Double-group theory on the half-shell and the two-level system.
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Relations are derived between several different descriptions of optical polarization by
analogy to the theory of spin 1/2. The rotational slide rule developed in the preceding article
(I) is used to (a) compute the final polarization state and phase of an optical beam given the
optical wave matrix, initial state, and phase, (b) make conversions between various types of
polarization parameters, and (c) find the output intensity for perfect polarizers. Other
polarization problems and methods are discussed briefly.

I. INTRODUCTION

After the spin-15 states of the electron, the most well-
known two-state system involves the two spin or polarization
states of light, or the photon. Ever since the invention of
cheap and handy polarizers, and certainly now with the
discovery of lasers, liquid crystals, and so forth, many in-
teresting experiments involving polarization have been
created.! Indeed, most of the quantum-mechanical thought
experiments can be realized using easily constructed optical
polarization apparatuses.?3

While the fundamental mathematical descriptions of
spin-14 and optical polarization are practically the same,
their physical interpretations are quite different. However,
they compliment each other very nicely as we will show by
comparing various developments in this article to those
involving spin-, in the preceding article 1.

In the description of spin-1/5 we have a spin vector whose
direction in ordinary three-dimensional Euclidean (xyz)
space depends upon a state vector in a complex two-di-
mensional (spin-up, spin-down) spinor space. Since we live
in the former space, we are naturally more familiar with the
properties of vectors there than with the curious spinors.
Therefore it may be a bit surprising to find out that the
spinor space provides us with the simplest description of
rotations. Indeed, we explain this in article I, where we
develop a slide rule with which to compute rotations.

However, in the description of polarization the two
Cartesian components x and y may play the same role
which the spinor bases played while describing spin'5. Now,
to a certain extent, we can “live” in the fundamental space
and understand spinors better.

In Secs. II-IV of this article we rederive many of the old
results from the theory of polarization. However, we try to
do it in a way which makes it simple and easy to remember,
and we show the physical and mathematical connection
with spin-!5 theory which was discussed in the preceding
article. We use the modern Dirac notation throughout, even
when discussing classical quantities.

In Sec. V and VI we review the Jones calculus for po-
larization evolution.* We show how the rotational slide rule
from article I can be made to perform Jones operations. As
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far as we know this instrument and its applications are en-
tirely new.’

Finally in Sec. VII we briefly review Fano’s density op-
erator approach to polarization,® and the Mueller calculus.’
We show how this relates to methods discussed in the pre-
ceding sections.

II. REVIEW OF BASIC DESCRIPTIONS OF
POLARIZATION

We review here the basic mathematical description of
the polarization states of a single photon, or what is prac-
tically the same thing, of a light beam containing many
photons in the same state. The coherent beam of many
equivalent photons is probably easier to imagine because
it is a useful laser-beam model and we may describe its
polarization behavior in terms of an electric vector E.

One set of basic vectors for the photon or coherent photon
beam is the plane or linear polarization basis {|x),|y)}.
Expanding a given polarization state vector |¥) using |x)
and |y) we have

| ) = |x) (x| ¥) + |y)(y|¥), (2.1)

where (x| W) and (y|¥) are (complex in general) ampli-
tudes of x and y polarization, respectively.

Arnother set of basic vectors uses the right and left cir-
cular bases given by

|y = (lx)y +ilp)/V2, |1 =(|x) —i|y>)/\(252)

respectively, and we review the physical meaning of these
states and their amplitudes now.

The state vector for a right circular polarized plane wave
en vacuo is

| W) = Aeitkz=w0|r), (2.3)

where w/k = ¢ — 3 X 108 m/sec is the speed of light. For
the description of a coherent beam in this state we shall
follow the convention that the real parts of the amplitudes
(x|¥) and (y|¥) are the components of E, and E,, re-
spectively, of the electric vector transverse to the beam. For
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Fig. 1. Electric vector motion for circular polarization states.

the state described by Eq. (2.3) we have
E, = Re (x| ¥) = Re ({x|r) eitkz=wn)
= (1/V2) cos (kz — wt),
E, = Re (y|¥) = Re ({y|r) eitkz—en)
= —(1/V2)sin (kz — wt), (2.4)

where we set A = 1, and used Eq. (2.2) assuming ortho-
normality of bases. ({(x|x) = 1 = (y|y) and (x|y) =0=
(y|x)). Equation (2.4) gives a unit E vector undergoing a
right-handed rotation as time advances at z = 0. This is
shown on the right of Fig. 1. Similarily, replacing |r) by |/)
in Eq. (2.3) would give opposite rotation as shown on the
left-handed side of Fig. 1.

Note that the preceding interpretation of amplitudes puts
no bound on A in Eq. (2.3) nor on any amplitude (j|¥).
(The normalization (i|j) = &;; of bases is just a convention.)
However, if {j|¥) is interpreted as a quantum probability
amplitude, i.e., if | (j| W) |? is the probability that a single
photon in state | ¥) will pick state j when forced to make
the choice, then clearly A would have to be of unit magni-
tude in order for the sum of probabilities to be unity.

1= |Gl |2 =T (0] (lw) = (¥|¥). (2.5)
J J

However, until Sec. VI we shall use the classical inter-
pertation of the amplitudes since it is nice to be able to keep
track of the system with a real two-component vector such
as was given by Eq. (2.4). We shall let the sum of the
squares of the amplitudes be the intensity

I=(¥|¥) =3 |(j|¥)|2 (2.6)
J
lWhilc;h may assume any real value. [For Eq. (2.3), I =
A2 ‘

The general classical problem being studied here is that
of the two-dimensional harmonic oscillator. We can imagine
that the tip of the E vector traces the orbit of oscillating
mass in the x-y plane. We shall show an elegant solution
to the general conservative oscillator equations which uses
the rotational slide rule to determine orbits numerically,
given the initial conditions.

III. REVIEW OF THE MOTION OF
POLARIZATION STATES

We consider briefly the two most well-known polarization
motions or optical activity before reviewing the general case.
The two common types of activity are Faraday rotation or
circular dichroism, and birefringence.

Faraday rotation may occur when light passes through
some materials in a direction of a magnetic field. Suppose
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that light in the state of circular polarization, such as the
right-handed state described by Eq. (2.3), goes through an
optical medium unchanged, but that the velocity cg = w/kg
of right-handed light was greater than the velocity ¢; =
w/k; of left-handed light. Then a general polarization state
vector will be

W (z,1)) = Reiltkrz=wt) |r) 4 Leitkrz=wt) |])
- (Rein eikRz |r> + LeieL eik[_z |]>)e—iwt’

3.1

where we assume initial phase shifts ¢g ; in the amplitudes
(R = Reier, L = Le'er) and take R and L to be real.
Rewriting this we have

| ¥(z,1)) = (Re~i¢ |r) + Lei¢ |I)) e~i®,  (3.2)
where
0= (oL — or + k12 — kgz)/2,
¢ =wt - (er+ oL+ kyz+ kRZ)/2 (3.3)

By substituting Eq. (2.2) relating (|r), |/)) to plane bases
(Jx), |¥)) we have

| ¥(z,8)) = (1/V2)[(R+ L) cos & cos ¢
—(R—L)sin®sinp+i(---] |x)
+ (1/V2)[(R+ L) cos ®sin ¢
+(R—L)sin®cosp+i(---] |y),

where only the real parts
Ei(pt) = Re (x| ¥) = E,(0,1) cos ¢ — E,(0,t) sin ¢,
Ex(0.1) = [(R+ L)/V2] (= cos @),
‘Ey(et) = Re (p| V) = E,(0,¢) sin ¢ + E,(0,2) cos ¢,
Ey(0.1) = [(R — L)/V2] (sin &),

are kept, according to our convention for defining vector
E.

Note that if ¢ is constant, then the E vector describes a
closed ellipse with the major axis inclined at an angle ¢ at
every point in the material. The relative magnitude of R and
L amplitudes determines the handedness of rotation within
the ellipse, and the axes

a=(R+L)YV2, b=(R-L)V2 (34)
of the polarization ellipse as shown in Fig. 2. If the right-
handed part is faster than the left-handed part (k; > kg)
then the ellipse rotates to the right rigidly as we move up the
Z axis, i.e., ¢ increases with z.

Birefringence occurs in solids that have “preferred axes.”
Suppose that light in the state of linear-x polarization or
linear-y polarization goes through the medium unchanged,
but that the velocity ¢, = w/k, of the x-polarized wave is
greater than that of the y-polarized wave. Then a general
polarization state vector can be written

ROTATION

ot+ 480 0 RIGHT-HAND
RYL

Fig. 2. Faraday rotation.

W. G. Harter and N. dos Santos 265



y em=0 8>0 g:0
Y / . \
Zx 4 \

20 3450 9:90°

Fig. 3. Birefringence.

[ W) = Keilksz=0n)|x) + Yeitkyz—oD)|p)

= (Xemxeiklex> + Yemyeikyzly))e_i“", (3.5)

where we assume initial phase shifts ¥, in the ampli-
tudes

X = etz X Y =eihyy
and take X and Y to be real. Rewriting this we have
| (z,0)) = (Xe~?|x) + Yei?|y))e—i,  (3.6)
where
O= (9, — O, + kyz — kyz)/2,
0=wt— O+ 9, + kez+ kyz)/2. (3.7)

The classical electric vector is then given by
E, = Re (x| ¥) = X cos(d + 8),
E, = Re (y|¥) =Y cos(¥ — 0).

Now suppose that the initial phases are zero (¥, = 0)
but that the x wave is faster than the y wave, (k, > k) so
that ¢ increases linearly with z. Then, at z = O or ¥ = Q the
E vector oscillates in a plane or line of polarization coin-
ciding with the diagonal of the X-Y rectangle as shown on
the ieft of Fig. 3. Now, as z or ¢ increase an ellipse “grows”
out of this line, becomes fatter, then shrinks back to the
conjugate diagonal, and so on. Looking at this sequence you
may get the illusion that there is a disc precessing around
the y axis or else around the x axis. This illustion of disc
rotation is particularily intense when we see an oscilloscope
trace of the “Lissajous figure” made by two different x and
y oscillators.

We shall see shortly that this illusion is not so farfetched
as far as the underlying mathematical structure is con-
cerned. All polarization changes such as the Faraday
rotation or birefringence which we have discussed, or any
combinations of them, can be related to some rotation.

IV. EVOLUTION OF POLARIZATION IN
CONSERVATIVE MEDIA

We consider the propagation of a monochromatic plane
wave through a polarizable media that is a combination of
dichroic and birefringent material. We shall assume that
the angular frequency w (rad/sec) of the light is far enough
away from material resonance frequencies that absorption
is negligible, and we may assume a linear response for the
polarization. ,

We shall use both plane and circular polarization bases
to describe the general optical polarization state,
| ) = (Xe=i?|x) + Yel?|y))e~i

= (Re~e|r) + Le'?|l))e~®, (4.1)

i.e., we will study two different representations of states and
operators. [Eq. (4.1) has the same form as Egs. (3.2) and
(3.6). However, as we will see, the relations in Egs. (3.3) and
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(3.7) are correct only for the special cases treated there.]
We begin by defining a representation of the Pauli
spinors as follows:

Cloa) = <§;||Z:||:; er||::||11))> - () o)
R ST

using the circular bases |r) and |/). We shall also need the
same operators represented in the linear bases |x) and |y).
A simple change of basis using Eq. (2.2) is needed.

’ - <x|"u|x> <x|0u|)’>
£60= (oo Gle))
=<<x|r> (x|l)><(r|a#|r) (r|0u|1))
lry I/ \Ndleulry oD
(rlx) Arlpd)y _1/1 1 1 =i
X<(1|x) (l|y)>_2<i —i)@("“)<1 i>

(4.3)

Substituting each C matrix in turn from Eq. (4.2) into Eq.
(4.3) gives the needed linear representations.

ool ). o= ( ).
I(cc)=<(:, o) (44)

We calculate the “expectation values” ({/|o,|¥) of each
of the Pauli operators in the general state of Eq. (4.1). First
each calculation is done using the circular representation,
then the linear representation, and the two results are
equated.

(Vo | W)= 3 ZI(\Illc’)(c’laulc)(d\I')

c’=rlc=r,

> (¥ppleup) (p|¥).

p'=Exy p=xy
(Scalar products do not depend upon which basis is used.)
For a4 we have the following:

(¥|o4|¥) = (RelLe~?) (fl) (1)) (iee::p)
= (Xe!?Ye~?) <—1 0) <Xe“f'9) “5)

0 -1 Ye'?
=2RLcos2¢ =X2-Y2
= (a? — b?) cos2e.

In the last line we write the answer in terms of ellipse axes
using Eq. (3.4) or

a?—b2=2RL,
2ab=R?— L2 (4.6)
Similarily, for o3 and ¢¢ we have the following:
(¥|op|¥) = 2RL sin2¢ = 2XY cos2d  (4.7)
= (a2 — b?) sin2e,
(V|ec|¥) = R? — L? = 2XY sin2d (4.8)

= 2ab.
Finally, the intensity is given by
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(b)

Fig. 4. Geometrical representations of polarization states. (a) The po-
larization ellipse. The ellipse is the locus of the electric vector. Any two
independent parameters such as ¢ and v, or ¥ and ¢, - etc. may be used
to define its shape and orientation. (b) The Stokes vector. For each shape
and orientation of the polarization ellipse there is a Stokes vector pointing
in Stokes (ABC) space. One end of the Stokes vector corresponds to neg-
ative (clockwise) rotation of the electric vector and around the ellipse, while
the opposite vector belongs to positive rotation. The Stokes vector is
analogous to the spin vector of electron polarization.

I=(¥|¥)=R2+L2=X2+7Y?
=qa2+b?
where we have used Eqs. (2.5), (3.4), and (4.1).
Now it is possible to give geometric pictures of Egs.
(4.5)-(4.9). It is convenient to construct rectangular boxes
which contain and define a polarization ellipse. Let one box
have dimensions a by b and have its axes inclined at an
angle ¢ so they are parallel to the axes of the ellipse. Let the
other box be of dimension X by Y and center it on the x and

y axes, as shown in Fig. 4(a). We let angles  and » be the
slope angles of the diagonals of these boxes, i.e., let

a=+VTcosy, b=+Tsiny,
X =VTcosy, Y =+Tsinw.
Finally, the last trick is to observe the following:
sin2y = 2siny cosy = 2ab/I,
cos2y = cos?y — sin%y = (a2 — bI)I,

sin2v = 2XY/I,  cos2v = (X2 — Y?)/I (4.11)

(4.9)

(4.10)
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and substitute these into Egs. (4.5)-(4.9). We obtain the
following:

(Y|aq|¢) = I cos2y cos2e = I cos2,
(Y|og|¥) = I cos2y sin2¢ = I sin2v cos2d,
(Y|oc|¥) = Isin2y = Isin2vsin2d.  (4.12)

Equations (4.10)-(4.12) allow us to quickly derive ex-
plicit (though occasionally double-valued - caution!)
relations for any parameter of polarization in terms of any
of the others. In general there are three independent pa-
rameters counting intensity / = a2 + b2 = R2+ L2 = X?
+ Y2, (Here we do not count the overall phase which dis-
appeared when we took the scalar products. Later, we re-
turn to treat this too.) We may choose any set of three pa-
rameters such as (X,Y,9), or (R,L,¢), or (I y,»), or (I.{,8)
-+ and so on, and all of these are easily related.

We see the geometric interpretation of some of these
parameters as they appear on the polarization ellipse in Fig.
4(a) (Indeed, we could obtain all the equations by geometry
alone but this turns out to be quite laborious.)

Also we may regard the three quantities in Eq. (4.12) as
the components of a vector S in Cartesian 4BC space. The
first set of equations involving ¥ and ¢ suggest that 2y is the
polar elevation angle with respect to the C axis while 2¢ is
the azimuth with respect to 4. The other set suggests an
A-axis polar angle of 2» and an azimuth from B of 24. The
angles are indicated in Fig. 4(b). (Note that the arcs of
length 2¢, 2, and 2» form a right spherical triangle of al-
titude 2y, hypotenuse 2», base 2¢, and base angle 2¢.)

The vector S is analogous to the expectation vector of
angular momentum for the spin-!5 state (compare with Eq.
(4.6) in article 1). and is called the Stokes vector after
Stokes who first thought of using a vector description of
optical polarization states in 1852.% Note that we use
notation ABC for Stokes space to avoid confusion with
“ordinary” xyz space. For optical polarization theory
Stokes space plays the role held by “ordinary” xyz space
in spin-14 theory, while at the same time “ordinary” com-
ponents of polarization x,y take the place of spin-up and
spin-down bases.

With “spin vector” description of states established, we
seck now a “rotation vector” description of the optical
medium which is analogous to the w-vector for a spin-',
Hamiltonian. [See Eqs. (5.2) in article 1.) This is possible,
but its derivation is complicated by the fact that the equa-
tion of motion, i.e., Maxwell’s equations

2 2
V(V.E)_V2E=_.Lb_l§__l__b_P
€

are of second order in three dimensions, and thus harder
to deal with than the spin-4, Schrédinger equation [Eq.
(5.1) in article 1.} i

However, let us assume that all field components parallel
to the beam propagation direction (z) can be ignored, and
that a Hermitian susceptibility tensor is given which defines
the relation between polarization P and field E as fol-

lows:
(Px/€0> — <Xxx Xxy) <Ex)
Py/eo Xxy Xyy/ \Ejy
We assume also that all quantities are functions of z and
t only.

(4.14)
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E(z,t) = E(z)e~ /1, P(z,1) = P(z)e @, (4.15)

Then Maxwell’s equations take the following coupled form
after substitution of Egs. (4.14) and (4.15) into Egq.
(4.13).

_bi<<x|¢(2)>>

2z2 \(y|¥(2))
__w_z I+ xxx Xxy <x|¢(z)>
- cz<xb 1+xn><(ﬂ¢&»>' (4.16)

where the complex field vector

o xlwe))
E“)‘Reﬁywu»>

has been written in the {|x), |y)} basis or representa-
tion.

Now if we consider only wave solutions which are moving
along in the positive z direction, then the matrix form of the
solution has the same form' as that of the first-order
Schrédinger equation.

(Glvin)

- (Kxx ny> ] <<x| ¢(0)))
=exp|iz( . . (4.17a)
p[ <KU Ky 1\ (y[9(0))
The “wave matrix™ K in the exponent is the “doubly posi-
tive” square root

K=(14+x)"%w/e,

(K Koy o (1 Fxs X\ (g
Ky Ky € \xxy 1+ x5

of the matrix in the equation of the motion. [Eq. (4.16)] We
will explain how to compute the square roots of a matrix in
a numerical example to follow.

We may expand K in terms of generations of rotation or
Pauli spinors J, = ¢,,/2 as was done in Eq. (5.2) in article
L

(Kxx ny)
K:y Kyy
Kix+ Ky, /1 0 L 0
= < ) - [(Kyy - Kxx) </2 )

2 0 1 0 —'h
* 0 l/2 _ 0 _]/2
—_ (ny + ny) <12 0> + (ny ny) <]/2 0)]
= KoL (1) ~ [(Kyy = Kx)L(J4)

- 2ReKyy L (J5) + 2ImK,, L(IC)].  (4.18)

Then the solution to Eq. (4.17) takes the form
xIWENY _  korsivwrz@yi { XIHO0))
(olviy) = e (hop): @19

where the components of the rotation axis vector w are given
by

wa=Kyy — Kyx, wp=—2ReKy,, wc=2ImKy,
(4.20)
and have the dimensions (rad/m). We also let Ko = (Kxx
+ K,,)/2.

This form of the solution is analogous to Egs. (5.3) and
(5.4) of article I. It makes the visualization and computation
of polarization changes through an optical medium as easy
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Fig. 5. Representing birefringence in Stokes space.

as ABC-space rotation. (Note that it is valid for only an
entirely forward moving light wave is a nonabsorbing me-
dium. Combinations of all four square roots of 1 + x will
be needed for a general solution, but then the intensity of
the beam will vary with z.) For example, if we take X, >
K, and K,, = 0, then Eq. (4.20) gives the following w-
vector components.

wy = Kyy _Kxx > O,

This corresponds to counter clockwise rotation around the
A axis in ABC space by w4z radians as we advance z meters
along the beam axis. By comparing the A-axis rotation in
Stokes space shown in Fig. 5 to the sequence in Fig. 3 we see
that w = w4A corresponds to a birefringent medium. It
gives the rotation around the x or y axes which we men-
tioned in Sec. I1I; the x and y state became the two ends of
the A axis in Stokes space as shown in Fig. 4. Similarily,
pure Faraday rotation (recall Fig. 2) corresponds to a
rotation around the C axis in Fig. 4(b), i.e., to a pure
imaginary off-diagonal component K, = i| K| in the wave
matrix.

wg =0, wc=0,

wa=K,—Kix=0, wg = —2ReK,, = 0,
we = 2ImK,, = 2K,,.
General optical activity will correspond to a rotation
around an arbitrary axis in ABC space. Consider, for ex-

ample, a medium for which the susceptibility matrix
gives

w? 1 18 -9+ 9
c2(1+X)_10<—9-9i 27

The desired K matrix is the positive square root of the
preceding one, which we derive in Appendix A.

K = 1 ( 4 —l+i>
VIO\-1—-i 5 ’

The rotation axis for this example has ABC components

). (4.21)

(4.22)

wA=1/\/ﬁ, w5=2/m, wc=2/\/ﬁ,
(4.23)
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which gives a vector w of length |w| = 3/+/10 with the polar
angles shown in Fig. 6.

At this point we can feed these angles into the rotation
slide rule and calculate the evolution of any polarization
state as explained in the following section. However, before
doing this, it is instructive to see how this sort of calculation
would be done using the well-known Jones calculus.?

Each optical medium of length z is assigned a Jones
matrix. The Jones matrix for the medium described by Egs.
(4.21) and (4.22) would be (see Appendix A)

J = eKz = exp[i(9/10)1/2z]
y (2 + expli(9/10)!/2z]
I = expli(9/10)'/2z] — if~1 + expli(9/10)!/2z]}

Then the final polarization state vector if of light emerging
from this medium would be the product of the Jones oper-
ator Jg with the initial state vector

|f) = Joli).

The Jones matrix for several consecutive media of length
zy, z3, = is the consecutive matrix product of their respective
Jones matrices.

J= Jn...J2 J] = eiKnZn...eiKZZZ e’.Klzl. (425)

Note that one cannot write ede8 = e4+8 unless AB =
BA.

V. POLARIZATION CALCULATIONS USING
THE ROTATIONAL SLIDE RULE

If one has a series of optical elements and initial states,
the Jones matrix algebra can become laborious and the
results may be difficult to visualize. In order to visualize
what happens to each state in each retarder, it may be better
to use the rotational analogy. Furthermore, by using the
rotational slide rule described in article I, one may quickly
find desired polarization parameters, including the overall
phase, with an accuracy of a degree or so. We discuss this
procedure now. .

First, the medium must be associated with a rotation
R[w]. For the particular K matrix in our example, we found
the rotation axis vector w shown in Fig. 6. The inputs re-
quired for the slide rule will be the rotation angle

|w]z = (3/V10)z 5.1

and the polar angle of &. If you want to work in the circular
basis (|7), |/)) then you need the polar angles shown in Fig.
6(a). For the linear basis (|x), |y)) you need the ones in
Fig. 6(b). The overall phase shift

Koz = (Kxx + K;y)2/2 = 92/(2V/10)

should be noted also.

Next we associate the incoming polarization state | ¥)
with the rotation operator R(af8y) which produces | W)
when acting upon a chosen “origin” state V'I|1) of the
same intensity /.

|¥) = R(aBy) VI |1)
= v/T R(«00)R(0B0)R(00Y)[1). (5.3)

As in article I, we will find it more convenient to label states
with Euler angles (a8+), while optical operators are labeled

(5.2)
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IVio
¢ =634°

Fig. 6. w vector for K matrix in Eq. (4.22). (a) Polar angles appropriate
for use in circular polarization basis. (b) Polar angles appropriate for use
in linear polarization basis.

I —expli(9/10)1/2z] — i{1 — exp[i(9/10)'/2z]}

1 + 2exp[i(9/10)!/2z] ) (4.24)

more conveniently with axis angles [¢pfw]. It is easy to relate
Euler angles to the phase angles in Fig. 4 and Egs. (4.1)-
(4.12). For example, if we want to work in the circular basis
we would choose the original state | 1) to be |r) in Eq. (5.3)
(We use the representations given in Egs. (3.2) or (3.3) of
article 1.)

<<r|\p>> _ <e—-ia/2 . )
(| w) ; eia/2
x (cosﬁ/z —sinﬁ/2> <e”"7/2 . ) <\/7>
sin8/2  cosB/2 . eiv/? 0
. —ie/27/T cosfB/2
= e~ i7/2 € >
¢ < ei/2/T sinB/2/)’ (5:4)
| W) = (e~i/2/] cosB/2|r)
+ ei/23/T sinB/2|1))e /2,
Comparing this with the original state definition on the
right-hand side of Eq. (4.1) we have o = «/2, & = v/2, R
= v/T cosf/2, and L = V/T sinf3/2. Rewriting the ampli-
tudes (R,L) in terms of ellipse axes using Eq. (3.4) and
(4.10) we have

R=(a+b)/V2=VI(1/V2cosy + 1/v/2siny)
=T cos(x/4 — ),

L= (a—b)/V2=VI(1/V2cosy — 1/V2siny)
=VTsin(x/4 = ¢). (5.5)

This relates the second Euler angle 3 to the ellipse angle

w/2 — 2¢; B is therefore the C-axis polar angle in Fig.
4. To summarize: A polarization state is defined in the
circular basis by a rotation of |r),
| W) = (Re~%|r) + Le'|l))e~i® = R(aBy)|r)VI

= V(cos(w/4 — P)e~ie|r)

+ sin(w/4 — )eie|l))e'®, (5.6a)
where the Euler angles and phases are related by
a=2¢, o=af2;
B==n/2-29), Y=x/4-5/2
v =2®, b= v/2. (5.6b)

Similarily we can define a state in the linear basis by a
rotation of |x)

| W) = (Xe=|x) + Ye'®|y))e~"® = R(aBy)|x)V]
= V/[(cosve ~1?|x) + sinve'®|y))e~ (5.7a)
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Fig. 7. Evolution of circularly [R(000)] polarized beam in w-active media. (a) Setting {¢fw] parameters of media rotation operator. (b) Reading (afv)

coordinates of the final evolved beam.

where the Euler angles and phases are related by
a =29, 8 =2u, y=20.  (5.7b)

{When we use the linear basis the 4 axis becomes the polar
{ay) axis and the C axis takes the place of the B axis for the
8 angle.]

Finally, the effect of passing the polarization state
through the optical medium (K) is given by

e'Kz| W) = eiKzR (afy)|1),
e'Kz| W) = eKo?/iR[wz]R(aBy)|1),

eiKZ|\Il) = R(azﬁz'Yz)l 1)
= Rlwz]R(aBy — 2Koz)|1). (5.8)

The rotational slide rule is designed to allow the convenient
calculation of the final Euler angles («.83,v.) in Eq. (5.8)
given [wz] and («fy — 2Kz). These angles define the final
polarization state and phase according to Eq. (5.6) and (5.7)
depending on your choice of bases.

Before demonstrating a calculation we mention some
shortcuts which may be helpful. First, if the input light is
circularly polarized, then we may take « = 8 = v = 0 in Eq.
(5.6) and the necessary w polar angles are given by Fig.
6(a). The desired answers («.8,v.) are read directly from
the w — Euler angle conversion scales of the slide rule. (See
example 1 below.) We may simplify operations in a similar
way if the incoming light is linearly (say |x)) polarized by
switching to the |x), |y) basis and using the w polar angles
as given by Fig. 6(b). (See example 2 below.)

Finally, we find it is more convenient to write the general
incoming polarization state as follows:

| ¥) = R(afy)|1) = e~ e+V/2R(af — a)|1) (5.9)
since the operator R(a8 — ) is represented on the slide rule
by a straight radial arrow of scale length 8 directed toward
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azimuth angle ¢ = « where the ¢-scale is the outermost ring
on the top scale. [Or else —R(af — «) is an arrow of length
27 — B in the other direction.] It involves less writing on the
top scale and less chance for error if we represent the initial
state using the lines that are already there. We can easily
do the simple phase addition (a + ) on paper or neglect
it entirely if the overall phase is not important.

Example 1. Find the polarization state and phase of
a circularily polarized beam that enters the medium
described by Eq. (4.22) with zero phase and
propagates z = V' 10x/3 units (i.e., |w|z = w =
180°)

Setting the slide rule on the azimuth ¢, = 63.4° [Fig.
6(a)] we draw an arrow along the 8. = 48° scale line of
length 180° (only the head and tail points of the arc are
needed here) as shown in Fig. 7(a). Then we set the slide
rule so the angle between the tail of the arrow (point T') and
the +8 axis is bisected by the slide rule center line or f scale
as shown in Fig. 7(b). The Euler angle «, = 63° is read at
the head of the arrow on the « scale, 8, = 96° on the +3
scale at the intersection with the @ line which intersects the
tail, and v, = 122° on the y scale over the v box. (See Fig.
5 in article I for an explanation of why this works.) This
means the final polarization ellipse has angles ¢, = «,/2
=315°, ¢, = 45° — B3, /2 = —3°, and the final phase is ®,
= (a; — z Trace Kg) /2 = —14°. This particular calculation
(with |w]z = 180°) can be checked “visually,” using ge-
ometry.

Example 2. Find polarization and phase of an X-
polarized beam that enters the same medium as
Example | with zero phase and propagates z =
V10{50°Y/3 units (ie., w = |w|z = 50°)
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of the evolved beam are read from the Euler scales.

We use the linear basis conversions, but the same pro-
cedure as given in Example 1. We convert a 50° arc at ¢,
= 45° and §; = 71° (The polar angles came from Fig. 6(b))
to Euler angles o, = —38°, 8, = 48°, and v, = 53°. This
implies that &, = «,/2 = ~19°, v, = 8,/2 = 24°,and 4, =
(v: — zKp)/2 = —49°.

Example 3. Solve Example 2 in the circular basis

The parameters 2¢=a =0,2¢ = x/2=(3,and = v/2
= 0 of the incoming | x ) state tell which rotation operator,
namely, R(0 90° 0) transforms |r) into | x). The intersec-
tion of the ¢ = o = 0 line and the (8. = 48°, ¢, = 63.4°)
arc will be the terminus of the R(0 90° 0) arrow and the
beginning of the 50° arc for R[¢fw]. It turns out we have
to use the —R(0 —270° 0) arrow pointing toward ¢ = 180°,
as shown in Fig. 8 since the R(0 90° 0) arrow would go
off scale. (We have to put the —1 phase factor on at the end
of the calculation now.) Finally the vector sum is found and
converted to Euler angles which gives polarization angles
¢, = 21° and ¢, = —13°. Conversion using Eq. (4.12)
shows these results to be consistent with those of Example
2. Two (—1) phase factors come up in this calculation one
from the —R{(0 —270° 0) and one because the resultant
arrow in Fig. 8(b) crosses the center line. (This detail is
explained in Sec. IV of article I.) Therefore the final phase
is just &, = y,/2 = —61°.

There exist many different types of polarization problems
that can be visualized and solved on the slide rule. The
ability to see graphically where a particular state or operator
solution is going is the main advantage of the analog device.
For this reason it may serve as a qualitative as well as a
quantitative design tool. The peculiar topology of rotations
is built into it.

Finally we note that Poincaré!? developed an alternative
description of polarization wherein he associated each state
with the stereographic image of its Stokes vector in a plane
tangent to the Stokes sphere shown in Fig. 4 of article 1.
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(Sometimes this sphere is called Poincaré’s sphere.) The
fact that the upper scale of the slide rule is a Poincare plane
may be useful for some other polarization problems such
as those involving interference.

VI. PERFECT POLARIZER CALCULATIONS
USING THE SLIDE RULE

A perfect polarizer is a medium which allows one type
of polarization state |p) to pass through without any ab-
sorption while the orthogonal state |b) ({p]b) = 0) is
completely blocked or absorbed. Incoming light is state

[¥) = |p)(p|¥)+ |b)(b|¥) (6.1)

comes out, if it comes out at all, entirely in state |p) with
amplitude (p|¥) or intensity | (p| ¥) |2

It is convenient to represent such a perfect polarizer
graphically by an axis through the Stokes sphere (See Fig.
4(b)) colinear with the oppositely pointing Stokes vectors
belonging to |p) and |b), respectively. We shall call the
S(p) and S(b) Stokes vectors the “passing” and “blocking”
ends of the axis. Then it follows that the transmission
probability or intensity for W-polarized light through this
polarizer is

| {p|¥)|2 = cos?8/2, (6.2)

where § is the angle between the Stokes vector S(¥) of |¥)
and 1 the vector S(p). If |p) is |r) or |x) this result follows
directly from Eq. (5.6) or (5.7). It is easy to see that the
proof for a general |p) would give the same thing.

The problem of finding 3 for any given polarizer and any
given incoming state is easily solved on the slide rule. First
the positions of S(¥) and S(p) are plotted using the ¢ and
6 scales. [—S({¥) and/or S(#) may be plotted instead;
whichever appears on the upper hemisphere of the Stokes
sphere.] Then the slide rule is turned until an w arc connects
the two points, and the included angle can be read using the
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scale of this arc. We must divide the w reading by 2 since
its scale is twice the actual arc. The result is 3 if it is between
S(¥) and S(p) or between —S(¥) and S(b). Otherwise it
is the supplementary angle (= — ) that is found.

For the sake of completeness we review some of the po-
larization problems which are not solved so easily using the
geometrical methods. The first of these concerns the
treatment of partially polarized beams.

Suppose someone makes a beam of light by mixing the
outputs of many different perfect polarizers so the beam has
a fraction £ of photons in state |a}, fp in |b), fe in |c), -
and so on, where f; + f5 + f + «- = 1. Now when we look
at the beam, the probability of being hit by one of the a-
polarized photons is f, and so on for b, ¢, - but, if the mixing
has been done well enough there is no way to make the
separate |a), |b), or |c), beams come out again. If a perfect
p polarizer is inserted into the beam, then all the different
parts will, in general, contribute to the output intensity or
probability

1(p) = fal (pla) |12+ fol<plB) [ +---. (T.1)

Now there is a nice way to describe, mathematically,
beams of light that are, shall we say, “messed up.” This is
an important thing since unless you always use expensive
polaroid sunglasses most of the light you see falls into this
category. Furthermore, the general formulation has become
a very important tool for quantum theory. Rewriting Eq.
(7.1) we have

1(p) = falpla)alp) + fo(p|b) (b|p)

+ foApleYelp) +---=(plelp). (7.2a)

where

p =fola) a| + fo|b) (b] + felc) (c| + -+« (7.2b)
is called the density operator. This operdtor describes the

e~/ cosB/2

)= (02 g

) ® (e cos(8/2)e =12 sin(8/2)) = <

“state” of the beam, i.e., the condition of an ensemble of
photons. Note if the beam is completely “pure”, i.e., 100%
polarized in state g, say, the operator is written as a single
projection operator

p=lq)ql. (7.3)

The operator description of a state incorporates the
probabilities associated with a “messing up” along with the
“unavoidable” quantum mechanical probabilities.

Operator p can be expanded in the usual ways in terms
of elementary operators

2 2
p=3 > Ilel) Gl =X X eili) Ul

i=1j=1

using any basis {|1), [2)} such as {}r),|/)} or {|x).|¥)}.
where the

pij = (ilplj)
are the components of the density matrix for that basis.
Another way to write p, which is easier to interpret physi-

cally, involves an expansion in terms of the Pauli spinor
operators [Eq. (4.2)].

p=(pl1+ pq04+ pgog+ pcoc)/2.

Let us represent this expansion in the {|r),|/)} basis.
o -G Nen 0 )
pir P 2\0 1 2\ 0O
pa (0 —f> pc <1 0)
+ = =
2 <i 0 + 2\0 -1
For a pure state [Eq. (5.6)] represented in this basis

| W) = (e~i2c0sB/2|r) + ei®/%sinB/2|l))e~ /2

the density matrix assumes the form:

cos2(8/2)e =« cos(B/2) sin(ﬁ/2)>
e« cos(8/2) sin(B/2) sin?(8/2)

1 + cosf cosa sinf8 — i sing sinf
_ 2 2
cosa sinf + i sine sinf 1 — cosf
2 2

=%<(1) (1)) +cosa2sin[3 <O 1> +sinasinﬂ (0 ——i) +ﬁ<l 0>. (7.4)

We see that the components p 4, pg, and pc are precisely
those of the Stokes vector in ABC space for a normalized
(I = ') state ¥. [See Fig. 9(b).] Parameter p; = ', appears
to be redundant here, but it will not be so for a more or less
“messed up” beam. In fact one may define a messed up
beam to be one for which

P%> > |Pu|2-
u=ABC

For a completely random beam p, — 0 for u = A4, B, and
C. It is common to define the degree of polarization by

D=3 |pu|?/ ot
m
and it varies between O and 1.

The manipulation of the four components (o1 p.4 p5 pC)
of the density operator is known as Mueller calculus.!! The

272 Am. J. Phys., Vol. 46, No. 3, March 1978

1 0 2 i 0 2 \0 -1

4 X 4 matrices which express the effect of polarizers and
optical retarders are called Mueller matrices, and are used
in very much the same way as Jones matrices. The two
methods complement each other: Jones calculus cannot
treat “messed up” beams quantitatively, while Mueller
calculus contains no information about the overall phase
of the state or beam.

Many other intriguing problems exist which are related
to or are generalizations of the preceding analysis of po-
larization and the two-level system. One problem involves
the effects of various kinds of damping, i.e., the effects
arising from non-Hamiltonian susceptibility or K matrices.
This is very important in various spin resonance processes,
spin or photon echo effects, and self-induced transparency.!?
Last but not least, there is the theory of the three-level
system, or for that matter, the n-level system or the n-

W. G. Harter and N. dos Santos 272



dimensional oscillator. Fano!'3 has given an excellent
physical picture for the J = | or three level system but it is
still not clear how to generalize this for n levels.

APPENDIX A

In Sec. IV we require the square root and an exponential
function of the matrix

M=< 18 —-9+9i)/10
10 \-9-9i 27 '

These functions may be calculated using the spectral de-
composition methods described in Appendix B of the pre-
ceding article I. The square root of matrix M is given by the
following:

(A1)

M2 =m|? Py + my/? P, (A2)

where m; and sz are the eigenvalues of M, and P, are
given by Eq. (B2) in article 1. The secular equation of the
matrix M in (Al) is

1I8—m —9+9i
—-9—-9; 27-m
The eigenvalue solutions are m; = 9 and m, = 36. Substi-

tuting these in the formulas for P;, we obtain for (A2) the
following:

M=) <1 -21-1' 11_i>/3

For the pair of roots (91/2, 36!/2) we could use (%3, £9)
or else (+3, £9), i.c., there are four solutions for M1/2. To
obtain Eq. (4.22) we take all root signs to be positive.

To obtain the exponential form required in Eq. (4.24),

det =0=m2—-45m + 324.

273 Am. J. Phys., Vol. 46, No. 3, March 1978

we use the same P; matrices. Positive roots are chosen here,
t00.

e'Kz = exp[i(M/10)!/2z] = exp[i(m;/10)!/2z] P,
+ expli(my/10)1/2z1P,

= exp[i3z/(10)1/2] (1 il_ 1 1")/3
+explicz/o (1 7Y /3
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