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Recent work has shown that linear mechanisms can lead to substantial transient growth in the 
energy of small disturbances in incompressible flows even when the Reynolds number is below 
the critical value predicted by linear stability (eigenvalue) analysis. In this note it is shown that 
linear growth mechanisms are necessary for transition in flows governed by the incompressible 
Navier-Stokes equations and that non-normality of the linearized Navier-Stokes operator is a 
necessary condition for subcritical transition. 

A first step in studying the stability of a flow is to 
investigate the evolution of small disturbances by lineariz- 
ing the Navier-Stokes (NS) equations.’ Stability is then 
determined by examining the eigenvalues of the linearized 
problem. The flow is said to be IinearIy stable if it does not 
have any solutions that grow exponentially as time in- 
creases. 

The results of linear stability analysis are mixed. For 
example, for the Benard convection problem, a stationary 
flow between flat plates held at different temperatures, lin- 
ear stability analysis agrees with experiment. On the other 

, hand, for plane Poiseuille and Couette flows, transition to 
turbulence can occur at subcritical Reynolds numbers (be- 
low the critical value predicted by linear stability 
analysis) .2-5 This discrepancy has led to much work on 
nonlinear analysis, with varying degrees of success at pre- 
dicting transition.G8 However, transition to turbulence is 
still not completely understood. 

In recent years, there has been a reexamination of the 
linearized NS equations. It has been shown that there can 
be growth in the energy of small disturbances in incom- 
pressible shear flows, even when the flow is linearly stable. 
For inviscid channel flows, algebraic growth of the distur- 
bance energy of the form 8 =0(t) as t+ 00 is possible.91’0 
Physically, the growth is due to the lift-up mechanism,” 
where disturbances in the form of streamwise vortices 
move fluid from regions of high velocity to regions of low 
velocity, creating streamwise streaks that grow in length 
with time. For viscous flows at subcritical Reynolds num- 
bers the disturbance energy of solutions to the linearized 
NS equations decays to 0 as t-, CO because of dissipative 
effects, but there can be substantial energy growth before 
the decay. 12-19 For example, at Reynolds number 4000 
growth in the energy by a factor of z 18 000 is possible for 
plane Couette flow. The potential for transient growth was 
recognized by Orr at the beginning of the century.20 Non- 
linear simulations show that the linear growth mechanisms 

play a fundamental role in transition to turbulence.21’22 
The potential for transient behavior exists if the gov- 

erning linear operator is non-normal. A normal matrix or 
operator, Y, satishes T+Y=ZY+, where 5!+ is.the 
adjoint.23V24 In many applications, normal operators whose 
spectra are identical behave similarly. For a non-normal 
operator, information in addition to the spectrum may be 
needed to determine the behavior. For example, one may 
examine the resolvent, or equivalently the 
pseudospectra.23*25 

The purpose of this Brief Communication is to make 
the following statements about the role played by linear 
mechanisms in transition to turbulence: 

(i) Linear mechanisms are necessary for transition to 
turbulence. 

(ii) Non-normality of the linearized Navier-Stokes op- 
erator is a necessary condition for subcritical tran- 
sition. 

We verify these statements for steady laminar flows that 
satisfy the i@ompressible NS equations in bounded or pe- 
riodic domains. 

A connection between linear and nonlinear stability for 
flows governed by the NS equations has been established 
previously.26 If a flow is linearly stable then it is nonlin- 
early stable for all sufficiently small initial disturbances. On 
the other hand, if a flow is linearly unstable, then it is 
nonlinearly unstable to arbitrarily small initial distur- 
bances. 

The fact that nonlinear mechanisms are crucial for 
transition does not contradict statement (i). By (i), we 
mean that the linearized NS equations must have either 
exponentially growing solutions, algebraically growing so- 
lutions, or transiently growing solutions for transition to 
occur. Statement (ii) gives a necessary condition for sub- 
critical transition. However, non-normality of the linear- 
ized NS operator is not sufficient for subcritical transition. 
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Statement (ii) is similar to a result proved by Galdi and 
Straughan.27 

We begin with the notation. Let 8eR3 be a closed 
domain with boundary dQ. If Q is unbounded, then we 
assume that it is periodic in the directions that it is un- 
bounded. We assume that Xl is sufficiently smooth so that 
we will not deal with regularity issues. Let x= (x1, x2, xj) 
denote a point in R3, u(x,t) = (ui, u2, u3) the velocity, and 
p( x,t) the pressure. The nondimensionalized NS equations 
for an incompressible flow are 

au 1 
%.== --~Vu--vp+~ Au+f, (1) 

with V*u=O, u(t=O) =uc, and u=u,(x,t) forx&ln. Here 
f is the body force per unit mass, R is the Reynolds num- 
ber, and u,(x,t) is the velocity of the surface ~30. We as- 
sume that the motion of the surface is such that fi remains 
fixed. 

Assume that ( 1) admits the time-independent solution 
(U, P). To study the stability of (U, P) let u=U+v and 

p=P+q and substitute these expressions into (1). We ob- 
tain 

av 1 
at= -vVv-UVv-vVU-Vq+R Av, (2) 

with V*v=O, v(x,O) =vo, and homogeneous boundary 
conditions. Equation (2) is valid for arbitrary amplitude 
perturbations. 

The linearized NS equations are obtained by dropping 
the term v*Vv in (2). We have 

aw 
at== -UVw-w VU-Vr+; Aw, (3) 

with V l w=O, w(t=O) =wo, and homogeneous boundary 
conditions. 

Rewriting (3) in operator notation, we have 

aw 
Yp-i4w, w(t=O) =wo, (4) 

where 

Zw=II[ -U=Vw-w-VU+ (l/R)Aw]. (5) 

The operator II projects onto the space of divergence free 
functions which are parallel to the boundary ?02*129 We 
can choose the underlying Hilbert space, Z, to be the 
space of divergence-free functions in L2(fk) satisfying ho- 
mogeneous (or periodic) boundary conditions on Xl with 
inner product 

(u,v)= su*vdx, (6) 

where the region of integration is n (or one period). 
We define the disturbance energy of v to be 

%‘= ]]~][~/2= (v,v)/2. The flow is said to be unstable if 
there is an initial disturbance v. such that 8 (t) does not 
decay to 0 as t-t ~4. Similarly, let us define F== (w,w)/2 as 
the energy for the linear problem. 

We first consider the linear problem. Energy growth is 
said to occur if for some t > 0, F(t) > F(O). Taking the 

dot product of (3) with w and integrating, we obtain the 
Reynolds-@-r equation, the starting point for the energy 
method:30 

d9- -= - 
dT J 1 

w-Lhvdx--R J (Vw):(Vw)dx. (7) 

Here we have (Dw)i=( U,j+ Uj,f)Wj/2 and (VW): 
(VW) =wi,jWi,j, where wt,j=dwJaxj and the summation 
convention is used. The tirst term in (7) measures the 
exchange of energy between the disturbance w and the 
mean flow U. The second term is related to energy dissi- 
pation and is always negative. 

If dF/dt<O for all w&K then the disturbance energy 
F(t) cannot grow. Letting RL be the largest Reynolds 
number at which this occurs, it can be shown that 

1 -$w*Dwdx 
g=‘$ J(Vw>:(Vw)dx’ (8) 

where the supremum is taken over WC%?. For flows in 
bounded domains, Serrin proved that Ri is positive.31 

If R < Ri, then F(t) decays monotonically to 0. If 
R > R$ then F(t) may grow for certain initial velocity 
fields. In general, R&R,, where R, is the critical Reynolds 
number for the existence of exponentially growing solu- 
tions for the linearized NS equations. 

The evolution equation for P: can be derived in the 
same manner as that for F. We obtain 

dg 
-= - 
dt J v* Dv dx-; J (Vv):(Vv)dx, (9) 

using the fact that Jv * (v*V)v dx=O (by the divergence 
theorem). 

Let R, denote the largest Reynolds number such that 
d%‘/dt<O for all vo&?. Since the expressions for d?Y/dt 
and dF/dt are the same, it follows that the expression for 
l/R, is the same as that for l/R& The supremum is again 
taken over X.32 Hence, it follows that R,=R& 

Transition cannot occur for R CR,, and there is no 
growth in the disturbance energy for the linear problem 
unless R)R,. This means that transition to turbulence 
cannot occur unless there is the potential for disturbance 
energy growth for the linear problem (3), establishing (i). 

A necessary and sufficient condition for growth for the 
linear problem (3) can be given in terms of the resolvent. 
The spectrum of 9 is essentially the set of points ZEC 
where ]j (z1--5!)-i]] is infinite. Roughly speaking, how- 
ever, operator behavior depends on the region where 
]I (z1-9)-‘]] is rlarge.“25 

For a normal operator J@, the resolvent satisfies= 

]I (z~-.cz’)-~]] =[ l/dist(z,h)] Wz~h. (10) 

Here A denotes the spectrum of J and dist(z,h) is the 
distance of z to the spectrum. For a non-normal operator, 
the equality in (10) is replaced by ), and ]I (z1-&)-‘]] 
may be large even if z is relatively far from the spectrum. 

The Hille-Yosida theorem33 states that 
F(t) <e”‘F(O) for some wc~R for all initial disturbances 
wo&? if and only if 

11 (zI-~))-~II c;[l/(Rez--w)] W Rez>o. (11) 
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TABLE I. Critical parameter values for stability predicted by energy 
methods and linear stability analysis. For the BCnard problem the param- 
eter is a Rayleigh number. For the other flows, the parameter is a Rey- 
nolds number. The fmal column indicates if the linearized NS operator for 
the flow is normal (N) or non-normal (NN). 

Flow R* R* RC 2 

Hagen-Poiseuille 81.5 -2OOll NN 
Plane Poiseuille 49.6 ~1000 57; NN 
Plane Couette 20.7 z-360 NN 
Bdnard 1708 z 1700 17: N 
Rigid rotation 03 00 NN 

Suppose that 2 is normal for all R and that R -CR,. Then 
A lies in the open left half-plane, and (11) will hold for 
some w <O by (lo), where w>Re(A.c) and Aa is the least 
stable eigenmode. Hence there is no energy growth. The 
results in the last section imply that the flow is nonlinearly 
stable, establishing (ii). 

We have shown that there is no energy growth if 
R <R, for the linear problem if the operator 2’ is normal. 
Thus statement (i) implies R,=R, if 2 is normal. 

Table I presents results on the transitional Reynolds 
numbers, R, found in experiments and the values Rg and 
R, for various fl0~s.t~~’ Plane Poiseuille, plane Couette 
flow, and Hagen-Poiseuille flow are well-known examples 
where R, and R, differ, and the linearized NS operators for 
these flows can be shown to be non-normal. The BCnard 
problem is a canonical example for which the linearized 
operator is normal. Although the NS equation must be 
modified, our main results apply. In general the linearized 
NS operators for flows between two infinite concentric ro- 
tating cylinders are non-normal, and R, and R, differ. Rig- 
idly rotating flow, flow between cylinders rotating with the 
same angular frequency, is nonlinearly stable for all Rey- 
nolds numbers, since the energy exchange term in (7) is 0. 
Here R,=R, even though the linearized NS operator is 
non-normal. 

The value of R, depends on the choice of the norm. 
The fact that R, and R, differ greatly in most cases for the 
energy norm has led to continuing work on energy meth- 
ods. For some flows a new norm can be chosen so that 
f+Rc.30*34 
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