wall pressure
clearly shows negative values with z-separation (figure 18d), which is consistent with
our ensemble-averaged wall pressure. This suggests that the wall pressure signal is
strongly affected not only by near-wall structures, but also by outer structures; thus,
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Figure 18. CS pressure field. (a) 〈p〉 at the wall, contour levels = (0.2, −1.28, 0.752); the dotted
line denotes the locus of the local minima while the solid line represents the SP tilt angle of
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largest 3 modes in the z-direction. (e) Isosurface of 〈p〉 = −0.3 for SP.
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caution should be exercised in ascertaining the locations of near-wall vortices from
unconditioned wall pressure data alone. Away from the wall, a low-pressure region
in 〈p〉 coincides with the spatial extent of the structure, as shown in figure 18(e).
In addition, the low-pressure region near the downstream end of the CS shows a
‘hook’-type geometry, similar to that suggested by Kline & Robinson (1989).

4.7. Effect of CS on intercomponent energy transfer

Using our educed flow field data, we now consider an energy transfer scenario respon-
sible for CS formation and sustenance against dissipation. While vortex dynamics has
provided significant insight into the dynamics of turbulent boundary layers in this
and other studies, such an approach has not provided adequate information about
energy transfer. For this purpose, we consider the turbulent kinetic energy equation
to link the vortex dynamics discussed throughout this paper to the energy transfer
mechanisms intrinsic to near-wall CS.

The mean streamwise component of pressure-strain p∂u/∂x, responsible for the

transfer of u2 kinetic energy to v2 and w2 components, is usually negative in turbulent
shear flows (Tennekes & Lumley 1972). In near-wall turbulence, the tilting of SP and

SN in the (x, z)-plane produces negative p∂u/∂x in the following manner. The tilting
of SP and SN is responsible for positive ∂〈u〉/∂x within the structure, as shown in
§4.1. Since 〈p〉 is negative within the structure, 〈p〉∂〈u〉/∂x is also negative (figure 19a).
Note that if SP were tilted in the opposite direction, then positive 〈p〉∂〈u〉/∂x would
result.

Negative 〈p〉∂〈u〉/∂x also occurs in internal shear layers (e.g. point E in figure 10),
as can be seen from ensemble average E2. Within the internal shear layer (denoted E′

in figure 19b corresponding to E in figure 10a), ∂〈u〉/∂x is negative, and 〈p〉 is positive
since the flow is locally decelerating, so that 〈p〉∂〈u〉/∂x is negative (figure 19b).
Thus, redistribution of turbulent kinetic energy is active not only within the structure
core but also near internal shear layers. The other energy transfer terms, 〈p〉∂〈v〉/∂y
and 〈p〉∂〈w〉/∂z (figure 19c,d), show an interchange of v2 and w2 energies within the
structure due to the CS’s vortical motion.

The transfer of energy from the mean flow to each velocity fluctuation is schemat-
ically shown in figure 19(e). To illustrate, first consider fully developed streamwise
vortices in the ensemble-averaged picture developed in this study. These CS transfer
energy from the mean flow to u2 by normal advection across the mean velocity gradi-
ent (see §4.4), during streak formation. The turbulent kinetic energy in u2 is larger than
that in v2 and w2, as seen in the ensemble-averaged velocity fluctuations (figure 12);
this is also consistent with mean turbulent kinetic energy statistics. Simultaneously,
the large energy in u2 in the internal shear layer (E in figure 10; E′ in figure 19b) is
transferred to v2 and w2 (mostly to w2) through pressure–strain effects. Along with the
production of streamwise vorticity by the mean flow (due to CS three-dimensionality),
this feeds energy back into the streamwise vortices, to complete the process. Due to
its qualitative nature, this intercomponent energy exchange scenario needs to be fur-
ther explored via the underlying evolutionary vortex dynamics, which are beyond the
scope of this paper and the subject of a separate investigation (Schoppa 1997).

5. Concluding remarks
Our newly defined vortex definition, based on the second largest eigenvalue of

SikSkj + ΩikΩkj (developed to detect vortical structures in DNS data) has been suc-
cessfully implemented as a conditional sampling scheme to educe near-wall CS. It



Coherent structures near the wall in a turbulent channel flow 211

60

0
–60 0 60

(a)

y+

60

0
–60 0 60

(b)

E

60

0
–60 0 60

z+

(c)

y+

60

0
–60 0 60

z+

(d)

(e)

Mean flow

Heat

Vortex stretching and
reorientation of vorticity

Advection of u by the
structure

Intercomponent energy
transfer

Dissipation

u2 v2, w2

Figure 19. Coherent intercomponent energy transfer terms: (a) 〈p〉∂〈u〉/∂x at x = 0 in E1, contour
levels = (1 × 10−2, −9.51 × 10−2, 1.45 × 10−2); (b) 〈p〉∂〈u〉/∂x at x = 0 in E2, contour levels =
(8 × 10−3, −5.34 × 10−2; 7.85 × 10−3), (c) 〈p〉∂〈v〉/∂y at x = 0 in E1, contour levels = (3 × 10−2,
−9.32× 10−2, 1.61× 10−1); (d) 〈p〉∂〈w〉/∂z at x = 0 in E1, contour levels = (3× 10−2, −9.51× 10−2,
1.27× 10−1). (e) Schematic of the near-wall intercomponent energy transfer.

is noteworthy that this λ2-based CS eduction scheme is generally applicable to both
free- and wall-bounded turbulent shear flows and is seen to accurately extract fully
three-dimensional vortical structures with minimal smearing.

By sampling the entire extent of streamwise vortices, we have revealed a frequently
occurring pattern for near-wall CS: an overlapping array of alternating-signed stream-
wise vortices repeating in x, with individual structures inclined at 9◦ in the vertical
plane and tilted alternately at +4◦ and −4◦ in the horizontal plane. Note that hairpin-
type vortices are not present in the near-wall region (y+ 6 60) investigated here; this
is consistent with their absence in instantaneous λ2 data and with two-point corre-
lation data of ωx in (y, z) planes. Some of the instantaneous vortices in the buffer
layer are the elongated legs of asymmetric ‘arch’ or ‘horseshoe’ vortices extending into
the outer region (see, for example, Robinson 1991; Blackburn, Mansour & Cantwell
1996). Since our ensemble-averaged vortices (i.e. λ2) vanish at y+ ≈ 50, the outer por-
tions of these extended vortices are probably smeared out by the ensemble averaging,
which is aligned in the buffer layer. Nevertheless, the legs of extended vortices, along
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with all other near-wall vortices, are the most dynamically significant for skin friction
and heat transfer, and hence the focus of our study.

We find that CS tilting in (x, z)-planes due to mutual induction of overlapping

vortices is particularly important in generating negative p∂u/∂x, which enables transfer
of streamwise fluctuation energy to spanwise and normal components to sustain the
CS. This tilting is also responsible for kinked low-speed streaks and internal shear
layers with negative ∂u/∂x, both commonly observed but not previously linked to
near-wall CS.

We show that a spatial phase difference between u and v within the fully developed
structures leads to the dominance of Q4 events over Q2 events near the wall; negative
Reynolds stress events (Q1 and Q3 events) were also investigated in the context of
CS advection. These effects are readily understood in terms of the phase difference
created by the CS’s advection of u-fluctuations.

While the results here constitute a snapshot of near-wall CS, the current under-
standing of the vortex dynamics responsible for their formation and regeneration is far
from complete. In this regard, the model of overlapping, alternating-sign streamwise
CS presented in this paper as the dominant near-wall structure (figure 10a,b) serves
as a useful starting point, i.e. initial condition, for further studies of the evolutionary
dynamics of near-wall CS. By construction, our eduction technique selects streamwise
vortices which are in their active phase of evolution. By initializing DNS with the
CS pattern observed, we expect to obtain a ‘clean’ CS evolution which is amenable
to detailed analysis and interpretation (like the approach used by us to study mixing
layer transition (see Schoppa, Hussain & Metcalfe 1995)). In contrast to the multitude
of irregular structures in the instantaneous field, the flows thus obtained will contain
only a few (opposite-signed) vortices whose spatiotemporal evolution can be easily
tracked. Since these CS are directly extracted from fully developed turbulent flows,
their unconstrained evolution serves as a useful complement to recent results for
minimal flow domains.

This research was funded by ONR grant N00014-94-1-0510 and NASA/Ames
grant NCA2-317.
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