
Preface

Symmetry. Chaos. These are the things that have captured both the hearts and the
minds of both of us.

Bob came to symmetry first through his studies of Lie groups and their applications
in physics. Twenty years later he confronted chaos and began to try to tame it with
the topological methods he brought from Lie group theory.

Christophe came to symmetry through a book by Claude Cohen-Tannoudji and
Jean-Pierre Baton1 and the lectures he attended in particle physics. A point always
mentioned was “physics is invariant under symmetry transformations.” In the begin-
ning of his Ph.D. thesis, he immediately tried to apply this message when he started
to investigate the Lorenz system, trying to answer Rössler’s remark: “a trick which
exploits the inherent symmetry between the two leaves of the flow, so that in effect
only a single leaf needs to be considered, has yet to be found”.2

When we met for the first time (Lille, 1996) Bob asked a question: What is the
trick that Christophe was using to project one leaf onto the other: “Is there a link
between your trick and a theorem by Cartan?” This “simple” question lead us to this
book.

Since both of us chant the same mantra:

Symmetry + Chaos = Beauty

1C. Cohen-Tannoudji & J.-P. Baton, L’horizon des Particules, Gallimard, 1989.
2O. E. Rössler, An equation for continuous chaos, Physics Letters A, 57(5), 397-398, 1976.
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it was inevitable that we meet, and once met, formed a tightly bound, always excited
state. This book is a consequence of our excitement.

This book is divided into three parts and an appendix. Part I consists of many
concrete examples; Part II presents the foundations for applications of symmetry to
nonlinear dynamics; Part III replaces groups (algebraic structures) with topological
structures. The appendix brings together in one place all the equivariant dynamical
systems (dynamical systems with symmetry) that have been discussed to date in the
open literature.

One basic question that launched us on this project is: If an observed intensity
I(t) = |A(t)|2 behaves chaotically, how many different strange attractors can the
(unobserved) amplitude A(t) generate that are compatible with the strange attrac-
tor that is generated by the intensity data? Many similar questions arise about the
relation between “symmetric” and “nonsymmetric” (cover and image) strange attrac-
tors that are identical at the local level but inequivalent at the global level. These
questions are introduced in Chapter 1. The remainder of Part I illustrates these con-
cepts in a large variety of ways by a large variety of examples. Simple symmetries
and their relation to the cover and image problem are described in Chapters 2-4.
Perestroikas—transformations induced by changing control parameters or operating
conditions—are introduced in Chapter 5. Chapter 6 describes covers of autonomous
dynamical systems, and Chapter 8 describes covers of nonautonomous dynamical
systems. Symmetric intermittencies are treated in Chapter 7 and larger symmetries
are treated in Chapter 9.

Part II is devoted to laying a foundation for the methods used in Part I. Not surpris-
ingly, group theory plays a prominent role. Perhaps surprisingly, algebraic topology
also plays a significant role. Along the way we extend some concepts from classical
mathematics into new directions: Cauchy-Riemann symmetries out of the complex
domain into the group and algebraic topology domains; continuations out of the
analytic domain into the group and topological domains.

In Part III we do the unthinkable. We extend the role of symmetry by replacing
symmetry groups by topological structures. There are clearly strange attractors with
definite symmetry but without a symmetry group with which to express this symmetry.
This possibility was a surprise to both of us, but the results show that this approach
is here to stay.

The web sites of Bob3 and Christophe4 contain much material that is related in
some way or other to this work.

This work was carried out during many visits of Bob to Christophe in Rouen,
Christophe to Bob in Philadelphia, and both to our mutual friend and colleague, Marc
Lefranc in Lille. The visits of Bob have been supported in part by Drexel Univer-
sity’s grant of a sabbatical leave, the Centre National de la Recherche Scientifique,
and the U.S. National Science Foundation. Bob thanks his colleagues M. Lefranc,
S. Bielawski, T. D. Tsankov, A. Nishtala, N. Romanazzi, and T. Jones for fruitful

3http://lagrange.physics.drexel.edu and http://physics.drexel.edu/directory/faculty/Gilmore.html.
4http://www.koakidi.com/rubrique.php?id rubrique=81.
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interactions. Christophe extends his warm thanks to J. Maquet, C. Lainseck, J.-M.
Malasoma, L. Achour, L. A. Aguirre, and O. E. Rössler for stimulating discussions.

Last, we thank our better halves. Bob thanks his wife Claire and the children,
Marc and Keith: His queen Claire, for creating miraculous 10-15-course candlelight
dinners in our tiny, marvelous French apartments after a hard day computing SVDs;
Marc and Keith for providing both stimulation and enough time to complete this
project. Most of the time this book was in gestation Christophe spent under a gray
sky, but with its publication the sun has come out. Christophe thanks especially
Valerie, who encouraged him “pour la dernière ligne droite.” Christophe and Valerie
eagerly await Valentin.

ROBERT GILMORE AND CHRISTOPHE LETELLIER

Rouen, Le Quattorze Juillet, 2006
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1
Introduction

1.1 Swift Survey of Symmetries 1
1.2 Deeper Probe of Symmetries 4
1.3 Mathematical Motivation 10
1.4 Overview of the Book 11

The subject of this work is the description of physical systems that

1. possess symmetry
2. exhibit chaotic behavior

These systems are described by sets of nonlinear ordinary differential equations. The
existence of a symmetry has a profound and far-reaching impact on the properties of
the solutions of such equations. The presence of symmetry sometimes complicates
and sometimes simplifies our understanding of the physical processes that generate
chaotic behavior.

In the following sections we describe a number of physical systems with symmetry
and present a number of mathematical reasons for studying the relation between
symmetries and dynamical systems. We also outline the structure and contents of this
book.

1.1 SWIFT SURVEY OF SYMMETRIES

In this section we briefly introduce a number of different physical systems that ex-
hibit some type of symmetry. We also raise questions about the relation between

1



2 INTRODUCTION

the physical system with symmetry and measured quantities, which may have no
symmetry.

1.1.1 Lasers

In laser experiments, intensities (I ≈ |A|2) are usually measured, whereas the op-
propriate variables in any fundamental theory are the field amplitudes (A). Strange
attractors constructed from intensity data do not have the same structure as those that
are constructed from amplitude data (were the latter available). Some information
has been “squared away” in the transition from amplitudes to intensities. A natural
question then arises: what spectrum of strange attractors for amplitude behavior is
compatible with the strange attractor constructed from observed intensity data?

1.1.2 Sunspot Data

These data exhibit an 11-year cycle (Fig. 1.1) and may possibly be chaotic. It is widely
believed that sunspot numbers are closely related to a solar averaged magnetic fieldB.
This averaged field exhibits a 22-year cycle. Thus n(t) ≈ |B|2. Some information
about solar dynamics has been “squared away” in the observation of sunspot numbers
(Fig. 1.1). What is the relation between the sunspot number cycle and the magnetic
field cycle?

1.1.3 Paleomagnetic Data

These data have been observed in conjunction with seafloor spreading [131,132]. In
fact, they provide one of the strongest confirmations of the theory of continental drift.
As the seafloor spreads, iron-rich magma beneath the seafloor rises to the seafloor
surface where it cools below the Curie temperature. As it does, the iron is magnetized
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Fig. 1.1 Time series of the sunspot number at the surface of the sun.
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Fig. 1.2 Profile of the seafloor magnetic field near the Juan de Fuca plate off the coast of
Washington. Dark and light stripes show current magnetic field polarity and reverse polarity.
These alternate in a symmetric way around seafloor spreading centers. Reprinted from the
article [131] with the permission of the journal Science.

in the direction of the earth’s magnetic field at that time. 1When the earth’s magnetic
field reverses, so also does the polarity of the cooled magma. Segments of seafloor
on different sides of the spreading center exhibit a symmetry in the magnetic field
reversals. These reversals are “unpredictable,” indicating the possibility that the
earth’s magnetic field should be described by coupled ordinary differential equations
that generate chaotic behavior. The polarity of the seafloor near the Juan de Fuca
plate off the coast of Washington is shown in Fig. 1.2 [131]. Clearly apparent in this
figure are alternations in the direction of the magnetic field polarity as well as an
approximate symmetry around the seafloor spreading site.

A history of the earth’s magnetic field reversals during the last 80 million years
is presented in Fig. 1.3. This figure shows the polarity, not the magnitude, of the
magnetic field. This behavior raises several questions: What is the mechanism that
causes the earth’s magnetic field to be bipolar? Is there any relation between the
magnetic switching mechanisms that take place in the sun and the earth?

1.1.4 Fluid Experiments

The behavior of a fluid is governed by the Navier-Stokes equations. These partial
differential equations are typically studied by introducing a set of spatial normal
modes and then truncating the equations to obtain a set of coupled nonlinear ordinary

1S. C. Cande and D. V. Kent, Revised calibration of the geomagnetic polarity time scale for the Late
Cretaceous and Cenozoic, Journal of Geophysical Research, 100, 6093–6095, 1995. Data available at the
website: http://www.earth.rochester.edu/agu/timescale.html.
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Fig. 1.3 Geomagnetic polarity for the Cenozoic period (present to 65 million years ago) and
late Cretaceous periods. Plot shows polarity, not field amplitude.

differential equations. If the experimental conditions possess a symmetry, a suitable
trunction of the Navier-Stokes equations will retain that symmetry. One of the most
severe truncations of the Navier-Stokes equations consists of the Lorenz equations
[78]. Several experiments have been carried out on fluid systems that are reasonably
well described by these equations. Data and simulations can be plotted in many
different ways. Three are shown in Fig. 1.4. They will be discussed in more detail
throughout this book. For now we introduce the simple question: how are these three
presentations of the data related? Is any one preferable to any other? Do they all
contain the same information?

1.1.5 Electronic Circuits

Two circuit models (Fig. 1.5) that have a long history and that have been extensively
studied were introduced by Duffing [28] and by van der Pol [129]. Both exhibit a
two-fold symmetry. This symmetry greatly complicates attempts to determine the
stretching and folding mechanisms that create chaotic behavior. The analysis of
both systems is greatly simplified after the symmetry has been “eliminated.” We
will develop algorithmic methods to remove symmetry when it is present. We also
introduce systematic ways to restore symmetry when it is absent.

1.2 DEEPER PROBE OF SYMMETRIES

In this section we investigate more deeply two classes of physical systems for the
origin of symmetry. Specifically, we investigate fluids and lasers. Both are described
by nonlinear partial differential equations. Under suitable assumptions and approx-
imations, the partial differential equations can be reduced to a finite set of coupled
nonlinear ordinary differential equations for a select number of modes. A “mode”
is a macroscopically organized behavior for many microscopic elements. It is the
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Fig. 1.4 Different representations of the Lorenz attractor. The original phase portrait (a)
has a rotation symmetry about the z-axis, the x-induced phase portrait (b) has an inversion
symmetry, while the z-induced phase portrait (c) has no residual symmetry at all.

projected set of ordinary differential equations that exhibits the symmetry that forms
the basic subject of this work.

We illustrate this procedure in this section by reducing the Navier-Stokes equa-
tions for a fluid to a familiar, severely truncated form (the Lorenz equations) and the
Maxwell-Bloch equations for a laser to a severely truncated form (the “laser equa-
tions”).

1.2.1 Navier-Stokes PDEs → Lorenz ODEs

Fluids are described by the Navier-Stokes partial differential equations

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk
= − ∂P

∂xj
+ µ∇2uj + ρfj

∂T

∂t
+ uj

∂T

∂xj
= κ∇2T

∂ui

∂xj
= 0

(1.1)
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(a) Duffing system
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(b) van der Pol system
Fig. 1.5 Schematic diagrams of a series-resonance circuit with nonlinear inductance (a)
corresponding to the Duffing system and of a forced self-oscillatory circuit (b) corresponding
to the van der Pol type. The latter contains a negative-resistance element N which has a
characteristic i2 = f(v) also shown.

In this set of equations

• u = u(x) = (u1, u2, u3) is the fluid velocity field
• ρ(x, y, z) is the fluid density field
• T = T (x, y, z) is the temperature field
• P = P (x, y, z) is the pressure field
• fj is the external force field
• µ is the dynamic viscosity
• κ is the coefficient of thermal conduction

The first equation is the equation of motion for the fluid velocity u(x). The
second equation is the equation of motion for the temperature field, T (x). The third
equation is a constraint satisfied by incompressible fluids. These equations apply to
the experiments shown in Fig. 1.6. Fig. 1.6(a) shows an experiment in which a fluid
in a rectangular container is heated from below. A constant temperature difference
∆T is maintained between the lower surface at which heat is input and the upper
surface at which heat is removed. This temperature difference establishes a thermal
instability. Since the warmer liquid near the bottom is generally less dense than the
cooler liquid above it, the warmer liquid will rise and the cooler liquid above it will
descend when the heat is input at a greater rate than can be transferred from the lower
to the upper surface by thermal conduction alone. When the fluid begins to move,
it does so in coherent roll structures. The physics is invariant under reflections in a
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(b) Fluid in a torus is heated below and cooled above a horizontal plane.

Fig. 1.6 Two gravithermal fluid instabilities described by the Lorenz equations.

vertical plane through 1
2 lx. Any projection of the partial differential equations to a

set of ordinary differential equations must maintain this symmetry.
Similar arguments apply to the geometry shown in Fig. 1.6(b) [11]. In this case,

a heating tape supplies heat along the lower half of the torus while a cooling jacket
removes heat from the upper half of the torus. As in Fig. 1.6(a) a constant temperature
difference ∆T is maintained between the lower and upper halves of the torus. The
gravithermal instability will force a clockwise or counterclockwise rotation of the
fluid in the torus when the temperature difference ∆T surpasses a critical value.

In both cases the experimental conditions are reflected by replacing the term ρfi

in Eq. (1.1) by ρgε∆Tδi3, where g is the constant of gravitational acceleration of the
earth’s surface in the z (i = 3) direction and ε is the coefficient of thermal expansion.

The partial differential equations are reduced to a set of ordinary differential equa-
tions by introducing simplified expressions for the velocity and temperature fields
[112]. For the experiment shown in Fig. 1.6(a) the velocity field is assumed to de-
pend on the x- and z-variables only, and is expressed in terms of a stream function
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Ψ(x, z) by
u = −∇×(̂j Ψ(x, z))

so that ux = +∂Ψ/∂z and uz = −∂Ψ/∂x. The stream function is subjected to
the boundary conditions that the flow perpendicular to the surfaces, at the surfaces,
vanishes. It is expanded in terms of normal modes (trigonometric functions) and
truncated, keeping only the lowest order terms.

Ψ ≈
√

2X sin
πx

lx
sin

πz

H

The temperature field is treated similarly

T − Tav ≈
√

2Y cos
πx

lx
sin

πz

H
− Z sin

2πz

H

The lowercase letters (x, y, z) parametrize space coordinates. Tav(z) varies lin-
early between the fixed temperature at the lower and upper boundaries of the fluid.
The uppercase letters (X,Y, Z) describe the amplitudes of the normal modes in the
three-mode truncation of the Navier-Stokes equations. The resulting set of ordinary
differential equations is [78]

dX

dt
= −σX + σY

dY

dt
= RX − Y −XZ

dZ

dt
= −bZ +XY

(1.2)

in suitable units of time. This set of equations is underchanged (“equivariant”) under
the symmetry (X,Y, Z)→ (−X,−Y, Z).

The Lorenz equations (1.2) fail to describe fluid motion in the experiment shown
in Fig. 1.6(a) when the imposed temperature difference ∆T becomes so large that the
coherent roll structures break up. They provide a valid description for fluid flow in
the experiment shown in Fig. 1.6(b) for much large temperature differences.

1.2.2 Maxwell-Bloch Equations → Laser Equations

The electromagnetic field is described by Maxwell’s equations and the motion of
matter is described by Newton’s equations classically, or the Bloch equations when
matter is described quantum mechanically. The Maxwell-Bloch equations for an
electromagnetic field interacting with matter in a laser cavity are

∂D

∂t
=

2i

~
(µ̄EP ∗ − µ̄E∗P ) − γ‖D + Λ

∂P

∂t
= −i(ω − ω0)P −

i

~
µ̄E∗D − γ⊥P

∂Ē
∂t

= −1

2
γlE +

iω

2ε0
N0P µ̄

(1.3)
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In this coupled set of differential equations

• Ē is the electric field amplitude E(x, t) = Ēei(kx−ωt)

• P is the polarization amplitude for matter
• D is the population inversion: the difference between the number of atoms in

the excited and ground states
• µ̄ is the electric dipole moment matrix element of an atom
• ε0 is the vacuum dielectric constant
• γ‖, γ⊥, γl are decay rates for the population inversion, polarization, and electric

field, respectively
• N0 is the number of atoms in the laser cavity
• ω0 is one of the laser cavity resonances.

The partial differential equations that describe the electric field,
(

∇2 − 1

c2
∂2

∂t2

)

Ē =
4π

c2
∂j̄(x)

∂t
+ 4π∇ρ

have already been converted to ordinary differential equations through the slowly
varying field amplitude ansatz E(x, t) = E(t)ei(kx−ωt).

The equations can be reduced in complexity by defining the cavity detuning as
δ = ω−ω0

ω0
, rescaling the time variable, and introducing complex variables e, p, and

d. The resulting set of scaled ordinary differential equations consists of two complex
equations and one real equation, as follows [139]

de

dτ
= −σ(e− p)

dp

dτ
= −(1− iδ)p− ibdp+ ed

dd

dτ
= −γ

[

d−R +
1

2
(e∗p+ ep∗)

]

Here b describes the strengh of the dipole-dipole interaction. This set of equations is
equivalent to a set of five real equations in the variables

e = x1 + ix2

p = y1 + iy2
d = z

The equations of motion for the five real variables xi, yi, z (i = 1, 2) are

ẋ1 = −σ(x1 − y1)
ẋ2 = −σ(x2 − y2)
ẏ1 = −y1 − y2(δ − bz) + x1z

ẏ2 = −y2 + y1(δ − bz) + x2z

ż = −γ(z −R + x1y1 + x2y2)
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This set of equations is invariant under the continuous rotation (or gauge) symmetry

e→ eeiφ p→ peiφ d→ d

We will discuss continuous symmetries in Sections 9.1 and 9.2.

1.3 MATHEMATICAL MOTIVATION

It is customary that exciting physics drives the development of exciting mathematics.
The problems superficially surveyed in Section 1.1 and more deeply probed in Sect.
1.2 are exciting—if for no other reason then we do not satisfactorily understand how
to treat such systems.

Our study of dynamical systems with symmetry—and their counterparts without—
has opened up a number of new developments on the mathematics side. We indicate
several of these developments now.

1.3.1 Classification Theory

We are interested in classifying dynamical systems: in particular chaotic dynamical
systems and the strange attractors that they create. A classification theory for strange
attractors in R

3, or more generally in three-dimensional manifolds, already exists
[33,34]. This classification theory depends heavily on topological structures called
“branched manifolds” [14, 15]. We have observed that many inequivalent chaotic
systems with symmetry project to the same, or equivalent, dynamical systems when
the symmetry is removed [67]. Conversely, a dynamical system without symmetry
can be lifted to many different inequivalent systems with a symmetry [35]. It is even
possible that two lifts of a system without symmetry, with the same symmetry group,
are not equivalent [21]. We would like to understand these details better. In particular,
it is convenient to approach the classification of strange attractors in two steps:

1. Classify all strange attractors without symmetry.
2. Provide an algorithm for constructing all possible attractors with symmetry that

can be obtained from the original nonsymmetric attractor.

Many of these ideas have their counterparts—or at least their analogs—in well-
developed mathematical fields. For example, there is a well-codified study of Lie
groups (“with symmetry”) and locally isomorphic Lie groups “without symmetry.”
A particular example is SU(2) → SO(3), where SU(2) is a “double cover” of
SO(3), and SO(3) is the locally isomorphic image of SU(2) [31]. Many of our
results were obtained by trying to make the replacements

Lie Group Theory −→ Dynamical Systems Theory

Isomorphism −→ Diffeomorphism
Local Isomorphism −→ Local Diffeomorphism

Cover Group −→ Cover Dynamical System
Image Group −→ Image Dynamical System
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There is a beautiful theorem in Lie group theory (Cartan’s theorem) relating (simply
connected) covering groups with their (multiply connected) homomorphic images.
Driven by the desire not to let Lie group theory have the last word in beautiful
theorems, we present the analog of Cartan’s theorem for Dynamical Systems Theory
in this book’s final chapter.

1.3.2 Cover-Image Relations

Two of the simplest dynamical systems that exhibit chaotic behavior for certain ranges
of the control parameter values are the Lorenz equations [78] and the Rössler equations
[109]. It has long been known that there is a 2 → 1 relation between these two
dynamical systems [90]. In fact, Rössler introduced his equations in order to simplify
the study of chaotic dynamics [109]. He viewed his equation as “the square” of
the Lorenz equations in counter-analogy with Dirac’s view of his equations are “the
square root” of the Schrödinger equation. In this sense, the Lorenz system is a double
cover of the Rössler system in the same way that the Lie group SU(2) is a double
cover of the rotation group SO(3), and the Dirac equation describes both electrons
and their antiparticles, positrons, whereas the Pauli-Schrödinger equation describes
just electrons. Conversely, there is a 2 → 1 mapping of the Lorenz attractor down
to a Rössler-like attractor. This 2→ 1 projection is easily visualized by viewing the
Lorenz attractor along the direction of a straight line through the two unstable foci.
In this perspective, the two foci and their associated lobes fall on top of each other.
There appear to be only two fixed points, the two superposed foci and the saddle at
the origin. The attractor takes on the qualitative appearance of the Rössler attractor.

Three different representations of the Lorenz attractor have been presented in Fig.
1.4. Two of these attractors have “two holes” in them and one has “one hole” in the
middle. The pair with two holes exhibit a symmetry: one has rotation symmetry, the
other has inversion symmetry. How are they related? Do other sets of attractors share
such properties?

The relation between the Lorenz attractor with two-fold symmetry and its projected
image, without symmetry, was first put on a firm mathematical footing by Miranda
and Stone [90]. This work is in fact just the tip of the iceberg [21,34,35,67]. In the
present work we try to look at the entire iceberg.

1.4 OVERVIEW OF THE BOOK

There is a very rich theory of dynamical systems with symmetry and closely related
systems without (or with less) symmetry. There is a systematic way of “modding
out” the symmetry to construct an image dynamical system. Conversely, a dynamical
system with no symmetry can be “lifted” to a covering dynamical system with sym-
metry. There are essentially no limits on the type of symmetry the covering dynamical
system can possess. In fact, surprisingly, it can possess many inequivalent covers, all
with the same intrinsic symmetry group.

This book is divided into three parts:
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Part I Chapters 1–9 Examples & Simple Applications
Part II Chapters 10–14 Group Theory Basics
Part III Chapters 15–16 Symmetry Without Groups: Topology

In Part I we study a small number of basic dynamical systems,mostly in R
3, mostly

with two-fold symmetry. A systematic procedure is introduced for modding out the
symmetry and constructing the dynamical system equations for the image without
symmetry. This procedure is reversible and is used to construct covering dynamical
systems with two-fold (or three-, or four-fold symmetry) from a dynamical system
without symmetry. The relation between cover and image dynamical systems is
studied at five levels

1. Relations among equations,
2. Relations between branched manifolds,
3. Relations between symbolic dynamics,
4. Relations between periodic orbits,
5. Indices relating covers and images.

Branched manifolds are “cardboard models” of the chaotic flow with a firm mathe-
matical basis. Strange attractors in R

3 have been classified by the branched manifolds
they project to.

In many of the chapters in Part I we get the sense that there is a powerful, systematic
mathematical theory underlying the procedures that have been introduced. Not only
that, but these procedures have close connections with fundamental theorems from
classical mathematics. All this is true. The deep connections with classical mathe-
matics, and even the extension of the classical results into new realms, is developed
in Part II.

In Part II we introduce the mathematical tools essential for the development of
a proper understanding of the cover-image problem. The two basic tools are group
theory and some essential components of algebaic geometry. These tools are used
to provide a proper description of equivariant dynamical systems: that is, dynamical
systems with a symmetry. The symmetry is removed by introducing a set of invariant
coordinates that are polynomials in the original variables. The dynamical equations
are re-expressed in terms of the invariant polynomials and generate a flow in this
space of polynomials. In general, if the equivariant dynamical system is in R

N ,
the invariant dynamical system is in R

K , K ≥ N . When K > N , the flow is
restricted to an N -dimensional subspace by K − N “constants of motion” of the
invariant dynamics. These polynomial invariants are called “syzygies.” Finally, the
invariant flow in theN -dimensional manifold in R

K is projected to anN -dimensional
space R

N by an appropriate choice of N linear combinations of the initial set of K
invariant polynomials. This process is invertible, and can be used to construct covers
from images.

Along the way we encounter four remarkable symmetries, already apparent (with
careful study) in the examples studied in Part I. These are

1. Schur symmetries,
2. Cauchy-Riemann symmetries,
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3. Clebsch-Gordon symmetries,
4. Continuations: Topological and Group.

The latter is an extension of the idea of analytic continuation.
The inverse problem, of constructing covers (or “lifts”) of an image dynamical

system, also includes delightful surprises. One of these is that an image dynamical
system can have many inequivalent covers, all with the same symmetry group G.
These covers are distinguished by an index. The index has a topological interpretation,
a group theory interpretation, and a dynamical interpretation. In fact, the index allows
us to enumerate all possible inequivalent covers of a dynamical system. This is done
in detail for low dimensional dynamical systems that can be described by branched
manifolds.

In Part III we emerge from our earlier dependence on the group theory crutch.
Group theory is a powerful tool for exploring the range and power of local diffeo-
morphisms. But there is an even more powerful tool for studying these many-to-one
local diffeomorphisms. This is topology-specifically, the topology of the manifolds
that contain flows that generate strange attractors. The boundaries of these manifolds
are all tori with various numbers of holes in them. The flows dress the tori, and the
canonically dressed tori can themselves be classified—classified in much the same
way that branched manifolds and the periodic orbits they contain can be organized
and classified. This is done in the last two chapters. We discuss not only the range of
inequivalent covers that the standard stretch-and-fold mechanism (Smale horseshoe
mechanism) can have (“All the covers of the Horseshoe”), but also discuss all the
images that are diffeomorphic but not equivalent with the standard horseshoe (“Once
a horseshoe—Always a horseshoe”). This treatment provides a direct response to a
question often raised about the usefulness of the topological analysis approach to the
analysis of chaotic experimental data: How much information about experimental
chaotic data depends on the physics and how much depends on the embedding? We
show in the final chapter that there are three degrees of freedom allowed by inequiv-
alent embeddings: parity, global torsion, and knot type. But there is one degree of
freedom that is rigidly fixed, independent of embedding — this is the mechanism that
generates the chaotic behavior in the experimental system. This mechanism is rep-
resented by the template of the branched manifold that the strange attractor projects
to.

In an appendix we pull together a large number of nonlinear dynamical systems
that have been discussed in the literature. This potpourri should serve a valuable
function, as it brings together in one place the large number of systems that have been
studied in the recent past.
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2.1 EQUATIONS WITH TWO-FOLD SYMMETRY

In this section we describe the structure of equations with two-fold symmetry. This
is done for three-dimensional dynamical systems since we would like to be able
to visualize the strange attractors that they generate. In addition, this is the only
dimension for which a satisfactory theory of chaos exists.

2.1.1 Rotation Symmetry

15
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The Lorenz system [78]
dX

dt
= −σX + σY

dY

dt
= RX − Y −XZ

dZ

dt
= −bZ +XY

(2.1)

is equivariant under rotation by π radians about theZ-axis. The generator of this two-
element groupRZ(π) is the 3× 3 matrix, γ, that maps the coordinates (X,Y, Z) 7→
(−X,−Y, Z)





−1 0 0
0 −1 0
0 0 1









X
Y
Z



 =





−X
−Y
+Z





The matrix γ satisfies γ2 = I3. The action of γ, orRZ(π), on the Lorenz equations,
is

γ
d

dt





X
Y
Z



 =





f1(γX)
f2(γX)
f3(γX)



 =





f1(−X,−Y,+Z)
f2(−X,−Y,+Z)
f3(−X,−Y,+Z)





d

dt





−X
−Y
+Z



 =





−f1(X)
−f2(X)
+f3(X)





In short, equivariance under RZ(π) imposes conditions on the forcing functions
f1, f2, and f3

f1(X,Y, Z) = −σX + σY → f1(−X,−Y, Z) = −f1(X,Y, Z)
= +σX − σY

f2(X,Y, Z) = RX − Y −XZ → f2(−X,−Y, Z) = −f2(X,Y, Z)
= −RX + Y +XZ

f3(X,Y, Z) = −bZ +XY → f3(−X,−Y, Z) = +f3(X,Y, Z)
= −bZ +XY

With a view toward later developments, we point out here that the terms that appear
in the forcing functions fi(X,Y, Z) are of two types:

1. Invariant underRZ(π) : (Z,XY )

2. Not invariant under RZ(π) : (X,Y,XZ).

Functions that are invariant under RZ(π) include monomials of the form 1, Z,
X2, XY , Y 2, Z2, X2Z, etc. In fact, the most general invariant functions depend on
only the four monomialsZ,X2,XY , and Y 2. Thus, the most general invariant func-
tion can be expressed in the form g(Z,X2, XY, Y 2). The three order-two invariant
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polynomialsX2, XY , and Y 2 are linearly independent since the Jacobian





∂

∂x
∂

∂y






[
X2 XY Y 2

]
=

[
2X Y 0
0 X 2Y

]

(2.2)

has maximal rank, but they are not functionally independent, since

(X2)(Y 2)− (XY )2 = 0 (2.3)

Two elementary functions that are not invariant under RZ(π) are X and Y . In
fact, the most general function that is transformed to its negative under the group gen-
erator γ ofRZ(π) has the form g1(Z,X

2, XY, Y 2)X+g2(Z,X
2, XY, Y 2)Y . With

this decomposition into invariant functions and noninvariant functions, the Lorenz
equations can be expressed in the following form [(X,Y, Z) = (X1, X2, X3)]

Ẋ1 = g11X1 + g12X2

Ẋ2 = g21X1 + g22X2

Ẋ3 = g33 · 1
=





g11 g12 0
g21 g22 0
0 0 g33









X1

X2

1



 (2.4)

The invariant functions g∗∗depend on the four invariant monomials (Z,X2, XY, Y 2) =
(X3, X

2
1 , X1X2, X

2
2 ).

Every three-dimensional dynamical system equivariant under the two-element ro-
tation groupRZ(π) has the structure (2.4). For the Lorenz equations :

g11 = −σ
g12 = +σ
g21 = R− Z = R−X3

g22 = −1
g33 = −bZ +XY = −bX3 +X1X2

Another dynamical system in R
3 with rotation symmetryRZ(π)has been proposed

by Burke and Shaw [70,113]:

Ẋ = −S(X + Y )

Ẏ = −Y − SXZ
Ż = SXY + V

(2.5)

In the work that follows, we will often use these equations, together with the Lorenz
equations, to emphasize similarities and differences among dynamical systems with
identical symmetries.

2.1.2 Inversion Symmetry

The matrix generator, γ, for the two-element inversion group P in R
3 is





−1 0 0
0 −1 0
0 0 −1









X
Y
Z



 =





−X
−Y
−Z




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Functions g that are invariant under the action of this group are of even degree in
the basic coordinates (X,Y, Z) : X2, Y 2, Z2, XY , Y Z, ZX ; X4, . . . In fact, the
polynomials of degree 2 are sufficient for the expression of any invariant function:

g = g(X2, Y 2, Z2, XY, Y Z, ZX)

These six invariant polynomials of degree 2 are linearly independent but not func-
tionally independent. They obey the three simple relations

(X2)(Y 2)− (XY )2 = 0
(Y 2)(Z2)− (Y Z)2 = 0
(Z2)(X2)− (ZX)2 = 0

(2.6)

The three monomials (X,Y, Z) = (X1, X2, X3) are not invariant under P : they are
mapped into their negatives. The most general dynamical system in R

3 equivariant
under P is

Ẋ1 = g11X1 + g12X2 + g13X3

Ẋ2 = g21X1 + g22X2 + g23X3

Ẋ3 = g31X1 + g32X2 + g33X3

→ Ẋi = gijXj

where g∗∗ are functions of the six quadratic invariants.
Two dynamical systems in R

3 with inversion symmetry are the Kremliovsky equa-
tions [54] and the induced Lorenz equations (cf. Eq. (2.8) below). The Kremliovsky
equations are

Ẋ = −Y − Z
Ẏ = X + aY

Ż = bX + Z(X2 − c)
(2.7)

These equations were obtained from the Rössler equations by making minimal mod-
ifications (in the equation for Ż) to ensure an inversion symmetry.

The induced Lorenz equations arise in a very natural way when dynamics generated
by a Lorenz mechanism are analyzed. Typically a single time series is recorded in
many experiments. If the single time series X(t) generated by a system satisfying
Lorenz dynamics (1.2) is recorded, it is desirable to use this information to estimate
the dynamics. One way to do this is to use as independent coordinates the observed
time series X(t) as well as the first and second derivatives

X = X1 = X(t)

Y = X2 = Ẋ(t)

Z = X3 = Ẍ(t)

The dynamical system equations described from the observed data must obey an
inversion symmetry, sinceX(t) has this symmetry. The dynamical system equations
are

Ẋ = Y

Ẏ = Z

Ż = bσ(R− 1)X − b(σ + 1)Y − (b+ σ + 1)Z −X2Y

−σX3 +
Y [(σ + 1)Y + Z]

X

(2.8)
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This set of equations is clearly equivariant under (X,Y, Z)→ (−X,−Y,−Z). The
third equation is also singular unless Y [(σ + 1)Y + Z]/X is bounded as |X | → 0.

Equations equivariant under P can be written in the matrix form

d

dt





X
Y
Z



 =





g11 g12 g13
g21 g22 g23
g31 g32 g33









X
Y
Z





The 3× 3 matrices of invariant functions for the Kremliovsky system are

Kremliovsky:





0 −1 −1
1 a 0
b 0 X2 − c





and for the induced Lorenz system they are

Induced Lorenz:





0 1 0
0 0 1

bσ(R− 1)− σX2 −b(σ + 1)−X2 +
(σ + 1)Y + Z

X
−(σ + b+ 1)






These matrices are not unique because of the nonlinear relation (2.6) between the
invariant quadratic polynomials.

2.1.3 Reflection Symmetry

The matrix generator, γ, for the two-element reflection group σZ in R
3 is





+1 0 0
0 +1 0
0 0 −1









X
Y
Z



 =





+X
+Y
−Z





This group reflects points in R
3 in theX-Y -planeZ = 0. The invariant polynomials

are functions of X , Y , and Z2. Every function mapped to its negative under σZ is of
the form g(X,Y, Z2)Z. The dynamical system equations equivariant under σZ have
the form

d

dt





X
Y
Z



 =





g11 0
g21 0
0 g32





[
1
Z

]

(2.9)

where g∗,∗ are functions of X,Y, Z2.
We will not spend much time studying systems equivariant under this symmetry

group. The reason is that such dynamical systems cannot generate connected strange
attractors with this symmetry.

The X-Y -plane Z = 0 is invariant under σZ . This means that Ż = 0 on this
invariant set (provided g32 is nonsingular on this set). As a result, an initial condition
in this plane must evolve to a point also in the plane (Z = 0⇒ Ż = 0⇒ Z remains
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0). We assume the dynamical system (2.9) possesses a strange attractorA, and some
point in this attractor has coordinates (X0, Y0, Z0) with Z0 > 0. Then the point
(X0, Y0,−Z0) is also in a strange attractor Ā = σA, the “mirror image” attractor.
The two attractors A and Ā cannot be connected. They are disjoint. In order to be
connected, some point in either must attempt to cross the plane Z = 0. However,
once on the plane it becomes stuck in the plane forever. This conclusion depends
on properties of the forcing functions g on the singular set. These properties are
discussed in the following section.

This is the first instance in which properties of symmetry and topology have non-
trivial consequences on the properties of strange attractors. Many more instances will
follow.

2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

A theorem of fundamental importance guarantees that solutions of a set of first-order
ordinary differential equations dxi

dt = fi(x) exist over a time interval and are unique
during that interval. The theorem depends on a smoothness property.

Definition 2.1 A dynamical system ẋ = f(x) is Lipschitz in the neighborhood of a
point x0 if

|f(x)− f(x0)| < K|x− x0|
where K is a bounded real constant. Any reasonable measure of distance |x− x0| in
R

n can be used.

The existence and uniqueness theorem is [5]:

Theorem 2.1 If a dynamical system ẋ = f(x) is Lipschitz in the neighborhood of a
point x0, then there is a positive number s and

Existence: There is a function φ

φ(t) = (φ1(t), φ2(t), . . . , φn(t))

that satisfies the dynamical system equations

dφi

dt
= fi(φ1(t), φ2(t), . . . , φn(t))

in the interval −s ≤ t ≤ +s.
Uniqueness: The function φ(t) is unique.

Remark: If f(x) is Lipschitz for all values of x, then the solution can be extended
to infinity in both directions. That is, a unique solution through any point exists for
all time.

Remark: Dynamical systems with polynomial forcing functions fi(x) cannot be
Lipschitz sinceK →∞ as x0 →∞. However, if motion occurs in a bounded domain
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|x| < R <∞, the forcing functions for the system are Lipschitz on that domain, and
there is a unique solution through each point that extends to t→ ±∞.

Remark: If the dynamical system equations ẋ = f(x) are defined on a compact
domain, for example a 3-sphere S3 ⊂ R

4, and the forcing functions do not have
singularities, the system is Lipschitz.

Remark: All of the dynamical systems introduced so far have polynomial forcing
functions with the exception of the induced Lorenz equations. In order for this system
to be Lipschitz, we require

1. Motion occurs in a bounded domain

2.
∣
∣
∣
∣

Y [(σ + 1)Y + Z]

X

∣
∣
∣
∣
< K as X → 0.

Without the latter condition solutions through the Y -Z plane X = 0 cannot be
guaranteed.

2.3 SYMMETRY AND THE FUNDAMENTAL THEOREM

If an equivariant dynamical system is Lipschitz at x0, then it is Lipschitz at γx0, where
γx0 is the image of x0 under the group operation γ. If φ = (φ1(t), φ2(t), . . . , φn(t))
is the unique solution through x0, the unique solutions through γx0, in systems with
inversion, rotation, and reflection symmetry in R

3 are:

P (−φ1(t),−φ2(t),−φ3(t))

RZ(π) (−φ1(t),−φ2(t),+φ3(t))

σZ (+φ1(t),+φ2(t),−φ3(t))

If the dynamical system is globally Lipschitz all solutions are extendable to t→ ±∞.
Two possibilities occur for solutions φ(t) through a point x0 and γφ(t) through γx0.
The solutions are either identical or disjoint. In the first case, the solution is called
symmetric and

γφ(t) = φ(t+ T )

for some T . In the second case the two disjoint solutions form a symmetric pair
of asymmetric solutions. In Fig. 2.1 we show a symmetric period-four orbit and an
asymmetric pair of period-three orbits for the Lorenz system (“symmetric pair of
asymmetric orbits”).

Remark: The concept of symmetric solution set or symmetric pair (for order-two
symmetry groups) of asymmetric solution sets extends from closed periodic orbits
to fixed points, in one direction of complexity, and to strange attractors in the other
direction of complexity. We investigate both in the following two sections.

2.4 FIXED POINT DISTRIBUTIONS
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Fig. 2.1 (a) Symmetric period-four orbit of the Lorenz equations and (b) a pair of asymmetric
period-three orbits.

Fixed points are points in the phase space at which motion vanishes: ẋi = 0, all
i. Thus, fixed points occur at the zeroes of the forcing functions: fi(x) = 0. For
relatively simple three-dimensional dynamical systems, the fixed points can be deter-
mined by solving the simultaneous nonlinear equations

f1(x, y, z) = 0
f2(x, y, z) = 0
f3(x, y, z) = 0

by brute strength methods. For the more sophisticated dynamical systems encountered
in Part II, more sophisticated methods for solving these nonlinear equations will be
introduced.

If x0 is a fixed point of a dynamical system equivariant under an order-two sym-
metry group with generator γ and relation γ2 = I , then γx0 is also a fixed point.
Two types of fixed points exist, depending on whether γx0 6= x0 or γx0 = x0. In
the first case, the fixed points occur as a symmetric pair of asymmetric fixed points.
In the second case, γx0 = x0, the single fixed point is a symmetric fixed point. The
term symmetric or asymmetric, when applied to a fixed point, depends on whether or
not it occurs on the set of fixed points of the symmetry. This is the set of points left
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Fig. 2.2 Pitchfork bifurcation for the fixed points of the Lorenz dynamical system.

invariant by the operator γ: γx = x. The fixed points, or invariant sets for the three
maps P ,RZ(π), and σ in R

3 are

P (0, 0, 0) origin
RZ(π) (0, 0, Z) Z-axis
σZ (X,Y, 0) X-Y plane-Z = 0

The invariant sets are of dimension 0, 1, and 2, respectively. In particular for the
Lorenz system symmetric fixed points occur on the Z-axis and pairs of asymmetric
fixed points (X,Y, Z), (−X,−Y, Z) occur off the Z-axis.

In general, a dynamical system with polynomial forcing terms can have only a finite
number of fixed points. This number can be determined by sophisticated methods (cf.
Chapter 12). However, not all the fixed points are real. We illustrate what typically
occurs for the Lorenz system (2.1). The fixed points are determined by settingX = Y
(from Ẋ = 0), (R−1−Z)X = 0 (from Ẏ = 0) and solvingX2 = bZ (from Ż = 0).
There is always a solution X = Y = Z = 0. For Z > 0 there are two real fixed
points X = Y = ±

√
bZ, Z = R − 1. For bZ < 0 there are two imaginary fixed

points. As the control parameter increases throughR = +1, the two imaginary fixed
points become real in a pitchfork bifurcation. The evolution of the real fixed points
in the phase space as a function of increasing control parameter R is shown in Fig.
2.2.

In general, when a single control parameter is varied, only fold (saddle-node)
bifurcations occur. In a fold bifurcation two imaginary points collide with each other
to become real fixed points. In a suitable coordinate system the fold bifurcation has
the canonical dependence on a control parameter given by

Fold Bifurcation: A2(x;µ) = x2 − µ = 0, xfp
= ±√µ

There are two imaginary solutions for µ < 0 and two real fixed points for µ > 0. The
bifurcation occurs at µ = 0 (Fig. 2.3(a)).
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µ=0

(a) A2 or saddle-node bifurca-
tion

µ=0

(b) A3 or pitchfork bifurcation

Fig. 2.3 There are two one-parameter bifurcations: (a) the fold A2 and (b) the pitchfork A3.

The pitchfork bifurcation has a canonical form, in a suitable coordinate system,
given by

Pitchfork Bifurcation: A3(x;µ) = x3 − µx = 0, xfp
= 0,±√µ

There is one real root, xfp
= 0, for all values of µ. The other pair is imaginary,

xfp
= ±i√−µ for µ < 0, and real at xfp

= ±√µ for µ > 0. The bifurcation occurs
at µ = 0 (Fig. 2.3(b)).

The pitchfork bifurcation is a special case of a more general family of singularities
called cusp bifurcations [32]. These have canonical form

A3(x;µ, ε) = x3 − µx− ε = 0

In general, the terms µ and ε depend on some control parameter s, so that the bifur-
cation of x3 − µ(s)x − ε(s) = 0 is as shown in Fig. 2.4. If a symmetry exists that
imposes some conditions on A3(x;µ, ε), for example A3(−x;µ, ε) = −A3(x;µ, ε),
then the coefficient ε is suppressed and one parameter paths in the space of control
parameters cannot avoid the point (µ, ε) = (0, 0), where the pitchfork bifurcation
takes place. The fixed points obey

V3(x;µ, 0) = x3 − µx = 0, xfp
=

+
√
µ

0
−√µ

The general result for dynamical systems equivariant under a symmetry group with
two operations is as follows. As the control parameters are varied, real fixed points
are created or annihilated:

1. In fold bifurcations. The fold bifurcations occur in symmetric pairs. The fixed
points do not occur on the invariant set.

2. In pitchfork bifurcations. The pitchfork bifurcation involves one fixed point on
the invariant set. In general, the other two fixed points involved in the pitchfork
bifurcation are a symmetric pair of asymmetric fixed points.
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µ=0
(a)

µ=0

(b)

Fig. 2.4 (a) Path [µ(s), ε(s)] through control parameter space of the cusp family produces
only a saddle-node bifurcation. (b) Under symmetry restriction, a pitchfork bifurcation can
occur.

Remark: Fold bifurcations are singularities of typeA2 and pitchfork bifurcations
are a symmetry-restricted class of cusp bifurcations, which are singularities of type
A3.

Equivariant dynamical systems in R
3 with two-fold symmetry exhibit fixed point

bifurcations depending on the symmetry group as follows.

P Pitchfork bifurcations involve the fixed point at the origin and two symmetry-
related fixed points (X,Y, Z), (−X,−Y,−Z). Fold bifurcations occur in
symmetric pairs and do not involve the fixed point at the origin.

RZ(π) Pitchfork bifurcations involve a fixed point on the Z-axis (0, 0, Z) and two
symmetry-related points off the z-axis (X,Y, Z ′) and (−X,−Y, Z ′). Fold
bifurcations occur in symmetric pairs and involve two pairs of fixed points, off
the Z-axis.

σZ Pitchfork bifurcations involve a point in theX-Y -plane (X,Y, 0) and two mirror
image points (X ′, Y ′, Z) and (X ′, Y ′,−Z) off the symmetry plane. Fold
bifurcations occur in symmetric mirror image pairs, one above, the other below
the Z = 0 plane.

The structure of the flow on the invariant set is easily determined from the standard
form of the equivariant dynamical system in the three cases:

P d

dt





X
Y
Z



 =





g11 g12 g13
g21 g22 g23
g31 g32 g33









X
Y
Z




(X,Y,Z)=(0,0,0)−→





0
0
0





RZ(π)
d

dt





X
Y
Z



 =





g11 g12 0
g21 g22 0
0 0 g33









X
Y
1




(X,Y,Z)=(0,0,Z)−→





0
0

g3(Z)




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σZ
d

dt





X
Y
Z



 =





0 g12
0 g22
g31 0





[
Z
1

]
(X,Y,Z)=(X,Y,0)−→





g12(X,Y )
g22(X,Y )

0





In all three cases, the flow, restricted to the invariant set, is completely in the invariant
set. This is a general result, valid for all symmetry groups and any dimensional
dynamical system.

Remark: The discussion above involves two different definitions of invariant set:

Invariant set for a group: This is the set of points that are fixed (mapped into them-
selves) under all of the group operations.

Invariant set for a flow: This is the set of points that are mapped into themselves
under the flow.

We emphasize that these two definitions are highly intertwined.

2.5 CLASSIFICATION OF STRANGE ATTRACTORS

In the present work we will describe many inequivalent strange attractors. It is
essential that we adopt some robust mechanism for identifying strange attractors.
This classification must enable us to distinguish between equivalent and inequivalent
strange attractors. One attractor is equivalent to another when there is a smooth
transformation that takes one to the other in a continuous way. If such a smooth
deformation does not exist, two strange attractors are not equivalent.

2.5.1 Background

During the early stages in the evolution of “chaos theory” two tools were widely used
to analyze strange attractors. These were computation of the fractal dimensions and
computation of the Lyapunov exponents.

Fractal dimension is a geometric measure. A strange attractor is built up by
repeated occurrence of two operations: stretching and squeezing. The repetition of
these two processes builds up a geometric structure that is self-similar: it looks the
same at many magnification scales. Fractal dimension is in some way a measure of
this self-similarity [95].

Lyapunov exponents are dynamical measures. Nearby points in phase space will
be acted on in different ways by the flow. In practice, a sphere of initial conditions
will be deformed approximately into an ellipsoid during a short time. The Lyapunov
exponents are essentially the logarithms of the ratios of the principal axes of the
ellipsoid to the radius of the original sphere. Positive Lyapunov exponents indicate
directions in which expansion takes place; negative Lyapunov exponents indicate
directions in which contraction takes place. When the flow shrinks volumes, the sum
of the Lyapunov exponents is less than zero [34,94,137].
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Fractal dimension estimates provide very little information about a dynamical
system. Estimates of the spectrum of Lyapunov exponents provide somewhat more
information. Both statistics are beset with problems:

• They require long (very long for fractal dimension calculations), clean (ditto)
data sets.

• They require delicate and time consuming calculations that sometimes resemble
a black art more than an algorithmic procedure.

• The calculations result in a real number (or numbers) with no error estimates.
• There is no independent way to assess this real number.
• There is no statistical theory for error estimation.
• The estimates are not robust under changes in operating conditions or parameter

values.
• These estimates convey no information on “how to model the dynamics.”

2.5.2 Topological Classification of Strange Attractors

The flows for the symmetric dynamical systems introduced so far (Fig. 2.5) clearly
suggest what stretching and squeezing mechanisms act on the phase space flow to
generate the strange attractor. For the cases shown it is possible to introduce a “card-
board model” to describe the nature of the flow and the stretching and squeezing
mechanism that generates chaotic behavior. Cardboard models of the Lorenz, Burke
and Shaw, induced Lorenz, and Kremliovsky flows are shown in Fig. 2.5. These flows
are easy to describe by “cardboard models” because they are highly dissipative, or
strongly volume contracting.

In fact, representing the flows on a strange attractor by a cardboard model does
not depend on strong dissipation. There is a theorem that guarantees the existence of
such a limiting model for flows in three dimensions [14,15]. The theorem is due to
Birman and Williams, the limiting model is called a branched manifold, or template,
or knot-holder. Examples of branched manifolds are shown in Fig. 2.5.

A branched manifold is built up “Lego-style” from two basic units. These are
shown in Fig. 2.6. One unit describes the stretching process, the other describes the
squeezing process. On the left of Fig. 2.6 we show how a cube of initial conditions
in R

3 is deformed when one Lyapunov exponent (λ1) is positive and the other (λ3)
is negative. The Lyapunov exponent λ2 corresponding to the flow direction is zero:

λ1 > λ2 = 0 > λ3

The flow is assumed to be dissipative

λ1 + λ2 + λ3 < 0

In this cartoon, initial conditions are compressed into the plane of the page and
stretched apart in the plane of the page. Eventually the flow will lead to different
parts of the phase space. A singularity occurs at the tear point. This point describes
an initial condition that flows to a fixed point. The sequence on the right of Fig. 2.6
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Fig. 2.5 Symmetric attractors (left) and their representations by branched manifolds (right).
The Lorenz and the induced Lorenz attractors are generated by a tearing and squeezing mech-
anism, while the Burke and Shaw and the Kremliovsky attractors are generated by a folding
and squeezing mechanism.
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Fig. 2.6 Cartoons describing stretching (left) and squeezing (right). In both cases time
evolves downward. In the case of stretching, a cube of initial conditions is deformed by being
stretched in the direction of the page and shrunk (volume-decreasing transformation) in the
transverse direction. Eventually distant parts of the cube of initial conditions are pulled off to
different parts of the phase space. The tear point is an initial condition that flows to a fixed
point. In the case of squeezing, two sets of initial conditions from distant parts of phase space
are squeezed together. In the limit, they meet at a branch line. The two units at the bottom
on the left and right can be used to describe the mechanism of every chaotic flow in three
dimensions by plugging them together, Lego style, output to input, with no leftover free ends.

shows sets of initial conditions in two different parts of the phase space. The initial
conditions (two cubes) are squeezed together under the flow. There is a singularity
at the branch line, where the flows from two distant regions are joined.

The singularities—tear point and branch line— describe the stretching and the
squeezing process that take place to generate a strange attractor. These two building
blocks can be joined in many possible ways, subject to just two conditions:

1. Each outflow feeds into an inflow.
2. There are no free edges.

Every possible combination of these two building blocks represents a mechanism that
generates a strange attractor [14,15,33,34].

The Birman-Williams theorem is based on a useful identification. Two points, x
and y, in phase space are said to be equivalent if they have the “same future” [14,15].
That is, the distance between the trajectories that start at equivalent points x and y



30 SIMPLE SYMMETRIES

shrinks to zero as t→∞. Formally we write

x ≈ y if |x(t)− y(t)| t→∞−→ 0 (2.10)

By identifying equivalent points in a strange attractor we are in effect projecting the
flow down along a stable manifold to a two-dimensional branched manifold. One
dimension corresponds to the flow direction, the other to the stretching direction.
The projection converts the flow to a “semiflow.” This is a flow in which every point
has a unique future but not a unique past. In fact, the past is unique up to the nearest
branch line in its past.

A formal statement of the Birman-Williams theorem is as follows [14,15].

Theorem 2.1 Birman-Williams Theorem: Assume that a dissipative dynamical sys-
tem in R

3 has Lyapunov exponents that satisfy

λ1 > λ2 = 0 > λ3

λ1 + λ2 + λ3 < 0

and generates a hyperbolic strange attractor. The identification (2.10) maps the
strange attractor SA to a branched manifold BM and the flow Φ t on SA to a
semiflow Φ̄t on BM. The periodic orbits in SA under the flow Φ t correspond in a
one-to-one way with the periodic orbits in BM under Φ̄t with one or two specified
exceptions. On any finite subset of periodic orbits the correspondence can be taken
to be via isotopy.

In plain English this theorem guarantees that a strange attractor SA can be pro-
jected down to a branched manifoldBM, and in this projection the number and type
of periodic orbits as well as their topological organization is unchanged.

The condition that the strange attractor is hyperbolic can be relaxed. This theo-
rem is even true for strange attractors in n-dimensional space provided that they are
“strongly contracting” [33,34,89]. This means that the Lyapunov exponents satisfy

λ1 > λ2 > λ3 ≥ · · · ≥ λn

λ1 + λ2 + λ3 < 0

In other words, λ1 > 0, λ2 = 0, λ3 < 0, and λ1 +λ3 < 0. In such cases, the strange
attractor can be squeezed into R

3, or at least some three-dimensional manifold.

2.5.3 Extracting Branched Manifolds from Data

Branched manifolds are excellent tools for classifying strange attractors because the
organization of the unstable periodic orbits is unchanged during the projection from
the strange attractor to the branched manifold [87]. The organization of the unstable
periodic orbits is determined by the topological indices of pairs of orbits: specifically,
their Gaussian linking numbers [89,116].
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As a reminder, the key to classifying strange attractors is by “la seule brèche par où
nous puissions essayer de pénétrer dans une place jusqu’ici réputée inabordable”—
the topological organization of their unstable periodic orbits. This point was made
by Poincaré over 100 years ago [100].

A strange attactor can be identified, or classified, by determining the branched
manifold that it projects to. The identification is algorithmic. The algorithm has a
finite, small number of steps. In the event that the analysis is carried out on a single
time series x(t) the steps are as follows [33,34]:

1. Unstable periodic orbits are extracted from the time series. The method of
choice is the close returns procedure. This method identifies segments of the
chaotic time series that are almost periodic, and which can serve as surrogates
for unstable periodic orbits.

2. A three-dimensional embedding for the time series is constructed. The method
of choice is the differential embedding x, y = ẋ, z = ẍ or the integral-
differential embedding (y1, y2, y3) where y2 = x, ẏ1 = x, and ẋ = y3.

3. Linking numbers for pairs of the surrogate periodic orbits in the three-dimensional
embedding space are computed.

4. The unstable periodic orbits are named by introducing a symbolic dynamics.
5. A branched manifold is proposed. Each branch is labeled by one of the symbols

of the symbol set required to provide a unique identification for all the orbits.
6. Periodic orbits on the branched manifold are determined and their linking num-

bers are computed. They are compared with linking numbers for corresponding
pairs of labeled surrogate orbits. Modifications in the proposed branched man-
ifold and labeling of the surrogate periodic orbits are made until the two tables
of linking numbers of orbits on the branched manifold and surrogate orbits ex-
tracted from the data are in agreement. Tables of linking numbers for the orbits
to period five that exist in Smale horseshoe dynamics and in Lorenz dynamics
are presented in the following subsection.

7. Usually the branched manifold can be identified by analyzing a small number
of low period orbits. Here “period” is the number of letters in the symbol se-
quence that identifies an orbit. The identification of the branched manifold can
be confirmed by comparing the linking numbers of all other pairs of surrogate
orbits with the corresponding orbits on the branched manifold. Such confir-
mation steps are lacking in analyses using geometric (fractal dimension) and
dynamical (Lyapunov exponent) tools.

Remark: The branched manifold used to described a flow may not be unique.
Three descriptions of the flow on the Lorenz attractor are shown in Fig. 2.7. The first
two involve a two-symbol dynamics. One branched manifold is related to the other
by rotating one lobe through π radians about a horizontal axis. The second and third
branched manifolds are essentially the same, but one uses two symbols, the other four.
A transition matrix (Section 2.6) indicates how the branches flow onto each other.
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(c) Same as (b), except that the symbols label the four branches instead
of the two branch lines.

Fig. 2.7 Branched manifolds and their transition matrices for Lorenz dynamics.

2.5.4 Linking Number Tables

The locations of periodic orbits on branched manifolds are determined using standard
kneading theory [86]. Once the trajectory of a periodic orbit has been determined,
its linking number with other periodic orbits is easily computed simply by counting
crossings. For the standard Smale horseshoe branched manifold,shown in Fig. 2.8(a),
the periodic orbits are labeled by two symbols, 0 and 1. These indicate the branch
that the trajectory flows through. For orbits to period five, the linking numbers are
presented in Table 2.1. These linking numbers remain unchanged as long as the orbits
exist. All crossings occur as the flow in the two branches approaches the branch line,
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(a) Smale horseshoe dynamics (b) Lorenz dynamics
Fig. 2.8 Branched manifolds for (a) Smale horseshoe dynamics and (b) Lorenz dynamics.

Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynamics.

1s 1f 21 3f 3s 41 42f 42s 53f 53s 52f 52s 51f 51s

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 2 1 1 1 1 2 2 2 2

01 0 1 1 2 2 3 2 2 2 2 3 3 4 4
001 0 1 2 2 3 4 3 3 3 3 4 4 5 5
011 0 1 2 3 2 4 3 3 3 3 5 5 5 5

0111 0 2 3 4 4 5 4 4 4 4 7 7 8 8
0001 0 1 2 3 3 4 3 4 4 4 5 5 5 5
0011 0 1 2 3 3 4 4 3 4 4 5 5 5 5

00001 0 1 2 3 3 4 4 4 4 5 5 5 5 5
00011 0 1 2 3 3 4 4 4 5 4 5 5 5 5
00111 0 2 3 4 5 7 5 5 5 5 6 7 8 9
00101 0 2 3 4 5 7 5 5 5 5 7 6 8 9
01101 0 2 4 5 5 8 5 5 5 5 8 8 8 10
01111 0 2 4 5 5 8 5 5 5 5 9 9 10 8

and all crossings are negative according to standard conventions. The minus sign (−)
has not been included in Table 2.1.

In the case of Lorenz dynamics, the corresponding knot-holder also has two
branches. These are labeled L and R, and the knot-holder is shown in Fig. 2.8(b).
All periodic orbits are composed of these two symbols. The linking numbers of all
Lorenz orbits to period five are presented in Table 2.2. All crossings in this branched
manifold are positive. The symmetry that is exhibited by the Lorenz equations and
that is evident in its branched manifold can also be deduced from the table of linking
numbers, Table 2.2. It is easily seen that if P1 and P2 are two orbits and P 1 and P 2

are the orbits obtained from P1 and P2 by interchanging the letters L and R,

Link(P1, P2) = Link(P 1, P 2) (2.11)

For example Link(LLR,LLLR) = 2 = Link(LRR,LRRR). If rotation symmetry
is replaced by inversion symmetry the relation above would be Link(P1, P2) =
−Link(P 1, P 2) (c.f., Fig. 4.6). The linking numbers for this symmetry are presented
in Table 2.3. The projections of corresponding orbits with the two symmetries onto
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Table 2.2 Linking numbers for orbits to period five in Lorenz dynamics.

L R LR 31 32 41 42 43 51 52 53 54 55 56

L 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LR 0 0 1 1 1 1 1 2 1 2 2 2 2 1
LLR 0 0 1 2 1 1 2 2 2 3 2 3 2 1
LRR 0 0 1 1 2 2 1 2 1 2 3 2 3 2

LRRR 0 0 1 1 2 3 1 2 1 2 3 2 3 3
LLLR 0 0 1 2 1 1 3 2 3 3 2 3 2 1
LLRR 0 0 2 2 2 2 2 3 2 3 3 4 4 2

LLLLR 0 0 1 2 1 1 3 2 4 3 2 3 2 1
LLLRR 0 0 2 3 2 2 3 3 3 4 3 5 4 2
LLRRR 0 0 2 2 3 3 2 3 2 3 4 4 5 3
LLRLR 0 0 2 3 2 2 3 4 3 5 4 6 4 2
LRRLR 0 0 2 2 3 3 2 4 2 4 5 4 6 3
LRRRR 0 0 1 1 2 3 1 2 1 2 3 2 3 4

the x-y plane are indistinguishable until the projections are dressed with crossing
information.

Table 2.3 Linking numbers for orbits to period five in dynamics invariant under P .

L R LR 31 32 41 42 43 51 52 53 54 55 56

L - 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 - 0 0 0 0 0 0 0 0 0 0 0 0

LR 0 0 - 0 0 0 0 0 0 0 0 0 0 0
LLR 0 0 0 - 0 0 -1 -1 -1 -1 -1 -1 0 0
LRR 0 0 0 0 - 1 0 1 0 1 1 0 1 1

LRRR 0 0 0 0 1 - 0 1 0 1 2 0 1 2
LLLR 0 0 0 -1 0 0 - -1 -2 -2 -1 -1 0 0
LLRR 0 0 0 -1 1 1 -1 - -1 0 0 -1 1 1

LLLLR 0 0 0 -1 0 0 -2 -1 - -2 -1 -1 0 0
LLLRR 0 0 0 -1 1 1 -2 0 -2 - 0 -1 1 1
LLRRR 0 0 0 -1 1 2 -1 0 -1 0 - -1 1 2
LLRLR 0 0 0 -1 0 0 -1 -1 -1 -1 -1 - 0 0
LRRLR 0 0 0 0 1 1 0 1 0 1 1 0 - 1
LRRRR 0 0 0 0 1 2 0 1 0 1 2 0 1 -

Remark 1: Equivariance in a dynamical system, in particular in covering dynam-
ical systems, is reflected in the symmetries intrinsic to its table of linking numbers.

Remark 2: Since the Smale horseshoe branched manifold (Rössler system) does
not have a two-fold symmetry, its table of linking numbers lacks a symmetry of type
(2.11).
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Remark 3: Group continuation of tables of linking numbers is not straightforward.
This is seen by comparing Table 2.2 with Table 2.3.

2.5.5 Symmetry

When a three-dimensional system with a two-fold symmetry generates a strange
attractor, either

1. the attractor possesses the two-fold symmetry
2. the attractor is disconnected and consists a symmetric pair of asymmetric at-

tractors.

These properties are reflected in the branched manifold for the strange attractor. The
branches must occur in symmetry-related pairs. The branched manifold for the strange
attractor is either

1. connected and symmetric
2. not connected and consists of a symmetric pair of asymmetric branched mani-

folds.

Several branched manifolds of symmetric systems are shown in Fig. 2.5. Several
representations of a branched manifold for Lorenz dynamics are shown in Fig. 2.7.

2.5.6 Application

The first topological analysis was carried out on chaotic data generated by the Belousov-
Zhabotinskii chemical reaction [89]. A set of data segments that served as surrogates
for unstable periodic orbits was extracted from the long, very clean scalar time series
[115]. These data segments were located by the method of close returns before the
data were embedded in a three-dimensional phase space.

Subsequently a suitable three-dimensional embedding was constructed. This em-
bedding was an integro-differential embedding. The embedding showed that the
reconstructed attractor “had a hole in the middle” so that a Poincaré surface of section
could easily be constructed. A return map onto the Poincaré surface of section was
similar to that shown in Fig. 3.9(b). Specifically:

1. It was almost one-dimensional, showing that the system was highly dissipative;
2. It had two branches, showing that two symbols sufficed to encode the trajectory,

and all periodic orbits.

Data segments that intersected the Poincaré section p times before (almost) closing
were identified as period-p orbits, and a symbolic encoding was tentatively given
according to whether the intersection occurred in the orientation-perserving (0) or
-reversing (1) branch of the return map. The linking numbers of all pairs of orbits
were computed in this embedding. These linking numbers are presented for the subset
of experimental orbits, up to period five, in Table 2.4.
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Table 2.4 Linking numbers for orbits extracted from data generated by the Belousov-
Zhabotinskii reaction, up to period five.

1 01 011 0111 01011

1 0 1 1 2 2
01 1 1 2 3 4
011 1 2 2 4 5

0111 2 3 4 5 8
01011 2 4 5 8 8

Since the branched manifold describing the dynamics has two branches, it was
possible to determine it using information determined from the linking numbers of
only three periodic orbits. The three orbits of lowest period (1, 01, 011) were used
in this determination. Their linking numbers are shown in the 3 × 3 submatrix in
the upper left corner of Table 2.4. On the basis of these three linking numbers (self-
linking numbers were neglected) the appropriate branched manifold was identified.
This was the Smale horseshoe branched manifold, shown in Fig. 2.8(a). Using this
branched manifold, the linking numbers of all other surrogate orbits were computed
and compared with those calculated directly from the surrogate orbit segments. This
comparison serves as a double-check on the validity of the branched manifold identi-
fication. This identification is vastly overdetermined and the comparison serves as a
rejection criterion for the double problem of determining the correct branched man-
ifold as well as the correct labeling for the surrogate orbits. Three linking numbers
(1, 1, 2) of the three lowest period orbits (1, 01, 011) were used to determine the
linking numbers of all nine surrogate orbits up to period eight. The three off-diagonal
integers correctly predicted the remaining 1

29× 8− 3 = 33 integers.

2.6 SYMBOLIC DYNAMICS

Each branch of a branched manifold is identified by a symbol label. If the original
dynamical system has two-fold symmetry, the branches and branch labels must exhibit
this symmetry.

The strange attractor generated by the Lorenz system at standard parameter values
R = 28, σ = 10, b = 8/3 (Fig. 2.5(a)) has two lobes. They are related to each other
by the rotation symmetry, RZ(π). The branched manifold for this strange attractor
(Fig. 2.7(a)) has two branches. These can conveniently be labeled L, R. Every orbit on
the branched manifold can be represented symbolically by an infinite string composed
of the two letters L and R. In principle, after the trajectory passes through branch L
it may return to L or to pass to R. Similarly for R. The transition matrix describing
dynamics on this branched manifold is
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L R

L 1 1
R 1 1

Lorenz dynamics can also be described by the four-branched manifold shown in Fig.
2.7(c). The transition matrix for this four-branch template is

0l 1l 0r 1r

0l 1 1 0 0
1l 0 0 1 1
0r 0 0 1 1
1r 1 1 0 0

This means that after transiting 0l the dynamics can enter branch 0l (again) or 1l but
not branches 0r and 1r. Similarly after traveling through branch 1l the dynamics
must enter branch 0r or 1r.

2.7 PERIODIC ORBITS

Trajectories of initial conditions in strange attractors are simpler to study when the
trajectory can be expressed as a symbol sequence. The same is true for semiflows on a
branched manifold. In both cases the space is partitioned into a set of subspaces, each
labeled by a different symbol. The flow through each subset is labeled by the name
of the subset. For a branched manifold the subsets consist of the different branches.

A periodic orbit returns to its initial condition infinitely often. The symbol se-
quence representing a periodic orbit therefore repeats infinitely often. For example,
the symbol sequence

. . .L R L L R L L R L L R L . . .

describes the period-three orbit (LLR)∞ in the Lorenz attractor. Two other equivalent
representations of the same orbit are (LRL)∞ and (RLL)∞. Usually some convention
(such as lexigraphic) is chosen to provide a unique naming mechanism for periodic
orbits.

In a representation of Lorenz dynamics using a four-branch manifold the following
equivalence exists for the period-three orbit LLR:

LLR 0l 1l 1r

LRL 1l 1r 0l

RLL 1r 0l 1l

We return now to the question of whether the solutions φ(t) and γφ(t) (cf. Section
2.3) of the equivariant equations belong to the same or different trajectories. This
question is simple to resolve for periodic orbits. We illustrate for Lorenz dynamics—
the argument is unchanged for other two-fold symmetries. The operator γ acts in
symbol space
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L γ−→ R
R γ−→ L

to map a segment in the left half space into the right half space, and vice versa. It
therefore acts on periodic orbits as well:

LLR γ−→ RRL

Periodic orbits are either symmetric or occur in asymmetric pairs. An orbit of odd
period cannot be symmetric. Therefore odd period orbits occur in symmetric pairs.
The symbol sequence for an even period orbit of period 2p can be written in the form
(S1S2). Here S1S2 are symbol sequences of length p. If S1=S2, the orbit is (S1)

2 —
that is, its minimal period is p, not 2p. Therefore S1 6= S2. If S2 = γS1, the orbit is
symmetric, if not, it is asymmetric

S2 = γS1 Symmetric
S2 6= γS1 Asymmetric

Example The period-three orbits (LLR) and (RRL) form a symmetric pair of asym-
metric period three orbits. The orbit LRLR is actually a period-two orbit LR. This
period-two orbit is symmetric. The period-four orbit LLRR is symmetric, since RR
= γ(LL). The period-four orbit LLLR is not symmetric since LR 6= γ (LL): its sym-
metric partner is RRRL. All these orbits can be labeled using the four symbols 0l 1l

0r 1r.

LR 1l 1r

LLR 0l 1l 1r

RRL 0r 1r 1l

LLRR 0l 1l 0r 1r

LLLR 0l 0l 1l 1r

RRRL 0r 0r 1r 1l

Remark: If the period of a symmetric orbit is T , then γφ(t) = φ(t+ 1
2T ).

2.8 TOPOLOGICAL ENTROPY

Not every orbit that exists in the branched manifold can be found in the strange
attractor. However, those that exist in the strange attractor are organized topologically
exactly as their counterparts in the branched manifold are organized.

Topological entropy measures the growth in the number of orbits of period p with
the period [3]. In general, the period p, topological entropy hT , and the number,
N(p), of different orbits of period p are related by

N(p) ≈ ephT

hT = lim
p→∞

1

p
logN(p)
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Since there are generally more orbits on a branched manifold than in the strange
attractor from which it is projected (the branched manifold is hyperbolic and the
strange attractor is generally not), the topological entropy of the branched manifold
serves as an upper bound for the topological entropy of the parent strange attractor.
The topological entropy of a branched manifold is easily computed from the transition
matrix. Specifically, it is the logarithm of the largest eigenvalue [34]. The transition
matrices, their eigenvalue spectra, and the topological entropy for the two branched
manifold representations of Lorenz dynamics shown in Fig. 2.7(b) and 2.7(c) are

Symbols Transition matrix Eigenvalue spectrum hT

L R
[

1 1
1 1

]

2, 0 log 2

0l 1l 0r 1r







1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0







2, 0, 0, 0 log 2

It is a general result that the topological entropy of the branched manifold describing
a strange attractor is independent of the choice of the number of branches and the
symbol assignments.

2.9 RETURN MAPS

Poincaré introduced an ingenious method for simplifying the analysis of low dimen-
sional flows [100]. He introduced a “surface of section,” now universally called a
Poincaré section. The section is constructed in such a way that the flow always inter-
sects the surface transversally from the same side. An initial condition on the surface
is mapped back to the surface under the flow. Study of the flow is simplified by
studying the first-return map of the surface of section back to itself.

There is always a problem of determining when,where, and how a Poincaré section
can be constructed. For flows that are embedded in a toroidal phase space R

2 × S1

Poincaré sections can be chosen as planes of constant phase angle ϕ ∈ S1, 0 ≤ ϕ <
2π.

For three-dimensional flows that generate strange attractors there is a concise
answer to these questions. The strange attractor is projected down to a branched
manifold. The Poincaré section for the branched manifold is the union of the branch
lines. It is a disconnected set if there are two or more branch lines. For the original
flow the Poincaré section is the inverse image of the branched manifold’s Poincaré
section. Specifically it consists of the set of all points that project to the branch lines
of the branched manifold under the Birman-Williams projection (2.10).

For Lorenz dynamics the branched manifold shown in Fig. 2.7(a) has a single
branch line while the representations of the dynamics shown in Fig. 2.7(b) and (c)
has two branch lines. In the first case, the Poincaré section has one component.
The intersection of the strange attractor with this surface is in fact disconnected. In
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ρ
n

ρ
n+1

L R

L

R 1
l

0
r

0
l

1
r

Fig. 2.9 First-return map to the Poincaré section for the Lorenz system. The dynamics is
represented by the branched manifold shown in Fig. 2.7(b) or (c).

the second and third cases the Poincaré section is the union of two disconnected
components.

Once the Poincaré section has been constructed, the return map can be constructed.
We illustrate for the Lorenz flow as described by the branched manifold shown in Fig.
2.7(c). There are two symmetry-related branch lines. These are labeled L and R.
The return map on these branch lines is shown in Fig. 2.9. Distances along the branch
lines are measured from inside to outside. This figure merely shows the obvious.
Initial conditions along L near the inside map back to L, those farther than halfway
alongLmap toR in an orientation-reversing way. Similarly forR. Each component
of this first return map can be identified with one of the four symbols 0l 1l 0r 1r, as
shown in this figure.

Closed orbits of period 2, 3, 4, . . . , p are determined by constructing the second,
third, fourth, . . . , pth return maps from the first return map, and identifying the
intersection of these return maps with the diagonal. As an example, in Fig. 2.10 we
show the third-return map constructed from Fig. 2.9. The six intersections with the
diagonal indicate the intersection of the two period-three orbits LLR and RRL with
the branch lines L and R.
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Fig. 2.10 Third-return map to the Poincaré section for the Lorenz system.
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3.1 DIFFEOMORPHISMS: GLOBAL AND LOCAL

Dynamical systems can be studied in any coordinate system. If x1, x2, x3, . . . , xn is
one coordinate system in R

n and u1, u2, u3, . . . , un is another, related to the first by
transformations

u1 = u1(x1, x2, x3, . . . , xn)
...

...
...

un = un(x1, x2, x3, . . . , xn),

the dynamical equations of motion in the x-coordinate system

dxj

dt
= Fj(x)

43
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can easily be expressed in the u-coordinate system by elementary calculus (chain
rule)

dui

dt
=
∂ui

∂xj

dxj

dt
=
∂ui

∂xj
Fj(x) = gi(u) (3.1)

As long as the Jacobian of the transformation is nonsingular everywhere (det
(

∂ui

∂xj

)

6=
0) this transformation can be inverted everywhere

dxj

dt
=
∂xj

∂ui
gi(u) =

(
∂u

∂x

)−1

ji

gi(u) = Fj(x)

The two dynamical systems are equivalent. If det
(

∂ui

∂xj

)

> 0 the two are topologi-

cally equivalent; if det
(

∂ui

∂xj

)

< 0 they are topological images of each other—that is,
one is“left-handed,” the other “right handed” (in R3 the quotations can be removed).

The principle reason for introducing a nonsingular change of variables is to simplify
analysis. As an example, in Fig. 3.1(a) we show a phase space projection of laser data
on the I-N plane or u-w plane, where I (u) is the observed laser intensity and N(z)
is the population inversion. There are long stretches of time during which the laser
intensity is close to zero. The topological organization of data segments with low
intensity is difficult to discern in this projection. Topological organization is simpler
to discern when data along the I-axis are stretched out. A simple smooth stretch is
provided by a logarithmic transformation

(x, y) = (I,N)→ (u, v) = (log(I), N).

In this coordinate system topological analyses are simpler to carry out than in the orig-
inal coordinate system. However, the data are compressed in a positive direction. An
even better smooth transformation is (I,N) 7→ (I + log(I), N). The transformation
from (I,N) to (I + log(I), N) is shown in Fig. 3.1(b).

A smooth everywhere nonsingular invertible transformation (3.1) is called a global
diffeomorphism. Since the dynamical systems ẋj = Fj(x) and u̇i = gi(u) are
equivalent (up to handedness) global diffeomorphisms are not adequate for relating a
dynamical system with symmetry to a closely related system (image system) without
symmetry.

Dynamical systems with symmetry can be mapped to closely related systems
without symmetry by introducing transformations that are diffeomorphisms almost
everywhere. For such mappings the Jacobian of the transformation is nonsingular
almost everywhere. It vanishes on a set of measure zero.

In this chapter and the next we introduce the relation between equivariant dy-
namical systems and their images, invariant dynamical systems. The coordinates
for the equivariant dynamical system are capitalized, those for the invariant dynam-
ical system are in lowercase letters. In these two chapters we concentrate on three
dimensional dynamical systems, so the coordinates are



DIFFEOMORPHISMS: GLOBAL AND LOCAL 45

0 5 10 15 20 25
u

-6

-4

-2

0

2

4

6

z

(a) u-z plane

-20 -10 0 10 20
u+log(u)

-6

-4

-2

0

2

4

6

z

(b) (u + log u)-z plane

Fig. 3.1 u̇ = [z − A cos(Ωt)]u, ż = (1 − ε1z) − (1 + ε2z)u with ε1 = 0.03, ε2 = 0.009,
Ω = 1.5 and A = 1.06. The initial conditions are u0 = 1.0 and z0 = 4.2. (a) Plot in the u-z
plane. (b) Plot in the u + log(u)-z plane.

Equivariant coordinates Invariant coordinates
(X1, X2, X3) (u1, u2, u3)

or or
(X,Y, Z) (u, v, w)

The relation between the equivariant and image invariant dynamical systems is in
general

dXj

dt
= Fj(X)

dui

dt
= gi(u)

dui

dt
=

∂ui

∂Xj
Fj(X)

dXj

dt
=

(
∂ui

∂Xj

)−1

gi(u)

If γ is an element of the symmetry group, not the identity, then

γ(X1, X2, X3) 6= (X1, X2, X3)
γ(u1, u2, u3) = (u1, u2, u3)

In short, the coordinates (u1, u2, u3) are invariant coordinates.
We will spend the rest of this chapter learning how to construct invariant coordi-

nates u from equivariant coordinates X and the equivariance group G. This informa-
tion will then be used to construct image equations from equivariant coordinates, and
to relate the properties of the solutions of the image equations to the properties of the
solutions of the equivariant equations. In particular, we consider relations between

• fixed points
• periodic orbits
• branched manifolds
• symbolic dynamics
• topological entropy
• Poincaré sections
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3.2 2 → 1 LOCAL DIFFEOMORPHISMS

In this section we introduce the 2→ 1 local diffeomorphisms used to construct image
dynamical systems from equivariant dynamical systems where the symmetry group
G is of order 2. This is done carefully for the rotation group RZ(π), more quickly
for the inversion group P and the reflection group σZ .

We can divide the elementary polynomials XaY bZc (a ≥ 0, b ≥ 0, c ≥ 0)
into two sets: one that is invariant under RZ(π) and the rest. Up to degree 2, this
decomposition is

Invariant underRZ(π) Not invariant underRZ(π)
degree 1 Z X , Y
degree 2 Z2, X2, XY , Y 2 ZX , ZY

We truncate this decomposition at degree 2 because the groupRZ(π) has order 2 (two
operations). There is a theorem to the effect that this is sufficient (Noether’s theorem,
cf. Part II) for constructing all invariant and covariant (noninvariant) polynomials.

These nine polynomials are all linearly independent. However, they are not all
functionally independent. For example, the second-degree polynomial Z2 is the
square of the first-degree polynomial. More interesting is the relation among the
three other quadratic invariants. Only two are functionally independent, for

(X2)(Y 2)− (XY )2 = 0

Every invariant polynomial of any degree can be expressed as a function of the four
invariants Z, X2, XY , Y 2, of which only three are functionally independent. We
can write for γ ∈ RZ(π)

γF (X,Y, Z) = F (X,Y, Z)⇒ F (X,Y, Z) = g(Z,X2, XY, Y 2)

An arbitrary polynomial in (X,Y, Z) can be expressed in terms of invariant polyno-
mials and the basic noninvariant functions X , Y in the following way

F (X,Y, Z) = gX(Z,X2, XY, Y 2)X+gY (Z,X2, XY, Y 2)Y+g1(Z,X
2, XY, Y 2)1

An invariant coordinate system can be constructed from the invariant polynomials
of lowest degree. We choose Z = u3 = w as one of the invariant coordinates.
The other pair can be chosen as suitable linear combinations of the three quadratic
invariants involvingX and Y . We choose

u1 = X2 − Y 2

u2 = 2XY
u3 = Z

(3.2)

The Jacobian of this transformation is

∂ui

∂Xj
=





2X −2Y 0
2Y 2X 0
0 0 1




det−→ 4(X2 + Y 2)



2→ 1 LOCAL DIFFEOMORPHISMS 47

The Jacobian is singular on theZ-axis. TheZ-axis is the singular set of the symmetry
groupRZ(π) as well as of the local diffeomorphism (3.2).

Remark 1: The singular set of the group action is the set of fixed points—in the
present case this is the Z axis. The singular set of the diffeomorphism is the set of
points on which the Jacobian vanishes. It is not always true that the singular set of
the group action and of its local diffeomorphism coincide.

Remark 2: The Jacobian of the inverse transformation X = X(u), ∂Xj

∂ui
, can be

computed in two ways:

1. Compute the inverse of ∂ui

∂Xj
:
[

∂ui

∂Xj

]−1

.
2. Solve for the Xj as a function of the ui and compute the derivative: ∂Xj(u)

∂ui
.

The second method is generally far harder than the first.
Similar results hold for the inversion and reflection groups. Both are also of order

two, so analysis of polynomials to degree 2 is sufficient.
For P the invariant and covariant polynomials are

Invariant under P Not invariant under P
degree 1 X , Y , Z
degree 2 X2, XY , XZ, Y 2, Y Z, Z2

Three relations exist among the six invariant quadratic polynomials:

(X2)(Y 2)− (XY )2 = 0
(Y 2)(Z2)− (Y Z)2 = 0
(Z2)(X2)− (ZX)2 = 0

Invariant polynomials of any degree can expressed in terms of the six invariant degree-
2 polynomials

γF (X,Y, Z) = F (X,Y, Z)⇒ F (X,Y, Z) = g(X2, Y 2, Z2, XY, Y Z, ZX)

The most general polynomial is

F (X,Y, Z) =
∑3

i=1 gXi
(X2, Y 2, Z2, XY, Y Z, ZX)Xi

+ g1(X
2, Y 2, Z2, XY, Y Z, ZX)1

Three invariant coordinates (u1, u2, u3) can be chosen as linear combinations of the
six invariant polynomials. We always attempt to find a choice that covers the entire
space R

3(u). That is, given any values of the invariant coordinates (u1, u2, u3) we
can always find two real preimages (X1, X2, X3) or one doubly degenerate preimage.
A useful choice of coordinates is

u1 = X2 − Y 2

u2 = 2XY
u3 = (X − Y )Z
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The Jacobian of this local diffeomorphism is

∂ui

∂Xj
=





2X −2Y 0
2Y 2X 0
Z −Z X − Y




det−→ 4(X2 + Y 2)(X − Y )

The singular set of the group P is the origin (0,0,0) while the singular set of this
transformation is the union of the Z-axis X2 + Y 2 = 0 with the plane X − Y = 0.

For the reflection group σZ the invariant and covariant polynomials are

Invariant under σZ Not invariant under σZ

degree 1 X , Y Z
degree 2 X2, XY , Y 2, Z2 XZ, Y Z

Invariant polynomials are functions of the three lowest degree invariants X , Y , and
Z2

γF (X,Y, Z) = F (X,Y, Z)⇒ F (X,Y, Z) = g(X,Y, Z2)

There are no relations between the three invariant polynomials X , Y , and Z2. An
arbitrary function can be written

F (X,Y, Z) = gZ(X,Y, Z2)Z + g1(X,Y, Z
2) · 1

A simple coordinate transformation is

u1 = X
u2 = Y
u3 = Z2

The Jacobian of this transformation is

∂ui

∂Xj
=





1 0 0
0 1 0
0 0 2Z




det−→ 2Z

In this case the singular sets of the group and the diffeomorphism are equal.

3.3 IMAGE EQUATIONS

Invariant equations or image equations are simple to construct from the equivariant
equations once the local diffeomorphism has been constructed. We illustrate this
procedure with some care for the Lorenz equations before briefly presenting the
results for several other equivariant dynamical systems.
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3.3.1 Lorenz Equations: RZ(π)

Under the local diffeormorphism (3.2) the dynamical system equations are

d

dt





u
v
w



 =
d

dt





X2 − Y 2

2XY
Z



 =





2X −2Y 0
2Y 2X 0
0 0 1









Ẋ

Ẏ

Ż





=





2X −2Y 0
2Y 2X 0
0 0 1









−σX + σY
RX − Y −XZ
−bZ +XY





=







−(σ + 1)u+ (σ −R)v + vw + (1− σ)ρ

(R− σ)u− (σ + 1)v − uw + (R + σ)ρ− ρw
−bw + 1

2v







(3.3)

These equations have been expressed in terms of the three variables u, v, and w as
well as the one linear combination of the original invariants X2, XY , and Y 2 that
does not occur among the basic invariant coordinates:

ρ = X2 + Y 2 =
√

u2 + v2

Remark: We emphasize here that the “extra coordinate” that appears in the in-
variant equations is linear in the original invariants. Because of the relations that
exist among u1 = X2 − Y 2, u2 = 2XY , and ρ = (X2 + Y 2), this last coordinate
can be expressed as a radical function of the invariant coordinates (ρ =

√
u2 + v2).

This observation generalizes widely.
In Fig. 3.2, we show an X-Z projection of the Lorenz strange attractor and a

v-w projection of the image attractor. Below each we provide a description of the
dynamics by a branched manifold. The image branched manifold is that for a Smale
horseshoe stretch and fold mechanism, as exhibited by the Rössler equations, for
example.

3.3.2 Burke and Shaw Equations: RZ(π)

The Burke and Shaw equations (2.5) can be treated identically:

d

dt





u
v
w



 =





2X −2Y 0
2Y 2X 0
0 0 1









−SX − SY
−Y − SXZ
SXY + V





=







−(S + 1)u− S(1− w)v + (1− S)ρ

S (1− w) u− (S + 1)v − S (1 + w) ρ

S
2 v + V







(3.4)
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Lorenz: EquivariantRZ(π) Invariant Image
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Fig. 3.2 Top: Strange attractors generated by RZ(π) equivariant Lorenz equations (1.2) and
invariant image equations (3.3). Parameter values: R = 28.0; σ = 10.0; b = 8/3. Bottom:
Branched manifolds for these two strange attractors.

The flow generated by the Burke and Shaw equations (2.5) and the image equations
(3.4) are shown in Fig. 3.3. The branched manifolds for the two strange attractors
are shown below the two attractors. The image branched manifold describes a single
stretch and fold mechanism, but with an additional half twist. This describes a reverse
horseshoe.

3.3.3 General Case: RZ(π)

The most general dynamical system equivariant underRZ(π) in R
3 has the structure

d

dt





X
Y
Z



 =





gXX gXY 0
gY X gY Y 0

0 0 gZZ









X
Y
1





In this expression the invariant functions g can be expressed as a function of the three
invariant coordinates u = (u1, u2, u3) = (u, v, w) and the radical ρ =

√
u2 + v2.
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EquivariantRZ(π) Invariant
Burke and Shaw Image
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Fig. 3.3 Top: Strange attractors generated by RZ(π) equivariant Burke and Shaw equations
(2.5) and invariant image equations (3.4). Parameter values: V = 4.271; S = 10.0. Bottom:
Branched manifolds for these two strange attractors.

The invariant equations are

d

dt





u
v
w



 =
d

dt





X2 − Y 2

2XY
Z



 =





2X −2Y 0
2Y 2X 0
0 0 1









gXXX + gXY Y
gY XX + gY Y Y

gZZ





=





+gXX + gY Y gXY − gY X 0 +gXX − gY Y 0
−gXY + gY X gXX + gY Y 0 +gXY + gY X 0

0 0 0 0 gZZ













u
v
w
ρ1

1









3.3.4 General Case: P

Two dynamical systems that we have introduced so far that have inversion symmetry
are the induced Lorenz system (2.8) and the Kremliovsky equations (2.7). The image
equations of both systems are a mess to compute without some guidance. We provide
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that here by giving a general formulation for the image equations of an inversion
equivariant dynamical system.

The three invariant coordinates and the three radicals are
Invariant coordinates Radicals (X) Radicals (u)
u1 = X2 − Y 2 ρ1 = X2 + Y 2 =

√

u2
1 + u2

2

u2 = 2XY ρ2 = Z2 =
u2

3

u2
1

(√

u2
1 + u2

2 + u2

)

u3 = (X − Y )Z ρ3 = (X + Y )Z =
u3

u1

(√

u2
1 + u2

2 + u2

)

The equivariant equations are

d

dt





X
Y
Z



 =





gXX gXY gXZ

gY X gY Y gY Z

gZX gZY gZZ









X
Y
Z





The image equations are

d

dt





u
v
w



 =





2X −2Y 0
2Y 2X 0
Z −Z X − Y









gXX gXY gXZ

gY X gY Y gY Z

gZX gZY gZZ









X
Y
Z





After some extensive computations, these reduce to

d

dt





u
v
w



 =











2g11 −2g22 0 2g12 − 2g21 2g13 −2g23

2g21 +2g12 0 2g11 + 2g22 2g23 +2g13

+g11 +g12
g31 −g32 g13 − g23 +g32 − g31 −g21 −g22

+g33 −g33





















X2

Y 2

Z2

XY
XZ
Y Z











The mapping is completed by the transformation

2











X2

Y 2

Z2

XY
XZ
Y Z











=











1 0 0 1 0 0
−1 0 0 1 0 0
0 0 0 0 2 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 −1 0 0 1





















u
v
w
ρ1

ρ2

ρ3











The image of the Kremliovsky equations is

d

dt





u
v
w



 =







au− 2v − w − aρ1 − ρ3

2u+ av + w − ρ3

1
2b(ρ1 + u)− 1

2bv + w
[

1
2 (ρ1 + u)− c

]







(3.5)
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Kremliovsky: Equivariant P Invariant Image
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Fig. 3.4 Top: Strange attractors generated by P equivariant Kremliovsky equations (2.7)
and invariant image equations. Parameter values: a = 0.911; b = 0.9547623431; c =
2.192954632. Bottom: Branched manifolds for these two strange attractors.

The strange attractors generated by the Kremliovsky equations (2.7) and the image
equations (3.5) are projected onto the X-Y and u-v planes, respectively, in Fig. 3.4.
Below each strange attractor is the branched manifold that describes the dynamics.

A similar computation has been carried out for the induced Lorenz equations (2.8).
The equivariant attractor is projected onto the X-Y (X-Ẋ) plane and the image
attractor is projected onto the u-v plane in Fig. 3.5. Below each strange attractor we
show the branched manifold that describes the flow.

3.3.5 General Case: σZ

For completeness we treat dynamical systems equivariant under the reflection group
σZ . Strange attractors generated by such dynamical systems cannot be connected:
they consist of an attractor and its disconnected mirror image.

The equivariant equations are

d

dt





X
Y
Z



 =





0 gX1

0 gY 1

gZZ 0





[
Z
1

]

The invariant functions g are functions of the three invariant monomialsX , Y , andZ2

that are functionally independent. Under the 2→ 1 local diffeomorphism (u, v, w) =
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Induced Lorenz: Equivariant P Invariant Image
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Fig. 3.5 Top: Strange attractors generated by P equivariant induced Lorenz equations (2.8)
and invariant image equations. Parameter values: R = 28.0; σ = 10.0; b = 8/3. Bottom:
Branched manifolds for these two strange attractors.

(X,Y, Z2) the image equations are

d

dt





u
v
w



 =





1 0 0
0 1 0
0 0 2Z









0 gX1

0 gY 1

gZZ 0





[
Z
1

]

=





gX1

gY 1

2Z2gZZ





A double cover of a Smale horseshoe template with reflection symmetry is shown in
Fig. 3.6. Since the reflection plane is an invariant plane, it cannot intersect the chaotic
attractor or its branched manifold. As a consequence, the double cover consists of two
disconnected components. One of the components is a rescaled version (Z =

√
w)

of the original attractor. The other component is its mirror image in the Z = 0 plane.

3.4 FIXED POINT DISTRIBUTIONS

Fixed points of equivariant dynamical systems map to fixed points of their image
systems. For symmetry groups of order two, two cases arise.

1. If X0 is a fixed point and its image γX0 under the symmetry is different, γX0 6=
X0, both X0 and γX0 map to the same fixed point in the image dynamics.

2. If X0 is in the set left invariant by the symmetry group, γX0 = X0, the fixed
point in the image dynamics has only one corresponding fixed point in the
covering dynamics.
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planeReflection

Fig. 3.6 Template representation of the cover of a Smale horseshoe with reflection symmetry.

For the three order-two symmetry groups in R
3 the fixed point sets are

Group Fixed Points Dimension

Reflection σZ (X,Y, 0) X-Y plane 2
Rotation RZ(π) (0, 0, Z) Z-axis 1
Inversion P (0,0,0) Origin 0

For the reflection group σZ a fixed point in the X-Y plane Z = 0 will map into
the image plane w = 0. However, since the Z = 0 plane is invariant under σZ , the
dynamics in the plane is confined to the plane. As a result chaotic behavior in this
invariant set is not possible. The mapping of the Z = 0 plane to the w = 0 plane is
one-to-one. If there is a fixed point at (X0, Y0, Z0) (Z0 6= 0) off the Z = 0 plane,
there is another at (X0, Y0,−Z0). The two fixed points map to the same fixed point
(u0 = X0, v0 = Y0, w0 = Z2

0).
For the rotation group RZ(π), fixed points on the Z-axis map to fixed points on

the w axis. Each fixed point on the w-axis has a single inverse image (preimage),
since the mapping from the Z-axis to the w-axis is one-to-one. Each fixed point off
the Z axis has a different image under RZ(π): (X0, Y0, Z0) and γ(X0, Y0, Z0) =
(−X0,−Y0, Z0). The two fixed points map to a single image fixed point off the
w-axis.

The Lorenz dynamical system has three fixed points. One (the origin) lies on the
Z-axis. This symmetric fixed point maps to a fixed point on the w-axis (the origin).
The other pair of fixed points maps to a single fixed point off the w = 0 axis. The
symmetric pair of asymmetric real fixed points map into the v-w planeu = 0. In fact,
the imaginary fixed point pair maps into the same plane. The pitchfork bifurcation
maps to a transverse bifurcation under this 2 → 1 local diffeomorphism. This is
illustrated in Fig. 3.7.
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Fig. 3.7 A pitchfork bifurcation in the cover dynamics becomes a transverse bifurcation in
the image dynamics.

The inversion symmetry P fixes only the single point (0,0,0). The origin in the
equivariant system maps to the origin in the image system. All the other points in
the image system have two preimages in the covering system. If the covering system
has 2n fixed points, the image system has n. If the covering system has 2n+ 1 fixed
points, the image system has n+ 1.

3.5 BRANCHED MANIFOLDS AND THEIR IMAGES

Strange attractors generated by equivariant dynamical systems are described by bran-
ched manifolds that are mapped into themselves by the symmetry group. For each
order-2 symmetry group a branched manifold has an even number of branches.

We are particularly interested in equivariant branched manifolds that are connected.
Those equivariant under σZ are not. For the other symmetry groups that we have
studied there are more interesting possibilities.

Equivariant strange attractors and their branched manifolds have been shown in
Figs. 3.2, 3.3, 3.4, and 3.5. A number of lessons can be drawn from these figures.
First, the branches occur in pairs. In the figures (cf. Fig. 2.7), they have been labeled
by the symbols L and R. More generally, they are labeled by the elements of the
symmetry group. One branch is chosen and labeled by the group operation I . This is
mapped to other branches by the remaining group operations. Each group operation
maps the original branch to a different branch which is labeled by that group operation.
This process is repeated until all branches have been labeled.

As an example, it is possible to use two symbols, L and R, to label the branched
manifold of the Lorenz attractor (Fig. 3.2 and Fig. 2.7(b)). The branch L is the image
of branch R under γ ∈ RZ(π). Similarly, R is the image of L under the same group
operation.

It is also possible to use four symbols 0l, 1l, 0r, and 1r to label this branched
manifold, as shown in Fig. 2.7(c). The pair 0l, 0r is symmetry related, as is the
second pair 1l, 1r.

The second labeling scheme is preferable when describing the relation between
cover and image dynamical systems. The branched manifold of the image attractor
has two branches that are labeled 0 and 1. These integers label the local torsion of the
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period-one orbit in the branch. Local torsion is a measure of how much the flow twists
in the neighborhood of a periodic orbit. It is measured in units of π. Local torsion 1
means that a point just to one side of a period 1 orbit returns, after one period, just
to the other side of that orbit. Local torsion is easily seen from the twisting of the
branches of the branched manifold.

For the Lorenz system the branches 0l and 0r map under the local diffeomorphism
to the branch 0 in the image branched manifold. Similarly, the branches 1l and 1r

map to 1. The transition matrix collapses as follows

0l 0r 1l 1r

0l 1 0 1 0
0r 0 1 0 1
1l 0 1 0 1
1r 1 0 1 0

→
0 1

0 1 1
1 1 1

(3.6)

In effect, the local diffeomorphism erases the group action information (l, r):
0l, 0r → 0 and 1l, 1r → 1.

These remarks hold for all the other cover-image branched manifold pairs related
by 2→ 1 local diffeomorphisms, as shown in Figs. 3.2, 3.3, 3.4, and 3.5. If the image
has n branches, labeled A, B, C, . . . then its double cover has 2n branches labeled Al,
Ar; Bl, Br; Cl, Cr; . . . or AI , Aγ ; BI , Bγ ; CI , Cγ ; . . .

The Burke and Shaw dynamical system has four branches that can preferably be
labeled 1l, 1r, 2l, 2r (Fig. 3.3). Its image is a reverse Smale horseshoe with branches 1
and 2. The 2→ 1 local diffeomorphism produces the following collapse: 1l, 1r → 1
and 2l, 2r → 2. The transition matrix reduces as follows under the action of the local
diffeomorphism

1l 1r 2l 2r

1l 0 1 0 1
1r 1 0 1 0
2l 0 1 0 1
2r 1 0 1 0

→
1 2

1 1 1
2 1 1

(3.7)

We should point out here, forcefully, that the Lorenz and the Burke and Shaw dy-
namical systems share the same symmetry group and more or less the same image.
However, the two systems are not equivalent (even disregarding the difference in
local torsion), as is indicated by their transition matrices. There is no smooth trans-
formation that maps one into the other. This suggests that a given dynamical system
without symmetry can be the image of more than one inequivalent equivariant dy-
namical system, each with the same symmetry group. It also suggests that somehow
the two equivariant dynamical systems (the Lorenz and the Burke and Shaw) can be
mapped into each other by some analog of “analytic continuation” which, for want
of a better term, we christen “group continuation.” Both inferences are correct and
will be elaborated in Chapter 14.
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3.6 SYMBOLIC DYNAMICS

Every trajectory in a strange attractor can be encoded by a symbol sequence. This
is true for every trajectory on a branched manifold under a semiflow. The symbol
sequence of a trajectory in a strange attractor is the same as the symbol sequence for
the image of that trajectory under the Birman-Williams projection, in the attractor’s
branched manifold. The symbol sequence is exactly the itinerary of the trajectory
through the labeled branches of the branched manifold.

There are several possible ways to label branches in a branched manifold. We
have described two for the Lorenz attractor in Sections 2.5 and 3.5. For example, a
piece of a trajectory labeled

L R R L L L R R . . .

passes through the left-hand branch, then goes around the right hand branch twice
followed by three cycles around the left hand branch, . . . . Comparing Fig. 2.7(b) and
2.7(c) it is easy to see that a cycle around L is equivalent to a cycle around 0l or 1l.
If the following symbol is L, then the trajectory cycles through the branch 0l. If the
subsequent symbol is R the trajectory cycles through 1l. The following identification
is valid

L L↔ 0l R L↔ 1r

L R↔ 1l R R↔ 0r

The two symbol sequences are equivalent
L R R L L L R R . . .
1l 0r 1r 0l 0l 1l 0r *r . . .

where ∗ = (0, 1) cannot be assigned on the basis of the information present.
Both encoding methods are adequate to identify trajectories and periodic orbits in

Lorenz dynamics. The latter coding procedure is vastly preferable in discussing the
relation between equivariant dynamical systems and their image dynamical systems.
The reason is that the coding symbols carry one piece of information about the sym-
metry group G (l, r or I , γ) and one piece of information about the image dynamical
system (branch labels 0 and 1).

In discussing relations between equivariant dynamical systems and their images
we will always use a coding procedure that carries information about the equivariance
groupG and the image dynamical system. In particular, the code labels for the Lorenz
and the Burke and Shaw dynamical systems are 0l, 1l, 0r, 1r and 1l, 2l, 1r, 2r. The
transition matrix for these two dynamical systems are the 4 × 4 matrices given in
(3.6) and (3.7).

For the induced Lorenz system, equivariant under P , the coding symbols remain
0l, 1l, 0r, 1r. This procedure is very general, and extends easily to arbitrary symmetry
groups and image dynamical systems. This will be described in more detail in Chapter
6 and more generally in Chapter 13.

Remark: We call symbols that carry information about both the symmetry group
and the image dynamical system a symmetry-adapted symbolic dynamics, or dressed
symbolic dynamics.



PERIODIC ORBITS 59

3.7 PERIODIC ORBITS

Closed orbits of minimal period p in the equivariant system are mapped to closed
orbits of period p or p/2 in the image system. We illustrate for orbits in the Lorenz
dynamical system.

Period Symbolic Sequence Symbolic Sequence Image
p L R 0l 1l 0r 1r

2 L R 1l 1r 1 1→ 1× 2
3 L L R 0l 1l 1r 0 1 1
3 R R L 0r 1r 1l 0 1 1
4 L L R R 0l 1l 0r 1r 0 1 0 1→ 01× 2
4 L L L R 0l 0l 1l 1r 0 0 1 1
4 R R R L 0r 0r 1r 1l 0 0 1 1

This table illustrates the general principle. Mapping to the image system simply
removes the group indices (l, r) on the symmetry adapted symbols. A symmetric
orbit of period 2p is mapped twice (indicated by × 2) onto an image orbit of period
p. A symmetric pair of asymmetric orbits of period p (e.g., 0l 1l 1r and 0r 1r 1l;
0l 0l 1l 1r and 0r 0r 1r 1l) are mapped to the same image orbit (e.g., 011; 0011).
Symmetric pairs of asymmetric orbits are obtained by the exchange l ↔ r on the
symmetry adapted symbols. A symmetric orbit in the equivariant system has symbol
sequence SS̄, where S is a symbol sequence of minimal period p and S̄ is obtained
from S by switching symbols l ↔ r. The transition from the pth symbol S to the
first symbol of γS must be allowed by the transition matrix.

These statements hold for all orbits in all order-two equivariant systems.
Remark: In many cases we have a spectrum of periodic orbits in the image

dynamical system and would like to know their parentage—that is, what are their
parents in the equivariant system.

The question is not difficult to answer when the cover satisfies Lorenz dynamics.
If the image orbit of period p has an odd number of symbols 1, then the covering orbit
has either

1. period p and an odd number of symbols 1, or
2. period 2p and an even number of symbols 1.

In the first case there is an odd number of symbols 1l and 1r. This means that an
orbit segment that begins in the left-hand lobe winds up on the right-hand lobe after
p periods. It cannot be closed. Therefore case 2 is the only possibility.

The result relating orbits in Lorenz-like branched manifold with orbits in the image
branched manifold are as follows.

1. All nodes (odd number of symbols 1) of period p are images of one orbit of
period 2p. If the symbol name of the image is S, the symbol name of its cover
is S∗S̄∗. Here S∗ is the “dressed” form of S. A group label (l or r) is affixed
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to the first letter in S, and symbols are affixed to the remaining p− 1 symbols
in S according to the transition matrix. S̄∗ is γS∗.

2. All regular saddles (even number of symbols 1) of period p are images of two
symmetry-related orbits of period p in the cover. If S is the symbol name of
the image orbit, the two cover orbits are S∗ and γS∗ = S̄∗.

Example: In the Smale horseshoe branched manifold the period-three saddle node
pair is 011 and 001. The two orbits that cover the saddle are 0l1l1r and 0r1r1l. The
single orbit that covers the node is 0l0l1l0r0r1r.

Remark 1: The relation between orbits in the image and the cover is different
for the Burke and Shaw attractor and its image. These relations will be explained in
detail in Section 4.9.

Remark 2: The topological entropy of any system with Lorenz-like dynamics is
the same as the topological entropy of its image. The number of orbits of period p in
the Lorenz system grows like NL(p) ≈ ephT (L), while the growth rate in the image
Smale horseshoe system grows like NS(p) ≈ ephT (S). In the latter, roughly half of
the period-p orbits are saddles and half are nodes. As a result we estimate

NL(p) ≈ 2× 1

2
NS(p) +

1

2
NS

(
1

2
p

)

ephT (L) ≈ ephT (S) +
1

2
e

1
2 phT (S)

hT (L) = lim
p→∞

1

p
log ephT (S)

[

1 +
1

2e
1
2 phT (S)

]

= hT (S)

The result is insensitive to the assumed 50-50 decomposition.

Remark 3: More generally the topological entropy of the image of an equivariant
strange attractor is the same as the topological entropy of the equivariant strange
attractor.

Remark 4: Periodic orbits are created and/or annihilated when control parameters
are varied. In the highly dissipative limit (with negative Schwartzian derivative), they
are created in a very specific order—the U Sequence order—in the transition from the
“laminar” (nonchaotic) to the “hyperbolic” (fully chaotic) limit. By lifting the orbits
from the image to the covering dynamical system we have a very specific algorithm
for the order of orbit creation in equivariant systems that cover Rössler-like dynamical
systems that have a logistic-like return map.

Two types of bifurcations occur repeatedly in the transition from laminar to chaotic
behavior in dynamical systems described by a single stretch and fold (horseshoe)
mechanism associated with a return map with a negative Schwarzian derivative. These
are the saddle-node bifurcations and period-doubling bifurcations. They have their
counterparts in covering systems with Lorenz-type branched manifolds. We illustrate
with the period-three orbits.
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Type Orbit Symbol Orbit Symbol
Bifurcation Image Cover

Saddle- 011 0l1l1r + 0r1r1l

Node 001 0l0l1l0r0r1r

Period- 001 0l0l1l0r0r1r

Doubling 001011 0l0l1l0r1r1l0r0r1r0l1l1r

Covering a saddle-node bifurcation of two period-p orbits in the image system is
a bifurcation that creates two period-p orbits and one period-2p orbit in the cover.
Covering a period-doubling bifurcation from a period-p to period-2p orbit in the
image system is a period-doubling bifurcation from a period-2p to a period-4p orbit
in the cover. Saddle-node and period-doubling bifurcations lift in a different way
to equivariant dynamical systems that possesses a Burke and Shaw type branched
manifold.

3.8 POINCARÉ SECTIONS AND FIRST-RETURN MAPS

The first-return map for the image is constructed easily from the first-return map from
the cover. We illustrate for the equivariant Lorenz system.

The 2 → 1 local diffeomorphism maps the two branch lines l and r in the equi-
variant system to a single branch line in the image dynamical system. We therefore
identify the two segments L and R along the horizontal axis in Fig. 2.9, and the two
branch lines along the return (vertical) axis in the same figure. This maps the four
panels in Fig. 2.9 or Fig. 3.8(a) down to a single panel showing the return map from
the Poincaré section (single branch line) onto itself in the image dynamics. This is
shown in Fig. 3.8. The return map in Fig. 3.8(b) has a cusp type singularity. This
is a significant indication that “tearing” occurs in the cover [21,75]. Tearing means
that the flow is split into two parts that move to different regions of the phase space.
Tearing occurs as the flow approaches a singularity—in this case a fixed point at the
origin splits the flow.

The same computation is repeated for the Burke and Shaw dynamical system in
Fig. 3.9. For this system (cf. Fig. 3.3) the Poincaré section can be chosen as the
union of two disconnected and symmetry related components. In this case an initial
condition on one component maps to the other component. This is the reason for
the “off-diagonal” structure of the return map in Fig. 3.9(a). Both components of the
Poincaré section in the cover map to the single component in the image, as above for
the Lorenz dynamical system. However, in this case the return map for the image
shows a fold rather than a cusp singularity. The fold means that there is no tearing
taking place in the covering dynamical system: chaos is generated by an iterated
double fold.

Remark 1: Qualitatively speaking,as the flow spirals away from an unstable focus,
it accelerates when a tearing mechanism is involved in the generation of chaotic
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(a) (b)
Fig. 3.8 First-return maps in cover and image. (a) The Poincaré section in the equivariant
Lorenz system consists of two disconnected components (cf. Fig. 2.9). Both components are
mapped to the single component of the image (b). The return map shows a cusp-like singularity.
This indicates that a “tearing” mechanism operates in the cover.

ρ
k

ρ
k+1 −→

ρ
k

ρ
k+1

(a) (b)
Fig. 3.9 First-return maps in cover and image. (a) The Poincaré section in the equivariant
Burke and Shaw system can be chosen as two disconnected components. Both components
are mapped to the single component of the image (b).

behavior, but it decelerates in preparation for a folding process when the latter is
involved in the generation of chaos. Acceleration or deceleration is directly related
to the slope of the return map in the neighborhood of its maximum or minimum. In
fact, the slope is zero at the turning point for folding mechanisms.

Remark 2: When the image shows that only folding takes place in the cover, the
two components of the Poincaré section can be moved around the attractor to form a
single component Poincaré section. For the Burke and Shaw attractor the return map
on this Poincaré section shows four branches.

Remark 3: The Poincaré section for the Burke and Shaw attractor can be chosen
differently: as a single component transverse to the flow. In Chapter 15 we will
introduce an altorithm for properly choosing the Poincaré section for a flow in R

3.

3.9 TIPS FOR INTEGRATION
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u+ δu ←−−−− ←−−−− δu = hδt


y

x



u −−−−→ ∂u
∂X −−−−→ ∂ur

∂Xi
Fi = hr

x



x



Init. cond. −−−−→ X −−−−→ −−−−→ F (X)
x





y

X + δX ←−−−− ←−−−− δX = F (X)δt

Fig. 3.10 Equivariant Integrator → Invariant Integrator. Lower loop shows the steps in a
typical code for integrating equivariant dynamical systems. Upper loop shows modifications
needed to integrate invariant dynamical systems.

It is useful to have an algorithmic procedure for constructing an image flow from a
covering dynamical system, and vice versa. In this section we describe the modifica-
tions required to convert a numerical procedure which integrates an equivariant flow
to one which generates the image flow. We describe the reverse procedure in Chapter
4.

First, we assume a program has been developed for integrating the equivariant
equations. This consists of the following steps:

1. From X , evaluate F (X).
2. Evaluate δX = F (X)δt.
3. Evaluate X(t+ δt) = X(t) + δX .
4. Replace X(t) by X(t+ δt).
5. Return to Step 1.

This sequence is shown in the lower loop in Fig. 3.10. To convert this program to one
that integrates the image equations, we include the following steps:

1. Evaluate u(t) = u(X(t)).
2. Evaluate ∂u/∂X .
3. Evaluate hr(u; r(u)) = (∂ur/∂Xi)Fi(X).
4. Evaluate δu = h(u)δt.
5. Evaluate u(t+ δt) = u(t) + δu.
6. Replace u(t) by u(t+ δt) and continue.

This second algorithm is shown in the upper loop in Fig. 3.10. In fact, at each time
step, it is sufficient to map X(t) to its image u(t). This simpler variant is shown in
Fig. 3.11.
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Fig. 3.11 Simple method for computing image dynamical system.
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Every covering dynamical system has a unique image. The same is not true for
images. Every image dynamical system has many different inequivalent equivariant
covers.

We make these statements more precise. Every dynamical system Ẋi = Fi(X)
equivariant under symmetry group G has a unique image dynamical system u̇j =
gj(u). The image is obtained by introducing invariant coordinates uj = uj(x). The
two dynamical systems are locally diffeomorphic but not globally diffeomorphic.
Conversely, a dynamical system u̇j = gj(u) without symmetry can be “lifted” to a
covering dynamical system with symmetry groupGby introducing a set of coordinates
Xi with suitable transformation properties under G.

The covering dynamical system Ẋi = Fi(X) is equivariant under G and locally
diffeomorphic to the image dynamical system u̇j = gj(u). Each different symmetry
group G gives rise to an inequivalent covering dynamical system. However, it is

65
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possible that the image system u̇j = gj(u) has many different inequivalent covers
with the same symmetry groupG. This possibility depends on the existence of certain
topological indices [35,67].

4.1 LOCAL DIFFEOMORPHISMS

The relation between equivariant and invariant coordinates was described in Chapter
3. To recapitulate briefly, if Xi are equivariant coordinates, invariant coordinates uj

are linear combinations of polynomials invariant under G that are constructed from
the Xi. The equivariant dynamical system Ẋi = Fi(X) and invariant dynamical
system uj = gj(u) are related by a local diffeomorphism

duj

dt
=
∂uj

∂Xi

dXi

dt
=
∂uj

∂Xi
Fi(X)

This local one-to-one map is invertible almost everywhere, so that the equivariant
dynamical system can be recovered from the invariant dynamical system in a straight-
forward way

dXi

dt
=
∂Xi

∂uj

duj

dt
=

(
∂u

∂X

)−1

ij

gj(u)

Example 1: A convenient set of coordinates invariant underRZ(π) : (X,Y, Z)→
(−X,−Y, Z) is

u = X2 − Y 2

v = 2XY
w = Z

The image equations for the Lorenz system are

d

dt





u
v
w



 =







−(σ + 1)u+ (σ −R)v + vw + (1− σ)ρ

(R − σ)u− (σ + 1)v − uw + (R+ σ)ρ− ρw
−bw + 1

2v







where ρ =
√
u2 + v2. These equations can be lifted using the inverse of the Jacobian

∂u
∂X

=





2X −2Y 0
2Y 2X 0
0 0 1





to the original Lorenz equations in (X,Y, Z).

Example 2: By a similar argument, the image of the Burke and Shaw system (2.5)
is

d

dt





u
v
w



 =







−(S + 1)u− S(1− w)v + (1− S)ρ

S (1− w)u− (S + 1)v − S (1 + w) ρ

S
2 v + V






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These image equations can be lifted back up to the original Burke and Shaw equations.
Now suppose that we encounter a dynamical systemuj = gj(u)without symmetry.

We have no knowledge of how it is obtained from an equivariant dynamical system, or
even if it is obtained from a covering dynamical system by a local diffeomorphism. In
principle it should be possible to lift this invariant dynamical system to a cover with any
symmetry that we please. Even more to the point, we can lift this invariant system—
or any dynamical system equivalent to it—to a cover with preassigned symmetry.
Systems equivalent to the original systemduj/dt = gj(u) are obtained through global
diffeomorphisms involving the simplest case: rigid rotation and displacement of the
origin. For the present purposes it is sufficient to consider only rigid displacements
of the origin

u′ = u′(u)
u′i = ui − (ui)0

For this simple case, lifts of the dynamical system

u̇′j = g′j(u
′)

to equivariant dynamical systems with symmetry group σZ ,RZ(π), and P are given
by the following maps

u′ = u− u0 v′ = v − v0 w′ = w − w0

σZ X Y Z2

RZ(π) X2 − Y 2 2XY Z
P X2 − Y 2 2XY (X − Y )Z

We will show that different choices for the location of the rotation axis parallel to w
and through the point (u0, v0) for covers withRZ(π) symmetry produce inequivalent
covers of the Rössler system.

4.2 SINGULAR SETS

The Jacobian ∂ui

∂Xj
has zeroes, so its inverse has singularities. The Jacobians, their

inverses, and the singular sets for the three local diffeomorphisms for σZ , RZ(π),
and P are

∂u
∂X

(
∂u
∂X

)−1

σZ





1 0 0
0 1 0
0 0 2Z









1 0 0
0 1 0
0 0 1

2Z





Singular set: X − Y -plane Z = 0
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RZ(π)








2X −2Y 0

2Y 2X 0

0 0 1

















X

2ρ2

Y

2ρ2
0

− Y

2ρ2

X

2ρ2
0

0 0 1










Singular set: Z-axis
ρ2 = X2 + Y 2 = 0

P










2X −2Y 0

2Y 2X 0

Z −Z X − Y




















X

2ρ2

Y

2ρ2
0

− Y

2ρ2

X

2ρ2
0

X + Y

Y −X
Z

2ρ2

Z

2ρ2

1

X − Y











Singular set:
plane X = Y

Z-axis
ρ2 = X2 + Y 2 = 0

Lifting a dynamical system u̇j = gj(u) to a covering dynamical system with
preassigned symmetry follows a standard prescription. We illustrate for the reflection
group. The equations for the equivariant covering system are

d

dt





X
Y
Z



 =





1 0 0
0 1 0
0 0 2Z





−1 



g1(u, v, w)
g2(u, v, w)
g3(u, v, w)



 =





g1(X,Y, Z
2)

g2(X,Y, Z
2)

1
2Z g3(X,Y, Z

2)





If g3(X,Y, Z2) is not of the formZ2h3(X,Y, Z
2), with h3(X,Y, Z

2) of polynomial
form, then the equation of motion for Z has a singularity at Z = 0. The existence
and uniqueness theorem is not applicable. If g3(u, v, w) = Z2h3(X,Y, Z

2), then

dZ

dt
=

1

2
Zh3(X,Y, Z

2)

and the plane Z = 0 is an invariant set. In either case the reflection plane chosen to
implement the symmetry should avoid all points in the strange attractor:

w = 0 plane
⋂

Strange Attractor = ∅

If this is not the case, the covering equations are either not Lipschitz or else will not
generate a locally diffeomorphic cover of the original dynamical system.

Example: The Rössler equations are

u̇ = −v − w
v̇ = u+ av
ẇ = b+ w(u− c)

(4.1)
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(a) X-Y plane projection
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(b) X-Z plane projection

Fig. 4.1 The two paired chaotic attractors generated by the double cover of the Rössler system
under a reflection symmetry. Parameter values (a, b, c) = (0.415, 2.0, 4.0) for equations (4.2).
(a) X-Y projection. (b) X-Z projection.

The equivariant double cover with reflection symmetry in the X-Y plane Z = 0 is

Ẋ = −Y − Z2

Ẏ = X + aY

Ż =
1

2Z

(
b+ Z2(X − c)

)
=

b

2Z
+

1

2
Z(X − c)

(4.2)

Two projections of this double cover of the Rössler attractor are shown in Fig. 4.1.
The singularity on approach to the plane Z = 0 is evident. If we were to displace

the origin, so that the new coordinate system is

u′ = u
v′ = v
w′ = w − w0

with w0 slightly greater than b, then the reflection plane would intersect the strange
attractor, the equivariant equations would be

Ẋ = −Y − (Z2 + w0)

Ẏ = X − aY
Ż =

b

2Z
+

1

2Z
(Z2 + w0)(X − c)

and the cover would not be locally diffeomorphic with the original dynamical system.

4.3 LIFTS TO ROTATION INVARIANT SYSTEMS: TOPOLOGICAL
INDICES
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Lifts to rotation equivariant dynamical systems exhibit a much wider spectrum of
possibilities than σZ -equivariant lifts. The reason is that the singular set of the
diffeomorphism for rotation invariant lifts is the Z-axis, while it is a plane for σZ -
invariant lifts. The plane divides R

3 into two disjoint open sets that have only the
plane in common. Lifts are disconnected. In the rotation invariant case the rotation
axis is a one-dimensional set. Closed orbits encircle this invariant set in different
ways, depending on the choice of rotation axis in the original space R

3(u, v, w).
A closed orbit S∗ in the cover that encircles the Z-axis n times maps to a closed

orbit S in the image. Two possibilities occur:

1. The orbitS∗ is not symmetric. The two orbits S∗ and S̄∗ = γS∗, both of period
p, map to the same orbit S in the image. The orbit S has period p and winds
around the w-axis 2n times.

2. The orbit is symmetric, S∗S̄∗, and of even period 2p. It encircles the Z-axis
n times. The symmetric orbit projects to an orbit SS of (nonminimal) period
2p that winds around the w-axis 2n times. The image S of minimal period p
winds around the w-axis n times.

Topological considerations guarantee that dynamical systems u̇j = gj(u) without
symmetry can have many different, inequivalent lifts. The different lifts depend on
the placement of the w-axis in the space R

3(u, v, w). In particular, the lifts depend
on how the unstable periodic orbits in the image strange attractor are linked with the
rotation axis.

4.4 BRANCHED MANIFOLDS

These considerations can be made more precise by recalling that the set of unstable
periodic orbits in a strange attractor is specified by the branched manifold that the
attractor projects to (under Eq. (2.10)), and that classifies the strange attractor. We
illustrate the subtleties of the topological index by discussing a simple but important
case: lifts of the Smale horseshoe branched manifold.

This manifold is shown in Fig. 4.2. Each of the two branches supports a period-
one orbit. In this figure we illustrate four different ways that the rotation axis w in
R

3(u, v, w) can be oriented with respect to this 2-branched manifold without inter-
secting either branch. The topology of the lift is determined by the way that the
two period-one orbits wind around the rotation axis. This is specified by a topologi-
cal index (n0, n1). The integer n0 is the number of times the period-one orbit 0, the
period-one orbit in branch 0, winds around thew-axis. This in turn is the linking num-
ber of the orbit 0 with the w-axis, closed by return path from (u, v, w) = (0, 0, Z)
(Z → +∞) to (0, 0, Z) (Z → −∞). The integer n1 is defined similarly for the
period-one orbit in branch 1.

Remark: If the branched manifold of the image system has b branches, the topo-
logical index consists of b integers.
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01

(0,0) (0,1) (1,1)

(a) cases (0,0), (0,1) and (1,1)

01 (1,0)

(b) case (1,0)

Fig. 4.2 Two-branch Smale horseshoe template. The period-one orbit in each branch is
shown by a heavy line. The rotation axis (0, 0, w) in (u, v, w) space can link the period-one
orbits 0 and 1 in the four ways shown. The four axes are labeled by their linking numbers
(n0, n1) with the two period-one orbits. These axes have been chosen to be disjoint from the
strange attractor’s branched manifolds: 0 or 1. (a) The three cases (0,0), (0,1), and (1,1) are
shown. (b) In the case (1,0), the rotation axis passes behind branch 1, in front of branch 0, then
through the hole in the middle of the attractor and behind both branches.

Four inequivalent rotation-equivariant lifts of the Smale horseshoe branched man-
ifold are shown in Fig. 4.3. For each, the topological index of the image is given.

In the first case (n0, n1) = (0, 0) (Fig. 4.3(a)). Neither of the period-one orbits
in the Smale horseshoe template circles the w-axis. The rotation axis is “outside”
the strange attractor. The double cover is rotation invariant. It consists of two dis-
connected branched manifolds, each having two branches, each being one-to-one
diffeomorphic with the original Smale horseshoe branched manifold.

A symmetry adapted branch labeling scheme is used. Branches in the cover that
map to branch 0 in the image are labeled 0 and dressed by a group index or equivalent
index: 0l and 0r. Similarly, for the other pair of branches: 1l and 1r. The transition
matrix for this (disconnected) four-branch template is

0̄l 1̄l 0̄r 1̄r

0̄l 1 1 0 0
1̄l 1 1 0 0
0̄r 0 0 1 1
1̄r 0 0 1 1

(4.3)

In the second case (n0, n1) = (0, 1) (Fig. 4.3(b)). Branch 1 in the image links the
w-axis once and branch 0 does not. The covering template has four branches: one
(0̄l) exists on the left, its image (0̄r) on the right, one branch (1̂l) extends from the left
to the right, and its image (1̂r) underRZ(π). Under projection, the image of the two
branches 0̄l, 0̄r in the cover branched manifold is the branch 0 in the Smale horseshoe
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Fig. 4.3 Branched manifolds for four inequivalent double covers of the Smale horseshoe
template. Each cover is equivariant under rotations by π around an axis through ×. The four
different double covers are identified by their topological index (n0, n1).
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template. The branches 1̂l, 1̂r both map to the branch 1 in the image template. The
period-one orbit 0̄l and its counterpart 0̄r do not link the Z-axis (n = 0). Both map
to the period-one orbit 0 in the horseshoe template, which does not link the w-axis
(n0 = 0). There is one period-two orbit 1̂l1̂r in the cover template. This links the Z-
axis once (n = 1). This orbit maps twice onto the period-one orbit 1 in the horseshoe
template (1̂l1̂r → 11), which links the w-axis twice (n = 2). The period-one orbit 1
links the w-axis only once (n1 = 1).

These arguments can be run backward. Since n0 = 0, the period-one orbit 0 in the
horseshoe lifts to two symmetry-related orbits 0̄l, 0̄r, which do not link the Z-axis.
Since n1 = 1, the period-one orbit 1 in the horseshoe lifts to “half a closed orbit” 1̂l or
1̂r, which is then closed by adjoining the complementary symmetry-related segment
(1̂r or 1̂l). This closed orbit 1̂l1̂r in the cover links the Z-axis with n = 1. That is,
the period-“two” orbit 11 in the image, with n = n1 +n1 = 2, lifts to the period-two
orbit 1̂l1̂r with n = 1 in the cover.

The transition matrix for this cover of the Smale horseshoe template is

0̄l 1̂l 0̄r 1̂r

0̄l 1 1 0 0

1̂l 0 0 1 1
0̄r 0 0 1 1

1̂r 1 1 0 0

(4.4)

The third and fourth cases are analyzed similarly. The third case (n0, n1) = (1, 0)
is shown in Fig. 4.3(c). For all practical purpose it is the “dual” to the case shown in
Fig. 4.3(b). The period-one orbits in the cover 1̄l and 1̄r do not link theZ-axis, while
the period-two orbit 0̂l 0̂r in the cover maps to 00 in the image.

The transition matrix is
0̂l 1̄l 0̂r 1̄r

0̂l 0 0 1 1
1̄l 1 1 0 0

0̂r 1 1 0 0
1̄r 0 0 1 1

(4.5)

In the fourth case, shown in Fig. 4.3(d), both branches in the image link the rotation
axis. The topological index is (1,1), so orbit segments 0̂l, 1̂l, 0̂r, and 1̂r are not closed.
The period-two orbits 0̂l0̂r and 1̂l1̂r map to the orbits 00 and 11. The transition matrix
is

0̂l 1̂l 0̂r 1̂r

0̂l 0 0 1 1

1̂l 0 0 1 1

0̂r 1 1 0 0

1̂r 1 1 0 0

(4.6)

The Smale horseshoe template lifts to four inequivalent branched manifolds that
are equivariant under the group RZ(π) by choosing the rotation axis w to have
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topological index (n0, n1) = (0, 0), (0,1), (1,0), and (1,1) with the two branches of
the horseshoe template (or the period-one orbits in these branches). Other values of
the topological index generate other inequivalent double covers of the horseshoe.

The symmetry adapted labeling scheme has been augmented with yet another
symbol (̄ and )̂, depending on the value of the topological index: n = 0 ↔ ,̄
n = 1 ↔ .̂ This symbol summarizes the information available from the transition
matrix. A superscript¯signifies that there is no transition from left to right;ˆsignifies
that there is a transition l ↔ r. We summarize four transition matrices here for ease
of comparison. This comparison suggests the proper generalization when the image
branched manifold has three or more branches. It also suggests the generalization
whenn0 is odd (n0 = . . . ,−1, 1, 3, . . . are similar) or even (n0 = . . . ,−2, 0,+2, . . .
are similar).

(n0, n1) = (0, 0) (n0, n1) = (0, 1)

0̄l 1̄l 0̄r 1̄r

0̄l 1 1 0 0
1̄l 1 1 0 0
0̄r 0 0 1 1
1̄r 0 0 1 1

0̄l 1̂l 0̄r 1̂r

0̄l 1 1 0 0

1̂l 0 0 1 1
0̄r 0 0 1 1

1̂r 1 1 0 0

(n0, n1) = (1, 1) (n0, n1) = (1, 0)

0̂l 1̂l 0̂r 1̂r

0̂l 0 0 1 1

1̂l 0 0 1 1

0̂r 1 1 0 0

1̂r 1 1 0 0

0̂l 1̄l 0̂r 1̄r

0̂l 0 0 1 1
1̄l 1 1 0 0

0̂r 1 1 0 0
1̄r 0 0 1 1

(4.7)

There are no other transition matrices for two paires of symbols (0,1) (l, r) with l ↔ r
symmetry. Only the lift (n0, n1) = (1, 1) does not possess period-one orbits with
this symbolic dynamics.

Remark 1: Comparison of Fig. 3.2 and Fig. 4.3(b) shows that the Lorenz template
is topologically equivalent to the double cover of the horseshoe template (branch labels
(0,1)) with RZ(π) symmetry and topological index (n0, n1) = (0, 1). Comparison
of Fig. 3.3 with Fig. 4.3(d) shows that the Burke and Shaw branched manifold is
topologically equivalent to the double cover of the reverse horseshoe template (branch
labels (1,2)) with RZ(π) symmetry and topological index (n1, n2) = (1, 1). These
two RZ(π) equivariant dynamical systems therefore differ from each other in two
distinct ways:

1. In the topology of their image, which have branches with local torsion (0,1)
and (1,2).

2. In their topological indices which are (n0, n1) = (0, 1) and (n1, n2) = (1, 1).



PERIODIC ORBITS 75

Remark 2: It is clear by inspection that to each of the four branched manifolds
shown in Fig. 4.3 withRZ(π) symmetry there corresponds exactly one branched man-
ifold with P symmetry. Topological indices can be used to classify and distinguish
RZ(π) equivariant as well as P-equivariant branched manifolds.

Remark 3: CorrespondingRZ(π)-equivariant and P-equivariant branched man-
ifolds relate in a one-to-one way dynamical systems that are topologically globally
inequivalent but that are locally equivalent everywhere. A one-to-one mapping be-
tween two dynamical systems with globally distinct topologies is called “group con-
tinuation.” This is described in more detail in Section 14.4.3.

4.5 PERIODIC ORBITS

Periodic orbits in a strange attractor for the dynamical system u̇j = gj(u) without
symmetry can be lifted to periodic orbits in a covering system Ẋi = Fi(X) with
symmetry in an algorithmic way.

The algorithm is very simple for the reflection group σZ . The double cover is
disconnected and consists simply of two disjoint copies of the original strange attrac-
tor. Orbits in the image attractor appear with unchanged names in the cover attractor,
in pairs. For example, an orbit 011 in a Smale horseshoe attractor is lifted to the
pair 0̄l1̄l1̄l and 0̄r1̄r1̄r in the disconnected double cover, one orbit in each of the two
covering attractors.

Similar remarks hold for double cover withRZ(π) andP symmetry and topolog-
ical index (0,0), which are also disconnected.

In the more general case when the symmetry group is RZ(π) or P and the topo-
logical index is not zero the “lifting rules” are also simple. An orbit S of period p in
the invariant dynamical system is lifted to an orbit in the equivariant strange attractor
as follows:

1. Obtain S∗ from S by dressing each symbol in the name of the orbit S by a
group index (l, r) and a topological index (̄ , )̂. The dressing is unique once
the first symbol has been dressed.

2. If there is an even number of topological indices ˆ in S∗, the lifted trajectory
is closed and of period p. The orbit is asymmetric, and its symmetry-related
partner is γS∗.

3. If there is an odd number of topological indicesˆ in S∗, the lifted trajectory is
“half a closed orbit.” The closed lifted orbit is S∗(γS∗), of period 2p. It is
symmetric.

To illustrate these simple rules, we construct the periodic orbits that cover the
period-3 saddle node pair 011 and 001 in a Smale horseshoe template. This is done
for covers withRZ(π) or P symmetry and four topological indices
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Topological index Symmetry Cover of 100 Cover of 101
adapted symbols

(0,0) 0̄l, 1̄l, 0̄r, 1̄r 1̄l0̄l0̄l + 1̄r0̄r0̄r 1̄l0̄l1̄l + 1̄r0̄r1̄r

(0,1) 0̄l, 1̂l, 0̄r, 1̂r 1̂l0̄r0̄r1̂r0̄l0̄l 1̂r0̄l1̂l + 1̂l0̄r1̂r

(1,0) 0̂l, 1̄l, 0̂r, 1̄r 1̄l0̂l0̂r + 1̄r0̂r0̂l 1̄l0̂l1̄r1̄r0̂r1̄l

(1,1) 0̂l, 1̂l, 0̂r, 1̂r 1̂r0̂l0̂r1̂l0̂r0̂l 1̂r0̂l1̂r1̂l0̂r1̂l

4.6 POINCARÉ SECTIONS AND FIRST-RETURN MAPS

Poincaré sections and return maps can be lifted from image to covering systems. We
illustrate the procedure for the Rössler dynamical system and for its double covers
withRZ(π) symmetry and topological indices (0,0), (0,1), (1,0), and (1,1).

The Poincaré section for the Rössler system is the set of points that project to a
branch line in its branched manifold. Since the Rössler system is highly dissipative
for the normal range of its control parameter values, we can use the intersection of the
attractor with a half-plane hinged on the Z-axis as the branch line. The return map
is shown in Fig. 4.4. The two parts of the branch line that provide initial conditions
for flows through the orientation preserving branch 0 and the orientation-reversing
branch 1 are clearly labeled 0 and 1.

Double covers of the Smale horseshoe template have four branches and two dis-
connected branch lines, labeled l and r. Return maps describe how initial conditions
on the two branch lines map to the two branch lines. Four symmetry-adapted sym-
bols suffice to label all orbits in the cover uniquely. They also suffice to construct
the return maps in all double covers. The four return maps are presented in Fig. 4.5.
We describe the construction of the return map for the double cover with topological
index (n0, n1) = (0, 1). The others are constructed with the same ease.

-5-4-3-2-10
y
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0

y
n+1

0 1

0

1

Fig. 4.4 First return map to a Poincaré section of the Rössler system. Parameter values:
(a, b, c) = (0.432, 2.0, 4.0).
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Fig. 4.5 First-return map to a Poincaré section of the two-fold covers of the Rössler system.
For each of the four RZ equivariant double covers we show the topological index (n0, n1) and
the four symbols required to specify any trajectory.

The transition matrix for the cover with topological index (n0, n1) = (0, 1) is
given in Eq. (4.4). It can also be inferred from the symmetry-adapted symbols 0̄l,
1̂l, 0̄r, 1̂r. Either way, points on the half line 0l on the left-hand branch map to the
branch line l while points on the other part of l, labeled 1l, map to branch r. This
is summarized on the left-hand side of the return map shown in Fig. 4.5(b). The
right-hand side is similarly constructed.

4.7 FRACTAL DIMENSIONS AND LYAPUNOV EXPONENTS

Fractal dimensions are invariant under diffeomorphisms and local diffeomorphisms.
Therefore the spectrum of fractal dimensions of an attractor obtained from the invari-
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ant dynamical system u̇j = gj(u) is the same as the spectrum of fractal dimensions of
any of its covers obtained from equivariant dynamical system equations Ẋi = Fi(X).

Similar arguments apply to the spectrum of Lyapunov exponents of images and
their covers.

Local Lyapunov exponents are treated similarly. If X0 and γX0 are two points in
the cover with the same image u0, then the spectrum of local Lyapunov exponents is
the same at all three points. This remains true even in the singular case X0 = γX0.

4.8 CONTINUATIONS

In Fig. 4.3 we show branched manifolds for four topologically inequivalent double
covers of the Smale horseshoe branched manifold. Each of these double covers is
equivariant under the same symmetry group of rotationsRZ about a differentZ-axis.
In Fig. 3.4, we show a double cover of the Smale horseshoe branched manifold with
inversion symmetry, P . The four double covers of Fig. 4.3 and the double cover of
Fig. 3.4 are all locally diffeormorphic to the image dynamical system with Smale
horseshoe template. Therefore they are all locally diffeomorphic with each other.
This means that there is a local diffeomorphism between any pair of these dynamical
systems.

The relation among these dynamical systems is comparable to the relation be-
tween two different functions of a complex variable that are analytic continuations of
each other. In the case of dynamical systems, there are two different “continuation
mechanisms”:

1. topological continuation
2. group continuation.

We describe both now.

4.8.1 Topological Continuation

An image dynamical system D can have many distinct covers D1G , D2G , . . . , all
equivariant under G, distinguished from each other by some index, i. Fig. 4.3 illus-
trates the case whereDhas Smale horseshoe dynamics and the four double covers with
RZ symmetry are distinguished by a topological index (n0, n1). The cover-image
relations are summarized by
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Each Di is locally diffeomorphic with D : DiG
local←→ D. As a result, each DiG is

locally diffeomorphic with every otherDjG .

D

Z
Z

Z
Z

Z~

�
�

�
��=

� -
local

DiG DjG

4.8.2 Group Continuation

An image dynamical system D can have covers with different symmetry groups H
and G. Fig. 4.3(d) and Fig. 3.4 illustrate this case where D has Smale horseshoe
dynamics and the double covers have rotation (RZ) and inversion (P) symmetry and
the same topological index. This relation is shown in Fig.4.6.

RZ (π)

RZ (π)

Lorenz Branched Manifold Induced Lorenz Branched Manifold

lift      projection

P

Plift             projection

Fig. 4.6 Group continuation. The RZ equivariant lift of the Smale horseshoe with index
(n0, n1) = (0, 1) (left) is projected to the Smale horseshoe (center), then lifted to the double
cover equivariant under P with index (0,1) (right).

The group continuation relation is
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D
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This means thatDH is the cover ofD with equivariance groupH, DG is the cover of
D with equivariance group G, and all three dynamical systems DH, DG , and D are
locally isomorphic.

Group continuation can be carried out whenever two distinct groups have the same
order and the equivariant covers have the same topological index. This concept is not
restricted to the order-two groupsRZ(π) and P acting in R

3.

4.9 HORSESHOE VERSUS REVERSE HORSESHOE

The Lorenz system (1.2) and the Burke and Shaw system (2.5) are both equivariant
underRZ(π). As previously remarked, they differ in two ways.

1. The Lorenz system has topological index (n0, n1) = (0, 1) (cf. Fig. 3.2) while
the Burke and Shaw system has topological index (n1, n2) = (1, 1) (cf. Fig.
3.3).

2. The image of the Lorenz attractor is a Smale horseshoe (cf. Fig. 3.2) while that
of the Burke and Shaw attractor is a reverse horseshoe (cf. Fig. 3.3).

The branched manifold for the Smale horseshoe has two branches with local torsion
0 and 1, while that of the reverse horseshoe has two branches with local torsion 1
and 2. Both are subtemplates of a larger branched manifold (part of a “gateau roulé”)
with three branches having local torsions 0,1,2 [33,34,36,37].

In Fig. 4.7 we show the images of the Lorenz attractor (top/left) and the Burke
and Shaw attractor (top/right). Below the image of the Lorenz system (Fig. 4.7(a))
we show the two-fold covers with topological indices (n0, n1) = (1, 1) (Fig. 4.7(c))
and (0,1) (Fig. 4.7(e)). Both covers exhibit RZ symmetry. Two two-fold covers
of the Burke and Shaw image (Fig. 4.7(b)) are also shown. The cover with index
(n1, n2) = (1, 1), which is the original Burke and Shaw system, is shown in Fig.
4.7(d). The cover with index (1,0) is shown in Fig. 4.7(f). The covers in Fig. 4.7(e)
and (f) both have the property that the odd parity period-one orbit circles the rotation
axis but the even parity orbit does not. All six attractors shown in Fig. 4.7 are
inequivalent. The three on the left are locally diffeomorphic, as are the three on the
right.
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Fig. 4.7 Images of (a) the Lorenz system and (b) the Burke and Shaw system. The first is
a horseshoe, the second is a reverse horseshoe. Two double covers of each are shown. The
topological indices (n0, n1) for the covers of the proto Lorenz system in (a) are (c) (1,1) and
(e) (0,1). The topological indices (n1, n2) for the covers of the proto Burke and Shaw system
in (b) are (d) (1,1) and (f) (1,0).
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Fig. 4.8 Lifts of the Smale horseshoe template. Top row: G = RZ(π). Bottom row: G = P .
Columns left to right: topological index of lift: (n0, n1) = (0,0), (0,1), (1,0), (1,1).

4.10 LIFTS OF THE SMALE HORSESHOE

As can be seen by now, even the simplest image dynamical system can have many
inequivalent covers. The covers can differ either by symmetry group or by topological
index, or both. In Fig. 4.8 we illustrate this idea by showing eight inequivalent
lifts of the Smale horseshoe branched manifold. Four covers are equivariant under
G = RZ(π) while the other four are equivariant under G = P . For each of the two
equivariance groups, covers with the four topological indices (n0, n1) = (0,0), (0,1),
(1,0), (1,1) are presented. When the resulting branched manifolds have previously
been encountered, they are identified by their appropriate names.

4.11 TIPS FOR INTEGRATION

It is useful to have an algorithmic procedure for constructing a covering flow from
an image flow. We assume that a procedure has been developed for integrating the
image equations. This is shown in the lower loop in Fig. 4.9. To convert this program
to one that integrates the equivariant equations, we modify it as follows:

1. Initiate the integration by choosing a value of X at t = 0, and construct an
initial condition for the u integration routine.

2. Evaluate ∂ur/∂Xi at X(t).
3. Evaluate the inverse of this nonsingular matrix, (∂u/∂X)−1.
4. Evaluate Fi(x) = (∂u/∂X)−1

ir hr(u; r(u)).
5. Evaluate X(t+ δt) = X(t) + F (X)δt.
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Fig. 4.9 Invariant Integrator → Equivariant Integrator. Lower loop shows the steps in a
typical code for integrating invariant dynamical systems. Upper loop shows modifications
needed to integrate equivariant dynamical systems.

6. Replace X(t) by X(t+ δt).
7. Return to Step 2.

Using this procedure, it is a very simple matter to construct covers of an image
dynamical system with inequivalent symmetries. The only change occurs in Step
2, where the Jacobian of the transformation is computed. The Jacobian varies from
group to group and index to index.
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In Chapter 4 we saw that a dynamical system can have many inequivalent double
covers, each with the same symmetry group. This was shown explicitly for double
covers of a dynamical system exhibiting horseshoe dynamics. The four distinct
double covers all possessed RZ(π) symmetry but possessed different topological
indices (n0, n1). The rotation axis of the symmetry group RZ(π) linked the image
dynamical system in four ways (cf. Fig. 4.2). In creating these four distinct double
covers we were careful that the rotation axis did not intersect the strange attractor.
This is possible at the level of a branched manifold description of the dynamics
and sometimes possible for real strange attractors. But it is not always possible. For
example, there is usually no clear gap in a (Rössler-like) strange attractor between orbit
segments that project to the branches 0 and 1 under the Birman-Williams projection.

In this chapter we explore what happens when the rotation axis intersects the
strange attractor. This is done at five levels of detail:

• Strange attractors
• Branched manifolds
• Transition matrices
• Return maps
• Periodic orbits

85
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In particular, we will discuss a new type of global bifurcation. This occurs as the axis
about which the rotation symmetry RZ(π) is exhibited sweeps across the strange
attractor. This is called a “peeling bifurcation” because of the deformation that is
induced in the flow in the neighborhood of the rotation singularity.

5.1 STRUCTURAL STABILITY

“Structural stability” is a sophisticated mathematical concept with an intuitively sim-
ple interpretation. It means, roughly but accurately, that quantitatively small per-
turbations have quantitatively small consequences [32]. In particular, quantitatively
small perturbations have no qualitative consequences.

For the cases at hand, structural stability has the following meaning and conse-
quences. For an image system with horseshoe dynamics, choose the w-axis to go
through the “hole in the middle,” as shown for the axis labeled (1, 1) in Fig. 4.2. The
two-fold cover with rotation symmetryRZ(π) about theZ = w-axis is shown in Fig.
4.3(d). If we perturb thew-axis in Fig. 4.2 slightly, the 2-fold cover in Fig. 4.3(d) will
be slightly perturbed, but not qualitatively changed. Such quantitative perturbations
produce no qualitative changes. In particular, there are no changes in: the number of
periodic orbits; the topological organization of these orbits; or the transition matrix.
We say that the lift of the branched manifold in Fig. 4.2 using the w-axis labeled
(1, 1) to the double cover shown in Fig. 4.3(d) is structurally stable.

The same arguments apply to lifts using the other axes in Fig. 4.2. The lift
using axis (0, 0) to the double cover with index (n0, n1) = (0, 0) in Fig. 4.3(a) is
structurally stable.

If there is a gap in the attractor, as shown for the branched manifold in Fig. 4.2,
then an axis passing through this gap will generate a double cover in a structurally
stable way. That is, sufficiently small perturbations of the rotation axis will remain
in the gap and the double cover will not be qualitatively changed by the perturbation.
The gap between the branches 0, 1 in the branched manifold in Fig. 4.2 allows the
construction of the two inequivalent double covers with indices (n0, n1) = (0, 1)
[Fig. 4.3(b)] and (1, 0) [Fig. 4.3(c)].

However, for typical strange attractors, such as the Rössler attractor, gaps are hard
to find (i.e., don’t usually exist) between orbit sequences that project to different
branches under the Birman-Williams projection. In these cases the double covers,
such as (0, 1) and (1, 0), are not structurally stable.

The four double covers of the two-branched manifold (Fig. 4.2) with topological
indices (n0, n1) = (0, 0), (0, 1), (1, 0), (1, 1) can be regarded as structurally stable
limits in a continuous series of covers of this manifold in which the w = Z rotation
axis is allowed to sweep across the attractor. We study the “perestroika” (unfolding,
transition [32]) of these double covers in the remainder of this chapter.
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5.2 THE PERESTROIKA FROM (1,1) TO (0,1)

In this section we investigate the perestroika that occurs as the rotation axis moves
from the structurally stable limit (1, 1) to the structurally stable limit (0, 1). The
progression of the rotation axis from the inside to the outside of the attractor is
quantitatively described by a real number f (cf. Fig. 5.1). Inside the attractor f = 0.
Outside, f = 1. In the hole between branches 0 and 1, f = 1

2 .

5.2.1 Branched Manifolds

In Fig. 5.1(a) we show a branched manifold for a dynamical system that exhibits
horseshoe dynamics. The w-axis is shown intersecting branch 0 in this branched
manifold. In Fig. 5.1(b) we show the double cover of this branched manifold. The
double cover is structurally unstable.

In the structurally stable double cover with topological index (n0, n1) = (1, 1),
the branch line l is the source for initial conditions that flow through branches 0̂l and
1̂l to branch line r. Similarly, branch line r feeds branch line l. When the rotation
axis is moved into branch 0 of the horseshoe template, the rotation axis Z intersects
flows whose initial conditions are on the half branch lines 0l and 0r in the double
cover and 0 < f < 1

2 . The rotation axis splits the flow whose initial conditions are
on 0l into two subbranches. One, 0̄l, is the source for a flow that returns to branch
line l. The remainder, 0̂l, provides initial conditions that continue to flow to branch
line r. The split between the two subbranches, 0̄l, 0̂l is marked by the point f on
the branch line 0l. This point is the initial condition on the branch line that flows to
the singular rotation axis. This flow is shown by a dashed curve in Fig. 5.1(b). The
location of the rotation axis is indicated by an× in this figure. By symmetry, similar
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Fig. 5.1 (a) Horseshoe branched manifold. The w-axis intersects branch 0. (b) Double cover
of (a). Branches 0l, 0r are each split into two subbranches: 0l → 0̄l, 0̂l and 0r → 0̄r, 0̂r . The
points f are initial conditions in the half branch lines 0l, 0r that flow to the singularity at the
location of the Z rotation axis.
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remarks hold for branch line r. The number 2f , 0 ≤ 2f ≤ 1, represents the fraction
of initial conditions that return to the source branch line. For f = 0, there is no flow
through subbranches 0̄l, 0̄r while for f = 1

2 there is no flow through the subbranches
0̂l, 0̂r. The value of f for orbits up to period 6 in structurally unstable covers of the
Rössler attractor is given in the left half of Table 5.1 [65].

Table 5.1 Periodic points of period less than 6 for the orbits embedded within the chaotic
Rössler attractor for (a, b, c) = (0.43295, 2.0, 4.0). The symbol name of each periodic orbit
is listed under S. The fraction of periodic points that return to the source branch line 0l, 0r in
the cover is 2f , 0 ≤ f ≤ 1

2
(left columns). The fraction that returns to the source line 1l, 1r

is 2(f − 1
2
), 1

2
≤ f ≤ 1 (right columns). The coordinate yn in the Poincaré section is also

given.

S yn f S yn f

0 −0.0032 0.0192 11000 −2.7936 0.5192
00001 −0.1382 0.0384 1100 −2.9270 0.5384
00011 −0.1632 0.0576 11001 −2.9817 0.5576
0001 −0.3421 0.0769 110 −3.1522 0.5769
00010 −0.3601 0.0961 11011 −3.1902 0.5961
00011 −0.4255 0.1153 1101 −3.2155 0.6153
0011 −0.4485 0.1346 11010 −3.2911 0.6346
00111 −0.6175 0.1538 11011 −3.5096 0.6538
00101 −0.6920 0.1730 1 −3.5850 0.6730
001 −0.8208 0.1923 1110 −3.7368 0.6923
0010 −0.8930 0.2115 11110 −3.7466 0.7115
00100 −0.9397 0.2307 11100 −3.8248 0.7307
00110 −1.1097 0.2500 10100 −4.1071 0.7500
0011 −1.1693 0.2692 10110 −4.1698 0.7692
011 −1.2731 0.2884 10 −4.2028 0.7884
01101 −1.3392 0.3076 1011 −4.2892 0.8076
01111 −1.4481 0.3269 10111 −4.3258 0.8269
0111 −1.5688 0.3461 10110 −4.3586 0.8461
01110 −1.6183 0.3653 101 −4.3783 0.8653
01010 −1.7912 0.3846 100 −4.5124 0.8846
01 −1.8566 0.4038 10010 −4.5494 0.9038
01011 −1.9555 0.4230 10011 −4.5720 0.9230
010 −2.1139 0.4423 1001 −4.6193 0.9423
01001 −2.1531 0.4615 1000 −4.6533 0.9615
0100 −2.2862 0.4807 10001 −4.7046 0.9807
01000 −2.3983 0.5000 10000 −4.7132 1.0000
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5.2.2 Transition Matrices

The transition matrices for the branched manifold shown in Fig. 5.1(a) is a 6 × 6
matrix:

2f 1− 2f 2f 1− 2f

0̄l 0̂l 1̂l 0̄r 0̂r 1̂r

2f 0̄l 1 1 1

1− 2f 0̂l 1 1 1

1̂l 1 1 1

2f 0̄r 1 1 1

1− 2f 0̂r 1 1 1

1̂r 1 1 1

f = 0↙ (1, 1) (0, 1)↘ f =
1

2

0̂l 1̂l 0̂r 1̂r

0̂l 1 1

1̂l 1 1

0̂r 1 1

1̂r 1 1

0̄l 1̂l 0̄r 1̂r

0̄l 1 1

1̂l 1 1

0̄r 1 1

1̂r 1 1

The 6 × 6 transition matrix for the 6-branch manifold is expressed in terms of f .
In the limit f = 0, the rows and columns 0̄l, 0̄r can be eliminated from the 6 × 6
transition matrix, and the 4×4 transition matrix for the double cover with topological
index (n0, n1) = (1, 1) is recovered. In the same way, in the limit 2f = 1, the rows
and columns 0̂l, 0̂r can be eliminated from the 6× 6 transition matrix, and the 4× 4
matrix for the double cover with (n0, n1) = (0, 1) is recovered.

5.2.3 Return Maps

The first-return map for the 6× 6 branched manifold shown in Fig. 5.1(b) is shown
in Fig. 5.2. This figure is constructed as follows. The first-return map for the double
cover with topological index (n0, n1) = (1, 1) is constructed [Fig. 4.5(d)]. In
the return map initial conditions on branch line l flow to r, and vice versa. In the
structurally unstable double cover the parts of the two branch lines l, r labeled 0 are
separated by the point f . The part of the return map above 0̄l is moved down, from
the branch line r to branch line l. This is indicated by the downward pointing arrow.
Similarly, the part of the return map over 0̄r is moved upward from the branch line l
to the branch line r. In the limits f → 0 and f → 1

2 , we recover the first-return maps
for the structurally stable double covers with topological indices (n0, n1) = (1, 1)
[Fig. 4.5(d)] and (0,1) [Fig. 4.5(b)].
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Fig. 5.2 Return map for the branched manifold in Fig. 5.1(b). It is obtained from the
return map for the structurally stable double cover with topological index (n0, n1) = (1, 1)
by moving the part of the return map over 0̄l from branch r to branch l (downward arrow), and
similarly for 0̄r (upward arrow).

5.2.4 Periodic Orbits

Moving the rotation axis w across the image dynamical system has absolutely no
effect on the image dynamics. However, there is a profound effect in the cover.
In particular, lifts of periodic orbits in the cover are dramatically rearranged as the
rotation axis (Z) traverses the orbit in the cover.

We illustrate the nature of this reorganization by example. We choose the period-5
orbit 00101 in the image horseshoe template. This lifts to the period-10 orbit in the
double cover (n0, n1) = (1, 1):

00101 −→ 0̂l0̂r1̂l0̂r1̂l 0̂r0̂l1̂r0̂l1̂r (5.1)

As the rotation axis is moved from the center to the gap between branches 0 and 1 in
the image branched manifold, it will cut the image orbit three times. In general, it is
not possible to predict the order in which the axis will intersect the three segments
labeled 0 in the period-5 orbit. However, in the highly dissipative limit the order
of these segments is prescribed by U -Sequence Theory [34]. The axis meets the
segments in the order (a, b, c, d):
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00101 01010 01001 10100 10010
a • b • c • d • • (5.2)

The locations a, b, c, d of the rotation axis are shown in Fig. 5.3 by a small ×. This
gives rise to the following orbit rearrangement in the double cover

w−axis Orbit

a 1̂r0̂l0̂r1̂l0̂r1̂l0̂r0̂l1̂r0̂l

b 1̂r0̄l0̂l1̂r0̂l + 1̂l0̄r0̂r1̂l0̂r

c 1̂r0̄l0̄l1̂l0̂r1̂l0̄r0̄r1̂r0̂l

d 1̂r0̄l0̄l1̂l0̄r + 1̂l0̄r0̄r1̂r0̄l

(5.3)

As the w-axis cuts successive segments of the period-5 orbit 00101 in the image,
its covering orbit alternates successively between a symmetric period-10 orbit and a
symmetric pair of asymmetric period-5 orbits in a regular and predictable way. These
orbits in the cover are shown in Fig. 5.3.

5.3 THE PERESTROIKA FROM (0,1) TO (0,0)

The perestroika described in the previous section can be continued beyond the gap
between branches 0 and 1 in the image dynamical system. In this section we de-
scribe the perestroika that takes place between the two structurally stable limits with
(n0, n1) = (0, 1) and (0, 0). This occurs as the rotation axis w moves across the
branch labeled 1 in the image dynamical system, and the fraction f increases from 1

2
to 1.

5.3.1 Branched Manifolds

In Fig. 5.4(a) we show the horseshoe branched manifold, together with a rotation
axis through the branch labeled 1 in this branched manifold. The branched manifold
for the structurally unstable double cover is shown in Fig. 5.4(b). In this branched
manifold the (semi)flow originating on the parts 0̄l, 0̄r of the left and right branch
lines is unaffected by the location of theZ-axis. However, the half branch lines 1l, 1r

are split into two subbranches 1̄l, 1̂l and 1̄r, 1̂r. As the rotation axis is moved from
the gap between branches 0 and 1 (f = 1

2 ) to outside the image attractor (f = 1),
the size of the branches 1̄l, 1̄r increases from 0 while the size of the branches 1̂l, 1̂r

decreases to 0. The point f along the parts 1l, 1r of the branch lines l, r is the initial
condition on the branch line that flows to the singularity presented by the Z rotation
axis. As before, f = 1

2 and f = 1 are two structurally stable limits (n0, n1) = (0, 1)
and (0, 0).
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Fig. 5.3 Perestroika of the double cover of 10010. As the rotation axis sweeps past the three
segments labeled 0 in this orbit, major changes in the topology of the orbit take place. (a) – (d)
correspond to lines (a) – (d) in Eq. (5.3). These periodic orbits were obtained by integrating
Eqs. (5.8) and (5.9).
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Fig. 5.4 (a) Horseshoe branched manifold. The w-axis intersects branch 1. (b) Double cover
of (a). Branches 1l, 1r are each split into two subbranches: 1l → 1̄l, 1̂l and 1r → 1̄r, 1̂r . The
points f are initial conditions in the half branch lines 1l, 1r that flow to the singularity at the
location of the Z rotation axis.

5.3.2 Transition Matrices

The transition matrix for the 6 branch covering template shown in Fig. 5.4(b) is

2f − 1 2(1− f) 2f − 1 2(1− f)

0̄l 1̄l 1̂l 0̄r 1̄r 1̂r

0̄l 1 1 1
2f − 1 1̄l 1 1 1

2(1− f) 1̂l 1 1 1

0̄r 1 1 1
2f − 1 1̄r 1 1 1

2(1− f) 1̂r 1 1 1

f =
1

2
↙ (0, 1) (0, 0)↘ f = 1

0̄l 1̂l 0̄r 1̂r

0̄l 1 1

1̂l 1 1

0̄r 1 1

1̂r 1 1

0̄l 1̄l 0̄r 1̄r

0̄l 1 1
1̄l 1 1

0̄r 1 1
1̄r 1 1

In the limits f → 1
2 and f → 1 the transition matrices for the double covers with

indices (n0, n1) = (0, 1) and (0, 0) are recovered, as shown.
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5.3.3 Return Maps

The return map for the 6-branched manifold shown in Fig. 5.4(b) is presented in Fig.
5.5. This return map is constructed following the procedure used to construct the
return map shown in Fig. 5.2. The return map for the structurally stable 4-branched
manifold with (n0, n1) = (0, 1) is modified by dividing the branches 1l, 1r into two
parts each: 1l → 1̄l, 1̂l and 1r → 1̄r, 1̂r. The division is indicated by the point
labeled f . Parts of the return map originating from 1̄l flow back to the branch line
l. Therefore that part of the return map of the branched manifold (0, 1) over 0̄l is
moved from branch line r to branch line l. This is shown by the downward arrow in
Fig. 5.5. The same arguments are used for the part of the return map over 1̄r (upward
arrow). The return map shown in Fig. 5.5 interpolates between the return map for
the 4-branch manifold with topological index (n0, n1) = (0, 1) [Fig. 4.5(b)] and the
return map for the disconnected double cover with (n0, n1) = (0, 0) [Fig. 4.5(a)].

5.3.4 Periodic Orbits

As the rotation axis continues to cross branch 1 of the image dynamical system, it will
intersect segments of periodic orbits labeled by the symbol 1. Once again the order in
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Fig. 5.5 Return map for the branched manifold in Fig. 5.4(b). It is obtained from the
return map for the structurally stable double cover with topological index (n0, n1) = (0, 1)
by moving the part of the return map over 1̄l from branch r to branch l (downward arrow), and
similarly for 1̄r (upward arrow).
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which these segments are intersected depends on the (dissipation of the) dynamical
system. In the highly dissipative limit the order is prescribed byU -Sequence Theory.
For the period-5 orbit 10010 this order is alphabetical, as shown.

00101 01010 01001 10100 10010
• • • d • e • f

(5.4)

The locations of the rotation axis corresponding to d, e, and f are shown in Fig. 5.6
by ×. The orbit reorganization that occurs in the perestroika as f increases from 1

2
to 1 is

w-axis Orbit

d 1̂r0̄l0̄l1̂l0̄r + 1̂l0̄r0̄r1̂r0̄l

e 1̂r0̄l0̄l1̄l0̄l1̂l0̄r0̄r1̄r0̄r

f 1̄r0̄r0̄r1̄r0̄r + 1̄l0̄l0̄l1̄l0̄l

(5.5)

This completes our study of the perestroika of orbits. The rearrangement in the orbits
that cover 00101 in the horseshoe during the perestroika leading from the cover (1, 1)
through the cover (0, 1) to the disconnected cover (0, 0) is shown in two parts. The
first part, the transition from (1,1) to (0,1), is shown in Eq. (5.3) and Fig. 5.3. The
second part, the transition from (0,1) to (0,0), is shown in Eq. (5.5) and Fig. 5.6.

5.4 STRUCTURALLY UNSTABLE STRANGE ATTRACTORS

A one-parameter family of double covers of the Rössler attractor exhibits all of the
bifurcations described in Sections 5.2 and 5.3.

In order to exhibit these bifurcations we first displace the origin of coordinates of
the Rössler attractor, (u, v, w)→ (u+u0, v+v0, w+w0). In this coordinate system
the equations of motion are

u̇ = −v − w − v0 − w0

v̇ = u+ av + u0 + av0
ẇ = b+ w(u+ u0 − c) + w0u + w0(u0 − c)

(5.6)

Next, we choose the origin at the fixed point at the center of the “hole in the middle.”

u0 = −av0 = aw0 = (c−
√

c2 − 4ab)/2

With this new choice of origin the equations are

u̇ = −v − w
v̇ = u+ av

ẇ = b̃u+ w(u− c̃)
(5.7)

where b̃ = w0 and c̃ = c− u0.
We would like to construct double covers of this attractor by choosing a rotation

axis parallel to thew-axis passing through the point (µ, 0) in the (u, v) plane. Rather
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Fig. 5.6 Perestroika of the double cover of 10010. As the rotation axis sweeps past the two
segments labeled 1 in this orbit, major changes in the topology of the orbit take place. (d) – (f)
correspond to lines (d) – (f) in Eq. (5.5). These periodic orbits were obtained by integrating
Eqs. (5.8) and (5.9).

than do this, we displace the attractor to this point and construct a double cover with
RZ(π) symmetry about the w-axis. The image equations are

u̇ = −v − w
v̇ = u+ av + µ

ẇ = b̃(u+ µ) + w(u− c̃+ µ)
(5.8)
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The covering equations are

Ẋ =
1

2r2
[
−r2Y +X

(
2aY 2 − Z

)
+ µY

]

Ẏ =
1

2r2
[
r2X + Y

(
2aX2 + Z

)
+ µX

]

Ż = b̃
(
X2 − Y 2 + µ

)
+ Z

(
X2 − Y 2 − c̃+ µ

)

(5.9)

where r2 = X2 + Y 2.
The image equations (5.7) are integrated for standard values (a, b, c) = (0.432, 2.0,

4.0) of the control parameters. This image is shown in Fig. 5.7. The double cover
equations (5.9) were integrated for the same standard values and a sequence of dif-
ferent values of the displacement parameter µ. These µ values are also indicated in
Fig. 5.7. For µ = 0 the double cover is structurally stable with topological index
(n0, n1) = (1, 1). For µ large the double cover is structurally stable and discon-
nected, with topological index (0, 0). As µ changes from zero to large (and negative)
the double cover becomes structurally unstable and undergoes a series of bifurca-
tions. The results are summarized in Fig. 5.8. In the top row we show double covers
with four branches and topological indices (n0, n1) = (1, 1) [(a), µ = 0.0], (0,1)
[(c), µ = −2.083], and (0,0) [(e), µ = −4.166]. In the second row, below and
between the structurally stable strange attractors, are structurally unstable attractors
with six branches. The attractor (b) (µ = −0.84548) interpolates between the limits
(n0, n1) = (1, 1) and (0,1) while the other attractor (d) (µ = −3.14674) interpolates
between the limits (n0, n1) = (0, 1) and (0,0).

Fig. 5.7 Projections of the Rössler attractor with control parameter values (a, b, c) =
(0.432, 2, 4). Also shown are the five values of µ = 0.0, µ = −0.84548, µ = −2.083,
µ = −3.14674, and µ = −4.166 (represented by circles from right to left) at which the
double covers shown in Fig. 5.8 are computed.
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(a) µ = 0.0 (b) µ = −2.083 (c) µ = −4.166

(d) µ = −0.84548 (e) µ = −3.14674

Fig. 5.8 Five double cover strange attractors for the Rössler equations (5.7) with RZ sym-
metry. These are obtained by displacing the origin of coordinates along the u-axis. (a), (c),
(e) are 4-branch, structurally stable double covers. (b), (d) are structurally unstable 6-branch
double covers. The structurally unstable double covers interpolate between the two structurally
stable double covers above them.

We emphasize again that the placement of the w-axis has no effect on the nature
of the flow in the image dynamical system. The bifurcation takes place only in the
covering dynamical system: The image remains unperturbed during displacement
of the symmetry axis. The bifurcation is caused by sweeping a splitting axis (the
symmetry axis) through the covering flow from the inside to the outside of the flow.

5.5 THE PEELING BIFURCATION

The “peeling bifurcation” gets its name from the deformation induced in the flow by
the splitting (rotation) axis. This deformation can be seen clearly in Fig. 5.8(d). A
schematic representation is presented in Fig. 5.9. This figure shows that the flow is
split by the singularity. The part of the flow passing to the left of the axis flows to the
neighborhood of the focus on the left. That part of the flow passing to the right of the
singularity remains in the neighborhood of the focus on the right, shown as a small
circle. The flow passes around the focus, moves underneath the part of the flow that
passed to the left of the splitting axis, and joins it at a branch line.

This is the type of deformation that an apple skin experiences when it is peeled
from an apple. Hence the descriptive title: “peeling bifurcation.”
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Fig. 5.9 Schematic representation of the flow in the neighborhood of the rotation axis. The
deformation is the same as that experienced by the skin of an apple when it is peeled.

Peeling bifurcations annihilate branches one pair at a time, and create new branches,
one pair at a time. They are therefore responsible for massive orbit extinctions. When
a pair of branches is annihilated, all orbits carrying a symbol for either branch must
be annihilated. Nevertheless, the orbits themselves are not destroyed—they are sim-
ply required to visit a new branch. During the entire peeling bifurcation, orbits are
simply “rearranged” in the covering dynamical system as seen in Figs. 5.3 and 5.6.
This occurs in such a way that the topological entropy remains unchanged during the
bifurcation.

5.6 APPLICATION: SUNSPOT COVERS

We illustrate the usefulness of the peeling bifurcation by returning to the sunspot data
(cf., Section 1.1). In that brief description we stated that the observables were the
sunspot numbers but the physics driving this phenomenon seems to be magnetic field
strength. We illustrate in this Section one possible way to recover information that is
“squared away” from observed data.

The sunspot data are reproduced in Fig. 5.10. A solid curve representing a smooth-
ing of the data is superposed on the data. We will work with the smoothed data. The
smoothing was obtained as follows. First, a monthly averaged sunspot number is
computed for each month in the sample. This average is computed using the Wolf
indexR(t) = k(10g+f), where g counts the number of sunspot groups and f counts
the number of individual sunspots per month. The factor k is a normalization term.
Compensations must be made for the problem that the data are not of uniform quality
going back to the year 1750—a significant improvement in the quality of the recorded
data occurred in 1850. The description of these compensations is contained in [62].
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Fig. 5.10 Dots: monthly averaged sunspot data using Wolf’s index. Solid curve: data
smoothed using a low-pass filter followed by a 30-month moving window average.
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Fig. 5.11 Time-delay embedding of the smoothed scalar time series shown in Fig. 5.10 with
delay τ = 16 months. There are 23 cycles since 1750. Monthly Wolf index values are also
shown in this projection.

The monthly averaged data showed high-frequency fluctuations, which were re-
moved with a low-pass filter using standard Fourier techniques. The filtered data were
further smoothed by using a moving window average with width ws, where ws was
chosen as 30 months (about a quarter of the 11-year cycle) to produce the solid curve
shown in Fig. 5.10. Efforts were taken to ensure that the results presented below are
not artifacts of the filtering-smoothing procedures.

In order to carry out a dynamical analysis the scalar time series must be embedded
in a phase space of suitable dimension. The default embedding procedure was used—
this is the time delay. A projection of the time delay embedding onto the first two
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coordinates is shown in Fig. 5.11. The time delay used is τ = 16 months. This
projection is superposed on a projection of the unsmoothed data (gray dots). The
projected time series using this embedding exhibits a “hole in the middle” so that a
Poincaré section can easily be constructed. Further tests (false nearest neighbor test
[1], correlation dimension estimate [95], self-intersection test [126]) revealed that
three dimensions suffice for an embedding of this time series.

A series of double covers of the attractor shown in Fig. 5.11 is presented in Fig. 5.12.
These covers all possess rotation invariance underRZ(π). To construct these covers
the rotation axis was moved from the origin in Fig. 5.12(a), into the attractor in Fig.
5.12(b), and finally into the hole in the middle of the attractor in Fig. 5.12(c). IfX or
Y or some reasonable linear combination is taken as a representation of the magnetic
field, these three covers show the field is confined to positive (or negative) values for
the double cover in Fig. 5.12(a), shows “unpredictable” alternation between positive
and negative values during alternating 11-year cycles in Fig. 5.12(b), and predictable
alternation after every 11-year cycle in Fig. 5.12(c).

TheX and Y coordinates of the double cover with index (n0, n1) = (1, 1) can be
used to represent the magnetic field responsible for generating sunspots. We choose
B(t) = X cos(θ) + Y sin(θ), with θ = π/4 radians to project onto the diagonal,
to represent B(t) for the cover constructed in Fig. 5.12(c), since this is the only
cover that guarantees alternation of the magnetic field after each 11-year sunspot
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Fig. 5.12 Different topologically inequivalent covers of the phase portrait reconstructed from
the sunspot numbers using the delay coordinates. The location of the singularity—indicated
by the × — is displaced in the plane R

2(u, v) along the bisecting line.
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Fig. 5.13 Plot of B(t) = X cos(θ)+Y sin(θ) for the cover shown in Fig. 5.12(c). Another
trace that is the reflection image (B(t) → −B(t)) is also possible. For this plot θ = π/4.

cycle. The results are shown in Fig. 5.13. Since delay coordinates have been used to
construct an embedding, rather than coordinates depending on a specific time (such
as differential coordinates), it is not straightforward to synchronize features of the
sunspot data (maxima and minima) with corresponding features of the B(t) curve,
such as maxima, minima, and zero-crossings.
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6.1 IMAGE DYNAMICAL SYSTEMS

In this chapter we will describe three-fold and four-fold covers of image dynamical
systems. It is possible to numerically generate strange attractors equivariant under
the groups C3, C4, and V4. This is done by lifting image dynamical systems without
symmetry. In this section we present three canonical image dynamical systems. One
is the Rössler attractor, the other two are images of equivariant dynamical systems.
The strange attractors for all three dynamical systems without symmetry are shown
in Fig. 6.1.

103



104 THREE-FOLD AND FOUR-FOLD COVERS

-4,0 -2,0 0,0 2,0 4,0 6,0
u

-6,0

-4,0

-2,0

0,0

2,0

v
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Fig. 6.1 Image systems. Parameter values: (a, b, c) = (0.4332, 2.0, 4.0) in Equ. (6.1a);
(R, σ, b) = (28.0, 10.0, 8/3) in Eq. (6.1b); (S,V) = (10.0, 4.271) in Eq. (6.1c).

6.1.1 Rössler System

The centered Rössler equations used to describe the new global bifurcation (cf. Eq.
(5.8)) are repeated here for convenience:

u̇ = −v − w
v̇ = u+ av + µ

ẇ = b̃(u+ µ) + w(u− c̃+ µ)
(6.1a)

In this set of equations the origin of coordinates has been moved to the fixed point
(u0, v0, w0), b̃ = w0, c̃ = c−u0, and µ is the displacement of the rotation axis along
the u-axis. The Rössler attractor is shown in Fig. 6.1(a) for control parameter values
(a, b, c) = (0.432, 2.0, 4.0) and µ = 0.0 [35].

6.1.2 Proto–Lorenz System

The proto-Lorenz equations are obtained from the Lorenz equations by modding out
the symmetry in the usual way. They are (cf. Eq. 3.3)

u̇ = (−σ − 1)u+ (σ −R)v + vw + (1− σ)ρ
v̇ = (R − σ)u− (σ + 1)v − uw + (R+ σ)ρ− ρw
ẇ = −bw + 1

2v
(6.1b)

where ρ =
√
u2 + v2. The proto-Lorenz attractor is shown in Fig. 6.1(b) for control

parameter values (R, σ, b) = (28, 10, 8/3).
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6.1.3 Proto–Burke and Shaw Equations

These equations are obtained from the Burke and Shaw equations (2.5) by modding
out the symmetry. They are (cf. Eq. 3.4)

u̇ = −(S + 1)u− S(1− w)v + (1− S)ρ

v̇ = S(1− w)u− (S + 1)v − S(1 + w)ρ

ẇ = S
2 v + V

(6.1c)

The proto–Burke and Shaw attractor is shown in Fig. 6.1(c) for control paramter
values (S,V) = (10, 4.271).

6.2 N-FOLD COVERS AND COMPLEX VARIABLES

The astute reader will have noticed by this time that there is a close connection between
n-fold covers and complex variables. The relation between the coordinates X,Y in
the covering space and the coordinates u, v in the image space is [67,90]

un = <zn = <(X + iY )n = 1
2 (zn + z̄n) = ρn cos nφ

vn = =zn = =(X + iY )n = 1
2i (z

n − z̄n) = ρn sin nφ
(6.2)

where z = X + iY = ρeiφ. This relation can be adapted for all integer values of
n ≥ 1.

To be specific, we assume that the image equations are as usual

d

dt







u

v

w







=







f1(u, v, w)

f2(u, v, w)

f3(u, v, w)







=







f1(ρ
n cosnφ, ρn sinnφ, Z)

f2(ρ
n cosnφ, ρn sinnφ, Z)

f3(ρ
n cosnφ, ρn sinnφ, Z)







(6.3)

We have introduced a polar decomposition

z = X + iY = ρeiφ =⇒ u+ iv = (ρeiφ)n = ρn cosnφ+ iρn sinnφ

The equations for the variables X,Y are easily expressed in polar coordinates

d

dt
(X + iY ) =

(
∂zn

∂z

)−1
d

dt
(u+ iv)

(ρ̇+ iφ̇ρ)eiφ =
1

nρn−1ei(n−1)φ
(f1 + if2)

(6.4)

The real and imaginary parts give the dynamical equations for ρ and φ
[

ρ̇

ρφ̇

]

=
1

nρn−1

[
cosnφ sinnφ
− sinnφ cosnφ

][
f1
f2

]

Ż = f3(ρ
n cosnφ, ρn sinnφ, Z)

(6.5)
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Example: For the Rössler equations

f1(u, v, w) = −v − w → −ρn sinnφ− Z
f2(u, v, w) = u+ av → ρn cosnφ+ aρn sinnφ

f3(u, v, w) = b+ w(u− c) → b+ Z(ρn cosnφ− c)

Equations describing the three-fold covers and four-fold covers of the image dynami-
cal systems can be obtained from (6.5) by setting n = 3 or 4 and expressing the result
in terms of the equivariant coordinates (X,Y, Z).

The covering equations can be systematically expressed in terms of the functions
un = <(X + iY )n and vn = =(X + iY )n, with

n u v

2 X2 − Y 2 2XY
3 X3 − 3XY 2 3X2Y − Y 3

4 X4 − 6X2Y 2 + Y 4 4X3Y − 4XY 3

(6.6)

These functions, and the function R, with R2 = X2 + Y 2, are used to construct
explicit realizations of the three-fold and the four-fold covers of the Rössler, proto–
Lorenz, and proto–Burke and Shaw dynamical systems.

6.2.1 Covers of the Rössler Equations

The n-fold cover of the Rössler equations simplifies to

d

dt
(X + iY ) =

i(X + iY )

n
+

z̄n−1

nR2(n−1)
(−Z + iavn)

Ż = b+ Z(un − c)
(6.7a)

For n = 3 and n = 4 the equations for X,Y, Z are

Ẋ = −Y
3

+
−u2Z + v2(av3)

3R4

Ẏ = +
X

3
+

+v2Z + u2(av3)

3R4

Ż = b+ Z(u3 − c)

(6.7b)
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and
Ẋ = −Y

4
+
−u3Z + v3(av4)

4R6

Ẏ = +
X

4
+

+v3Z + u3(av4)

4R6

Ż = b+ Z(u4 − c)

(6.7c)

6.2.2 Covers of the Proto-Lorenz Equations

The n-fold cover of the proto-Lorenz equations simplifies to

d

dt
(X + iY ) =

i(X + iY )[−(σ + 1)− i(σ −R+ Z)]

n
+

z̄n−1

nRn−2
[(1− σ) + i(σ +R− Z)]

Ż = bZ + 1
2vn

(6.8a)

For n = 3 and n = 4 the equations for X,Y, Z are

Ẋ = − (σ + 1)X

3
+

(σ −R+ Z)Y

3
+

+u2(1− σ) + v2(σ +R − Z)

3R

Ẏ = − (σ −R+ Z)X

3
− (σ + 1)Y

3
+
−v2(1− σ) + u2(σ +R− Z)

3R

Ż = bZ + 1
2v3

(6.8b)

and

Ẋ = − (σ + 1)X

4
+

(σ −R+ Z)Y

4
+

+u3(1− σ) + v3(σ +R− Z)

4R2

Ẏ = − (σ −R+ Z)X

4
− (σ + 1)Y

4
+
−v3(1− σ) + u3(σ +R− Z)

4R2

Ż = bZ + 1
2v4

(6.8c)
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6.2.3 Covers of the Proto–Burke and Shaw System

The n-fold cover of the proto–Burke and Shaw equations simplifies to

d

dt
(X + iY ) =

i(X + iY )[−(S + 1) + iS(1− Z)]

n
+

z̄n−1

nRn−2
[(1− S)− iS(1 + Z)]

Ż = V + S
2 vn

(6.9a)

For n = 3 and n = 4 the equations for X,Y, Z are

Ẋ = − (S + 1)X

3
− S(1− Z)Y

3
+

+u2(1− S)− v2S(1 + Z)

3R

Ẏ = +
S(1− Z)X

3
− (S + 1)Y

3
+
−v2(1− S)− u2S(1 + Z)

3R

Ż = V +
S

2
v3

(6.9b)

and

Ẋ = − (S + 1)X

4
− S(1− Z)Y

4
+

+u3(1− S)− v3S(1 + Z)

4R2

Ẏ = +
S(1− Z)X

4
− (S + 1)Y

4
+
−v3(1− S)− u3S(1 + Z)

4R2

Ż = V +
S

2
v4

(6.9c)

6.3 COVERS WITH C3 SYMMETRY

6.3.1 The Group

The rotation group C3 acts in R
3 according to the defining matrix representation:





X
Y
Z





′

=





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









X
Y
Z





where angle θ = 0, 2π
3 , 4π

3 or θ = 2π
3 k, k = 0, 1, 2.
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6.3.2 Invariant Polynomials

Up to degree 3, polynomials invariant and covariant under C3 (independent of Z) are

Degree Invariant Polynomials Covariant Polynomials
1 X , Y
2 X2 + Y 2 X2 − Y 2, 2XY
3 X3 − 3XY 2, 3X2Y − Y 3 X(X2 + Y 2), Y (X2 + Y 2)

The three invariant polynomials in X and Y are linearly independent but not func-
tionally independent, for

(X3 − 3XY 2)2 + (3X2Y − Y 3)2 = (X2 + Y 2)3

Every invariant polynomial inX,Y , andZ can be written as a function of polynomials
that are invariant under C3:

g(X2 + Y 2, X3 − 3XY 2, 3X2Y − Y 3, Z)

Every polynomial in the three variables X,Y, Z can be written in the form

6∑

α=0

gα(X2 + Y 2, X3 − 3XY 2, 3X2Y − Y 3, Z)Cα(X,Y )

where Cα(X,Y ) are six (1 ≤ α ≤ 6) covariant polynomials of degree ≤ 3, or the
invariant 1 (α = 0). In fact, it is sufficient to include only the first four covariant
polynomials of degree≤ 2.

6.3.3 The Jacobian

It is useful to choose as invariant coordinates:

u = u1 = X3 − 3XY 2

v = u2 = 3X2Y − Y 3

w = u3 = Z

The Jacobian of this local diffeomorphism is

J =
∂u
∂X

=





3X2 − 3Y 2 −6XY 0
6XY 3X2 − 3Y 2 0

0 0 1




det−→ 9(X2 + Y 2)2

The singular set of this transformation is the Z-axis X = Y = 0.
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6.3.4 Covering Equations

The equations u̇ = gi(u) of an invariant dynamical system can be lifted to equations
for a three-fold cover in the usual way

d

dt





X
Y
Z



 =





3X2 − 3Y 2 −6XY 0
6XY 3X2 − 3Y 2 0

0 0 1





−1 



g1(u)
g2(u)
g3(u)





The inverse of this Jacobian is





3X2 − 3Y 2 −6XY 0
6XY 3X2 − 3Y 2 0

0 0 1





−1

=









X2 − Y 2

3ρ4

2XY

3ρ4
0

−2XY

3ρ4

X2 − Y 2

3ρ4
0

0 0 1









where ρ2 = X2 + Y 2. These relations have been implemented in Section 6.2 to
construct the covering equations of the Rössler, proto–Lorenz, and proto–Burke and
Shaw equations with C3 symmetry.

6.3.5 Topological Index

The singular set of the Jacobian of the local diffeomorphism links every periodic
orbit in any strange attractor generated by the invariant equations u̇j = gj(u). If the
rotation axis is disjoint from the attractor, the linking number of any orbit with this
axis can be determined from the linking numbers of the basic period-one orbits in the
image attractor. If the image attractor has b branches, then b linking numbers of the
corresponding period-one orbits with the Z-axis (closed with a return at “infinity”)
constitute a topological index. The index applies to the image attractor but it provides
a great deal of information about the covering attractor.

As an example, if the strange attractor generated by the invariant dynamical equa-
tions is classified by a template with four branches, each labeled by its local torsion
(1, 2, 3, 4), the topological index of the image attractor is the set (n1, n2, n3, n4).

6.3.6 Covering Branched Manifolds

If the image branched manifold has b branches, its 3-fold cover has 3b branches. In
particular, 3-fold covers of the Smale horseshoe branched manifold have six branches.

It is useful to label the branches using a group label. For example, the two branches
0 and 1 of a Smale horseshoe template are lifted to six branches in any three-fold
cover. These can be labeled variously 0I, 1I; 0γ , 1γ ; 0γ2 , 1γ2 or 00, 10; 01, 11; 02,
12. The symmetry-adapted labeling scheme displays information about the image—
in the symbols for the image branched manifold—and some information about the
symmetry group. However, this information is not complete: Information about the
transition matrix is missing.
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This information is provided by the topological index. For the Smale horseshoe this
index is (n0, n1). Three-fold lifts obtained from rotations about axes with different
topological indices generate topologically inequivalent covers. For example, the
three-fold cover with topological index (n0, n1) = (0, 0) consists of three disjoint
copies of a Smale horseshoe branched manifold. Three-fold covers with indices (0,1)
and (1,1) are shown in Fig. 6.2. The branched manifold for the attractors shown in
Fig. 6.2(a) and 6.2(b) are shown in Fig. 6.3(a) and 6.3(b).

The reverse horseshoe branched manifold has two branches with local torsions 1
and 2. Its three-fold cover with topological index (1, 2) is shown in Fig. 6.4. This
three-fold cover has three branch lines b0, b1 = γb0, b2 = γ2b0. Each is divided into
two parts labeled by the symbols 1, 2. They label their images in the image branched

-1,5 -1 -0,5 0 0,5 1 1,5 2
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0

1

2

Y

(a) (n0, n1) = (0, 1)
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(b) (n0, n1) = (1, 1)

Fig. 6.2 Three-fold covers of the centered Rössler system.
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Fig. 6.3 Branched manifolds for three-fold covers of the Rössler system shown in Fig. 6.2.



112 THREE-FOLD AND FOUR-FOLD COVERS

Fig. 6.4 Branched manifold for three-fold cover of the reverse horseshoe with topological
index (n1, n2) = (1, 2).

manifold. Initial conditions on 10 flow to branch b1. The branch connecting 10 with
b1 has a half twist. Initial conditions on 20 flow to branch b2 = γ2b0 with a full twist.
The flow from b1 and b2 are symmetry-related to the flow from b0, as follows:

γ(10 → b1) ⇒ 11 → b2
γ(20 → b2) ⇒ 21 → b3=0

γ2(10 → b1) ⇒ 12 → b0
γ2(20 → b2) ⇒ 22 → b1

6.3.7 Symmetry-Adapted Labeling

The symmetry-adapted symbol scheme provides three pieces of information.

1. A symbol describes the image of a branch under the 3 → 1 local diffeomor-
phism.

2. A group label distinguishs the three branches related to each other under a
rotation.

3. A second group label. This describes which branches a given branch flows
into.

We illustrate by example. The three-fold cover of the 2-branch Smale horseshoe
with branch labels 0 and 1 has six branches. They are labeled0(gi), 1(gi), gi = I, γ, γ2;
i = (0, 1, 2). The three-fold cover with topological index (n0, n1) = (0, 0) consists
of three disjoint copies of the horseshoe. Branch 0(g0) flows into 0(g0) and 1(g0). So
also does 1(g0). These two branches, and their connectivity, are then labeled 0(g0,g0)

and 1(g0,g0). Similarly, branches 0(g1), 1(g1) map to themselves and are labeled
0(g1,g1), 1(g1,g1). The labels for the third pair are 0(g2,g2), 1(g2,g2).
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The three-fold cover with topological index (n0, n1) = (0, 1) has a different set
of labels. Branch 0(gi) flows back to branch 0(gi), 1(gi), so is labeled 0(gi, gi).
Branch 1(g0) flows into branches 0(g1) and 1(g1). It is labeled 1(g0, g1). Similarly,
we have 1(g1, g2) and 1(g2, g3 = g0). The following table gives some indications
of the relations between topological indices and symmetry adapted labeling schemes
using two group labels

(n0, n1)
(0,0) 0(g0,g0) 0(g1,g1) 0(g2,g2)

1(g0,g0) 1(g1,g1) 1(g2,g2)

(0,1) 0(g0,g0) 0(g1,g1) 0(g2,g2)

1(g0,g1) 1(g1,g2) 1(g2,g0)

(0,2) 0(g0,g0) 0(g1,g1) 0(g2,g2)

1(g0,g2) 1(g1,g0) 1(g2,g1)

In this symmetry-adapted labeling scheme, the first group operation identifies dis-
tinct branches that are mapped into each other by the symmetry group. The second
group index identifies the image of that branch under the dynamics: that is, it deter-
mines the transition matrix.

Remark: In quantum mechanics the Wigner-Eckart theorem allows decomposi-
tion of a matrix element of a system with symmetry into the product of two factors:
one depending on geometry, the other contains the physics. The symmetry-adapted
labeling scheme using two group operations effects the same type of decomposition.
The first group operation “is geometry.” It serves to label equivalent branches. The
second group operation “is dynamics.” It identifies where the flow goes to after it
leaves each branch.

In Fig. 6.5(a) we show a gateau roulé branched manifold [33, 34]. There is one
branch line and three branches aj , j = 0, 1, 2. Branch j has local torsion j (or jπ).
In Fig. 6.5(b) we show a double cover of this branched manifold withRZ symmetry
and topological index (n0, n1, n2) = (0, 1, 1), and in Fig. 6.5(c) we show a cover of
the gateau roulé with C3 symmetry, three branch lines, 9 branches, and topological
index (n0, n1, n2) = (0, 1, 1).

6.3.8 Transition Matrices

Symmetry-adapted labels lead directly to transition matrices, and vice versa. The
two are complementary ways of describing equivariant dynamics. In Table 6.3.8
we present the transition matrices for the three-fold cover of the horseshoe branched
manifold with topological index (n0, n1) = (0, 1) and the reverse horseshoe with
topological index (n1, n2) = (1, 2).
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Fig. 6.5 (a) Gateau roulé branched manifold, also called a scroll template. (b) Double cover
under RZ(π) and (c) triple cover under C3 of the 3-branched scroll template with topological
index (n0, n1, n2) = (0, 1, 1).

6.3.9 Periodic Orbits

Periodic orbits in the image can be lifted to periodic orbits in the covering system
in an algorithmic way using symmetry-adapted symbols. We provide two sets of
examples before stating the algorithm [35].

In the first example, we consider a three-fold cover of a Smale horseshoe branched
manifold. The branches of the horseshoe have local torsion 0, 1 and are so labeled.
The topological index of the image is (n0, n1) = (0, 1). The branched manifold for
the cover is shown in Fig. 6.3(a).
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Table 6.1 The symmetry-adapted labeling scheme leads directly to transition matrices. Left:
Transition matrix for the 3-fold cover of the horseshoe with topological index (n0 , n1) = (0, 1).
Right: Transition matrix for the 3-fold cover of the reverse horseshoe with topological index
(n1, n2) = (1, 2).

I = 0

C1
3 = 1

C2
3 = 2

I = 0 C1
3 = 1 C2

3 = 2
00 10 01 11 02 12

00 1 1 0 0 0 0
10 0 0 1 1 0 0

01 0 0 1 1 0 0
11 0 0 0 0 1 1

02 0 0 0 0 1 1
02 1 1 0 0 0 0

I = 0

C1
3 = 1

C2
3 = 2

I = 0 C1
3 = 1 C2

3 = 2
10 20 11 21 12 22

10 0 0 1 1 0 0
20 0 0 0 0 1 1

11 0 0 0 0 1 1
21 1 1 0 0 0 0

12 1 1 0 0 0 0
22 0 0 1 1 0 0

We now attempt to construct the triple covers of the period-4 saddle-node pair
1001 and 1000 as well as the period-4 orbit 1011 in the primary period-doubling
cascade. As a first step, we dress the image symbols 0,1 with two group labels. The
topological index n0 = 0 indicates that branch 0(i,∗) returns to itself, so the group
symbol pair is 0(i,i), i = 0, 1, 2. The index n1 = 1 indicates that branch 1(i,∗) flows
to the next branch, so that the group symbol pair is 1(i,i+1) (all integers are mod 3).
We now construct the periodic orbits covering 1011. We begin in the cover with an
initial condition on 1(0,1) and proceed from there

1011→ 1(0,1) 0(1,1) 1(1,2) 1(2,0) 1(0,1) 0(1,1) 1(1,2) etc.

This cover goes through four branches in the covering branched manifold before
repeating. It has period 4. The totality of the three-fold covers of a period-4 orbit
have 12 (= 4× 3) symbols. We therefore expect two more period-4 covering orbits,
related to the first by the symmetry operations of the group C3. The three covering
orbits are

1011
lifts to−→

1(01) 0(11) 1(12) 1(20)

1(12) 0(22) 1(20) 1(01)

1(20) 0(00) 1(01) 1(12)

The lifts of the period-4 saddle and node are constructed similarly, but are of period
12:

1001
lifts to−→ 1(01) 0(11) 0(11) 1(12) 1(20) 0(00) 0(00) 1(01) 1(12) 0(22) 0(22) 1(20)

1000
lifts to−→ 1(01) 0(11) 0(11) 0(11) 1(12) 0(22) 0(22) 0(22) 1(20) 0(00) 0(00) 0(00)

We observe that the signature for closure in the covering orbit is that the last group
symbol is equal to the first group symbol. These symbols have been underlined in
the five covering orbits computed above.
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As a second example, we treat a three-fold cover of the reverse horseshoe. The
reverse horseshoe has two branches with local torsions 1, 2. The topological index is
(n1, n2). To illustrate the richness of cover possibilities, we choose the topological
index to be (n1, n2) = (1, 2). The branched manifold for this three-fold cover with
this index is illustrated in Fig. 6.4. Symbolic dynamics in the image contains symbols
1 and 2. Symmetry adapted symbols in the cover include the six symbols 1(i,i+1),
2(i,i+2), again mod 3. In this example, we determine the covers of the period-4
saddle-node pair 2112, 2122 and the period-4 orbit in the primary (reverse) cascade:
2111. Proceeding as before for the period-4 orbit, in the saddle-node pairs we find

2111
lifts to−→ 2(02) 1(20) 1(01) 1(12) 2(21) 1(12) 1(20) 1(01) 2(10) 1(01) 1(12) 1(20)

For the two period-4 orbits we find

2112
lifts to−→

2(02) 1(20) 1(01) 2(10)

2(10) 1(01) 1(12) 2(21)

2(21) 1(12) 1(20) 2(02)

2122
lifts to−→ 2(02) 1(20) 2(02) 2(21) 2(10) 1(01) 2(10) 2(02) 2(21) 1(12) 2(21) 2(10)

In this case, the orbit in the cascade has one covering orbit of period 12. The period-
4 saddle 2112 has three symmetry-related period-4 covering orbits, while its node
partner 2122 has a single covering orbit of period 12.

The general algorithm for lifting periodic orbits in the image to their covering
orbits is as follows:

1. Write down the symbol code, S, for the image orbit. Repeat the symbol se-
quence S as often as necessary.

2. Replace the first symbol in S by its symmetry adapted symbol in the cover.
Begin anywhere in the cover, specified by group operator gi.

3. The first symbol gi forces a unique sequence of group operations in the covering
sequence.

4. Stop when the last group label in (S)m is equal to the first group label in S, for
some m = 1, 2, . . .

This algorithm has been used in the two examples for three-fold covers presented
above. It is valid for all symmetry groups. The construction of periodic orbits in
two-fold covers is a special case of this algorithm.

In Fig. 6.6 we show lifts of four orbits in the Rössler attractor to a three-fold cover
with topological index (n0, n1) = (0, 1). The period-1 orbit 1 lifts to a period-3 orbit
and the period-2 orbit 10 lifts to a period-6 orbit. The period-3 saddle node pair both
lift to period-9 orbits. In Fig. 6.7 we show lifts of the same four orbits to the three-fold
cover with topological index (n0, n1) = (1, 1). Once again 1 lifts to a period-3 orbit
and 10 lifts to a period-6 orbit. However, the saddle node pair 101, 100 both lift to
three period-3 orbits, only one of which is shown for the saddle 101 and node 100.
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(a) Period-1 orbit (1)
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(b) Period-2 orbit (10)
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(c) Period-3 orbit (101)
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Y

(d) Period-3 orbit (100)

Fig. 6.6 Lifts of orbits into three-fold covers of Rössler system with topological index
(n1, n2) = (0, 1).
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(a) Period-1 orbit (1)
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Y

(b) Period-2 orbit (10)

X

Y

(c) Period-3 orbit (101)

X

Y

(d) Period-3 orbit (100)

Fig. 6.7 Lifts of orbits into three-fold covers of Rössler system with topological index
(n1, n2) = (1, 1). In (c) and (d) only one of the three different, symmetry-related orbits
is shown.



118 THREE-FOLD AND FOUR-FOLD COVERS

6.3.10 Linking Numbers

Linking numbers for pairs of periodic orbits on the image branched manifold can be
computed algorithmically. This, in fact, is one of the primary reasons for describing
strange attractors in R

3 by their branched manifolds.
Linking numbers of lifts of periodic orbits can easily be inferred from the linking

numbers of the image pair. Assume that two orbits, P and Q, have linking num-
ber Link(P,Q). How is the linking number of the three-fold lifts P̄ , Q̄ related to
Link(P,Q)?

The linking numbers are half the signed number of crossings in the projection
down to the u-v plane (in the image) or the X-Y plane (in the cover). Each crossing
in the u-v-plane has three preimages in the covering space, so that

Link(P̄ , Q̄) = 3Link(P,Q)

The covering orbit P̄ either has three times the period of P or consists of three
disconnected components P̄i, i = 0, 1, 2, that are symmetry related and have the
same period as P (since 3 is prime). If P̄ and Q̄ are both connected, Link(P̄ , Q̄) =
3Link(P,Q). If one is connected (Q̄) and one is disconnected (P̄ = ∪P̄i), then for
each i

Link(P̄i, Q̄) = Link(P,Q)

If both are disconnected
2∑

i,j=0

Link(P̄i, Q̄j) = 3Link(P,Q)

In Fig. 6.8 we show the link of the lifts of the orbits 1, 10 in the Rössler attractor to
three-fold covers with topological index (n0, n1) = (0, 1) and (1, 1). In the image,
Link(1, 10) = 1, so in both cases the linking number of the period-3 and period-6
orbits are 3.

6.3.11 Poincaré Sections and First-Return Maps

As usual, the Poincaré section in the image lifts to the Poincaré section in the cover.
In the cover, the Poincaré section is the union of three disjoint components when the
Poincaré section in the image is connected.

Again as usual, it is useful to consider the Poincaré section in the branched manifold
representation of the strange attractor. It is simply the union of the branch line(s).
If there is one branch line in the image branched manifold, there are n branch lines
in the n-fold cover. The Poincaré sections for the strange attractors are the “inverse
image” of the branch lines: that is, the set of all points in R

3 that project to the branch
lines under the Birman-Williams projection.

We construct the Poincaré sections and the first-return maps from the two covers
treated in Section 6.3.6. The return map for a typical Smale horseshoe template is
shown in Fig. 6.9(a). For its three-fold cover with topological index (n0, n1) = (0, 1)
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X
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(10)
(1)

(a) (n0, n1) = (0, 1)

X

Y

(10)
(1)

(b) (n0, n1) = (1, 1)

Fig. 6.8 Links of three-fold lifts of Rössler orbits.

the return map is shown in Fig. 6.9(c). Recall that in the cover, the symbol 0 reinjects
to the same spatial domain while the symbol 1 reinjects to the following domain.

The first return map for the reverse horseshoe is shown in Fig. 6.9(b). For the
three-fold cover with topological index (n1, n2) = (1, 2) the return map is shown in
Fig. 6.9(d).

6.4 COVERS WITH C4 SYMMETRY

Four-fold covers equivariant under C4 can be studied by methods essentially identical
to those used to study three-fold covers with the difference that 3 is prime and4 = 2×2
is not. This produces one notable difference: four-fold covers of a period p orbit can
consist of

1. One symmetric orbit of period 4p.
2. Two asymmetric orbits of period 2p.
3. Four asymmetric orbits of period p

We follow the procedure used in Section 6.3, omitting extended explanations when
redundent.

6.4.1 The Group

The group C4 acts on three space R
3 as follows





X
Y
Z





′

= γ





X
Y
Z



 =





0 1 0
−1 0 0

0 0 1









X
Y
Z



 =





Y
−X
Z





The four group operations are γ, γ2, γ3, γ4 = γ0 = I.
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(a) Horseshoe mechanism
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(b) Reverse horseshoe mechanism

0(0,0) 1(0,1) 0(2,2)0(1,1) 1(1,2) 1(2,0)

0(0,0)

1(0,1)

0(1,1)

1(1,2)

0(2,2)

1(2,0)

Id γ γ2

γ2

γ

Id

(c) Lift of (a) into 3-cover with index (0, 1)

1(0,1) 2(0,2) 1(2,0)1(1,2)
2(1,0) 2(2,1)

1(0,1)

2(0,2)

1(1,2)

2(1,0)

1(2,0)

2(2,1)

Id γ γ2

γ2

γ

Id

(d) Lift of (b) into 3-cover with index (1, 2)

Fig. 6.9 First-return map of the three-fold covers. (a) Return map for a simple stretch
and fold (horseshoe) mechanism. (c) Lift of (a) to a three-fold cover with topological index
(n0, n1) = (0, 1). (b) Return map for a reverse horseshoe. Branches have local torsion 1,2 as
indicated. (d) Lift to three-fold cover with topological index (n1, n2) = (1, 2).

6.4.2 Invariant and Covariant Polynomials

The decomposition into invariant and covariant polynomials (independent of Z) is

Degree Invariant Polynomials Covariant Polynomials
1 X , Y

2 X2 + Y 2 X2 − Y 2, 2XY

3 X(X2 + Y 2), Y (X2 + Y 2),
X(X2 − Y 2), Y (X2 − Y 2)

4 X4 − 6X2Y 2 + Y 4, XY (X2 + Y 2)
4(X3Y −XY 3), X4 + Y 4 X4 − Y 4
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The four invariant polynomials of degree 4 are functionally dependent

4X4 − (X4 − 6X2Y 2 + Y 4) + 4Y 4 = 3(X2 + Y 2)2

(X4 − 6X2Y 2 + Y 4)2 +
[
4(X3Y −XY 3)

]2
= (X2 + Y 2)4

Every polynomial in the three variables X,Y, Z can be written in the form
∑

α=0

gα

(
X2 + Y 2, X4 − 6X2Y 2 + Y 4, 4(X3Y −XY 3), Z

)
Cα(X,Y, )

where C0 = 1 and

Cα = X, Y, X2 − Y 2, 2XY, X(X2 − Y 2), Y (X2 − Y 2)

6.4.3 The Jacobian

A useful choice of invariant coordinates is

u = u1 = X4 − 6X2Y 2 + Y 4 = <(X + iY )4

v = u2 = 4(X3Y −XY 3) = =(X + iY )4

w = u3 = Z

With these coordinates, the Jacobian of the 4→ 1 local diffeomorphism is

∂u
∂X

=





4X3 − 12XY 2 −12X2Y + 4Y 3 0
12X2Y − 4Y 3 4X3 − 12XY 2 0

0 0 1




det−→ 16(X2 + Y 2)3

The singular set of this diffeomorphism is the Z-axis X = Y = 0.

6.4.4 Covering Equations

These are obtained from the inverse of the Jacobian. Specifically

d

dt





X
Y
Z



 =











4X3 − 12XY 2

16ρ6

12X2Y − 4Y 3

16ρ6
0

−12X2Y + 4Y 4

16ρ6

4X3 − 12XY 2

16ρ6
0

0 0 1





















u̇

v̇

ẇ











where ρ2 = X2 + Y 2. These relations have been implemented in Section 6.2 to
construct the covering equations of the Rössler, proto-Lorenz, and proto-Burke and
Shaw equations with C4 symmetry.
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6.4.5 Topological Index

Since the rotation axis is once again the singular set, the topological index for C4-
invariant covers has identical properties as the topological index for C3-invariant
covers. Recall that the topological index applies to the image dynamical system and
the rotation axis of the symmetry group. Two four-fold covers of the Rössler strange
attractor with topological index (n0, n1) = (0, 1) and (1,1) are shown in Fig. 6.10(a)
and 6.10(b).

6.4.6 Covering Branched Manifolds

Branched manifolds for the covers with topological index (n0, n1) = (0, 1) and
(1, 1), shown in Fig. 6.10, are shown in Fig. 6.11.

6.4.7 Symmetry-Adapted Labeling

If the image strange attractor, or its template, has P branches A, B, . . . , P , then
its four-fold cover has 4P branches. A partial symmetry-adapted labeling scheme
involves symbols A(i,∗), B(i,∗), . . . , P(i,∗), where i = 0, 1, 2, 3 labels the four group
operationsγ0 = I, γ1 = γ, γ2, γ3. The unspecified labels ∗ indicate which of the four
regions of the space the branchA(i,∗), B(i,∗), . . . , P(i,∗) flows into. This information
is provided by the topological index.

For the Smale horseshoe template with branches 0 and 1 labeled by their local
torsion and topological index (n0, n1) = (0, 1), the eight branches in the four-fold
cover are

0(0,0) 0(1,1) 0(2,2) 0(3,3)

1(0,1) 1(1,2) 1(2,3) 1(3,0)

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2
X

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

Y

(a) (n1, n2) = (0, 1)

-1,5 -1 -0,5 0 0,5 1 1,5
X

-2

-1

0

1

2

Y

(b) (n1, n2) = (1, 1)

Fig. 6.10 Four-fold covers of the Rössler equations.
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(a) (n0, n1) = (0, 1) (b) (n0, n1) = (1, 1)

Fig. 6.11 Branched manifolds for two four-fold covers of the Rössler system shown in Fig.
6.10.

For the inverse horseshoe with branches 1 and 2 and topological index (n1, n2) =
(1, 2) the eight branches are

1(0,1) 1(1,2) 1(2,3) 1(3,0)

2(0,2) 2(1,3) 2(2,0) 2(3,1)

6.4.8 Transition Matrices

In Table 6.2 we present the transition matrices for the four-fold covers of the horseshoe
branched manifold with topological index (n0, n1) = (0, 1) and the reverse horseshoe
with topological index (n1, n2) = (1, 2).

6.4.9 Periodic Orbits

Covers of periodic orbits are constructed using the algorithm presented in Section
6.3.9 [35]. The three period-four orbits 1000, 1001, and 1011 lift to orbits in the
cover with (n0, n1) = (0, 1) as follows:

1000
lifts to−→ 1(01) 0(11) 0(11) 0(11) 1(12) 0(22) 0(22) 0(22)

1(23) 0(33) 0(33) 0(33) 1(30) 0(00) 0(00) 0(00)

1001
lifts to−→

1(01) 0(11) 0(11) 1(12) 1(23) 0(33) 0(33) 1(30)

1(12) 0(22) 0(22) 1(23) 1(30) 0(00) 0(00) 1(31)

1011
lifts to−→ 1(01) 0(11) 1(12) 1(23) 1(30) 0(00) 1(01) 1(02)

1(23) 0(33) 1(30) 1(01) 1(12) 0(22) 1(23) 1(30)



124 THREE-FOLD AND FOUR-FOLD COVERS

Table 6.2 The symmetry-adapted labeling scheme leads directly to transition matrices. Left:
Transition matrix for the 4-fold cover of the horseshoe with topological index (n0 , n1) = (0, 1).
Right: Transition matrix for the 4-fold cover of the reverse horseshoe with topological index
(n1, n2) = (1, 2).

I

C1
4

C2
4

C3
4

I C4 C2
4 C3

4

00 10 01 11 02 12 03 13

00 1 1 0 0 0 0 0 0
10 0 0 1 1 0 0 0 0

01 0 0 1 1 0 0 0 0
11 0 0 0 0 1 1 0 0

02 0 0 0 0 1 1 0 0
12 0 0 0 0 0 0 1 1

03 0 0 0 0 0 0 1 1
13 1 1 0 0 0 0 0 0

I C4 C2
4 C3

4

10 20 11 21 12 22 13 23

10 0 0 1 1 0 0 0 0
20 0 0 0 0 1 1 0 0

11 0 0 0 0 1 1 0 0
21 0 0 0 0 0 0 1 1

12 0 0 0 0 0 0 1 1
22 1 1 0 0 0 0 0 0

13 1 1 0 0 0 0 0 0
23 0 0 1 1 0 0 0 0

The period-4 node 1000 lifts to a connected period 4×4orbit. Its partner, the period-4
saddle 1001, lifts to two asymmetric period 4×2 orbits. The orbit 1011 in the primary
cascade lifts to a single connected period 4× 4 orbit.

In Fig. 6.12 we show lifts of the four orbits 1, 10, 100, and 101 to a four-fold cover
with index (n0, n1) = (0, 1). The three orbits 1, 10, and 100 lift to single orbits of
four times the basic period, while the period-three orbit 101 lifts to a pair of period-six
orbits, only one of which is shown in this figure. In Fig. 6.13 the same four orbits are
lifted to the cover with topological index (n0, n1) = (1, 1). The odd period orbits
lift to orbits of period 4p, while the period-2 orbit 10 lifts to a pair of period-4 orbits,
only one of which is shown.

A similar construction for the reverse horseshoe (1,2) with topological index
(n1, n2) = (1, 2) and a corresponding spectrum of orbits can be carried out. The
fully dressed symbols are

1(0,1) 1(1,2) 1(2,3) 1(3,0)

2(0,2) 2(1,3) 2(2,0) 2(3,1)

The lifts of the corresponding three orbits 1222, 1221, and 1211 are

1222
lifts to−→ 1(01) 2(13) 2(31) 2(13) 1(30) 2(02) 2(20) 2(02)

1(23) 2(31) 2(13) 2(31) 1(12) 2(20) 2(02) 2(20)

1221
lifts to−→

1(01) 2(13) 2(31) 1(12) 1(23) 2(31) 2(13) 1(30)

1(12) 2(20) 2(02) 1(23) 1(30) 2(02) 2(20) 1(31)

1211
lifts to−→ 1(01) 2(13) 1(30) 1(01) 1(12) 2(20) 1(01) 1(02)

1(23) 2(31) 1(12) 1(23) 1(30) 2(02) 1(23) 1(30)
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(b) Period-2 orbit (10)
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(c) Period-3 orbit (101)
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(d) Period-3 orbit (100)

Fig. 6.12 Lifts of four orbits into four-fold covers of Rössler system with topological index
(n0, n1) = (0, 1).
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(b) Period-2 orbit (10)

X

Y

(c) Period-3 orbit (101)
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Y

(d) Period-3 orbit (100)

Fig. 6.13 Lifts of the same four orbits into four-fold covers of Rössler system with topological
index (n0, n1) = (1, 1). The orbit in (b) has one symmetry-related partner that is not shown.
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The node 1222 lifts to a period-16 orbit, its partner saddle 1221 lifts to two period-8
orbits, and the period-4 orbit 1211 in the reverse cascade lifts to a period-16 orbit.

6.4.10 Linking Numbers

If P and Q are orbits of periods p and q in the image, their covers P̄ and Q̄ are
described by 4p and 4q symbols. P̄ may consist of

1. One long connected orbit of period 4p
2. Two disconnected orbits of period 2p = ∪2

i=1P̄i

3. Four disconnected orbits of period p = ∪4
i=1P̄i

If P̄ and Q̄ are connected,

Link(P̄ , Q̄) = 4Link(P,Q)

If Q̄ is connected and P̄ is disjoint P̄ = ∪2 or 4
i=1 P̄i, then

Link(∪P̄i, Q̄) =
∑

i=1

Link(P̄i, Q̄)

If P̄ has two components, then for each

Link(P̄i, Q̄) = 2Link(P,Q) i = 1, 2

If P̄ has four components,

Link(P̄i, Q̄) = Link(P,Q) i = 1, 2, 3, 4

In the more general case

Link(P̄ , Q̄) =

2 or 4∑

i=1

2 or 4∑

j=1

Link(P̄i, Q̄j) = 4Link(P,Q)

In Fig. 6.14 we show the link of lifts of the period-one and -two orbits 1, 10 in
the Rössler attractor to covers with index (n0, n1) = (0, 1) and (1,1). In the Rössler
attractor Link(1, 10) = 1. In the cover with (n0, n1) = (0, 1) the two orbits 1 and
10 lift to two orbits of periods 4 and 8. These two orbits have linking number equal
to 4. In the cover with (n0, n1) = (1, 1) the orbit 1 lifts to a period-four orbit while
the orbit 10 lifts to a pair of period-four orbits. Each of the two period-four lifts of
10 has linking number equal to 2 with the period-four lift of 1.

6.4.11 Poincaré Sections and First-Return Maps

The return maps for the Smale horseshoe branched manifold and its four-fold cover
with C4 symmetry and topological index (n0, n1) = (0, 1) are shown in Fig. 6.15(a)
and Fig. 6.15(c). For the reverse horseshoe and its four-fold cover with topological
index (n1, n2) = (1, 2) they are shown in Fig. 6.15(b) and Fig. 6.15(d).
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Fig. 6.14 Links of orbits in four-fold covers of the Rössler system.
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(c) Four-fold cover of (a) with index (0, 1)
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(d) Four-fold cover of (b) with index
(1, 2)

Fig. 6.15 First-return map of (a) the horseshoe and (b) reverse horseshoe. (c) First-return
map of the four-fold cover for the Rössler attractor with topological index (n0, n1) = (0, 1).
(d) First return map for the four-fold cover of a reverse horseshoe with topological index (1, 2).
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6.5 COVER COMPARISONS

In this section we compare the dynamical and the topological properties of the three
image dynamical systems that are discussed in Section 6.1. For each, three types of
comparisons are made.

1. We compare two-fold, three-fold, and four-fold covers with two different topo-
logical indices.

2. We compare lifts of the period-1 orbit, the period-2 orbit and the two period-3
orbits into covers with Cn symmetry, with n = 2, 3, 4.

3. We compare links of lifts of the period-1 and period-2 orbits.

6.5.1 Rössler System

The Rössler equations, and their n-fold covers, are given in Section 6.2, and for
n = 3, 4 in Sections 6.3, 6.4.

6.5.1.1 Cover Attractors Fig. 6.16 displays strange attractors that are two-fold,
three-fold, and four-fold covers of the Rössler attractor. The covers are equivariant
under Cn. The topological indices are (0, 1) (left column) and (1, 1) (right column).

6.5.1.2 Lifts of Low Period Orbits Lifts of the low period orbits 1, 10, 101,
100 into covers equivariant under Cn with topological index (n0, n1) = (0, 1) are
shown in Fig. 6.17. The same orbits, lifted into covers with index (n0, n1) = (1, 1)
are shown in Fig. 6.18. In both figures the orbits 1, 10, 101, and 100 are shown in
the left hand column. Their lifts to two-fold covers, three-fold covers, and four-fold
covers are shown in the succeeding columns.

In Cn equivariant covers of the Rössler attractor, lifts of orbits of period p have
a total of pn = p|Cn| symbols. The lift may be a single connected symmetric orbit
of period np, it may consist of n symmetry-related copies of an asymmetric period
p orbit, or may be any allowed intermediate case. The lifts of the orbits 1, 10, 101,
100, in the lift with index (n0, n1) = (0, 1) have minimal periods

Image Period Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
10 2 4 6 8
101 3 3 9 6
100 3 6 9 12

The lifts of these same orbits into the cover with index (n0, n1) = (1, 1) have periods
Image Period Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
10 2 2 6 4
101 3 6 3 12
100 3 6 3 12
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Fig. 6.16 Two-, three-, and four-fold covers of the Rössler equations with topological indices
(n0, n1) = (0,1) and (1,1).

6.5.1.3 Links of Lifts In the Rössler attractor

Link (1, 01) = 1

The lifts of these orbits into n-fold covers, n = 2, 3, 4, with topological indices
(n0, n1) = (0, 1) and (1, 1), are shown in Fig. 6.19. The links of these lifts can be
determined by inspection of these projections.
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Fig. 6.17 Periodic orbits for the Rössler system and its different covers with indices
(n0, n1) = (0, 1).
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Fig. 6.18 Periodic orbits of the Rössler system and its different covers with indices
(n0, n1) = (1, 1). When more than one cover orbit exists, only one is shown.
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Fig. 6.19 Links of orbits that cover 1 and 10 in two-, three-, and four-fold covers of the
Rössler system. Top: linking numbers are 2, 3, 4. Bottom: 1, 3, 2.

In the case with index (0, 1) the image orbit 1 lifts to a period-2 orbit in the two-fold
cover, a period-3 orbit in the three-fold cover, and a period-4 orbit in the four-fold
cover. The orbit 10 of period-2 lifts to orbits of periods 4, 6, and 8, respectively.
The linking numbers of the lifted orbits are 2, 3, and 4, as can be confirmed directly
by counting crossings. Things are slightly different in the covers with topological
index (1,1). In the two-fold cover 1 and 10 both lift to period-two orbits with linking
number 1. In the three-fold cover 1 and 10 lift to orbits of periods 3 and 6. The
linking number of these two covering orbits is 3. However, the orbit 10 lifts to two
disconnected orbits of period-4. One of these orbits is shown in Fig. 6.17. The linking
number of this orbit with the period 4 lift of the image orbit 1 is 2 = 1

2 × 4, as can be
verified directly by counting crossings.

6.5.2 Proto–Lorenz System

The proto-Lorenz equations, and their n-fold covers, are given in Section 6.2. We
remark that one of the two-fold covers of the proto-Lorenz equations is the orig-
inal Lorenz system. However, the proto-Lorenz equations have alternative two-
fold covers, differing by the equivariance group (RZ → P) and topological index
(n0, n1) = (0, 1) → (1, 1). One of the double covers of the original Lorenz sys-
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Fig. 6.20 Two-, three-, and four-fold covers of the proto-Lorenz equations.

tem is one of the four-fold covers of the proto-Lorenz system. Again, both have a
spectrum of inequivalent covers. We finally remark that “the” three-fold cover of the
proto-Lorenz system can be regarded as a “ 3

2” cover of the original Lorenz system.

6.5.2.1 Cover Attractors Fig. 6.20 displays strange attractors that are two-fold,
three-fold, and four-fold covers of the proto-Lorenz attractor. The covers are equiv-
ariant under Cn. Their topological indices are (n0, n1) = (0, 1) (top row) and
(1,1) (bottom row). The covering attractor with C2 symmetry and topological in-
dex (n0, n1) = (0, 1) is the original Lorenz attractor.

6.5.2.2 Lifts of Low Period Orbits Lifts of the orbits up to period 3 into at-
tractors that cover the proto-Lorenz attractor with Cn symmetries are shown in Figs.
6.21 and 6.22. The orbits shown in Fig. 6.21 are into a cover with index (0, 1); those
in Fig. 6.22 are into a cover with index (1, 1).

The periods of the orbits in the cover (0, 1) are

Image Period Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
10 2 4 6 8
101 3 3 9 6
100 3 6 9 12
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Fig. 6.21 Periodic orbits for the proto-Lorenz system and its different covers with indices
(n0, n1) = (0, 1).

The image orbit 101 lifts to a pair of period-6 orbits in the four-fold cover. The pair is
symmetry-related. Only one is shown in Fig. 6.21. In Fig. 6.22 we show lifts of the
same four low period orbits to covers of the proto-Lorenz attractor with topological
index (n0, n1) = (1, 1). The periods of the covering orbits are

Image Period Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
10 2 2 6 4
101 3 6 3 12
100 3 6 3 12

In this case the four-fold lift of 10 consists of two disconnected, symmetry-related
period-four orbits. There are three symmetry-related three-fold covers of 101 and
100, all of period three.

6.5.2.3 Links of Lifts Links of the lifts of the orbits 1 and 10 in the proto-Lorenz
system are shown in Fig. 6.23. The lifts are into covers with Cn symmetry, n = 2, 3, 4
and topological indices (0, 1) and (1, 1).

In Fig. 6.23 we show links of the lifts of the two orbits 1, 10 in the proto-
Lorenz attractor. The links are shown in the two-fold, three-fold, and four-fold
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Fig. 6.22 Periodic orbits for the proto-Lorenz system and its different covers with indices
(n0, n1) = (1, 1).

covers with topological index (n0, n1) = (0, 1) and (1, 1). In the cover with index
(n0, n1) = (0, 1), the orbit 1 lifts to orbits of periods 2, 3, and 4 (respectively) and
the orbit 10 lifts to orbits of periods 4, 6, and 8. The linking numbers of the lifts are
therefore

Link(1̄, 10) = n× Link(1, 10)

where n = 2, 3, 4 for two-fold, three-fold, and four-fold lifts. Similar results hold
for the two-fold and three-fold lifts of 1, 10 to covers with index (n0, n1) = (1, 1).
However, in this case the period-2 orbit 10 lifts to two asymmetric orbits of period-4
in the four-fold cover. The linking number of the period-4 lifts of 10 with the lift of 1
is therefore 2. This can be verified by direct counting of the signed crossings in Fig.
6.23.

6.5.3 Proto–Burke and Shaw System

The proto–Burke and Shaw equations and their n-fold covers are given in Section 6.2.
As for the proto-Lorenz equations, one of the two-fold covers of the proto–Burke and
Shaw equations is the original Burke and Shaw set of equations.

6.5.3.1 Cover Attractors Fig. 6.24 displays strange attractors that are two-fold,
three-fold, and four-fold covers of the proto–Burke and Shaw attractor. The covers are
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Fig. 6.23 Link of orbits that cover 1 and 10 in two-, three-, and four-fold covers of the
proto-Lorenz system.

equivariant under Cn. Their topological indices are (n1, n2) = (1, 0) (top row) and
(1, 1) (bottom row). The original covering attractor withC2 symmetry and topological
index (n1, n2) = (1, 1) is essentially the original Burke and Shaw attractor.

6.5.3.2 Lifts of Low Period Orbits The proto–Burke and Shaw attractor is
described by a reverse horseshoe branched manifold. The two branches have local
torsion 1 and 2. Therefore, all periodic orbits have the symbol sequences composed
of these two symbols.

Lifts of the orbits up to period 3 into attractors that cover the proto–Burke and
Shaw attractor with Cn symmetry are shown in Figs. 6.25 and 6.26. The orbits shown
in Fig. 6.25 are into a cover with index (n1, n2) = (1, 0); those in Fig. 6.26 are into
a cover with index (1, 1).

The four orbits 1, 12, 121, and 122 from the proto–Burke and Shaw system in the
covers with index (1,0) have periods as follows
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Fig. 6.24 Two-, three-, and four-fold covers of the proto–Burke and Shaw equations.

Image Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
12 2 4 6 8
122 3 6 9 12
121 3 3 9 6

The image orbit 121 lifts to a pair of orbits in both the two-fold cover and the four-fold
cover. In all other cases shown, the image orbit of period-p lifts to a cover orbit of
period np in the n-fold cover.

Lifts of the orbits 1, 12, 121, and 122 to the cover with topological index (n1, n2) =
(1, 1) are shown in Fig. 6.26. These orbits have periods as follows

Image Two-fold cover Three-fold cover Four-fold cover

1 1 2 3 4
12 2 2 6 4
121 3 6 3 12
122 3 6 3 12
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(a) Period-1 orbit 1

(b) Period-2 orbit 12

(c) Period-3 orbit 122

(d) Period-3 orbit 121
Fig. 6.25 Periodic orbits for the proto–Burke and Shaw system and its different covers with
indices (n1, n2) = (1, 0).

Image Two-fold Three-fold Four-fold

(a) Period-1 orbit 1

(b) Period-2 orbit 12

(c) Period-3 orbit 122

(d) Period-3 orbit 121
Fig. 6.26 Periodic orbits for the proto–Burke and Shaw system and its different covers with
indices (n1, n2) = (1, 1).
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Fig. 6.27 Links of orbits that cover 1 and 12 in two-, three-, and four-fold covers of the
proto–Burke and Shaw system.

In this case the period-2 orbit 12 lifts to two orbits of period-2 in the two-fold cover
and two orbits of period-4 in the four-fold cover, while both period-3 orbits lift to
three symmetry-related period-3 orbits in the three-fold cover.

6.5.3.3 Links of Lifts In Fig. 6.27 we show the period-1 orbit 1 and the period-2
orbit 12 in the proto–Burke and Shaw system as well as the lifts of these two orbits
to the two-fold, three-fold, and four-fold covers with topological indices (n1, n2) =
(1, 0) and (n1, n2) = (1, 1). In the image, Link(1, 12) = 1. The orbit 1 lifts
to orbits of period n in the n-fold cover with both indices (n1, n2) = (1, 0) and
(n1, n2) = (1, 1). In the case with (n1, n2) = (1, 0) the period-two orbit lifts to
single orbits in the covers with periods 2n = 4, 6, 8. The linking numbers with the
lifts of 1 are 2, 3, 4, respectively, as seen in the top line of Fig. 6.27. In the cover with
(n1, n2) = (1, 1) the period-2 orbit 12 lifts to: two period-2 orbits in the two-fold
cover; one period-6 orbit in the three-fold cover; two period-4 orbits in the four-fold
cover. The linking numbers of the covering orbits in the two-fold, three-fold, and
four-fold covers 1, 3, and 2, respectively, as seen in the bottom line of Fig. 6.27.
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6.6 COVERS WITH V4 SYMMETRY

6.6.1 The Group

The four-group V4 (“vier gruppe”) has four group operations, the identity, two gen-
erators, σ1 and σ2, and their product σ1σ2. The generators satisfy the relations
I = σ2

1 = σ2
2 = (σ1σ2)

2. This group can be implemented in R
3 as the group of

rotations by π radians about the X-, Y - and Z-axes. The matrix representation of
this group is

I RX(π) RY (π) RZ(π)




1 0 0
0 1 0
0 0 1









+1 0 0
0 −1 0
0 0 −1









−1 0 0
0 +1 0
0 0 −1









−1 0 0
0 −1 0
0 0 +1





Any two distinct rotations can be chosen as σ1 and σ2.

6.6.2 Invariant Polynomials

The invariant polynomials are

p1 = X2, p2 = Y 2, p3 = Z2, p4 = XY Z

The quartic invariants are all products of quadratic invariants. The four basic invariant
polynomials above obey one syzygy

(X2)(Y 2)(Z2)− (XY Z)2 = p1p2p3 − p2
4 = 0

The ring of covariant polynomials consists of 1, X,Y, Z, XY, Y Z,ZX , all cubic
terms except XY Z. The quartic terms in the ring Xn1Y n2Zn3 must have at least
one ni odd.

The generating function for the number of invariants of degree d is

f(X) =
∑

N(d)Xd =
1

4

∑

gi

1

det[I3 − xR(gi)]
=

1 + x3

(1− x2)3

This shows that there are three independent quadratic terms (X2, Y 2, Z2), and the
cubic terms obey the syzygy p2

4 = p1p2p3.

6.6.3 Invariant Coordinates

It is useful to choose an invariant coordinate system as the following linear combina-
tion of the quadratic and cubic invariant polynomials

u1 = 1
2 (X2 − Y 2)

u2 = 1
2 (X2 + Y 2 − 2Z2)

u3 = XY Z
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Every point in R
3(u) has an inverse image in R

3(X). This is obtained from

X = ±
√

Z2 + u2 + u1

Y = ±
√

Z2 + u2 − u1

The value of Z is determined from

u3 =

√

Z2 + u2 + u1

√

Z2 + u2 − u1 Z

This equation has a unique solution, as can easily be seen. If u3 > 0, the solution is
in the positive octant (X,Y, Z) = (+,+,+). If u3 < 0 the solution is in the octant
(+,+,−); The unique solution is mapped into the three additional inverse images by
the three rotation operations

I RX(π) RY (π) RZ(π)
(+ + +) → (+ + +) (+−−) (−+−) (−−+)
(+ +−) → (+ +−) (+−+) (−+ +) (−−−)

The four inverse images in the top line map to the upper half (u3 > 0) of R
3(u). The

bottom line maps to the lower half of this space.

6.6.4 The Jacobian

The Jacobian of the 4→ 1 local diffeomorphism of R
3(X) onto R

3(u) is

∂u
∂X

=





X −Y 0
X Y −2Z
Y Z ZX XY




det−→ 2(X2Y 2 + Y 2Z2 + Z2X2)

The determinant vanishes when any two of the three quadratic invariantsX 2, Y 2, Z2

are zero. Specifically, it is

Y 2 + Z2 = 0 ∪ Z2 +X2 = 0 ∪ X2 + Y 2 = 0
RX (π) RY (π) RZ(π)

In short, it is the union of three rotation axes. The singularities reflect the symmetry
of the group.

6.6.5 Covering Equations

The dynamical equations for a four-fold cover with symmetry group V4 are

d

dt

2

6

6

4

X

Y

Z

3

7

7

5

=
1

2(X2 + Y 2 + Z2)

2

6

6

4

X(Y 2 + 2Z2) XY 2 2Y Z

−Y (X2 + 2Z2) X2Y 2ZX
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7

7
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A strange attractor in the image space can be lifted to a covering attractor by
integrating these equations following the prescription of Fig. 4.9. An initial condition
in the covering space is chosen to initiate the computation. This is needed to evaluate
the ui, which are then used to evaluate the u̇i. We use this procedure to lift the Rössler
attractor to various covers.

6.6.6 Topological Index

The V4-symmetric covers of the Rössler attractor are distinguished by the linking
numbers of the period-one orbits 0, 1 with the three rotation axes. The topological
index is a six-component object:

n = [nx, ny, nz] = [(n0X , n1X), (n0Y , n1Y ), (n0Z , n1Z)].

Branch Axis

0 n0X n0Y n0Z

1 n1X n1Y n1Z

The cover contains four branch lines labeled by the group operations. The transition
matrix is determined by the topological index. The cover may be connected or
disconnected according to the topological index. In Fig. 6.28 we show how the
branch lines are labeled. For the cover with topological index

X Y Z

0 0 0 1
1 0 1 1

(6.10)

the orbit 0 does not circle the X- or Y -axis, but does circles the Z-axis. As a result,
the image of the half branch line 0I under the flow is the branch line inRZ : 0Z , 1Z .
Similarly, the images of the other symbols 0∗under the flow areRZ0∗ = 0RZ∗, 1RZ∗.
The orbit 1 does not circle theX-axis but circles both theY - andZ-axes. The image of
the half branch line 1I under the flow is RYRZ1I = 0RY RZI, 1RY RZI = 0X , 1X .

II

X

Y

X

Y

Z

Fig. 6.28 Labeling of the four different branch lines of the V4 cover of the Rössler system.
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In a similar way the images of the other three symbols are RYRZ1X = (0, 1)I,
RYRZ1Y = (0, 1)Z , RYRZ1Z = (0, 1)Y .

In summary

0I → 0Z , 1Z 1I → 0X , 1X

0X → 0Y , 1Y 1X → 0I, 1I
0Y → 0X , 1X 1Y → 0Z , 1Z

0Z → 0I, 1I 1Z → 0Y , 1Y

6.6.7 Transition Matrix

The transition matrix for this cover is

I

RX

RY

RZ

I RX RY RZ

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0

For this topological index the cover is connected. This can be seen at two levels: every
branch line is visited from an initial condition on any branch line, and the transition
matrix cannot be put in block-diagonal form. Another way to look at this is that it is
possible to find a path from any branch line to any other branch line. The eigenvalues
of this transition matrix are (2, 0, 0, 0, 0, 0, 0,−2). The topological entropy is log 2.

6.6.8 Branched Manifold

The Rössler attractor can be lifted to a cover with V4 symmetry and index (6.10) by
placing the rotation axis as shown in Fig. 6.29. The cover branched manifold has V4

symmetry. It is difficult to represent this branched manifold in planar projection. For
this reason a topologically accurate distortion is presented in Fig. 6.30.

6.6.9 Another Cover

In a different case, we choose topological index

X Y Z

0 0 0 1
1 0 0 0
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For this index, the transition matrix is

I

RX

RY

RZ

I RX RY RZ

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0
1 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0

0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1

This cover is disconnected. The branch lines I, Z are connected by the transition
matrix. The branch lines X and Y are also connected. The two pairs of branch lines
(I,RZ) and (RX ,RY ) are disconnected from each other. These two components
are equivariant underRZ(π). They are mapped into each other byRX andRY.

6.6.10 Comparison of Attractors

Attractors with two different topological indices are shown in three different projec-
tions in Fig. 6.31. The attractor shown in Fig. 6.31(a) is disconnected. It is the V4

equivariant cover of the Rössler attractor with y displaced to y − 1. This component
is equivariant under the subgroup {I, RX(π)} and mapped into its symmetric partner
by the two group operations {RY , RZ}. The attractor in Fig. 6.31(b) consists of one
connected component that is equivariant under V4. It is the V4 equivariant cover of
the Rössler attractor with y displaced to y − 1 and z displaced to z − 1.

The time series for the three coordinates X(t), Y (t), Z(t) for the latter attractor
are shown in Fig. 6.32.

Z

X

Y

Fig. 6.29 Configuration of the rotation axes in the image space for theV4 cover of the Rössler
system, with index (6.10).
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RZ

RZ

I
R

RY

X

Fig. 6.30 Branched manifold of the V4 cover of the Rössler system with index (6.10).

Periodic orbits in the image can lifted in the cover following the prescription
provided in Fig. 4.9.

The period-3 saddle-node pair 100, 101 in the image, shown in Fig. 6.33, lift to
orbits in the V4 equivariant cover with topological index (6.10) that are shown in Fig.
6.34. The symbolic dynamics of the lifted orbits are

100→
1(I,Rx)0(Rx,Ry)0(Ry,Rx)1(Rx,I)0(I,Rz)0(Rz,I)

1(Ry,Rz)0(Rz,I)0(I,Rz)1(Rz,Ry)0(Ry,Rx)0(Rx,Ry)

101→
1(I,Rx)0(Rx,Ry)1(Ry ,Rz)1(Rz,Ry)0(Ry ,Rx)0(Rx,I)

1(Rx,Ry)0(Ry ,Rx)1(Rx,Ry)1(Ry,Rz)0(Rz,I)1(I,Rx)

Each period-3 orbit in the image lifts to a pair of symmetry related orbits in the cover.
The two lifts of 100 are invariant under {I, Rx}while the two lifts of 101 are invariant
under a different symmetry subgroup {I, Rz}.

6.7 NONCOMMUTATIVITY OF LIFTS

We have until now described covers of image dynamical systems without symmetry. It
is possible to construct covers of image dynamical systems with symmetry—systems
that are already covers of systems without (or with less) symmetry. This raises the
question: Suppose an image dynamical system equivariant under G1 is lifted to a
cover equivariant under G2. Do we recover the same dynamics if the order of the
groups G1 and G2 is reversed? We show that the answer is “No” even in the simplest
case where the two equivariance groups are equal, G1 = RZ(π), G2 = RZ(π). The
reason is that a cover is determined by two input pieces of data: a symmetry group G
and an index.
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(a) Two disconnected attractors coexist (b) A single connected attractor
Fig. 6.31 V4 equivariant cover of the Rössler attractor (a = 0.420) for two different dis-
placements of the rotation axes. Case (a) y 7→ y − 1. Case (b) y 7→ y − 1 and z 7→ z + 1.
The rotation axis is located in the branch 0 of the image attractor.
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Fig. 6.32 The time series for the connected V4 equivariant cover of the Rössler attractor
shown in Fig. 6.31(b).
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(101)
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Fig. 6.33 Period-3 orbits embedded within the Rössler attractor. The rotation axis is located
between them. Thus the orbits are organized in a different way in the cover space R

3(X, Y, Z).

(a) (100) (b) (101)
Fig. 6.34 Covers of the period-3 orbits extracted from the Rössler system for a = 0.432.
Pairs of periodic orbits are shown in the X-Z plane projection. The V4 equivariant cover is
shown in Fig. 6.31(b).

Two topologically inequivalent lifts of the proto-Lorenz system are shown in Fig.
6.35(a) and (b). Since they are two-fold covers of a system with one branch line, both
have two branch lines. They are labeled l and r. Each has two parts labeled 0 and 1.
These labels identify branches in the image branched manifold. The two lifts differ
by their topological index. The 2× 2 transition matrix for the two branch image and
its two lifts to theRZ(π) equivariant covers with indices (n0, n1) = (0, 1) and (1,1)
are

0 1

0 1 1
1 1 1
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l r
0 1 0 1

0 1 1 0 0
1 0 0 1 1
0 0 0 1 1
1 1 1 0 0

l r
0 1 0 1

0 0 0 1 1
1 0 0 1 1
0 1 1 0 0
1 1 1 0 0

Two RZ(π) equivariant double covers of the attractor shown in Fig. 6.35(a) are
now constructed. In one, the rotation axis is taken in the hole near the branch line
r. This double cover is shown in Fig. 6.35(c). In this double cover the two branch
lines l0, l1 cover branch line l in the image in Fig. 6.35(a). Similarly, the two branch
lines r0, r1 cover in r in Fig. 6.35(a). The second double cover of the attractor in
Fig. 6.35(a) is obtained using the same symmetry axis used to lift the proto-Lorenz
attractor to the double cover shown in Fig. 6.35(a). The rotation axis passes through
the origin in theX-Y plane. This double cover is shown in Fig. 6.35(e). Once again,
the two branch lines l0, l1 cover l and r0, r1 cover r. The 4× 4 transition matrix for
the attractor in Fig. 6.35(a) lifts to the two 8× 8 matrices for the attractors shown in
Fig. 6.35(c) and (e) as follows

l r

0 1 1 0 0
1 0 0 1 1
0 0 0 1 1
1 1 1 0 0
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Axis in lobe (c) Axis at origin (e)

l0 r0 l1 r1
0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0

l0 r0 l1 r1
0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0

Branched manifolds for the two attractors shown in Fig. 6.35(c) and (e) are pre-
sented in Fig. 6.36. These branched manifolds are clearly inequivalent.

Two double covers of the attractor shown in Fig. 6.35(b) can be constructed by
similar methods. The attractor has two branch lines, again labeled l, r. Its two double
covers both have four branch lines, again labeled l0, l1 and r0, r1. The two double
covers of Fig. 6.35(b) that we consider are obtained with a rotation axis at the origin
(Fig. 6.35(d)) and with the axis in the attractor (Fig. 6.35(f)). The 4 × 4 transition
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matrix for the attractor in Fig. 6.35(b) lifts to the two 8× 8 transition matrices for its
double covers as follows

l r
0 1 0 1

0 0 0 1 1
1 0 0 1 1
0 1 1 0 0
1 1 1 0 0
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Axis in lobe (f)Axis at origin (d)

l0 r0 l1 r1
0 1 0 1 0 1 0 1

0 0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0

l0 r0 l1 r1
0 1 0 1 0 1 0 1

0 0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0

These four 8 × 8 transition matrices are all inequivalent. There is no reordering
of the row and columns, or branch labels, that maps one into any of the others. The
simplest way to see this is to compute a spectrum of invariants for these matrices. A
useful spectrum is the trace of various power of these matrices: TrMk. We provide
the traces for the two 4× 4 matrices, and four 8× 8 matrices, of the attractors shown
in Fig. 6.35 as well as for the 2× 2 Smale horseshoe matrix, up to k = 8:

Attractor 1 2 3 4 5 6 7 8

Smale horseshoe 2 4 8 16 32 64 128 256
Fig. 6.35(a) 2 4 8 16 32 64 128 256
Fig. 6.35(b) 0 8 0 32 0 128 0 512

Fig. 6.35(c) 2 4 8 16 32 64 128 256
Fig. 6.35(d) 4 4 4 8 24 64 144 288
Fig. 6.35(e) 0 0 0 64 0 0 0 1024
Fig. 6.35(f) 0 8 0 32 0 128 0 512

It is clear from this result that the two double covers are inequivalent and the four
covers of covers are all inequivalent. This test does not distinguish between Fig.
6.35(a) and Fig. 6.35(c). Since Fig. 6.35(a) is a double cover and Fig. 6.35(c) is a
4-fold cover,the two cannot be globally equivalent. Similarly for Fig. 6.35(b) and
Fig. 6.35(f).
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Fig. 6.35 Covers of covers of the proto-Lorenz equations. Double covers of the proto-
Lorenz equations with index (n0, n1) = (0, 1) (a) and (n0, n1) = (1, 1) (b). (c), (e): Two
inequivalent double covers of (a). (d), (f): Two inequivalent double covers of (b). All six
attractors are topologically inequivalent.



150 THREE-FOLD AND FOUR-FOLD COVERS

(a) G = RZ(π) but the symmetry axis passes through one of the foci.

(b) The four-fold cover of the Smale horseshoe branched manifold
is a double cover of its double cover, the Lorenz branched manifold.
The symmetry axis passes through the origin.

Fig. 6.36 Two inequivalent covers of Lorenz dynamics. (a) Branched manifold for the
strange attractor of Fig. 6.35(c) while (b) is the branched manifold for the strange attractor of
Fig. 6.35(e).

Remark: The four 4-fold covers can be distinguished by the bounding tori that
surround them (cf. Chapter 15). We present here the genus and labeling of the
bounding tori that enclose each of these four branched manifolds.

Figure Genus Label

Fig. 6.35(c) 5 ABCB
Fig. 6.35(d) 5 ABCD
Fig. 6.35(e) 1
Fig. 6.35(f) 3 AB

The matrix invariants TrMk are not useless. They provide information about the
number of distinct orbits of period p (p symbols) that can exist in an attractor. In brief,
TrMk is the number of initial conditions that return to themselves after k forward
iterations. For example, for k = 4 there are 16 = 24 = TrM4 initial conditions
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in the horseshoe template that are closed after 4 periods. These 16 initial conditions
include the two initial conditions for the two period-one orbits 0, 1 and the two initial
conditions 01, 10 for the single period two orbit. This leaves 12 = 16−(2×1+1×2)
initial conditions that return to themselves in four periods. There are distributed
among the 12/4 = 3 period-4 orbits. If n(p) is the number of orbits of smallest
period p, then

p× n(p) = TrMp −




∑

k|p
k × n(k)





Here k|pmeans “k divides p” (evenly). This recursion is used to compute the number
of orbits of period p (≤ 8) for the horseshoe template, its two double covers shown
in Fig. 6.35(a) and (b), and the two double covers ((c) and (e) of (a), (d) and (f) of
(b)) of these double covers.

Attractor 1 2 3 4 5 6 7 8

Smale horseshoe 2 1 2 3 6 9 18 30

Fig. 6.35(a) 2 1 2 3 6 9 18 30
Fig. 6.35(b) 0 4 0 6 0 20 0 60

Fig. 6.35(c) 2 1 2 3 6 9 18 30
Fig. 6.35(d) 4 0 0 1 4 10 20 35
Fig. 6.35(e) 0 0 0 16 0 0 0 120
Fig. 6.35(f) 0 4 0 6 0 20 0 60

6.8 MATRIX INDEX FOR LIFTS OF PERIODIC ORBITS

It is possible to develop a simple algorithm for computing the period of the lift of
any image orbit into a G-equivariant cover with any index. The magic ingredients are
group theory and matrix multiplication. This algorithm facilitated construction of the
periodic tables in Sections 6.5.1.2, 6.5.2.2, and 6.5.3.2.

Group operations play two roles in describing orbits in covering dynamical systems
with symmetry.

1. They label distinct but equivalent regions in the phase space for the covering
dynamical system. For three-dimensional dynamical systems, they label the
branch lines in the symmetry-related parts of the phase space.

2. They describe the destination of the flow once it leaves a branch line.

These two functions represent symmetry and dynamics in a very real way.
The two functions are illustrated for 3-fold covers in Section 6.3.9 and for 4-fold

covers in Section 6.4.9. In the cases studied in these sections the image branched
manifold had one branch line and two branches. In order to raise an orbit in the
image attractor to an orbit in the covering attractor, each symbol in the image orbit
was assigned two indices. Both indices were group operations. The first group
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operation identified which of the equivalent domains of the phase space acted as the
source for the flow. The second group operation indicated the destination of the flow.
To be specific, the first image orbit described in Section 6.3.9 was 1011, and was
lifted to a 3-fold cover with topological index (n0, n1) = (0, 1). The symbol 0 (in the
image) picked up indices 0(gi,gi) in the cover and the symbol 1 in the image picked
up indices 1(gi,gi+1) in the cover. The symbols in the image dynamical system are
“dressed” when lifted to symbols for dynamics in the cover.

Construction of orbits in the cover amounts to matrix multiplication. This has a
simple interpretation. If the flow begins from the half branch line labeled 1 in the
region of phase space identified by group operation g1, it must flow to the region of
phase space identified by group label g2 (1(g1,g2) or 1(1,2)). The flow next emanates
from the half branch line (0 or 1) labeled with group index g2, and flows where
directed:

1(1,2)0(2,2) or 1(1,2)1(2,0) (6.11)

In this way the construction of a covering orbit reduces to matrix multiplication. The
algorithm is as follows.

1. Write down the symbol name for the image orbit of period p.

2. Replace each symbol by its “dressed” counterpart: a |G| × |G| matrix. The
|G|× |G|matrix for each symbol in the image is determined by the index of the
cover.

3. Multiply the matrices.

If the trace of the product of these p |G| × |G|matrices is n > 0, there are n covering
orbits of period p.

If the trace of the product is zero, square this matrix and take its trace. If this trace
is n > 0, there are 1

2n periodic orbits of period 2p. The enumeration of the orbit
spectrum continues in this fashion (cube, trace, divide by 3, etc.) until all periodic
orbits have been identified. All orbits have been identified when the total symbol
count is |G|p.

Example 1. For the 3-fold cover of the Smale horseshoe with index (n0, n1) =
(0, 1) (Section 6.3.9) the dressing is

0 −→





1 0 0
0 1 0
0 0 1



 1 −→





0 1 0
0 0 1
1 0 0



 (6.12)

The row and column labels for these 3 × 3 matrices are the three group operations
g0, g1, g2.
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The matrix describing the lift of 1011 is the appropriate product of the two dressed
matrices above:

1011 →





0 1 0
0 0 1
1 0 0









1 0 0
0 1 0
0 0 1









0 1 0
0 0 1
1 0 0









0 1 0
0 0 1
1 0 0





↓ ↓ (6.13)

M(1011) =





1 0 0
0 1 0
0 0 1





Since the trace of M(1011) is 3, the image orbit lifts to three closed period-4 orbits in
the cover. For the orbit 1001 we find by similar arguments

1001 →





0 1 0
0 0 1
1 0 0









1 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 1









0 1 0
0 0 1
1 0 0





↓ ↓ (6.14)

M(1001) =





0 0 1
1 0 0
0 1 0





The trace ofM(1001) is zero, so there are no period-four orbits in the lift of this orbit.
Further, the square of this matrix is also traceless, while the cube has trace = 3. Thus,
there are no closed period-8 orbits covering 1001. There is 1 = 1

3 × 3 closed orbit of
period 12 that covers 1001 in this lift. There are no other orbits covering 1001, since
12 = |C3| × p = 3× 4.

Example 2. For the 4-fold cover of the reverse horseshoe with topological index
(n1, n2) = (1, 2) (Section 6.4.9), the dressing is

1 −→







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







2 −→







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







(6.15)
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The products of the dressed symbols for the three period-4 orbits 1222, 1221, and
1211 are

1222 1221 1211
↓ ↓ ↓

M(1222) M(1221) M(1211)

‖ ‖ ‖






0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0













0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0













0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







(6.16)

The 4×4 matrixM(1222) representing the lift of 1222 is traceless. Further, it is cyclic,
so that its square and cube are also traceless, while its fourth power is the identity
matrix. As a result, in this cover the period-4 image orbit 1222 has no covering orbits
of periods 4, 8, or 12, and 1 = 1

4 × trM4
(1222) covering orbit of period 4× 4 = 16.

The same is true, word for word, of the orbit 1211.
For the image orbit 1221 the matrixM(1221) is also traceless. However, its square

is the identity matrix, so that there are 2 = 1
2 × trM2

(1221) covering orbits of period 8.
One of these orbits has an initial condition in region g0 that flows to region g2 after
four periods, and returns to region g0 after another 4 periods. The second period-8
orbit oscillates between regions identified by g1 and g3 every four periods. This
information can be read off directly from the matrix M(1221).
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7.1 REVIEW OF INTERMITTENCY

Intermittent behavior has been observed under a wide variety of circumstances. Typ-
ically, the following behavior is observed. The physical system behaves in a regular,
predictable way for a reasonable period of time. Over a rather short period of time,
the system departs from regularity and may even behave in a very irregular, highly
unpredictable way. Eventually the system returns to the original type of regular be-
havior and the cycle repeats. The durations of the periods of regular and irregular
behaviors are not predictable but the statistics of these time intervals are predictable
and vary smoothly with the control parameters.

Intermittency is intimately associated with the change in stability of a periodic
orbit. It is observed just after an orbit loses its stability and there are no other acces-
sible stable periodic orbits. Three types of intermittency have been identified [101],
depending on how the stable periodic orbit loses its stability. These are described in
terms of the Floquet multiplier of a map related to the dynamics. In particular, they
are related to how the Floquet multiplier crosses from the interior of the unit circle in
the complex plane. They are illustrated in Fig. 7.1 and summarized here:

155
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Type I

Type II

Type III

Fig. 7.1 Intermittency type is determined by how the Floquet multiplier of a periodic orbit
crosses the unit circle boundary.

• Type I: λ→ 1+

• Type II: λ = ρe±iϕ, ρ→ 1+

• Type III: λ→ −1−

In particular, Type I intermittency is associated with the destruction of a stable
node during a saddle-node bifurcation. It is this type of intermittency that concerns
us in this chapter.

7.2 INTERMITTENCY AND SADDLE-NODE BIFURCATIONS

We illustrate the idea of Type I intermittency by using the logistic mapxn+1 = a−x2
n.

Fig. 7.2 is a bifurcation diagram of this map in the neighborhood of the period-
3 window. The saddle-node bifurcation that creates the period-3 saddle-node pair
occurs at a = 7/4. After the bifurcation, the period-3 node is clearly apparent in this
window. It eventually undergoes period-doubling bifurcations to period6, 12, . . . , 3×
2n. What concerns us is what happens before the window, for a < 7/4. The
bifurcation diagram in Fig. 7.2 shows that there is a nonuniform density in the state
variable x.

The density variation is positive in the neighborhood of the emergent period-3
orbits. Not only that, the density variation grows systematically [ρ(x3) ≈ |a−a3|−

1
2 ]

as the control parameter a approaches the bifurcation value a3 = 7/4 from below,
where x3 is any of the three values of x where the degenerate saddle-node pair is
created at a = a3.

The origin of this nonuniform density variation is illustrated in Fig. 7.3. In this
figure we show the third iterate of the logistic map xn+3 = f (3)(xn, a), for a < a3

(Fig. 7.3(a)) and for a > a3 (Fig. 7.3(b)). In Fig. 7.3(b) an initial condition is shown
as it relaxes to the stable period-3 orbit. In Fig. 7.3(a) an initial condition has no
stable periodic orbit to relax to. Instead, it gets trapped for a long time in a thin
channel between f (3)(xn, a) and the diagonal xn+3 = xn. The thinner the channel,
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Fig. 7.2 Bifurcation diagram of the logistic map in the neighborhood of the period-3 window
at a = 7/4.
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(b) After the bifurcation: a > a3

Fig. 7.3 (a) Before the bifurcation an initial condition gets trapped in the neighborhood of
the period-3 orbit for a long time. (b) After the bifurcation an initial condition moves to the
stable period-3 orbit.

the longer the state variable gets trapped in that region. Since the channel width
depends on a < a3 like |a − a3|

1
2 , the time spent in this region behaves like its

reciprocal: T ≈ |a− a3|−
1
2 . And since the time spent in this region of space is like

the (invariant) probability density, we see that the density statistics on the near side
of the saddle-node bifurcation should be nonuniform, with maxima centered around
the three values of x3, and with maximum amplitude behaving like |a− a3|−

1
2 .

There is another useful way to look at the relation across the bifurcation value
a3. On one side, a > a3, there is real pair of orbits: an unstable saddle and a stable
node. We see only the node in the bifurcation diagram in Fig. 7.2. On the other side,
a < a3, there is “an imaginary period-3 orbit pair.” As a→ a3, the “imaginary part”
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of these orbits approaches 0 (cf. Fig. 7.3(a)). The delta-function density for a > a3,
and the nonuniform density spiking around the x3 values as a → a3, are analytic
continuations of each other. To put this in another way, as a decreases below a3 the
two real orbits are killed and only their “ghost orbits” remain. These ghost orbits are
responsible for the intermittency that occurs just before the saddle-node bifurcation.
It is the imminent creation of a stable period-3 orbit that entrains a point in phase
space to the neighborhood of the imaginary period-3 orbit — for a longer and longer
time as a approaches a3.

7.3 INTERMITTENCY IN EQUIVARIANT DYNAMICAL SYSTEMS

Intermittency occurs in flows as well as maps. For example, period-3 intermittency
can be seen in the Rössler attractor just before the saddle-node bifurcation that creates
the period-3 saddle-node pair. The mechanism is the same as that described for maps
in the previous section.

Most of the flows that have been studied are highly dissipative. For such flows
it is rare to have coexisting attractors. For less dissipative attractors the following
possibility exists. For some control parameter value a, the system supports two stable
nodes, n1 and n2 of periods p1 and p2. As a is decreased to a − ε, both nodes are
destroyed in saddle-node bifurcations, and there are no accessible stable periodic
orbits. The system can then exhibit two “intermittency channels.” One channel
is associated with n1, the second with n2. As a point in phase space falls into the
neighborhoodofn1, it follows closely the trajectory ofn1 for a while before departing
for elsewhere. Eventually the wandering point falls into the neighborhood of n1 or
n2 again and is enslaved by that ghost orbit. In effect, the phase space point traces
out the orbits n1 and n2 very clearly in its wanderings.

The problem with this scenario is that it is not easy to find dynamical systems
with coexisting stable periodic orbits that undergo saddle-node bifurcations at nearby
control parameter values.

This is not a significant difficulty for equivariant dynamical systems. Such systems
can exhibit symmetry-related periodic orbits. When they exist, they are guaranteed
to undergo saddle-node bifurcations at the same control parameter values.

Our understanding of equivariant dynamical systems allows us to develop a strat-
egy for studying multichannel intermittency using the degrees of freedom that are
available. These degrees of freedom are

1. Control parameter values. In particular we identify control parameter values
where saddle-node bifurcations of low period orbits occur. Then we move the
control parameters to “ghost-orbit” values.

2. G. This determines the symmetry of the equivariant dynamical system.
3. Topological index. This can be chosen to guarantee specific low period orbits

have multiple distinct covers, and that the strange attractor they occur in is
connected. This will guarantee that coexisting “ghost orbits” are accessible
from each other.
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In the following two sections we apply this strategy in two ways. In Section 7.4
we begin with an equivariant dynamical system—the Lorenz system—and search for
parameter values at which symmetry-related pairs of asymmetric orbits are created in
pairs of saddle-node bifurcations. In Section 7.5 we begin with an image dynamical
system—the Rössler attractor—where the spectrum of saddle-node bifurcations has
long been known. Then we lift to covers with C2, C3, and C4 symmetry and choose
the topological index so that the lifts of the real orbits (and their “ghost” analytic
continuations) are disconnected. Both approaches lead to multichannel intermittency.

7.4 TWO-CHANNEL INTERMITTENCY IN THE LORENZ ATTRACTOR

The Lorenz system [78] is one of the first systems in which a Type I intermittency has
been investigated [83]. Depending on the control parameter values, the attractor is
either fully symmetric, that is, globally unchanged under the action of the symmetry,
or asymmetric. In the latter case, two attractors coexist in the phase space, one being
mapped to the other under the group action. In this case symmetry-related orbits are
not accessible to each other. For this reason, we do not further consider disconnected
attractors.

In the work that follows we explore ranges of control parameter values in which
low period windows exist. These windows are bounded on both sides by chaotic
regions in which the strange attractor exhibits the full symmetry of the equivariance
group.

The first observation of an intermittent behavior was done for (R, σ, b) = (166.1,
10, 8/3). For these control parameter values, a single stable limit cycleLLRR exists
in the periodic window. It is symmetric, that is, left globally unchanged under the
action of the symmetry (Fig. 7.4(a)). Thus, a unique reinjection channel is observed
for the virtual symmetric periodic orbit. In the image system there is one reinjection
channel to the virtual period-2 orbit 10 shown in Fig. 7.4(b).

In the periodic window at R = 100.795 there are two symmetry-related period-3
orbits LLR and RRL (Fig. 7.5) created by simultaneous saddle-node bifurcations
from the virtual orbits. The key point is that the disconnected virtual orbits occur in a
strange attractor (Fig. 7.6) that is globally invariant under the action ofRZ . The two
virtual orbits are accessible to each other, and the trajectory is “arbitrarily” reinjected
into one of the two channels. Consequently, the laminar phases are associated with
a trajectory visiting the neighborhood of either of the two symmetry-related virtual
orbits LLR orRRL. Two different kinds of laminar phase can thus be distinguished
(Fig. 7.7).

Fig. 7.7(a) reproduces the time series of X(t). In one mode (solid curve in
Fig. 7.5) −35 ≤ X(t) ≤ +25, while for the other mode (dashed), by symmetry,
−25 ≤ X(t) ≤ +35. The intersections with a well-chosen plane can also be used
to distinguish the two channels. An intersection plane is shown in Fig. 7.5. The
Z-values are recorded as the trajectory passes through this section with X ∼ −22
and Ẋ < 0. The two reinjection channels appear in the neighborhoods of the (single)
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Fig. 7.4 (a) The period-4 limit cycle LLRR observed in the original phase space
R

3(X, Y, Z) and (b) its image 01 in the image phase space R
3(u, v, w). Parameter values:

(R, σ, b) = (166.1, 10, 8/3).
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Fig. 7.5 The coexisting asymmetric
period-3 limit cycles LLR and RRL gener-
ated by the Lorenz system. The initial condi-
tions are related by the γ-matrix. Parameter
values: (R,σ, b) = (100.795, 10, 8/3).
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Fig. 7.6 Chaotic attractor, globally invari-
ant under the action of the γ-matrix, gener-
ated by the Lorenz system. Chaotic bursts
from the two asymmetric laminar phases
LLR and RRL occur in this symmetric
attractor. Parameter values: (R,σ, b) =
(100.799, 10, 8/3).
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Fig. 7.7 Intermittent behavior with two reinjection channels in the Lorenz system. Parameter
values: (R,σ, b) = (100.799, 10, 8/3). The Poincaré section is shown in Fig. 7.5.
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intersections of the two period-3 orbits with this plane: at Z ≈ 96 (dashed) and
Z ≈ 80 (solid).

When the intermittent behavior is investigated in the image system, the symmetry
properties are modded out and the 2-channel Type I intermittency does not present
any difference with the common Type I intermittency as observed in any system with-
out any symmetry properties. Indeed, a single type of laminar phase is observed as
suggested by the chaotic attractor of the image, which does not have any residual sym-
metry (Fig. 7.8(a)). Both asymmetric orbits of the original phase space R

3(X,Y, Z)
(Fig. 7.5) are mapped to the same period-3 orbit in the image phase space R

3(u, v, w).
The laminar phase is described by a single virtual orbit, 011, which is the image of
both LLR and RRL.

Since in the image system, the stable limit cycle has a period equal to 3, a third-
return map to a Poincaré section has to be computed in the image system (Fig. 7.8(b)).
In such a third-return map, three tangencies to the bisector are clearly identified at
ν ' 1000, 1540, and 3200. They correspond to the three periodic points of the limit
cycle to appear. Note that when the original Lorenz system is investigated, the third-
return map is much more difficult to obtain. A third-return map should present 2× 3
tangencies with the bisector, three points being associated with each asymmetric limit
cycle observed for R = 100.795 (Fig. 7.5).

7.5 INTERMITTENCY IN COVERS OF THE RÖSSLER SYSTEM

We can construct Type I intermittency with n reinjection channels in n-fold covers of
a simple dynamical system [76]. We choose the simplest—the Rössler system. We
construct n-fold covers with rotation symmetry, Cn. We also are free to choose the
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(b) Third-return map

Fig. 7.8 (a) Chaotic attractor generated by the Lorenz system projected to the image system
without any residual symmetry. Parameter values: (R, σ, b) = (100.799, 10, 8/3). (b) Third-
return map to a Poincaré section of the image attractor.



162 MULTICHANNEL INTERMITTENCY

rotation symmetry axis RZ(π): this is equivalent to choosing the topological index
of the cover. In particular this allows us to guarantee that the cover of an orbit of
period p has n components, symmetry related, each of period-p, each accessible from
the other.

7.5.1 Two-Fold Cover

The equations for the two-fold cover of the Rössler system (4.1) are [67]






Ẋ =
1

2ρ2

[
−ρ2Y +X

(
2aY 2 − Z

)
+ µY

]

Ẏ =
1

2ρ2

[
ρ2X + Y

(
2aX2 + Z

)
+ µX

]

Ż = b̃
(
X2 − Y 2 + µ

)
+ Z

(
X2 − Y 2 − c̃+ µ

)

(7.1)

where ρ2 = X2 + Y 2. The chaotic attractor generated by these covering equations
is globally invariant under a rotation symmetry RZ(π) (Fig. 7.9). For (a, b, c) '
(0.4, 2.0, 4.0) it remains connected for µ = 0.0 down to µ = −4.0.

We would like to investigate the Type I intermittency observed for a ≈ 0.4091, just
before the period-3 window. When µ = 0, the rotation axis is located at the origin of
the phase space R

3(u, v, w). The period-3 limit cycle observed in the image Rössler
system is thus “lifted” to a single symmetric period-6 orbit in the 2-fold cover (Fig.
7.10(a)). Since a single stable limit cycle exists, Type I intermittency with a single
channel is observed (Fig. 7.11(a)).

In order to change the number of stable limit cycles which coexist in the covering
phase space for a control parameter value corresponding to a periodic window, it is

(a) µ = 0.0 (b) µ = −1.5

Fig. 7.9 Chaotic attractor generated by the 2-fold cover of the Rössler system. Both attractors
are globally invariant under the rotation RZ(π). (a) µ = 0.0, (b)µ = −1.5. Parameter values:
(a, b, c) = (0.432, 2.0, 4.0).
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Image phase space Cover phase space

(a) µ = 0.0, Nα = 3

(b) µ = −1.5, Nα = 2

(c) µ = −3.0, Nα = 1

(d) µ = −4.5, Nα = 0

Fig. 7.10 Transformation of the period-3 orbits generated by the 2-fold cover of the Rössler
system under the peeling bifurcation when µ is varied. The location of the rotation axis is
designated by the symbol ×. Parameter values: (a, b, c) = (0.4096, 2.0, 4.0).



164 MULTICHANNEL INTERMITTENCY

0 250 500 750 1000 1250 1500
n

-2

-1,75

-1,5

-1,25

-1

-0,75

Y
n

(a) µ = 0.0

0 500 1000 1500 2000
n

-1,5

-1,25

-1

-0,75

-0,5

-0,25

0

Y
n

(b) µ = −1.5

Fig. 7.11 Intersections with the Poincaré section corresponding to the case where one orbit
(a) and two orbits (b) are associated with the period-3 window. The Poincaré sections are
shown in Fig. 7.10(a) and (b). In the first case, intermittency with a single channel is observed.
In the second case, two channels are identified and, consequently, two different laminar phases
are described. Parameter values: (a, b, c) = (0.409109, 2.0, 4.0).

sufficient to displace the rotation axis along the u-axis [35]. Indeed, when the ro-
tation axis intersects the chaotic attractor, the flow of the cover is deformed like the
deformation of an apple skin when the apple is peeled (cf. Fig. 5.9). We now review
what happens to the period-3 orbit when the µ-parameter is progressively decreased
(cf. Section 5.4). When the rotation axis is displaced toward the left side of the u-axis
(µ = −1.5), it intersects a segment of the orbit in the image space R

3(u, v, w). One
revolution of the image periodic orbit does not encircle the rotation axis anymore (Fig.
7.10(b)). We introduce a topological index, Nα, which defines the number of times
the orbit encircles the rotation axis. This index is decreased by one each time the
rotation axis passes through the period-3 image orbit. After the first intersection, the
period-3 image orbit is lifted into a symmetric pair of period-3 orbits (Fig. 7.10(b)).
The topological indexNα of this pair of periodic orbits is equal to 2, as in the image
space.

As µ continues to decrease, the rotation axis cuts the image period-3 orbit a second
time. At µ = −3.0 (Fig. 7.10(c)) Nα = 1 and the period-3 image orbit is lifted
to a single symmetric period-6 covering orbit. Finally, after the third crossing, at
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µ = −4.5 (Fig. 7.10(d)) Nα = 0 and the period-3 image orbit is lifted to a pair of
symmetry-related cover orbits. For slightly smaller µ values the attractor becomes
disconnected, with each component exhibiting a single channel intermittency.

In this sequence, there is a single reinjection channel for µ = 0.0 and µ = −3.0
(Fig. 7.10(a) and (c)) since the covering orbit is connected in a symmetric strange
attractor. There are two reinjection channels at µ = −1.5 since the cover consists of
two disconnected symmetry-related orbits in a symmetric connected attractor. Finally,
there is one reinjection channel (in each attractor) for µ < −4.5, since the cover of
the period-3 orbit consists of two symmetry-related orbits, but the covering attractor
is itself not connected. It consists of two asymmetric symmetry-related attractors,
each containing one of the two symmetry-related orbits. TheX(t) time series for one
(µ = 0.0) and two (µ = −1.5) reinjection channels are shown in Fig. 7.11(a) and (b).

The Poincaré sections for the attractors at µ = 0.0 and µ = −1.5 are shown on
the right in Fig. 7.10(a) and (b). For µ = 0.0, where a single period-6 orbit exists,
it intersects the Poincaré section at three points. This accounts for the three plateaux
in Fig. 7.11(a). For µ = −1.5, the two period-3 orbits each intersect the Poincaré
section once. This is why each plateau in Fig. 7.11(b) indicates a different reinjection
channel.

7.5.2 Three-Fold Cover

A similar process can be observed in the three-fold cover of the centered Rössler
system. The chaotic attractor generated by the three-fold cover of the centered Rössler
system is shown in Fig. 7.12(a) and (b) for two different values of µ.

(a) µ = 0.0 (b) µ = −1.15

Fig. 7.12 Chaotic attractor generated by the 3-fold cover of the Rössler system for (a) µ = 0.0
and (b) µ = −1.15. Parameter values: (a, b, c) = (0.432, 2.0, 4.0).
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When the rotation axis is displaced, the attractor generated by the three-fold cover
is deformed as shown in Fig. 7.12(b). Since this is a three-fold cover, up to three limit
cycles may coexist in the cover space R

3(X,Y, Z) (Fig. 7.13(a)). Depending on the
location of the rotation axis, three period-3 (Fig. 7.13(a)) or one period-9 (Fig. 7.13(b))
limit cycles are observed. In both cases, the limit cycles are embedded in a connected
attractor globally invariant under the rotation symmetry RZ( 2π

3 ). Consequently,
depending on µ, one or three types of laminar phases may be observed. An example
with the three types of laminar phases is shown in Fig. 7.14.

7.5.3 Four-Fold Cover

(a) µ = 0.0 (b) µ = −1.15

Fig. 7.13 At (a, b, c) = (0.4096, 2.0, 4.0) the Rössler system has a stable period-3 orbit.
(a) This is lifted to three coexisting disconnected symmetry-related period-3 orbits for µ = 0.0
and (b) one single symmetric period-9 orbit for µ = −1.15.
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Fig. 7.14 Intersections with the Poincaré section corresponding to the case where three
orbits are associated with the period-3 window. The Poincaré section is shown in Fig. 7.13(a).
Three channels are identified and, consequently, three different laminar phases are described.
Parameter values: (a, b, c) = (0.409109, 2.0, 4.0).
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Fig. 7.15 Chaotic attractor generated by the 4-fold cover of the centered Rössler system with
µ = 0.0. Parameter values: (a, b, c) = (0.432, 2.0, 4.0).

A richer case is obtained with the four-fold cover. The C4-equivariant attractor is
shown in Fig. 7.15 for µ = 0.0. Rather than investigating the period-3 window, it is
more interesting to investigate the period-4 window for a = 0.425. This limit cycle
is encoded by the sequence (1000) in the image space. When µ = 0.0, there are four
coexisting symmetry-related period-4 limit cycles (Fig. 7.16(a)). When the rotation
axis is displaced, peeling bifurcations occur. The topological index is changed, as is
the number of coexisting limit cycles. For instance, after two peeling bifurcations
(µ = −1.15), the topological index is decreased by two and two symmetry-related
period-8 limit cycles coexist in the cover space R

3(X,Y, Z) (Fig. 7.16(b)). After a
third peeling bifurcation (µ = −2.5), the topological index Nα is equal to 1 and a
single symmetric period-16 limit cycle is observed (Fig. 7.16(c)). Thus, depending
on the location of the rotation axis, one, two, or four limit cycles may coexist in the
cover space. Therefore one, two or four types of laminar phases may be observed (Fig.
7.17). In all of these cases, the chaotic bursts occur on a connected strange attractor
that is globally unchanged under the action of the rotation symmetry RZ( 2π

4 ), so
separate ghost orbits are accessible from each other.
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(a) µ = 0.0, Nα = 4
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(b) µ = −1.15, Nα = 2
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(c) µ = −2.50, Nα = 1

Fig. 7.16 At (a, b, c) = (0.425, 2.0, 4.0) the Rössler attractor has a stable period-4 limit
cycle (0001). This is lifted to: (a) four symmetry-related period-4 orbits for µ = 0.0; (b)
two symmetry-related period-8 orbits for µ = −1.15; (c) one symmetric period-16 orbit for
µ = −2.50.
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Fig. 7.17 Intersections with the Poincaré section corresponding to the case where four orbits
(a) and two orbits (b) are associated with the period-4 window. The Poincaré sections are
shown in Fig. 7.16(a) and (b). In the first case, an intermittency with four channels is observed.
In the second case, two channels are identified and, consequently, two different laminar phases
are described. Parameter values: (a, b, c) = (0.42486152.0, 4.0).
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8.1 STRUCTURE OF DYNAMICAL SYSTEMS

There is a general structure theory for dynamical systems—sets of coupled nonlinear
ordinary differential equations—that remains to be worked out. This theory takes the
form of the structure theory that is well known for algebraic systems—in particular,
the structure theory that exists for groups and their representations. Groups may
be nonsemisimple, semisimple, or simple [31]. Representations of groups can be
reducible, fully reducible, or irreducible. We will adopt the language of representa-
tions to describe the structure theory for dynamical systems, on the grounds that such
equations form representations of physical processes. We summarize schematically
the structure theory for groups, representations, and dynamical systems in Table 8.1.
Without explaining the meaning of these terms for groups and their representations,

169
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Table 8.1 The structure theory of groups, representations, and dynamical systems is sum-
marized schematically.

Group Representation Dynamical System Structure
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Simple Irreducible Irreducible

we will make their meaning clear in the definition of the corresponding structure for
dynamical systems.

In order to describe the structure of a dynamical system, we assume that the
coordinates x = (x1, x2, . . . , xn) ∈ R

n can be transformed in a globally smooth
way to a new set of coordinates, (x) → (u, v), with u = (u1, u2, . . . , un1) ∈ R

n1

and v = (v1, v2, . . . , vn2) ∈ R
n2 , and n1 +n2 = n. We assume n1 6= 0 and n2 6= 0.

8.1.1 Reducible

A dynamical system is reducible if in this new coordinate system the equations of
motion assume the form

du

dt
= f1(u, v)

dv

dt
= f2(−, v)

(8.1)

In the equations above f2(−, v) means that the source function f2 depends on v but
does not depend on the coordinates u.
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This structure means that the equations for the subset of coordinates v can be
solved independently of the coordinates u. If any solution of dv/dt = f2(−, v) from
a given initial condition, v0, is known, that solution v(t; v0) can be substituted into
the first of the dynamical system equations to give

du

dt
= f1(u, v)→

du

dt
= f1(u, v(t; v0)) = f̃1(u, t)

In short, the “v subsystem” acts to drive the “u subsystem.” In this chapter we will
deal with driven dynamical systems. The driven (u) subsystem is typically a two-
dimensional nonlinear oscillator with inversion symmetry and the v subsystem will
be a relatively simple dynamical system: the Rössler attractor, the Lorenz attractor,
run at parameter values or initial conditions that give either periodic orbits or chaotic
orbits, and a harmonic oscillator.

8.1.2 Fully Reducible

With the notation above, a dynamical system is fully reducible if
du

dt
= f1(u,−)

dv

dt
= f2(−, v)

(8.2)

In this case, the v subsystem can be integrated independently of the u subsystem, and
the u subsystem can be integrated independently of the v subsystem. Both may be
treated independently. This simplifies greatly the treatment of the larger dynamical
system.

8.1.3 Irreducible

If no transformation (x) → (u, v) exists, the original dynamical system is called
irreducible. Up to now, the only dynamical systems that we have treated have been
irreducible.

Remark: Both in the theory of groups and the theory of representations (of groups)
there are algorithms for determining whether a structure is reducible, fully reducible,
or irreducible. If the structure is reducible, there are algorithms for carrying out the
reduction to reduced or fully reduced form. Such algorithms are currently lacking in
dynamical systems theory. The formulation of such algorithms for dynamical systems
will represent a major milestone in the development of this theory.

8.2 ENTRAINMENT AND SYNCHRONIZATION

It often happens that a physical system is governed by equations of the form
dx

dt
= f(x) (8.3)
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where the function f(x) is unknown. Data generated by this physical system are used
to create models of the dynamics

dy

dt
= g(y) (8.4)

where the model variables yi correspond to the physical variables xi. When this is
possible, the important question is: How good is the model?

8.2.1 Entrainment

One way to answer this question is to carry out an entrainment test [98]. In such
a test, the data are used to “drive” the model. In short, the two dynamical systems
f(x) and g(y) are coupled together to form a reducible dynamical system with the
structure

dy

dt
= g(y) + λ(x− y) = f1(y, x)

dx

dt
= f(x) = f2(−, x)

(8.5)

Even the simplest linear coupling term has a tensor structure: dy/dt = g(y)+λ(x−
y) → dyi/dt = gi(y) +

∑

j λij(xj − yj). If the model g(y) is “close to” the real
physics f(x)—this means that g(x)−f(x) is “small” in some sense—the differences
xj(t)−yj(t) will remain close to zero after transients caused by poor choice of initial
conditions have died out. An entrainment test involves a plot of each yj(t) against
the corresponding xj(t). If all λ are small and all plots yj(t) vs. xj(t) are almost
diagonal, the model g(y) can be considered as a good representation of the physics
f(x).

At the present time we do not have a theory for the dependence of the difference
yj(t) − xj(t) on λ as a function of the goodness of the model g(x) − f(x). We do
have such a theory for linear systems. It is embodied in χ2 tests.

8.2.2 Synchronization

When data xj(t) generated by a physical system are maintained offline, models g(y)
that are developed to describe the physics can only be tested using the entrainment
test described above. However, when an experiment is maintained online, the model
output can be fed back into the experimental system to create an irreducible dynamical
system from the two components of the fully reduced system:

dy

dt
= g(y) + λ(x − y) = f1(y, x)

dx

dt
= f(x) + λ(y − x) = f2(y, x)

(8.6)

In this case if the model is a close representation of the physics, for small values
of λ the linear combination 1

2 (x + y) will approximate both x and y, and the linear
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combination 1
2 (x − y) will approximate zero. In fact, as λ decreases from “large”

to zero there will be a bifurcation from x − y = 0 to x − y 6= 0. The locus of this
bifurcation in the λ parameter space can be used as a measure of the “goodness” of
the model.

As for the entrainment test, so for this synchronization test: at the present time we
do not have a theory for the relation between the goodness of a model and the values
at which this symmetry-breaking bifurcation occurs. The synchronization test will
be discussed in more detail in Section 9.4.

8.3 DRIVING SYSTEMS

The driven two-dimensional oscillators that we study in detail are the van der Pol,
Duffing, and Takens-Bogdanov oscillators. These are treated in detail in Sections 8.5,
8.6, and 8.7. In this section we describe the systems used to drive the two dimensional
oscillators. We will force them with three different systems: the Rössler and Lorenz
systems and the harmonic oscillator. Each of these systems is described briefly now.

8.3.1 Rössler System

The Rössler equations [109]

u̇ = −v − w
v̇ = u+ av
ẇ = b+ w(u− c)

(8.7)

exhibit a series of strange attractors and periodic windows as the control parameters
are varied. For the most part, we keep the control parameters (b, c) = (2.0, 4.0) fixed
and scan the parameter a. A bifurcation diagram is shown in Fig. 8.1. For a = 0.3
this dynamical system has a limit cycle. The projection of the limit cycle on the u-v
plane is shown in Fig. 8.2(a), while the power spectrum is shown in Fig. 8.2(b). The
first sharply defined peak in the power spectrum occurs for at ω = 0.175. We use
this to define the fundamental frequency of the Rössler period-one limit cycle. The
limit cycle has both even and odd higher harmonics at nω, n = 2, 3, . . . .

8.3.2 Lorenz System

The Lorenz system [78]
u̇ = −σu+ σv
v̇ = Ru− v − uw
ẇ = −bw + uv

(8.8)

has been discussed extensively in earlier chapters. We briefly review its most impor-
tant properties here. It possesses rotation symmetry RZ(π) around the-Z axis. For
R > 1 and (σ, b) = (10, 8/3) there are three real fixed points. The fixed point at
the origin is a saddle, and for R > 1.345 the pair of symmetry-related fixed points
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Fig. 8.1 Bifurcation diagram for the Rössler attractor for (b, c) = (2.0, 4.0).
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Fig. 8.2 (a) The Rössler dynamical system exhibits a period-one limit cycle for (a, b, c) =
(0.3, 2, 4). (b) The power spectrum of u(t) shows the first sharply defined peak at ω = 0.175.
This is taken as the fundamental frequency of the periodic Rössler drive.

become foci that are stable for R < 24.74 and unstable for larger values of R. The
angular frequency of the two unstable foci determine to a large extent the character-
istic time of the Lorenz attractor. This angular frequency is a function of R that can
be well approximated by the cubic regression

ω(R) = 7.1931 + 13.32(R/100)− 2.8107(R/100)2 + 0.29525(R/100)3 (8.9)

The angular frequency ω(R) and its approximation by this cubic function is shown
in Fig. 8.3.

The Lorenz equations exhibit a series of strange attractors and periodic windows as
the control parameters are varied. For the most part, we keep the control parameters
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Fig. 8.3 Imaginary part of the complex eigenvalue of the unstable saddle foci of the Lorenz
system. (σ, b) = (10, 8/3).

(σ, b) = (10.0, 8/3) fixed and scan the parameterR. A bifurcation diagram is shown
in Fig. 8.4. For R = 350 this dynamical system has a limit cycle. As R decreases
below ∼ 315 a symmetry-breaking bifurcation to two asymmetric, but symmetry-
related, orbits takes place. Only one of the two stable periodic orbits appears in the
bifurcation diagram in the range 240 < R < 315. The other can be seen by different
choice of initial conditions.

The projection of the limit cycle atR = 350on theu-v plane is shown in Fig. 8.5(a),
while the power spectrum is shown in Fig. 8.5(b). The first sharply defined peak in the
power spectrum occurs at ω = 2.5. We use this to define the fundamental frequency,
ω, of the Lorenz period-one limit cycle. The limit cycle has no even harmonics because
of its symmetry. The odd harmonics have exponentially decreasing amplitudes.
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Fig. 8.4 Bifurcation diagram for the Lorenz system for (σ, b) = (10.0, 8/3).
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Fig. 8.5 (a) The Lorenz system exhibits a period-one limit cycle for (R, σ, b) =
(350, 10, 8/3). (b) The power spectrum of u(t) shows the first sharply defined peak at ω = 2.5.
This is taken as the fundamental frequency of the periodic Lorenz drive.

A Lorenz orbit of topological period p is labeled by p symbols. The correspond-
ing temporal period is Tp ' 2πp/ω(R) and the angular frequency is ωp ' ω(R)/p.
When driving a two-dimensional nonlinear oscillator with a Lorenz orbit of topolog-
ical period p we always compare the driving frequency ω(R)/p to the fundamental
frequency ω1 of the driven system.

8.3.3 Harmonic Oscillator

The harmonic oscillator equations of motion, in symmetric form, are u̇ = ωv, v̇ =
−ωu. In order to put these driving equations in a form as close as possible to the form
given below to the two-dimensional nonlinear oscillators, we write these equations
as

u̇ = v
v̇ = −ω2u

(8.10)

The phase space trajectories are circles, and the power spectrum of u(t) and v(t)
contains exactly one peak at ω.

We point out explicitly here that in this case the driving system contains only two
equations. These equations cannot generate a strange attractor. By the Poincaré-
Bendixon theorem [5] two coupled ordinary differential equations can have as invari-
ant sets only fixed points and limit cycles. The harmonic equations are particularly
slippery: they are structurally unstable. They generate a one-parameter family of
limit cycles: the continuous parameter is A, the radius of the limit cycle. Typical
nonlinear two-dimensional systems generate only isolated limit cycles that alternate
in their stability. For this reason, the behavior of two-dimensional nonlinear oscilla-
tors when driven harmonically is somewhat different from their behavior when driven
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by a system that generates dynamically stable and structurally stable limit cycles, as
do the Rössler and Lorenz systems for certain parameter value ranges. As a conse-
quence, we must be careful to specify initial conditions (of the harmonic oscillator) in
many of the bifurcation diagrams that we present that are based on harmonic drives.

8.4 UNDRIVEN NONLINEAR OSCILLATORS

8.4.1 Linear Oscillators

We begin with a simple linear harmonic oscillator without damping. The equation of
motion is

ẍ+ ω2x = 0 or
ẋ = p
ṗ = −ω2x

(8.11)

We begin adding complications by including damping:

ẍ+ γẋ+ ω2x = 0 or
ẋ = p
ṗ = −ω2x− γẋ (8.12)

Damping occurs for γ > 0. If γ < 0 the system is “self-excitatory.”

8.4.2 Nonlinear Oscillators

The general two-dimensional nonlinear oscillator can be written in the form

ẍ+f1(x, ẋ)ẋ+f2(x, ẋ)x = 0 or
ẋ = p
ṗ = −f1(x, ẋ)p− f2(x, ẋ)x (8.13)

For the linear oscillator with damping, f1(x, ẋ) = γ and f2(x, ẋ) = ω2.

8.4.3 Fixed Points

The fixed points of the nonlinear oscillator (8.13) occur for p = 0 and f2(x, 0)x = 0.
One fixed point occurs at the origin (x, p) = (0, 0). Other fixed points occur along
the x-axis p = 0 at the zeroes of f2(x, 0), if such zeroes exist. At the off-origin fixed
points x0 6= 0, f2(x0, 0) = 0.

8.4.4 Stability of Fixed Points

The stability properties of the fixed point at the origin are determined from the eigen-
values of the stability matrix

[
0 1

−f2(0, 0) −f1(0, 0)

]

⇒ λ± = −1

2
f1(0, 0)± i

√

f2(0, 0)−
(

1

2
f1(0, 0)

)2
(8.14)
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The fixed point at the origin is stable if f1(0, 0) > 0 and it is a focus if f2(0, 0) −
( 1
2f1(0, 0))2 > 0.

At a fixed point (x0, p = 0) with x0 6= 0, the stability properties are determined
by the eigenvalues of the stability matrix. They are

λ± = −1

2
Tr±

√
(

1

2
Tr

)2

−Det where
Tr = −f1(x0, 0)

Det = x0
∂f2(x0, 0)

∂x

(8.15)

8.4.5 Global Stability Conditions

The global stability of the nonlinear oscillator

ẋ = y
ẏ = −yf1(x, y)− xf2(x, y)

is determined by perturbing from the Hamiltonian limit. To do this, it is useful to
introduce a function F2(x, y) defined by

dF2(x, y) = xf2(x, y) dx

If we construct a function H(x, y) = 1
2y

2 + F2(x, y), the Hamiltonian equations of
motion derived from H(x, y) are

dx

dt
= +

∂H

∂y
= y

dy

dt
= −∂H

∂x
= −xf2(x, y)

The Hamiltonian function can be treated as an energy that is conserved when the
dissipative function f1(x, y) = 0. The phase portraits of the four nonlinear oscillators
in the absence of dissipation are shown in the left-hand column of Fig. 8.6. These
contours are simply constant energy surfaces.

When dissipation is added, the rate of change of the energy function is

d

dt

{
1

2
ẋ2 + F2(x, y)

}

= −ẋ2f1(x, y)

This dissipation term breaks the closed contours. If the energy function H(x, y) is
bounded below,arbitrary initial conditions relax to some bounded domain in the phase
space. This is the case for the Duffing, van der Pol, and Rayleigh oscillators. The
energy function for the Takens-Bogdanov oscillator is not bounded below, so some
initial conditions can escape to infinity. It is for this reason that study of the dynamics
of this oscillator is somewhat delicate. The phase portraits for these four oscillators
with dissipation are shown in the right-hand column of Fig. 8.6.
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(d) Takens-Bogdanov system
Fig. 8.6 Phase portraits for Duffing, van der Pol, Rayleigh, and Takens-Bogdanov oscillators.
Left: conservative limit. Right: with dissipation.
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8.4.6 Symmetry

We are particularly interested in two-dimensional nonlinear oscillators with a twofold
symmetry. The physically important symmetry is the inversion symmetry: (x, p)→
(−x,−p). To ensure this symmetry, the two functions f1 and f2 must both be even:
fi(−x,−p) = +fi(x, p). Several widely studied oscillators possess this symmetry:
the Duffing, the van der Pol, the Rayleigh, and the Takens-Bogdanov oscillators.
Their forcing functions are collected in Table 8.2.

8.4.7 Origins of These Nonlinear Oscillators

Two of the three nonlinear oscillators that we study in detail in this chapter (the van
der Pol and the Duffing oscillators) had their origins in classical nonlinear circuits.
The third nonlinear oscillator was studied by mathematicians searching for canonical
forms for nonlinear oscillators that exhibit degenerate bifurcations and include as
special cases the bifurcations intrinsic to the van der Pol and Duffing oscillators.

8.4.7.1 Van der Pol Oscillator The van der Pol equation was introduced to
study oscillations in an electronic circuit containing a nonlinear resistance [129,130].
Such a circuit is shown in Fig. 1.5(b). The nonlinear element at that time was a triode
vacuum tube. A nonlinear characteristic of the form V ' −αi + βi3, α, β > 0,
guarantees self-excitations through an effective negative resistance at low current
flows and a positive resistance (a stability condition) at high current flows. A very
similar equation had previously been proposed by Rayleigh to describe self-sustained
sound vibrations [104].

The van der Pol equations, in standard form, are

Table 8.2 Important nonlinear oscillators Ẍ + f1Ẋ + f2X = 0 are defined by different
functions.

Equations f1(X,Y ) f2(X,Y )

Duffing µ −(1−X2)

van der Pol −µ(1−X2) 1 or X2

Rayleigh −µ
(
1− 1

3Y
2
)

1

Takens-Bogdanov ν +X2 µ−X2
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ẋ = y
ẏ = αy − x2y − x

This two-dimensional dynamical system has a single fixed point at (x, y) = (0, 0).
The stability of this fixed point is determined by the eigenvalues of the flow linearized
about the fixed point. The Jacobian is

J =

[
0 1

−2xy − 1 α

]
(0,0)−→

[
0 1
−1 α

]

λ± =
1

2
α±

√

(
1

2
α)2 − 1

The fixed point is stable if α < 0 and unstable if α > 0. For | 12α| > 1 the fixed
point is a node, for | 12α| < 1 it is a focus. As α increases through 0 the fixed point
undergoes a Hopf bifurcation, changing from a stable to an unstable node and creating
a stable limit cycle that models self-excitatory behavior.

8.4.7.2 Duffing Oscillator Duffing studied electrical circuits of the type shown
in Fig. 1.5(a) [28]. Such circuits exhibit bistable behavior. The Duffing equations are
typically used to model electrical or mechanical systems that have two symmetry-
related ground states separated by an unstable equilibrium. These equations have
been used to model the dynamics of buckled beams and beams subject to magnetic
fields [8,42].

The Duffing equations, in canonical form, are

ẋ = y

ẏ = µy − ∂V (x;α)

∂x
V (x;α) =

1

2
αx2 +

1

4
x4

The fixed points occur along the line y = 0 at the equilibria of the potential V (x;α).
There is one equilibrium at x = 0 for α > 0 and this equilibrium is stable. For α < 0
there are three equilibria, an unstable one at x = 0 and two stable symmetry-related
equilibria at x = ±√−α. As α decreases through 0 the potential exhibits a pitchfork
(symmetry-restricted cusp, Ginzburg-Landau) bifurcation.

8.4.7.3 Takens-Bogdanov Oscillator The Takens-Bogdanov dynamical sys-
tem is motivated less by physical than by mathematical considerations. The objective
was to seek canonical forms for a nonlinear oscillator with a doubly degenerate eigen-
value [17,120]. Unfoldings of this canonical germ include, as special cases, the van
der Pol and the Duffing oscillators. The general dynamical system considered was of
the form

ẋ = y
ẏ = f(x, y) f(−x,−y) = −f(x, y)

If the source function f(x, y) is assumed to be (real) analytic, and expanded in an
ascending power series, the expansion contains two linear terms, four cubic terms,
six fifth-degree terms, . . . .

ẋ = y
ẏ = µ1x+ µ2y + αx3 + βx2y + γxy2 + δy3 + . . .
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The origin (x, y) = (0, 0) is clearly a fixed point. All other fixed points lie along the
line y = 0. If it is desired to study dynamics and bifurcations in the neighborhood
of the origin, it is useful to truncate this expansion beyond the cubic terms. This was
done by Takens and Bogdanov. They then sought coordinate transformations to bring
the cubic terms to a canonical form, which is

ẋ = y
ẏ = µ1x+ µ2y ∓ x3 + x2y

The fixed points occur at the solutions of x(µ1∓x2) = 0, orx = 0 andx = ±√±µ1.
As µ1 passes through 0 there is a forward or reverse pitchfork bifurcation, depending
on which of the two canonical forms (∓x3) is chosen. This system also exhibits Hopf
bifurcations. Fig. 8.7 shows a series of phase portraits exhibited by the canonical
form with ẏ = µ1x+ µ2y − x3 + x2y as a function of increasing control parameter
µ1 for µ2 < 0. A stable fixed point (µ1 < 0) undergoes a pitchfork bifurcation as µ1

increases through 0. As µ1 continues to increase, a Hopf bifurcation occurs at the two
off-origin fixed points (x, y) = (±√µ1, 0) as µ1 + µ2 increases through 0. These
two fixed points become unstable foci and are surrounded by stable limit cycles. For
a somewhat larger value of µ1 the two limit cycles meet at the origin in a nonlocal
bifurcation (homoclinic connection [17,39,42,120]), and then grow to surround the
origin.

This normal form has been used to describe a sequence of bifurcations observed
in several fluid systems [93].

x

x

2µ

1µ

(a) (b) (c) (d)

Fig. 8.7 Phase portraits of the Takens-Bogdanov normal form (with − sign) showing a
sequence of bifurcations as µ1 increases with µ2 < 0. (a) Stable fixed point at the origin
undergoes a pitchfork bifurcation at µ1 = 0 to produce (b) three fixed points, two stable nodes
surrounding a saddle. The stable nodes become stable foci, then undergo Hopf bifurcations at
µ1 + µ2 = 0 to produce (c) two unstable foci surrounded by two stable limit cycles. After a
homoclinic connection a single stable limit cycle (d) encloses the two unstable foci and single
saddle.
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8.5 THE VAN DER POL OSCILLATOR

The equations that define the van der Pol oscillator are

ẋ = y
ẏ = µ(1− βx2)y − xn (8.16)

The integer n is usually taken as n = 1 or n = 3, and β is taken as +1 in Table 8.2.
The Rayleigh oscillator is closely related to the van der Pol oscillator. The van der
Pol oscillator in z with β = 1, and n = 1 is obtained from the Rayleigh oscillator by
taking the time derivative of the latter and setting z = ẋ.

The undriven van der Pol oscillator has a single fixed point at the origin that is
unstable for µ < 0. For µ > 0 this set of equations has a limit cycle. A limit cycle
is shown in Fig. 8.8(a) for µ = 0.48, β = 1, and n = 3. The period of this limit
cycle is T = 3.903, corresponding to a fundamental frequency of f1 = 0.256 and
angular frequencyω1 = 1.608. The power spectrum for the x-coordinate of this limit
cycle is shown in Fig. 8.8(b). This figure shows that only odd angular frequencies
contribute to the structure of this limit cycle, as the principal Fourier components are
ω1, ω3 = 3ω1, and ω5 = 5ω1. This occurs because the forcing terms are odd. A
three-term Fourier expansion of x(t) and y(t) provides an excellent representation of
this limit cycle.

The fundamental frequency f1 depends on the parameter µ. This dependence is
shown in Fig. 8.9, and is given analytically by the cubic regression

ω1 = 1.6163 + 0.0080136µ− 0.046403µ2 + 0.0051574µ3 (8.17)
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Fig. 8.8 (a) Limit cycle solution (x(t), y(t)) to the van der Pol equations. (b) Power spectrum
of x(t). The fundamental frequency is f1 = 0.256 and only odd harmonics are present.
Parameter values: (µ, β, n) = (0.48, 1, 3).
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Fig. 8.9 Dependence of the fundamental angular frequency of the van der Pol oscillator on
the parameter µ for (β, n) = (1, 3).

It is useful to know the dependence of the fundamental frequency on the parameters of
the nonlinear oscillator, as the response of the oscillator, with fundamental frequency
f1, to a driving system with a fundamental frequency f , depends to a large extent on
the ratio f/f1.

8.5.1 Rössler Drive

Roughly and accurately speaking, any dynamical system can be used to drive any
other. In this section we use the Rössler system to drive the van der Pol nonlinear
oscillator. The arrangement is

Driving System −→ Driven System
= Rossler = van der Pol

u̇ = −v − w
v̇ = u+ av
ẇ = b+ w(u− c)

ẋ = y
ẏ = µ(1− βx2)y − xn + ρu

(8.18)

In this set of equations we have used a simple linear drive in the equation describing
the acceleration (second equation). The coupling parameter ρ = 1. We will reverse
the sign of the coupling later to make a point about symmetry.

The Rössler equations were integrated at control parameter values (a, b, c) =
(0.3, 2, 4) to generate a period-one orbit. This orbit was used to drive the van der Pol
system using the coupling shown in Eq. (8.18). The Rössler orbit was renormalized
(in time) before being used to drive the van der Pol oscillator. As the ratio of the
driving frequency ω of the Rössler orbit to the fundamental frequency ω1 of the van
der Pol oscillator varied, δ = ω/ω1, the response of the driven system to the drive
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Fig. 8.10 The van der Pol system is driven by a period-1 orbit generated by the Rössler
system. The bifurcation diagram shows the response of the van der Pol system as a function of
(a) the frequency ratio δ = ω/ω1 and (b) its inverse δ−1. Other parameter values: (a, b, c) =
(0.3, 2, 4) and (µ, β, n) = (0.48, 1, 3).

varied from simple to complex. The bifurcation diagram shown in Fig. 8.10 describes
this variation. The coordinate xn of the intersection of the trajectory with the plane
y = 0, ẏ > 0, is plotted as a function of this ratio. This plot shows that the driven
system exhibits a simple limit cycle in a broad range of values around δ = 1, 2, 3.
One of these limit cycles is shown in Fig. 8.11(a). Limit cycles are also obtained
for subharmonic driving. Two of these are shown for δ = 0.6 in Fig. 8.11(b) and
for δ = 1/3 in Fig. 8.11(c). They exhibit two and three intersections with the plane
y = 0, ẏ > 0, as can be seen in both Fig. 8.10 and Fig. 8.11(b) and 8.11(c).

As the driving system goes through a sequence of bifurcations, so also does the
driven system. We show this in Fig. 8.11 and Fig. 8.12. Fig. 8.12(a) shows the
bifurcation diagram for the Rössler attractor as a function of the parameter a for
(b, c) = (2, 4). There is a period-one orbit for a < 0.335. We choose a = 0.3 and
show three limit cycles obtained by driving the van der Pol system at frequency ratios
δ = 1.0 (Fig. 8.11(a)), δ = 0.6 (Fig. 8.11(b)), and δ = 1/3 (Fig. 8.11(c)). The
period-one limit cycle is symmetric but the period-two and period-three limit cycles
are not: we show the two symmetry-related limit cycles in Fig. 8.11(b) and (c). The
bifurcation diagrams based on these three limit cycles are shown in Figs. 8.12(b),
(c), and (d) as a function of increasing values of the Rössler control parameter a. It
should be observed that the alternation of chaotic behavior and periodic windows is
the same in the driven van der Pol system as it is in the Rössler attractor. The principal
difference is that a period-p orbit for the Rössler system generates orbits of periods p,
2p, and 3p in the driven van der Pol system for driving frequency ratios δ = 1, 0.6,
and 1/3.
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Fig. 8.11 Limit cycles of the driven van der Pol system for different values of δ. The
symmetric partners of the period-two and period-three limit cycles are shown. Other parameter
values: (a, b, c) = (0.3, 2, 4) and (µ, β, n) = (0.48, 1, 3).

We close this section with a discussion of symmetry. To be accurate, there is none.
However, this is not a useful way to look at the coupling of two dynamical systems.
We show in Fig. 8.13 two strange attractors that are closely related: they are “rotation-
symmetric.” Both are obtained by running the Rössler system in a periodic region,
with (a, b, c) = (0.3, 2, 4) and coupling with a frequency ratio ω/ω1 = δ = 0.4
that generates chaotic behavior. The two attractors are obtained by simultaneously
changing their initial conditions and the sign of the coupling strength ρ. It is clear
from this figure that the two attractors are related by a rotation through π radians
about an axis through the origin perpendicular to the x-y plane.

8.5.2 Lorenz Drive

We now use the Lorenz system to drive the van der Pol oscillator. The coupled
equations are

Driving System −→ Driven System
= Lorenz = van der Pol

u̇ = −σu+ σv
v̇ = Ru− v − uw
ẇ = −bw + uv

ẋ = y
ẏ = µ(1− βx2)y − xn + ρ α√

b(R−1)
u

(8.19)

As with the driving Rössler system, we rescale the time parameter of the driving
Lorenz attractor to the fundamental frequency of the van der Pol oscillator. In addition,
we couple the u(t) dependence into the van der Pol oscillator with a parameter-
dependent coupling constant proportional to (R− 1)−1/2. This is done to maintain a
rough amplitude independence of the driving term within the range of theR parameter.
This subtle feature was unnecessary when driving with the Rössler attractor, since the
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Fig. 8.12 (a) Bifurcation diagram for the Rössler attractor for (b, c) = (2, 4). Bifurcation
diagrams for the responding van der Pol oscillator for (b) δ = 1.0, (c) δ = 0.6, and (d) δ = 1/3.
Other parameter values: (a, b, c) = (0.3, 2, 4) and (µ, β, n) = (0.48, 1, 3).

diameter of that attractor did not vary by more than 25% over the range of the control
parameters studied. With the coupling of the form u(t)/

√
R− 1 introduced in Eq.

(8.19), the amplitude of the driving term does not vary by more than 50% over the
range of the R parameter that is studied. We choose as scaling parameter α = 1.5
and introduce ρ = ±1 for the same reasons we introduced ρ in Eq. (8.18).

When the driving frequency ω is approximately equal to the natural frequency of
the van der Pol oscillator, the response to a periodic drive is a period-one limit cycle.
As the frequency mismatch becomes significant, chaotic behavior alternates with
entrainment having limit cycle behavior. This is shown in the bifurcation diagrams
of Fig. 8.14. We plot intersections of the attractor with the half-line y = 0, ẏ > 0,
in the x-y phase plane of the van der Pol oscillator. The diagram shows that a series
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(a) (x0, y0) = (0.0, +0.75), ρ = −1
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Fig. 8.13 Two chaotic attractors generated by the Rössler-driven van der Pol equations with
δ = 0.4 are related by rotation symmetry. They differ by initial conditions of the van der Pol
attractor [(x0, y0) → (−x0,−y0)] and the sign of the coupling term ρ. Parameter values:
(a, b, c) = (0.3, 2, 4) and (µ, β, n) = (0.48, 1, 3).

of period-p limit cycles occurs for δ = ω/ω1 ' p±1. Three of these limit cycles are
shown in Fig. 8.15.

A strange attractor based on each of these limit cycles is obtained as the Lorenz
bifurcation parameter R is varied. The bifurcation diagram for the Lorenz attractor
is shown in Fig. 8.16. The bifurcation diagrams presented in Fig. 8.16(b), (c), and
(d) are based on the period-one, -two, and -three limit cycles. These diagrams show
intersections of the x(t), y(t) trajectory in the van der Pol phase space with the line
y = 0, ẏ > 0. The alternation of chaotic behavior and periodic windows in all four
bifurcation diagrams is similar.

Since the van der Pol oscillator has inversion symmetry, symmetry-related initial
conditions can generate either a single symmetric attractor or two asymmetric, but
symmetry-related, attractors. Two such attractors are shown in Fig. 8.17.

8.5.3 Harmonic Drive

The driven van der Pol equations are usually studied when the periodic driving func-
tion is harmonic: sin(ωt)or cos(ωt). The coupling is sometimes placed in the velocity
term (first equation), sometimes in the acceleration (second) equation. We perform
the coupling in the same way as we treated the Rössler and Lorenz driving condi-
tions. The harmonic equations are written explicitly and one of the two coordinates
is coupled linearly into the acceleration equation for the van der Pol oscillator. This
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arrangement is shown explicitly in Eq. (8.20).

Driving System −→ Driven System
= Harmonic Oscillator = van der Pol

u̇ = v
v̇ = −ω2u

ẋ = y
ẏ = µ(1− βx2)y − xn + u

(8.20)

The van der Pol oscillator was driven by a periodic orbit with initial conditions
(u0, v0) = (5.0, 0.0). The response is plotted as a function of the frequency ratio
δ = ω/ω1 in Fig. 8.18. This figure shows that limit cycles are entrained in the
neighborhood of integer values of δ and δ−1.

As the frequency ratio δ varies the driven system goes through a series of bifur-
cations that involve a series of entrained periodic windows alternating with chaotic
behavior. Limit cycles of periods one, two, and three are shown in Fig. 8.19 for
decreasing values of δ. The period-one and period-three limit cycles are symmetric
while the period-two limit cycles occur as a symmetry-related pair.

A bifurcation diagram for the harmonically driven van der Pol oscillator is shown
in Fig. 8.20. In this case the bifurcation parameter is the amplitude of the harmonic
limit cycle. This is simply the initial condition A, where (u0, v0) = (A, 0). The
harmonic drive has only three degrees of freedom to play with. One is the frequency
ω; the bifurcation diagram as a function of ω has been presented in Fig. 8.18. The
second and third degrees of freedom are the radius of the circular orbit and the initial
phase. The bifurcation diagram as a function of the radius for initial phase = 0 is
presented in Fig. 8.20. The bifurcation diagram shows intersections of the trajectory
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Fig. 8.14 The van der Pol system is driven by a periodic orbit generated by the Lorenz
system. The bifurcation diagram shows the response of the van der Pol system as a function of
(a) the frequency ratio δ = ω/ω1 and (b) its inverse δ−1. Other parameter values: (R,σ, b) =
(350, 10, 8/3) and (µ, β, n) = (0.48, 1, 3).
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Fig. 8.15 Limit cycles of the van der Pol system driven by a periodic orbit of the Lorenz
system for (a) δ = 1, (b) δ = 1/2, (c) δ = 1/3. The period-one and -three limit cycles are
symmetric and the two symmetry-related period-two limit cycles are shown. Other parameter
values: (R,σ, b) = (350, 10, 8/3) and (µ, β, n) = (0.48, 1, 3).

with the half-line y = 0, ẏ < 0, x ≥ 0 in the (x, y) phase space of the van der Pol
oscillator.

This figure shows that the response appears to be chaotic even for very small values
of A, with a series of periodic windows of increasing width up to A ' 2.6, where
a period-one orbit is entrained. This undergoes a period-doubling bifurcation into
chaos at A ' 3.5, after which there is an alternation between periodicity and chaos
up to A ' 8.0. One of the chaotic attractors generated in the construction of this
bifurcation diagram is shown in Fig. 8.21.

Since the van der Pol oscillator has planar inversion symmetry, two symmetry-
related strange attractors can be generated from symmetry-related initial conditions.
Such a pair is shown in Fig. 8.22.

The periodically driven van der Pol oscillator generates low-dimensional strange
attractor. This attractor can be embedded in a three-dimensional phase space. Since
the drive is periodic, the phase space can be taken as R2 × S1. In such a phase
space, Poincaré sections are planes of constant phase: ωt = const mod 2π. In
order to visualize this strange attractor, cross sections obtained by intersections with
Poincaré sections can be constructed. In fact, by taking a series of cross sections
with constantly increasing phase, it is possible to visualize how the attractor evolves
in time. A motion picture of this sort is shown in Fig. 8.23. This motion picture
shows that the stretching and squeezing occurs by “pulling out” part of the surface
and squeezing it back along a remaining part of this surface. The cross section in
each cut has a fractal structure in the transverse (“radial”) direction and is smooth in
the transverse (“angular”) direction.

Application of the Birman-Williams theorem maps this strange attractor to a
branched manifold whose intersection with almost any Poincaré section is topologi-
cally a circle S1. The attractor can be embedded in a solid torus D2×S1, whereD2



THE DUFFING OSCILLATOR 191

0 50 100 150 200 250 300 350 400
Bifurcation parameter R

0,5

1

1,5

2

2,5

3

3,5
1.

5 
u n 

/(
b(

R
-1

))
(1

/2
)

(a) Lorenz system

50 100 150 200 250 300
 Bifurcation parameter R

-3

-2

-1

0

1

2

x
n

(b) δ = 1

50 100 150 200 250 300
 Bifurcation parameter R

-3

-2

-1

0

1

2

x
n

(c) δ = 1/2

50 100 150 200 250 300
 Bifurcation parameter R

-3

-2

-1

0

1

2

x
n

(d) δ = 1/3

Fig. 8.16 (a) Bifurcation diagram for the Lorenz attractor for (σ, b) = (10, 8/3). Bifurcation
diagrams for the responding van der Pol oscillator for (b) δ = 1.0, (c) δ = 1/2, and (d) δ = 1/3.
Other parameter values: (µ, β, n) = (0.48, 1, 3).

is a disk. The interior of the disk can be removed, so that the strange attractor can be
contained in an “annular torus.” This is a solid torus from which a smaller solid torus
has been removed from the inside. The global topology of the three-dimensional
manifold that contains the van der Pol strange attractor differs substantially from
the global topology of neighborhoods that contain any of the other strange attractors
previously described in this work.

8.6 THE DUFFING OSCILLATOR

The equations that define the Duffing oscillator are
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Fig. 8.17 Two chaotic attractors generated by the Lorenz-driven van der Pol equations are
related by rotation symmetry. They differ by initial conditions of the van der Pol attractor
[(x0, y0) → (−x0,−y0)] and the sign of the coupling term ρ. Parameter values: (R, σ, b) =
(210, 10, 8/3) and (µ, β, n) = (0.48, 1, 3), δ = 1/3.
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Fig. 8.18 The van der Pol system is driven by a harmonic drive. The bifurcation diagram
shows the response of the van der Pol system as a function of (a) the frequency ratio δ = ω/ω1

and (b) its inverse δ−1. Other parameter values: (µ, β, n) = (0.48, 1, 3). Initial conditions:
(u0, v0) = (5.0, 0.0).

ẋ = y
ẏ = µy + x− x3 (8.21)



THE DUFFING OSCILLATOR 193

-3 -2 -1 0 1 2 3
x

-4

-2

0

2

4

y

(a) δ = 1

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

(b) versus δ = 0.5714
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(c) versus δ = 1/3

Fig. 8.19 Three limit cycles for the harmonically driven van der Pol oscillator for different
values of δ. (a) δ = 1, (x0, y0) = (0, 0.75) and (u0, v0) = (5, 0). (b) δ = 0.5714, (x0, y0) =
(−1.219, 0.0086) and (u0, v0) = (−0.397, 2.573). (c) δ = 1/3, (x0, y0) = (0, 0.75) and
(u0, v0) = (5, 0). Other parameter values: (µ, β, n) = (0.48, 1, 3).
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Fig. 8.20 Sensitivity to initial conditions u0 = A of the van der Pol oscillator driven by
a harmonic oscillator. Parameter values: (µ, β, n) = (0.48, 1, 3), δ = 1.8, and (u0, v0) =
(A, 0).

The undriven Duffing oscillator has three fixed points for all values of the control
parameterµ. One occurs at the origin. Its eigenvalues are λ± = 1

2µ± [( 1
2µ)2 +1]1/2.

This is a regular saddle for all values of µ. The other two fixed points occur on the
x-axis at (x, y) = (±1, 0). The eigenvalues are λ± = 1

2µ ± [( 1
2µ)2 − 2]1/2. For

|µ| < 2
√

2 this is a focus: stable if µ < 0 and unstable if µ > 0. The decay of a
trajectory to the stable focus at (1, 0) is shown in Fig. 8.24(a). The dependence of the
natural frequency ω1(|µ|) around the foci, stable or unstable, is shown as a function
of the bifurcation parameter µ in the range 0 < µ < 2

√
2 in Fig. 8.24(b).

The undriven Duffing oscillator can be considered as exhibiting a dynamic Ginzburg-
Landau transition as a function of the linear part of the odd driving term ax − x3.
We will typically operate the Duffing oscillator in the regime where the fixed point at
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Fig. 8.21 Chaotic attractor solution to the van der Pol oscillator driven by a harmonic oscil-
lator. Parameter values: (µ, β, n) = (0.48, 1, 3), δ = 1.8, and (u0, v0) = (5, 0).
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Fig. 8.22 Two chaotic attractors generated by the harmonically driven van der Pol equations
are related by rotation symmetry. They differ by initial conditions of the van der Pol attractor
[(x0, y0) → (−x0,−y0)] and the sign of the coupling term ρ. Parameter values: (µ, β, n) =
(0.48, 1, 3), δ = 0.4917 and (u0, v0) = (3.0, 0.0).

the origin is unstable and the two symmetry-related fixed points at x = ±1 are stable
foci (−2

√
2 < µ < 0).

8.6.1 Rössler Drive

We drive the Duffing oscillator with the output of the Rössler dynamical system in
the same way that we drove the Duffing oscillator with the Rössler system. More
specifically, the coupling is given by

Driving System = Rössler −→ Driven System = Duffing

u̇ = −v − w
v̇ = u+ av
ẇ = b+ w(u− c)

ẋ = y
ẏ = µy + x− x3 + ρu

(8.22)
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Fig. 8.23 Motion picture of the van der Pol oscillator driven by a harmonic oscillator. Eight
equally spaced Poincaré sections are shown. Phase increases by 2π/8 radians from left to
right, top to bottom. Intersections π radians out of phase show rotation (inversion) symmetry.
Parameter values: (µ, β, n) = (0.48, 1, 3), δ = 1.8, and (u0, v0) = (5, 0).

We have again used a simple linear drive in the equation describing the acceleration
(second equation). The coupling parameter ρ = 1.

The Rössler equations were again integrated at control parameter values (a, b, c) =
(0.3, 2, 4) to generate a period-one orbit. The Rössler orbit was renormalized (in time)
before being used to drive the Duffing oscillator. As the ratio of the driving frequency
ω of the Rössler orbit to the fundamental frequencyω1 of the Duffing oscillator varies,
δ = ω/ω1, the Duffing oscillator undergoes a series of bifurcations. These are shown
in Fig. 8.25.

The plots show that the driven system exhibits a simple limit cycle in a broad
range of values around δ = 1, 2, 3. Limit cycles are also obtained for subharmonic
driving. Three of these are shown for δ = 1.0 in Fig. 8.26(a), δ = 0.6 in Fig. 8.26(b),
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and for δ = 0.4 in Fig. 8.26(c). In each case the limit cycle is asymmetric, and its
symmetry-related partner is also shown.

As the driving system undegoes a series of bifurcations, so also does the driven
system. In Fig. 8.27(a) we reproduce the bifurcation diagram for the Rössler attractor
(cf. also Fig. 8.12(a)). As the control parameter a is scanned, the Duffing oscillator
undergoes a series of bifurcations that is similar for all values of the frequency ratio
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Fig. 8.24 (a) Trajectory of decaying orbit in the x-y phase space of the undriven Duffing
oscillator. (b) The natural frequency is ω =

p

2 − (µ/2)2 .
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Fig. 8.25 The Duffing system is driven by a period-one orbit generated by the Rössler
system. The bifurcation diagram shows the response of the Duffing system as a function of
(a) the frequency ratio δ = ω/ω1 and (b) its inverse δ−1. Other parameter values: (a, b, c) =
(0.3, 2, 4) and µ = 0.523.
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(a) Period-1 cycle: δ = 1
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(b) Period-2 cycle: δ =
0.6

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

(c) Period-3 cycle: δ =
0.4

Fig. 8.26 Limit cycles of the driven Duffing system for different values of δ. The symmetric
partner of each limit cycle is shown. Other parameter values: µ = 0.523, and (a, b, c) =
(0.3, 2, 4).

δ. The results are shown for δ = 1.0 in Fig. 8.27(b), δ = 0.6 in Fig. 8.27(c),
and δ = 0.4 in Fig. 8.27(d). It is clearly possible to make a correlation among the
windows in each of these bifurcation diagrams.

Once again there is no symmetry in this coupled pair of dynamical systems. Never-
theless, once again it is possible to exhibit some symmetry. In Fig. 8.28 we show two
strange attractors that are closely related: they are “rotation-symmetric.” Both are ob-
tained by running the Rössler system in a periodic region, with (a, b, c) = (0.3, 2, 4)
and coupling with a frequency ratio ω/ω1 = δ = 1.61. The two attractors are ob-
tained by simultaneously changing their initial conditions and the sign of the coupling
strength ρ. It is clear from this figure that the two attractors are related by a rotation
through π radians about an axis through the origin perpendicular to the x-y plane.

8.6.2 Lorenz Drive

We couple the Lorenz driving system into the responding Duffing oscillator in the
same way that we coupled the Lorenz drive into the van der Pol oscillator. The
coupled equations are

Driving System −→ Driven System
= Lorenz = Duffing

u̇ = −σu+ σv
v̇ = Ru− v − uw
ẇ = −bw + uv

ẋ = y
ẏ = µy + x− x3 + ρ α√

b(R−1)
u

(8.23)

The response of the Duffing system is similar to that of the van der Pol oscillator.
As the bifurcation parameter δ = ω/ω1 varies, a sequence of periodic windows
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Fig. 8.27 Bifurcation diagram for the Rössler attractor for (b, c) = (2, 4). Bifurcation
diagrams for the responding Duffing oscillator for (b) δ = 1.0, (c) δ = 0.6, and (d) δ = 0.4.
Other parameter values: µ = 0.523 and (a, b, c) = (0.3, 2, 4).

alternates with chaotic behavior. Bifurcation diagrams for the Duffing oscillator
driven by a periodic orbit of the Lorenz dynamical system are shown as a function of
the bifurcation parameter δ in Fig. 8.29(a) and its inverse δ−1 in Fig. 8.29(b). The
bifurcation diagram of Fig. 8.29(a) show broad regions around δ = 1.0 with a period-
one orbit, regions around δ = 1.5 with a period-three orbit, around δ = 2.0 with a
period-two orbit, and above δ = 2.0 with a period-one orbit. There are subharmonic
entrainments as well. Near δ−1 = n there are periodic orbits of period n. Three of
these are shown in Fig. 8.30. As before, the odd subharmonics are symmetric and
the even subharmonics occur in symmetry-related pairs.

As the control parameterR of the Lorenz system is scanned, the responding Duffing
oscillator undergoes a corresponding series of bifurcations. In Fig. 8.31(a) we show



THE DUFFING OSCILLATOR 199

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

(a) y0 = 0.1 and ρ = +1
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(b) y0 = −0.1 and ρ = −1

Fig. 8.28 Two chaotic attractors generated by the Lorenz-driven Duffing equations with
δ = 1.61 are related by rotation symmetry. They differ by initial conditions of the Duffing
attractor [(x0, y0) → (−x0,−y0)] and the sign of the coupling term ρ. Parameter values:
µ = 0.523 and (a, b, c) = (0.3, 2, 4).
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Fig. 8.29 The Duffing system is driven by a periodic orbit generated by the Lorenz system.
The bifurcation diagram shows the response of the Duffing system as a function of the frequency
ratio δ = ω/ω1. Other parameter values: (R,σ, b) = (350, 10/8/3) and µ = 0.523.

the bifurcation diagram for the Lorenz oscillator, and in Fig. 8.31(b)–(d) we show
the bifurcation diagrams for the responding Duffing oscillator for frequency ratios
δ = 1, 0.44, and 1/3. As the Lorenz attractor settles into a period-one limit cycle
for R > 340, the response is entrained in orbits of periods one, two, and three,
respectively.
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(a) δ = 1
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(c) δ = 1/3

Fig. 8.30 Limit cycles of the Duffing system driven by a periodic orbit of the Lorenz system
for (a) δ = 1, (b) δ = 0.44, (c) δ = 1/3. The period-one and -three limit cycles are symmetric
and the two symmetry-related period-two limit cycles are shown. Other parameter values:
µ = 0.523, and (R,σ, b) = (350, 10, 8/3).

Once again it is possible to exhibit some symmetry. In Fig. 8.32 we show
two strange attractors that are closely related: they are “rotation-symmetric.” Both
are obtained by running the Lorenz system in a periodic region, with (R, σ, b) =
(350, 10, 8/3) and coupling with a frequency ratio ω/ω1 = δ = 1.77. The two at-
tractors are obtained by simultaneously changing their initial conditions and the sign
of the coupling strength ρ. It is clear from this figure that the two attractors are related
by a rotation through π radians about an axis through the origin perpendicular to the
x-y plane.

8.6.3 Harmonic Drive

A harmonic drive is coupled into the Duffing oscillator in the usual way. The coupled
system is explicitly

Driving System = −→ Driven System =
Harmonic Oscillator −→ Duffing Oscillator

u̇ = v
v̇ = −ω2u

ẋ = y
ẏ = µy + x− x3 + u

(8.24)

The response of the Duffing oscillator depends on the ratio of the driving frequency
to the natural frequency of the Duffing oscillator. The bifurcation diagram of the
Duffing oscillatoris plotted as a function of the ratio δ = ω/ω1 in Fig. 8.33(a) and its
inverse δ−1 in Fig. 8.33(b). As usual, broad periodic windows can be seen at sub-
and super-harmonic integer values. Three limit cycles are shown explicitly in Fig.
8.34.

Since the harmonic drive is structurally unstable, the driving term can have arbitrary
amplitude. If we fix the frequency ratio δ and vary the driving amplitude, the response
of the Duffing oscillator will exhibit a series of bifurcations, just as the van der Pol
oscillator does. In Fig. 8.35 we show this bifurcation diagram as a function of the
initial condition of the driving linear oscillator. By choosing an initial condition in
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Fig. 8.31 (a) Bifurcation diagram for the Lorenz attractor for (σ, b) = (10, 8/3). Bifurcation
diagrams for the responding Duffing oscillator for (b) δ = 1.0, (c) δ = 0.44, and (d) δ = 1/3.
Other parameter values: (R, σ, b) = (350, 10, 8/3) and µ = 0.523.

the chaotic part of such a bifurcation diagram, we can construct a chaotic attractor.
The one shown in Fig. 8.36 appears to be symmetric. Chaotic attractors generated in
this way need not be symmetric: often they occur in symmetry-related pairs. The pair
can be exhibited explicitly by the usual procedure of choosing symmetrically related
initial conditions. Such a pair is shown in Fig. 8.37.

The periodically driven Duffing oscillator generates a low-dimensional strange
attractor that exists in a phase space with the topologyD2 × S1, where D2 is a disk.
In such a phase space, Poincaré sections are planes of constant phase: ωt = const
mod 2π. We can visualize this strange attractor by taking a series of freeze frames at
equal angular intervals, as we did for the van der Pol attractor. This motion picture
is shown in Fig. 8.38. This motion picture shows that the stretching and squeezing
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Fig. 8.32 Two chaotic attractors generated by the Lorenz-driven Duffing equations are related
by rotation symmetry. They differ by initial conditions [(x0, y0) → (−x0,−y0)] and the
sign of the coupling term ρ. Parameter values: µ = 0.523, (R, σ, b) = (350, 10, 8/3) and
δ = 1.77.
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Fig. 8.33 The Duffing system is driven by a harmonic drive. The bifurcation diagram shows
the response of the Duffing system as a function of the frequency ratio δ = ω/ω1. Other
parameter values: µ = 0.523. Initial conditions: (x0, y0) = (0.1, 0.1) and (u0, v0) =
2.0, 0.0).

occurs by stretching and rolling alternating parts of the surface separated by ωt = π.
The cross section in each cut has a fractal structure in the transverse direction and is
smooth in the other direction.

8.7 THE TAKENS-BOGDANOV OSCILLATOR



THE TAKENS-BOGDANOV OSCILLATOR 203

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

(a) δ = 1

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

(b) δ = 1/2

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

(c) δ = 1/3

Fig. 8.34 Limit cycles of the Duffing system driven by a harmonic drive for (a) δ = 1, (b)
δ = 1/2, (c) δ = 1/3. Other parameter values: µ = 0.523. Initial conditions: (x0, y0) =
(0.1, 0.1) and (u0, v0) = 2.0, 0.0).
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Fig. 8.35 Sensitivity to the initial condi-
tion (u0, 0) for the Duffing system driven
by a harmonic oscillator. Parameter values
µ = 0.523 and δ = 0.7195.
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Fig. 8.36 Chaotic attractor solution to
the Duffing oscillator driven by a har-
monic oscillator. Parameter values: µ =
0.523 and δ = 0.68. Initial conditions:
(x0, y0), (u0, v0) = (0.1, 0.1), (0.4, 0).

A degenerate saddle with inversion symmetry has normal form

ẋ = y
ẏ = x2y − x3

A universal unfolding of the flow in the neighborhood of this degenerate saddle has
the Takens-Bogdanov normal form

ẋ = y
ẏ = µx+ νy + x2y − x3 (8.25)

This unfolding preserves the inversion symmetry of the original degenerate sadddle.



204 DRIVEN TWO-DIMENSIONAL DYNAMICAL SYSTEMS

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

-3 -2 -1 0 1 2 3
x

-4

-3

-2

-1

0

1

2

3

4

y

Fig. 8.37 Pair of chaotic attractor solutions to the Duffing system driven by a harmonic drive.
Parameter values: µ = 0.523 and δ = 0.512. Initial conditions: (x0, y0) = (0.1, 0.1) and
(u0, v0) = (2.0, 0.0).

The nonlinear oscillator represented by equations (8.25) has a fixed point at the
origin and two symmetric fixed points at (x, y) = (±√µ, 0) that are real if µ > 0.

The fixed point at the origin has eigenvalues λ± = 1
2ν ±

√
(

1
2ν
)2

+ µ. This fixed
point is a saddle if µ > 0. The other two fixed points have eigenvalues λ± =

1
2 (µ + ν) ±

√
(

1
2 (µ+ ν)

)2 − 2µ. These are foci for 8µ > (µ + ν)2, stable or
unstable depending on the sign of µ + ν. In order to create interesting dynamics,
we will take µ+ ν positive, so that the two symmetric fixed points are unstable, and
small, so that (µ + ν)2 < 8µ and these unstable fixed points are unstable foci. The
angular frequency of these unstable foci are plotted as a function of the unfolding
parameter µ in Fig. 8.39

8.7.1 Rössler Drive

We drive the Takens-Bogdanov oscillator with a periodic orbit generated by the
Rössler dynamical system, as was done previously for the van der Pol and the Duffing
oscillators. The coupling is given explicitly by the equations

Driving System −→ Driven System
= Rössler = Takens-Bogdanov

u̇ = −v − w
v̇ = u+ av
ẇ = b+ w(u− c)

ẋ = y
ẏ = µx+ νy + x2(y − x) + ρu

(8.26)

As the ratio of the driving frequency ω of the Rössler periodic orbit to the natural
frequency ω1 of the Takens-Bogdanov oscillator varies, a series of bifurcations takes
place. The bifurcation diagram is shown as a function of the frequency ratio δ = ω/ω1

in Fig. 8.40(a) and as a function of the inverse ratio δ−1 in Fig. 8.40(b). These
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Fig. 8.38 Motion picture of the Duffing oscillator driven by a harmonic oscillator. Eight
equally spaced Poincaré sections are shown. Phase increases by 2π/8 radians from left to
right, top to bottom. Intersections π radians out of phase show rotation (inversion) symmetry.
Parameter values: µ = 0.523 and δ = 0.68. Initial conditions: (x0, y0) = (0.1, 0.1) and
(u0, v0) = (0.4, 0.0).

bifurcation diagrams show the existence of entrained orbits of periods one, two, and
three for δ = 1/1, 1/2, and 1/3. These orbits are shown in Fig. 8.41(a), (b), and (c).
The orbits of period p occur in symmetric pairs. Both can be seen when the initial
conditions are properly chosen.

In Fig. 8.42(a) we present a bifurcation diagram for the Rössler attractor, and in
Figs. 8.42(b), (c), and (d) we show bifurcation diagrams for the Takens-Bogdanov
oscillator that is driven by the u(t) variable of the Rössler dynamical system. The
bifurcation diagrams are shown for frequency ratios δ = 1.0, 0.5, and 0.3. These
show clearly the entrainment of period-one, -two, and -three orbits when the Rössler
system exhibits a simple limit cycle. Period doubling behavior, chaotic behavior, and
periodic windows are evident in these bifurcation diagrams.
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Fig. 8.39 Angular frequency around the unstable foci of the Takens-Bogdanov oscillator as
a function of the parameter µ. Other parameter values: ν = −1.
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Fig. 8.40 Bifurcation diagrams of the Takens-Bogdanov system driven by a period-1 limit
cycle of the Rössler system. Other parameter values: µ = 1.0434, ν = −1, and ρ = 0.06.
Initial conditions: (x0, y0, u0, v0, w0) = −(

√
µ + 0.01,−0.01, 0.4, 0.4, 0.4).

Strange attractors alternate with periodic windows in the periodically driven Takens-
Bogdanov oscillator. In Fig. 8.43 we show one such strange attractor. It is pro-
jected onto the x-y plane in the phase space D2 × S1, where D2 is a disk in
the x-y plane. The projection appears to possess inversion symmetry. This is in
fact an indication of symmetry of the equations of motion under the transformation
(x, y, t)→ (−x,−y, t+ 1

2T ).
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(a) Period-1 limit cycles:
δ = 1
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(b) Period-2 limit cycles:
δ = 1/2
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(c) Period-3 limit cycles:
δ = 1/3

Fig. 8.41 Limit cycles of the Takens-Bogdanov system driven by a limit cycle of the
Rössler system for (a) δ = 1, (b) δ = 1/2, (c) δ = 1/3. Other parameter values:
µ = 1.0434, ν = −1, and ρ = 0.06. Initial conditions are (x0, y0, u0, v0, w0) =
−(

√
µ + 0.01,−0.01, 0.4, 0.4, 0.4) and the negatives of these values.

8.7.2 Lorenz Drive

Next, we use the Lorenz system to drive the Takens-Bogdanovoscillator. The coupled
equations are

Driving System −→ Driven System
= Lorenz = Takens-Bogdanov

u̇ = −σu+ σv
v̇ = Ru− v − uw
ẇ = −bw + uv

ẋ = y
ẏ = µx+ νy + x2(y − x) + ρ α√

b(R−1)
u

(8.27)
The driving term is treated in the same way as for the van der Pol and the Duffing
oscillators, and for the same reasons.

As with the first two nonlinear oscillators, we drive the Takens-Bogdanov oscillator
with a periodic orbit generated by the Lorenz dynamical system. This is the stable orbit
that exists atR = 350.0. Once again we plot a bifurcation diagram of the responding
nonlinear oscillator against the ratio, δ = ω/ω1, of the driving frequency to the
natural frequency of the Takens-Bogdanov oscillator. However, with this oscillator
there are coexisting stable invariant sets (strange attractors and limit cycles). Rather
than plotting the response against both δand δ−1, we show the existence of multistable
behavior by scanning δ in both the ascending and descending directions. These are
shown in Fig. 8.44. The scan in the direction of increasing δ shows stable orbits of
period p for p = 1, 2, 3, 4 and of periods 3 and 5 at δ = 3/2 and 5/2. For δ decreasing
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Fig. 8.42 Bifurcation diagram for the Rössler attractor for (b, c) = (2, 4). Bifurcation
diagrams for the responding Takens-Bogdanov oscillator for (b) δ = 1.0, (c) δ = 0.5 and (d)
δ = 0.3. Other parameter values: µ = 1.0434, ν = −1, and ρ = 0.05. Initial conditions:
(x0, y0, u0, v0) = −(

√
µ + 0.01,−0.01, 0.4, 0.4, 0.4).

there are stable period-one limit cycles at δ = 2 and δ = 1 and a stable period-two
limit cycle at δ = 3/2.

Three of the low period limit cycles are shown in Fig. 8.45. These occur in disjoint
pairs. They are not symmetric but are symmetry-related. The three limit cycles plotted
here are for all practical purposes identical to the limit cycles obtained by driving the
Takens-Bogdanov oscillator with a periodic orbit from the Rössler system (cf. Fig.
8.41).

Fig. 8.46(a) shows the standard bifurcation diagram for the Lorenz dynamical sys-
tem, while Figs. 8.46(b), (c), and (d) show the bifurcation diagram for the responding
Takens-Bogdanov oscillator. As a function of decreasing R, a bifurcation occurs in
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Fig. 8.43 Chaotic attractor generated by the Rössler-driven Takens-Bogdanov equations with
δ = 0.78. Other parameter values: µ = 1.0434, ν = −1, and ρ = 0.05. Initial conditions:
(x0, y0, u0, v0) = −(

√
µ + 0.01,−0.01, 0.4, 0.4, 0.4).
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Fig. 8.44 Takens-Bogdanov system driven by the Lorenz system. Bifurcation diagram versus
parameter δ. Other parameter values: µ = 1.0434, ν = −1, σ = 10, b = 8/3, and R = 350.
Initial conditions as (x0, y0, u0, v0, w0) = (−√

µ + 0.01,−0.01, 0.4, 0.4, 0.4).

the Lorenz system atR ' 315. This bifurcation is not a period-doubling bifurcation,
but rather a symmetry-breaking bifurcation. A symmetric limit cycle for R > 315
bifurcates to a symmetry-related pair of asymmetric limit cycles of approximately
the same period as R decreases below the bifurcation value. It is for this reason that
there appears to be no response in the entrained period-one orbit at this parameter
value in Fig. 8.46(b) for δ = 1, and only limited responses in Figs. 8.46(c) and (d)
for δ = 0.44, and δ = 1/3. On the other hand, the period-doubling cascade into
chaos (R ' 230) exhibited by either (in fact both) of the asymmetric orbits is clearly
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Fig. 8.45 Limit cycles of the Takens-Bogdanov system driven by a symmetric limit cycle
of the Lorenz system for (a) δ = 1, (b) δ = 1/2, (c) δ = 1/3. Other parameter values:
µ = 1.0434, ν = −1, σ = 10, b = 8/3, R = 350, and ρ = 0.0041.

reflected in the bifurcation diagrams of the driven nonlinear oscillator for each of the
three values of the frequency ratio.

Fig. 8.47 shows two chaotic attractors obtained from the driven Takens-Bogdanov
oscillator. The ratio of the driving frequencies is one. The two chaotic attractors are
symmetry-related. Both are based on “period-one” orbits. These are the two orbits
that bifurcate from the symmetric period-one orbit as R decreases below R ' 315.
The period-doubling bifurcation of each tends for “fatten up” the region they occupy
in phase space, as shown in this figure.

8.7.3 Harmonic Drive

When the Takens-Bogdanov oscillator is driven by a harmonic oscillator, the driven
equations can be taken in the form shown.

Driving System −→ Driven System
= Harmonic Oscillator = Takens-Bogdanov

u̇ = v
v̇ = −ω2u

ẋ = y
ẏ = µx+ νy + x2(y − x) + ρu

(8.28)

The bifurcation diagram of the Takens-Bogdanov oscillator as a function of the ra-
tio δ = ω/ω1 (ω = driving frequency of harmonic oscillator, ω1 = natural frequency
of Takens-Bogdanov oscillator) is shown in Fig. 8.48(a) and as a function of δ−1 in
Fig. 8.48(b). Both diagrams show the usual alternation between periodic and chaotic
behavior. However, Fig. 8.48(b) shows clearly entrained period-p limit cycles for
δ−1 = p = 1, 2, 3, 4. A period-two subharmonic is clearly apparent in Fig. 8.48(a)
for δ ' 1/2.
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Fig. 8.46 (a) Bifurcation diagram for the Lorenz attractor for (σ, b) = (10, 8/3). Bifurcation
diagrams for the responding Takens-Bogdanov oscillator for (b) δ = 1.0, (c) δ = 0.44, and
(d) δ = 1/3. Other parameter values: µ = 1.0434 and ν = −1.

The limit cycles of periods p = 1, 2, 3 are shown in Fig. 8.49 for δ = 1/p. As
in the previous two cases, they are symmetry-related and reflect the symmetry of the
driving equations under (x, y, t)→ (−x,−y, t+ 1

2T ).
The simple harmonic oscillator is structurally unstable. This is reflected in the

response of the driven Takens-Bogdanov oscillator to changes in the amplitude of
the driving term. A bifurcation diagram showing the response of this oscillator to
changes in the amplitude of the harmonic oscillator drive is presented in Fig. 8.50. This
diagram, like similar diagrams for the other nonlinear oscillators that are harmonically
driven, shows an alternation between periodic and chaotic behavior.

Strange attractors that are generated by the harmonically driven Takens-Bogdanov
oscillator exist as either asymmetric but symmetry-related pairs or as symmetric
attractors. A symmetric attractor is shown for δ = 0.66 in Fig. 8.51 and a symmetry-
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Fig. 8.47 Two chaotic attractors generated by the Lorenz-driven Takens-Bogdanov equations
with δ = 1.0. They differ by their initial conditions which are symmetry related. Other
parameter values: µ = 1.0434, ν = −1, σ = 10, b = 8/3, R = 210, and ρ = 0.0041.
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Fig. 8.48 Takens-Bogdanov system driven by an harmonic oscillator. Bifurcation diagram
versus parameter δ (a) and versus 1/δ (b). Other parameter values: µ = 1.0434, ν = −1, and
ρ = 0.4. Initial conditions as (x0, y0, u0, v0) = (−√

µ + 0.01,−0.01, 1, 0).

related pair, obtained by using symmetry-related initial conditions, is shown in Fig.
8.52.

Finally, Fig. 8.53 is a “motion picture” of the harmonically driven Takens-Bogdanov
oscillator on an equally spaced sequence of Poincaré sections distributed around the
solid torus D2 × S1 that contains this strange attractor. This motion picture shares
the same properties as do the motion pictures for the harmonically driven van der Pol
and Duffing oscillators. Sections separated by half a period show the usual inversion
symmetry: (X,Y, t)→ (−X,−Y, t+ 1

2T ).
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Fig. 8.49 Three limit cycles for the harmonically driven Takens-Bogdanov oscillator for
different values of δ. (a) δ = 1, (b) δ = 1/2, (c) δ = 1/3. Other parameter values:
µ = 1.0434, ν = −1, and ρ = 0.4. Initial conditions as (x0, y0, u0, v0) = (−√

µ +
0.01,−0.01, 1, 0).
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Fig. 8.50 Sensitivity to initial conditions (u0, v0) = (A, 0) of the Takens-Bogdanov oscil-
lator driven by a harmonic oscillator. Parameter values: µ = 1.0434, ν = −1, δ = 1, and
ρ = 0.4. Initial conditions as (x0, y0, u0, v0) = (−√

µ + 0.01,−0.01, 1, 0).

8.8 MODDING OUT THE SYMMETRY

The motion pictures for the harmonically driven van der Pol, Duffing, and Takens-
Bogdanov oscillators presented in Figs. 8.23, 8.38, and 8.53 show clearly that all
three exhibit a two-fold symmetry, which is explicitly the invariance in D2 × S1 of
the driven system under the transformation (X,Y, t) → (−X,−Y, t + 1

2T ). The
original dynamical system is an autonomous dynamical system in four variables,
(X,Y ) and (u, v), and the symmetry is an inversion symmetry in all four variables
(X,Y ;u, v)→ (−X,−Y ;−u,−v).
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Fig. 8.51 Symmetric chaotic attractor solution to the Bogdanov-Takens oscillator driven
by a harmonic oscillator. Parameter values: (µ, ν, ρ) = (1.0434,−1, 1), δ = 0.66, and
(u0, v0) = (0.45, 0).

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2
X

-2

-1

0

1

2

Y

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2
X

-2

-1

0

1

2

Y

Fig. 8.52 Two chaotic attractors generated by the harmonically driven Takens-Bogdanov
equations are related by rotation symmetry. They differ by initial conditions of the Takens-
Bogdanov attractor. Parameter values: µ = 1.0434, ν = −1, ρ = 0.4, and δ = 10.

We can mod out the symmetry by introducing 10 bilinear combinations of these
four variables, in much the same way that we mod out a two-fold inversion symmetry
in three variables (X,Y, Z) by introducing the six bilinear combinationsX2, Y 2, Z2,
XY, Y Z,ZX (cf. Section 3.2). It is convenient to introduce some bookkeeping
devices to keep the following computations in hand. To this end we introduce 2× 2
matrix X for the nonlinear oscillator variables (X,Y )

X =

[
X Y
−Y X

]

= I2X + σY where σ =

[
0 1
−1 0

]

(8.29)

and a similar matrix U = I2u+ σv for the harmonic oscillator variables (u, v). The
2× 2 matrix σ (= iσy) satisfies σ2 = −I2 and it commutes with I2.
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Fig. 8.53 Motion picture of the Bogdanov-Takens oscillator driven by a harmonic oscillator.
Eight equally spaced Poincaré sections are shown. Phase increases by 2π/8 radians from left
to right, top to bottom. Sections separated by π radians show a rotation (inversion) symmetry.
Parameter values: (µ, ν, ρ) = (1.0434, −1, 0.4), δ = 10, and (X0, Y0, u0, v0) = (

√
µ −

0.01, 0.01,−1, 0).

The square of X and the product of X with its adjoint provide the three bilinear
products that can be constructed from these two variables, and similarly for U :

X 2 = I2(X
2 − Y 2) + σ(2XY ) XX t = I2(X

2 + Y 2)
U2 = I2(u

2 − v2) + σ(2uv) UU t = I2(u
2 + v2)

(8.30)

The four remaining bilinear combinations of these four variables, each involving one
coordinate from the nonlinear oscillator and the other from the harmonic drive, can
be obtained from products of X or X t with U or U t. They are

XU = UX = I2(Xu− Y v) + σ(Xv + Y u)
XU t = UX t = I2(Xu+ Y v) + σ(Xv − Y u) (8.31)
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Either of the two pairs of variables can be used to mod out the symmetry of the
harmonically driven nonlinear oscillators. Each pair defines a rotating plane that we
call the “van der Pol plane.” It is the rotation of this plane that removes the two-fold
symmetry.

In Fig. 8.54 we show the intersection of the 2 → 1 image of the van der Pol
oscillator on eight equally spaced Poincaré sections around the solid torus D2 × S1

using as coordinates ((Xu− Y v), (Xv + Y u)). Since intersections on the Poincaré
sections at ωt = φ and ωt = φ+π are identical, only the intersections for φ = kπ/8
are shown, k = 0, 1, . . . , 8. In Fig. 8.55 we produce a similar mapping using the van
der Pol coordinates ((Xu+ Y v), (−Xv + Y u)).

Remark 1: The van der Pol coordinates (X ′, Y ′) and (X ′′, Y ′′) can be written as
[
X ′

Y ′

]

=

[
u −v
v u

][
X
Y

] [
X ′′

Y ′′

]

=

[
u v
−v u

] [
X
Y

]

Since (u, v) = (cos θ, sin θ), θ = ωt these represent transformations to rotating
coordinate systems. The two planes rotate in opposite directions.

Remark 2: The two-fold symmetry described for the harmonic drive holds also
for nonlinear oscillators driven by a periodic orbit of period T with an inversion
symmetry: (u(t + 1

2T ), v(t + 1
2T )) = (−u(t),−v(t)). The periodic orbit of the

Lorenz system that was used to drive the nonlinear oscillators possesses this symmetry.
As a result, motion pictures with a two-fold symmetry for the van der Pol, Duffing,
and Takens-Bogdanov oscillators can be created by driving these systems with this
Lorenz orbit. Further, these motion pictures are very similar to Figs. 8.23, 8.38, and
8.53.

Remark 3: In modding out the symmetry we identify two points (X,Y, t) and
(−X,−T, t+ 1

2T ) in a torusD2×S1(T ) with a single point in a torusD2×S1( 1
2T )

of “half the size”: (uX ∓ vY,±vX + uY ). Speaking roughly but accurately, we
mod out the symmetry by:

a. cutting open the original torus and straightening it out along the time flow direction
into a cylindrical shape;

b. giving it a full twist (or 2n+ 1 full twists) around this axis;
c. saving the first half (0 ≤ t ≤ 1

2T ) and “throwing away” the second half ( 1
2T ≤

t ≤ T ), which is identical to the first half;
d. wrapping the remaining shortened cylinder (0 ≤ t ≤ 1

2T ) back up into a torus (of
half the size) by identifying the ends at t = 0 and t = 1

2T .

8.9 CN SYMMETRIES

Periodically driven nonlinear oscillators in the solid torusD2×S1 with higher sym-
metries can be constructed systematically. This is done by combining the X and
Y coordinates into a single complex variable Z = X + iY in the usual way, and



CN SYMMETRIES 217

Fig. 8.54 Eight equally spaced sections from 0 to π radians around the torus D2 ×S1 of the
2 → 1 image of the harmonically driven van der Pol oscillator (cf. Fig. 8.23) using rotating
van der Pol coordinates (X ′, Y ′) = (uX − vY, vX + uY ).

Fig. 8.55 Eight equally spaced sections from 0 to π radians around the torus D2 ×S1 of the
2 → 1 image of the harmonically driven van der Pol oscillator (cf. Fig. 8.23) using rotating
van der Pol coordinates (X ′′, Y ′′) = (uX + vY,−vX + uY ).
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then constructing an equation with the appropriate symmetry. For CN invariance, the
general equation is

dZ

dt
= γZ + Zf1(inv) + (Z∗)N−1gN−1(inv) +Aeiωt (8.32)

where the two functions f1(inv) and gN−1(inv) depend on the invariants that can be
constructed from powers of Z andZ∗. These are (ZN , Z∗Z, (Z∗)N ). This equation
is invariant under Z → Ze2πi/N and simultaneously t→ t+ 1

N T , where ωT = 2π.
This model depends on the two arbitrary complex functions f1 and gN−1 and the

two complex constants γ and A. A can be taken to be real by choosing the phase of
t. By choosing <(γ) > 0 we guarantee that the origin is an unstable fixed point, and
by choosing the arbitrary functions f1 and gN−1 so they become large and negative
for |Z| large, we guarantee that the motion is bounded.

To illustrate these ideas, we have chosen N = 3, γ = 2.0, A = 5.5, f1 =
βZ3 − µ(Z∗Z)2, g2 = 0, and ω = π/10 for the general dynamical system in Eq.
(8.32) and integrated these equations. For these parameter values these equations are
stiff and thus delicate to integrate. Integration was carried out by reducing them to
real form and driving the real and imaginary parts by coupling to harmonic terms.
Specifically, the equations integrated are

Ẋ = γX +X
[
β(X3 − 3XY 2)− µ(X2 + Y 2)2

]
− Y β(3X2Y − Y 3) + Au1

Ẏ = γY + Y
[
β(X3 − 3XY 2)− µ(X2 + Y 2)2

]
+Xβ(3X2Y − Y 3) +Av1

(8.33)
The independent harmonic drive satisfies u̇ = ωv, v̇ = −ωu. Initial conditions for
the plot presented in Fig. 8.56(a) were (X,Y ) = (10−3, 10−3) and (u, v) = (1, 0).
The control parameter values are given in the figure caption. It is seen from this figure
that the strange attractor that is obtained in this way has a three-fold rotation symmetry
in the sense that it is invariant under the simultaneous transformationsZ → Ze2πi/3

and t → t + 1
3T . The 3 → 1 image of this attractor is plotted in Fig. 8.56(b). To

construct this representation of the image, invariant coordinates X3 − 3XY 2 and
3X2Y − Y 3 were used.

8.10 COVERS AND IMAGES IN THE TORUS

Harmonically driven two-dimensional nonlinear oscillators have the torusD2×S1 as
their phase space. Some of these oscillators exhibit a symmetry under a simultaneous
transformation in the diskD2 and a time translation. These transformations typically
have the form (Z, t)→ (Zeiφ, t+(φ/2π)T ), using a complex variableZ = X+ iY
in the plane, with φ = 2π/N for some integer N . Symmetric systems with these
properties are described by Eq. (8.32). The van der Pol and Duffing oscillators are
two examples of such systems with N = 2.

Such systems can be mapped to their images by the transformationw = ZN . The
equation of motion for w is invariant under C1: that is, there is generally no residual
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Fig. 8.56 (a) Strange attractor with three-fold symmetry under the transformation Z →
Ze2πi/3 and t → t + 1

3
T . It is generated by Eq. 8.32 for N = 3. Parameter values:

γ = 2.0, A = 5.5, ω = π/10, µ = 0.235, β = 1.0. Initial conditions: (X, Y, t) =
(10−3, 10−3, 0), as explained in the text. (b) 3 → 1 image attractor.

symmetry. This is easily seen from the equations of motion, for

dw

dt
= NZN−1 dZ

dt
= NZN−1

{
γZ + Zf1(inv) + (Z∗)N−1gN−1(inv) +Aeiωt

}

(8.34)
Opening up the bracket leads to three terms. The first,ZNf1, is clearly invariant since
(ZN , t)→ (ZNeiNφ, t+Nφ) and Nφ = 2π. The second, ZN−1(Z∗)N−1gN−1 =
(Z∗Z)N−1gN−1, is also clearly invariant. The third term is also, for under the
group generator we find ZN−1eiωt → (Zeiφ)N−1eiωt+φ = ZN−1eiωteiNφ. Since
eiNφ = 1, w(t) is the N → 1 image of the covering trajectory Z(t).

It is useful to write w(t) in polar form as

w(t) = ρ(t)eiθ(t) (8.35)

In this representation,N -fold lifts are easily constructed by taking the N th root:

Z(t) = ρ(t)1/Neiθ(t)/N (8.36)

In this way it is possible to construct an entire series of covers of the van der Pol and
the Duffing equations. Formally take the square of the state variables (the coordinates
X2−Y 2 and 2XY do this) to construct the mappingZ → w = Z2, then take theN th
root of this complex time series. This can be done even more directly from the original
time series. For example, the triple cover of the proto–van der Pol attractor is the “ 3

2”
cover of the original van der Pol attractor: Z = X + iY → (X + iY )3/2 = Z3/2.
The “ 3

2” covers of the van der Pol and the Duffing oscillators are shown in Figs. 8.57
and 8.58.

These covers all look similar to those shown (for the van der Pol oscillator) in Figs.
8.54 and 8.55 when the torus angle is restricted from 0 to 2π/N . For this reason we
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Fig. 8.57 Projections onto the coordinate planes of attractors locally diffeomorphic with the
van der Pol oscillator. (b) van der Pol oscillator, (a) image, (c) three-fold cover of image or
“ 3

2
” cover of the van der Pol attractor.
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Fig. 8.58 Projections onto the coordinate planes of attractors locally diffeomorphic with the
Duffing oscillator. (b) Duffing oscillator, (a) image, (c) three-fold cover of image or “ 3

2
” cover

of the Duffing attractor.

plot the phase portraits (X(t), Y (t)) for the van der Pol oscillator and its image and
“ 3

2” cover in Fig. 8.57(b), (a), and (c), respectively. The same is done in Fig. 8.58(b),
(a), and (c) for the Duffing oscillator. These figures show clearly the symmetry under
rotations of the coordinate plane about 2π/N radians for N = 1, 2, 3 in the three
cases shown.
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8.11 QUANTIZING CHAOS

In the closing section of this chapter we construct an entire family of strange attractors
that are locally diffeomorphic with a single strange attractor. The members of this
family are identified by two integers n1 ≥ 1 and n2. Since these arise by imposing
periodic boundary conditions, we call these integers quantum numbers for strange
attractors.

To construct the members of this family we view a single strange attractor from
various coordinate systems and then invoke the Equivalence Principle. This allows us
to construct new strange attractors from old. The various transformations we use are
to rotating coordinate systems. Along the way we introduce two simple measures as a
way of characterizing the resulting strange attractors. These are dynamical measures,
as opposed to topological indices that lead to the two integers n1 and n2.

A universal image attractor is identified and then lifted to a series of topologically
inequivalent but globally diffeomorphic strange attractors and many n1 → 1 covers
of the universal image attractor. These procedures can also be applied to certain
autonomous dynamical systems, such as the Rössler attractor.

8.11.1 The Equivalence Principle

According to the Equivalence Principle, if two observers,O1 and O2, observe some
process and “the rest of the universe” “looks the same” to both obsevers, thenO2 can
use the description of the process given by O1 to describe some other process, “and
that process must exist” for O2.

Applied to strange attractors the Equivalence Principle provides the following
information for us. We observe some process that generates a strange attractor,
for example, the van der Pol equations in the natural (X,Y, t) coordinate system.
A second observer O2 records this process from a different coordinate system. If
the rest of the world looks the same from both coordinate systems, we can use the
mathematical description of the process formulated by O2 to describe a process in
our (X,Y, t) coordinate system to generate a strange attractor, and that attractor must
exist.

This is not a useful way to generate strange attractors if the two are topologi-
cally equivalent. It is therefore of interest to choose coordinate transformations that
lead to topologically inequivalent strange attractors. These are rotating coordinate
transformations.

8.11.2 Rotating Transformations

We begin with a standard periodically driven dynamical system

d

dt

[
X1(t)
X2(t)

]

=

[
F1(X1, X2)
F2(X1, X2)

]

+

[
t1(t)
t2(t)

]

(8.37)

Here ti(t) are the periodic driving terms: ti(t+ Td) = ti(t). The phase space is the
torus D2 × S1. If this dynamical system generates a strange attractor, the attractor
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is periodic. More specifically the Ω-limit set is periodic. The relation between the
geometric angle θ describing position alongS1 in the torus and the dynamical variable
t is

θ

2π
=

t

Td
(8.38)

In a coordinate system (u1, u2, t) related to the original coordinate system (X1, X2, t)
by the periodic transformation

ui(t) = Rij(t)Xj(t) + di(t)
Rij(t+ Td) = Rij(t)
di(t+ Td) = di(t)

(8.39)

the coordinates (X1, X2, t) are mapped to new coordinates (u1, u2, t) that also de-
scribe a strange attractor. If the transformation is a diffeomorphism, the new strange
attractor has identical geometric (fractal) and dynamical (Lyapunov) measures as the
original. However, it may not be topologically equivalent to the original.

To construct a series of topologically inequivalent attractors we choose homoge-
neous transformations (di(t) = 0) that are uniform rotations:

Rij(t) = eΩt and di(t) = 0 (8.40)

where Ω = ωL, ω = kωd, with k an integer and ωd = 2π/Td, and L =

[
0 1
−1 0

]

is the infinitesimal generator for rotations in a plane. For this class of transformations
R(0) = I2, R(Td) = I2, and R(t) goes through k full rotations as t increases
through one period from t = 0 to t = Td. As a result, the new strange attractor with
coordinates (u1, u2, t) and the original strange attractor with coordinates (X1, X2, t)
have global torsions differing by the integer k.

The dynamical equations for the new strange attractor are

d

dt

[
u1(t)
u2(t)

]

= R(t)

[
F1(R

−1u)
F2(R

−1u)

]

+R(t)

[
t1(t)
t2(t)

]

+ Ω

[
u1(t)
u2(t)

]

(8.41)

Of the three terms on the right: the first is the original driving term as seen in the
rotating coordinate system; the second is the periodic drive, as seen also in the rotating
coordinate system; the third is the usual Coriolis term.

In Fig. 8.59 we present images of the Duffing strange attractor (k = 0) and several
of the strange attractors that have been generated from it by using uniformly rotating
transformations. These attractors have been shown in a “toroidal” representation.
We plot one of the two rotating coordinates (u(t)) vertically and the time direction
horizontally for one period. The trace is shown darker (v(t) > 0) or lighter depending
on the value of the second coordinate. These presentations show that the strange
attractor becomes more “wound up” as |k| increases.
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Fig. 8.59 Strange attractors obtained from the Duffing strange attractor using uniformly rota-
ting coordinate transformations. Middle: The original strange attractor, toroidal representation.
Top line: Lifts that are globally diffeomorphic with the original attractor. Bottom line: 2 →
1 images obtained by projections to planes subharmonically rotating in opposite directions.
Parameter values: (a, δ, ω, T ) = (0.4, 0.4, 1.0, 2π). Rotation index k = −2,−1, 0, +1, +2.
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8.11.3 Dynamical Measures

It is useful to introduce two classical-like measures for a periodically driven strange
attractor. These are the mean torsion and energy integrals, defined by

L = L(0) = lim
τ→∞

1

τ

∫ τ

0

XdY − Y dX

K = K(0) = lim
τ→∞

1

τ

∫ τ

0

1

2
(Ẋ2 + Ẏ 2)dt

(8.42)

The first integral measures the rotation around the direction of flow. The second
integral measures, in some rough sense, the “kinetic energy” associated with motion
generating the strange attractor.

The integrals L(Ω) and K(Ω) for strange attractors generated from the original
strange attractor by the uniformly rotating transformation are related to the integrals
L(0) and K(0) by

L(Ω) = 〈uv̇ − vu̇〉 = 〈XẎ − Y Ẋ〉+ Ω〈X2 + Y 2〉
= L(0) + Ω〈R2〉

(8.43)

K(Ω) =
1

2
〈(u̇2 + v̇2)〉 = 〈1

2
(Ẋ2 + Ẏ 2)〉+ Ω〈XẎ − Y Ẋ〉+ 1

2
Ω2〈X2 + Y 2〉

= K(0) + ΩL(0) +
1

2
Ω2〈R2〉

The moment of inertia 〈R2〉 = 〈X2 + Y 2〉 = limτ→∞
1
τ

∫ τ

0 (u(t)2 + v(t)2)dt is
invariant under rotating transformations.

In Fig. 8.60 we present the two classical integrals for the class of strange attractors
obtained from the Duffing strange attractor using rotating transformations with integer
index k, −10 ≤ k ≤ +10. The torsion integral has been scaled by ωd〈R2〉 to
emphasize that its value increases by integer steps as the rotation (Ω = kωd) increases.
The plots also show that the kinetic energy increases quadratically with the angular
frequency.

8.11.4 Universal Image

The Duffing, van der Pol, and Takens-Bogdanov nonlinear oscillators have an inver-
sion symmetry that leads to a two-fold internal symmetry over and above the periodic
symmetry when the periodic drive also possesses a symmetry. This symmetry leads
immediately to a symmetry in the rotating attractors:

(u, v, t)→ ((−)k+1u, (−)k+1v, t+
1

2
Td) (8.44)

For k even the rotating attractors have the same fundamental symmetry as the original
attractor with k = 0. For k odd the attractors are invariant under the half-period
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Fig. 8.60 Torsion and energy integrals for strange attractors created from the Duffing strange
attractor (k = 0) using rotating transformations. The torsion integral is scaled by ωd〈R2〉 to
emphasize the integer growth of L(Ω) with Ω. The attractors are all globally diffeomorphic
and differ by their global torsion. Parameter values: (a, δ, ω, T ) = (0.4, 0.4, 1.0, 2π).

symmetry (u, v, t) → (+u,+v, t + 1
2Td). In some ways the attractors with k odd

are “more fundamental” than those with k even. In fact, the latter can be considered
as 2 → 1 covers of the odd-k attractors. Those with odd k have no residual internal
symmetry.

We make these ideas more formal by defining a unique universal image strange
attractor as the attractor with least symmetry and smallest value of the dynamical
integrals. From Fig. 8.60 it is clear that the universal image of the Duffing attractor
is the attractor obtained with k = +1.

8.11.5 Harmonic Maps

The universal image attractor can be used to construct an entire series of strange
attractors that are closely related to the original strange attractor. To do this we use
the uniformly rotating coordinate transformation Eq.(8.40), acting on the coordinates
(u, v, t) of the universal image attractor. The driving frequency is ω1 = 2ωd since the
period of the universal image is half the period of the original attractor: T1 = 1

2Td.
None of the attractors obtained by this means is equivalent to the original Duffing

attractor.

8.11.6 Subharmonic Lifts and Quantum Numbers

In order to recover the original Duffing strange attractor from its universal image it
is useful to:

1. allow the integer k used to define harmonic lifts to be replaced by a rational
fraction p/q or n2/n1;

2. replace the source attractor on the right hand side of the rotation transformation
equation Eq.(8.41) by the coordinates of the universal image attractor.
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Fig. 8.61 Torsion and energy integrals for subharmonic lifts of the universal image of the
Duffing attractor for −3 ≤ n2/n1 ≤ +3 and 1 ≤ n1 ≤ 8. The torsion integral is divided by
by ω1〈R2〉: the scaled result is proportional to n2/n1 up to an additive constant. Parameter
values: (a, δ, ω, T ) = (0.4, 0.4, 1.0, 2π).

The lift of the universal image strange attractor that is obtained by this subharmonic
rotation is labeled by the index (n1, n2). The periodicity of the lifted attractor is
T(n1,n2) = n1T1. Further, during the interval 0 ≤ t ≤ n1T1 the rotation increases
by 2πn2 radians. The relation between the dynamical indices of the universal image
attractor L(image) and K(image) and the indices of the covers obtained are

L(n1, n2) = L(image) + Ω〈R2〉
K(n1, n2) = K(image) + ΩL(image) + 1

2Ω2〈R2〉 (8.45)

Here Ω = (n2/n1)ω1.
Fig. 8.61 displays the values of the classical integrals for subharmonic lifts of the

universal image Duffing attractor for 1 ≤ n1 ≤ 8 and −3 ≤ n2/n1 ≤ +3. The
torsion integral depends linearly on Ω = (n2/n1)ω1 and the energy integral depends
quadratically on the rotation angular frequency. As before, the torsion integral is
scaled by ω1〈R2〉 to emphasize its linear dependence on the rational fraction n2/n1.

The original Duffing attractor is the lift of the universal image with index (n1, n2) =
(2,−1). It is a 2→ 1 cover of the image. The subharmonic lifts with index (n1, n2)
aren1-fold covers of the universal image attractor. The relation between the geometric
angle θ ∈ S1 in the torus D2 × S1 and the dynamical variable t is

θ

2π
=

t

T(n1,n2)
=

t

n1T1
(8.46)

There is a one to one correspondence between topologically distinct subharmonic
lifts and pairs of integers (n1, n2) with n1 ≥ 1.

8.11.7 Application to Autonomous Systems

The distinction between autonomous and nonautonomous dynamical systems has
been useful in the past, but it cannot be regarded as an absolute distinction. It is



QUANTIZING CHAOS 227

possible to represent some nonautonomous dynamical systems in an autonomous
form, and to express some autonomous dynamical systems in a nonautonomous form.
This can be done when the autonomous dynamical system generates a strange attractor
whose natural phase space is a torus with topologyD2 × S1.

We illustrate how to do this for the simplest of the autonomous dynamical systems:
the Rössler attractor. The strange attractor generated by the Rössler equations for
standard parameter values (a, b, c) = (0.398, 2.0, 4.0) is shown projected onto the
x-y plane on the left in Fig. 8.62. A toroidal representation of this strange attractor
is presented on the right in this figure. The toroidal representation is constructed
as follows. The autonomous phase space coordinates (x, y, z) are expressed as “1 1

2
complex variables” by writing x + iy = Aeiφ, where the amplitude A(φ) > 0 and
tan(φ) = y/x. The angle φ(t) depends monotonically on the time coordinate t,
and can be used to replace t. The three coordinates of the strange attractor are taken
as A(φ) − 〈A〉, the derivative dA(φ)/dφ − 〈dA/dφ〉, and the geometric coordinate
φ mod 2π. The toroidal representation that is shown in Fig. 8.62 plots A − 〈A〉
against φ/2π mod 1, with darker parts where dA/dφ − 〈dA/dφ〉 > 0 and lighter
where dA/dφ − 〈dA/dφ〉 < 0. As this attractor possesses no internal symmetry, it
[or one of its harmonic lifts (k integer)] is the universal image attractor. Since it is
clearly less wound up than any attractor created using a uniform rotation with k 6= 0,
this is the universal image attractor.

The universal image can be lifted using either harmonic rotations (k integer) or
subharmonic rotations. Attractors with index (n1, n2), n1 ≥ 1 are constructed using
ω = (n2/n1)ω1 as angular rotation frequencies. Several of these lifts are shown in
Fig. 8.63.

In this final section we have shown that it is possible to create a two parameter
family (n1, n2) of covers of an image dynamical system. The integer n1 describes
the order of the lift: the lift is an n1 → 1 cover of the universal image attractor.
The integer n2 describes the global torsion of the lift into the torus where θ/2π =
t/(n1T1). All attractors are locally diffeomorphic. As a result, they have identical
spectra of geometric (fractal) invariants as well as dynamical invariants (Lyapunov
exponents). Those with the same value of n1 are globally diffeomorphic. Lifts
with (n1, n2) 6= (n1, n2)

′ are topologically distinct. The only way they can be
distinguished from each other is through their topological invariants.

The covers of the Rössler system that we have created in this subsection are differ-
ent from most of the covers that were described in Chapter 6, and those that will be
described in Part III of this work. Most of then-fold covers described in Chapter 6 ex-
hibit n “ears,” or formally, exist in bounding tori (cf., Chapter 15) of genus g = n+1.
The exceptions include lifts with Cn symmetry, where the symmetry axis is inside
both branches 0 and 1 of the Rössler attractor. This subset of lifts with Cn symmetry
exists in a genus-one torus and corresponds exactly to the covers discussed above
with n1 = n and n2 = 0. Covers of the Rössler attractor (toroidal representation)
with index (n1, n2) have 2n1 branches and their Poincaré sections consist of a single
plane. Covers with the same value of n1 are globally diffeomorphic and differ from
each other only by their global torsion, which is n2.
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(0.398, 2.0, 4.0).
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9.1 COMPLEX DYNAMICAL SYSTEMS

A large class of dynamical systems can be written in complex form

ȧi = Aijaj +Aijka
(∗)
j a

(∗)
k (9.1)

These equations are truncations of nonlinear partial differential equations that support
one or more propagating waves. They involve complex time-dependent amplitudes
and possibly their complex conjugates. In these systems the complex amplitudes
aj(t) are coupled to waves of the from ei(kjx−ωjt). When expressions of the form

u(x, t) =
∑

ajΨj(x, t) =
∑

aje
i(kjx−ωjt)

are substituted into the original partial differential equation and the spatial dependence
is integrated out, coupled nonlinear equations of the form (9.1) result. If the partial
differential equation has a quadratic nonlinearity, the projected coupled ordinary
differential equations (9.1) contain only bilinear nonlinearities. In this section we will
outline the general approach to the study of complex ordinary differential equations
of type (9.1) when these equations exhibit a continuous symmetry. The approach
will be illustrated by application to a four-wave mixing interaction in a plasma. The

229
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interactions in a plasma between the electric field E(x, t) and the ion sound wave
u(x, t) are described by the following partial differential equations

∇ · (i∂t + ∆ + iν̃)E = ∇ · nE
(
∂2

t + 2ν̃S∂t −∆
)
n = ∆(E · E)

These are called Zakharov’s equations [138].

9.1.1 Projection to Five Complex Dimensions

In the case that three propagating electric field modes aje
i(kjx−ωjt) (j = 1, 2, 3)

interact with a single ion acoustic wave n(x, t) ≈ n(t)ei(Kx−Ωt), the three mode
amplitudes ai(t) each obey first-order equations and the acoustic mode amplitude
obeys a second-order equation that can be written as a pair of first-order equations.
The five resulting complex equations are

ȧ1 = −ν1a1 + a2a4e
−i∆t

ȧ2 = −ν2a2 − a1a
∗
4e

i∆t + a3a4e
−iδt

ȧ3 = −ν3a3 − a2a
∗
4e

iδt

ȧ4 = −2ν4a4 + 2i(a4 − a5)
ȧ5 = −ν4a4 − a1a

∗
2e

−i∆t − a2a
∗
3e

−iδt

(9.2)

These equations exhibit a two-dimensional manifold of symmetries.

9.1.2 Symmetries

We begin our analysis of coupled complex ordinary differential equations by searching
for sets of phase transformations aj 7→ aje

iθj that leave these equations invariant.
The angles θj are static (time independent). Under this transformation the equations
are

d

dt
ai = Aijaje

i(θj−θi) +Aijka
(∗)
j a

(∗)
k ei(±θj±θk−θi)

The signs (±) depend on whether the mode amplitude (+) or its complex conjugate (−)
appears in the equations. Each nonzero term Aij (j 6= i) and Aijk in the dynamical
system gives rise to a constraint on the allowed phase transformations. As an example,
the three terms in the equations for da5

dt provide the following constraints on the phase
angle θi:

−ν4a4 : θ4 − θ5 = 0
a1a

∗
2 : θ1 − θ2 − θ5 = 0

a2a
∗
3: θ2 − θ3 − θ5 = 0

The entire set of phase constraints can be summarized by a matrix of phase relations,
or simply a phase matrix MP. For the complex dynamical system (9.2) describing the
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four-wave interaction, this phase matrix is

Eq. Term θ1 θ2 θ3 θ4 θ5

1 a2a4

2 a1a
∗
4

2 a3a4

3 a2a
∗
4

4 a5

5 a4

5 a1a
∗
2

5 a2a
∗
3















−1 1 0 1 0
1 −1 0 −1 0
0 −1 1 1 0
0 1 −1 −1 0
0 0 0 −1 1
0 0 0 1 −1
1 −1 0 0 −1
0 1 −1 0 −1



























θ1

θ2

θ3

θ4

θ5













= 0
(9.3)

The number of complex variables in the dynamical system is the maximum rank of
the phase matrix. If the rank of the phase matrix is maximum the dynamical system
has no continuous phase symmetry. If it is less than maximum, the dimension of
the continuous symmetry group is the corank of this matrix (Complex dimension −
Rank MP). This is the number of null vectors of MP. The matrix MP in (9.3) has rank
3, so that the dynamical system (9.2) has three independent phase angle degrees of
freedom and a two-dimensional (2 = 5− 3) group of symmetries whose generators
are the null vectors of MP.

The three linearly independent row vectors and the two null vectors of the phase
matrix (9.3) are

3 Independent Row Vectors 2 Null Vectors




−1 1 0 1 0
0 −1 1 1 0
0 0 0 1 −1





[
1 0 −1 1 1
0 −1 2 −1 −1

]
(9.4)

As usual, this decomposition into spanning vectors and null vectors represents a
decomposition into dynamics and symmetry (Wigner-Eckart decomposition).

We discuss symmetry first. The dynamical system is invariant under phase changes
represented by an arbitrary linear combination of the two null vectors. Choosing am-
plitudesα, β for these null vectors, the dynamics is invariant under the transformation









a1

a2

a3

a4

a5









7→









a1e
iα

a2e
−iβ

a3e
i(−α+2β)

a4e
i(α−β)

a5e
i(α−β)









As a result of this two-dimensional equivariance group, the complex five-dimensional
system can be reduced to a real eight-dimensional dynamical system.

9.1.3 Dynamics

The dynamical equations of motion (9.2) can be integrated either as five complex
equations or ten real equations. The evolution in the ten (or eight) dimensional phase
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space is impossible to represent here. Instead, we show the time evolution of each
of the five complex modes a1 → a5 in Fig. 9.1(a)→(e). These projections exhibit
several striking features:

1. The modes are locked. Each mode exhibits 90 maxima in |ai|.
2. The phase angle for each mode can be decomposed into two parts

θi = Ωit+ Ψi(t) (9.5)

3. The slow part Ωi can be taken as constant. It describes the slow rotation of
the oscillation about the origin of each projection. For the five modes shown,
Ω1 > Ω2 > Ω4 ≈ Ω5 > Ω3.

4. The fast oscillations are of two types:

Librations: 0 < Ψ < π for modes a1, a3.

Rotations: Ψ increases approximately linearly for modes a2, a4, a5.

These observations suggest that the dynamics will provide an even more significant
simplification than symmetry in the description of this system.

9.1.4 Dynamics in Polar Coordinates

An alternative representation for the real eight-dimensional dynamical system could
be constructed. A polar decomposition for each variable is introduced: aj 7→ ρje

iφj .
In this decomposition ρj ≥ 0, and both ρj and φj are explicitly time dependent. In
this representation the dynamical system equations become

ρ̇i + iϕ̇iρi = Aijρje
i(ϕj−ϕi) +Aijkρjρke

i(±ϕj±ϕk−ϕi)

The real and imaginary parts of each complex equation provide an equation for ρ̇i and
one for ϕ̇i. For the five-complex dimensional system there is one equation for each
ρi. The five equations for the phase angle ϕ̇i can be grouped into two subsets. One is
a set of three dynamical phase angles Φi, i = 1, 2, 3. These are linear combinations
of angles determined by the three linearly independent row vectors given in (9.4) and
are

Φ1 = −θ1 + θ2 + θ4 −∆t
Φ2 = −θ2 + θ3 + θ4 − δt
Φ3 = θ4 − θ5

Two other linear combinations of the phase angles, Φj , j = 4, 5 represent the sym-
metries of the five complex equations. They are determined by the two null vectors
in (9.4), and are

Φ4 = θ1 − θ3 + θ4 + θ5
Φ5 = −θ2 + 2θ3 − θ4 − θ5
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(a) Plane projection of mode a1
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(c) Plane projection of mode a3
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(e) Plane projection of mode a5

Fig. 9.1 Plane projections of the chaotic attractor generated by the ten-dimensional system
(9.2). The continuous rotation symmetry is easily identifed. Parameter values: ν1 = 0.050,
ν2 = −0.0345, ν3 = 0.03, and ν4 = 0.05.
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The eight dynamical variables satisfy the equations

ρ̇1 = −ν1ρ1 + ρ2ρ4 cos Φ1

ρ̇2 = −ν2ρ2 − ρ1ρ4 cos Φ1 + ρ3ρ4 cos Φ4

ρ̇3 = −ν3ρ3 − ρ2ρ4 cos Φ2

ρ̇4 = −2(ν4ρ4 + ρ5 sin Φ3)
ρ̇5 = −ν4ρ4 cos Φ3 − ρ1ρ2 cos(Φ1 − Φ3) − ρ2ρ3 cos(Φ2 − Φ3)

Φ̇1 = −∆ + 2

„

1 − ρ5

ρ4

cos Φ3

«

+

„

ρ1ρ4

ρ2

− ρ2ρ4

ρ1

«

sin Φ1 +
ρ3ρ4

ρ2

sin Φ2

Φ̇2 = −δ + 2

„

1 − ρ5

ρ4

cos Φ3

«

− ρ1ρ4

ρ2

sin Φ1 +

„

ρ2ρ4

ρ3

− ρ3ρ4

ρ2

«

sin Φ2

Φ̇3 = 2
“

1 − ρ5
ρ4

cos Φ3

”

+ ν4
ρ4
ρ2

sin Φ3 − ρ1ρ2
ρ5

sin(Φ1 − Φ3) − ρ2ρ3
ρ5

sin(Φ2 − Φ3)

The phase angles Φ4, Φ5 obey Φ̇4 = 0, Φ̇5 = 0.

9.1.5 Symmetry Reduction

There are systematic ways to reduce the dimension of complex dynamical systems
of the type given in Eq. (9.1) by using the machinery described earlier for real
dynamical systems. Invariant polynomials depending on the complex amplitudes are
constructed as follows. One bilinear invariant can be constructed from each amplitude
aj 7→ a∗jaj . Invariant polynomials depending on two or more amplitudes and their
complex conjugates have the form

an1
1 an2

2 an3
3 an4

4 an5
5

where a negative value ofnj means thatanj

j 7→ (a∗j )
(−nj). In order for this polynomial

to be invariant, the exponents nj must obey the following Diophantine equations

[
1 0 −1 1 1
0 −1 2 −1 −1

]









n1

n2

n3

n4

n5









=

[
0
0

]

(9.6)

This equation has three linearly independent sets of solutions. These are the three
linearly independent sets of row vectors of the phase matrix (cf. Eq. (9.4)):

[
1 0 −1 1 1
0 −1 2 −1 −1

]









−1 0 0
1 −1 0
0 1 0
1 1 1
0 0 −1









=

[
0 0 0
0 0 0

]

(9.7)

Each column of this 5×3 matrix defines an invariant polynomial. The three invariant
polynomials are

a∗1a2a4 , a
∗
2a3a4 , a4a

∗
5
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Their complex conjugates are also invariant, as are all products of them, their complex
conjugates, and the bilinear invariants a∗jaj .

The generating functions for invariant polynomials by degree consists of

1. One factor 1
1−x2 for each of the five bilinear invariants a∗jaj .

2. One factor 1
1−x2 for a4a

∗
5 and one for a∗4a5.

3. One factor 1
1−x3 for a∗1a2a4, one for a∗2a3a4, and another for each complex

conjugate.
4. One factor 1 + x4 in the numerator for the syzygy

(a4a
∗
5)(a4a

∗
5)− (a∗4a4)(a

∗
5a5) = 0

5. One factor 1 + x6 in the numerator for the syzygy

(a∗1a2a4)(a1a
∗
2a4)− (a∗1a1)(a

∗
2a2)(a

∗
4a4) = 0

and another for the syzygy involving a∗2a3a4.

The generating function is

N(x, d) =
∑

d=0

N(d)xd =
(1 + x4)(1 + x6)2

(1− x2)5+2(1− x3)2×2

The invariant polynomials used for constructing an eight-dimensional image dynam-
ical system are

pi = a∗i ai i = 1, 2, 3, 4, 5
p6,r = a4a

∗
5 + a∗4a5

p6,i = a4a
∗
5 − a∗4a5

p7,r = a∗1a2a4 + a1a
∗
2a

∗
4

p7,i = a∗1a2a4 − a1a
∗
2a

∗
4

p8,r = a∗2a3a4 + a2a
∗
3a

∗
4

p8,i = a∗2a3a4 − a2a
∗
3a

∗
4

There are 11 basic invariant polynomials and three constraints. There are 11 real
equations of motion, and the flow is restricted to an eight-dimensional subspace in
R

11. This subspace is defined by the real form of the syzygies

p2
6,r + p2

6,i = p2
4p

2
5

p2
7,r + p2

7,i = p2
1p

2
2p

2
4

p2
8,r + p2

8,i = p2
2p

2
3p

2
4
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9.1.6 Dimensional Reduction

A reduction in dimension by two is possible because of the symmetries studied in
Section 9.1.2. The reduction in dimension can be carried out using the 11 coordinates
and three constraints determined in the preceeding section.

An even greater reduction in dimension can be effected, as we now show. The
system (9.2) exhibits dynamical symmetry, as can be seen in Fig. 9.1. We can exploit
this symmetry as follows. Instead of introducing a polar decomposition of the form

ai → ρie
iθi (9.8)

where ρi = |ai| as done in Section 9.1.4, we introduce a decomposition of the form

ai → ρie
iθ̃i (9.9)

In this decomposition we absorb the fast variation of θ (ψi(t)) into the nonnegative
amplitude |ai| to construct a slowly varying amplitude ρi that can assume negative as
well as positive values. We also remove the slowly varying component of the phase
Ωi. This leaves us with a five-dimensional dynamical system with two different types
of variables:

even 0 < ρ1, ρ3

odd ρ2, ρ4, ρ5

Once again, the evolution in this five-dimensional phase space is impossible to depict.
It is not even clear that this dimension reduction produces a deterministic flow (no self-
intersections in this projected flow). However, a projection of this five-dimensional
flow onto the ρ2-ρ3 plane, shown in Fig. 9.2(a), shows that the flow is deterministic,
and even low-dimensional. That is, the flow is effectively three-dimensional. Further
evidence for the low dimensionality of this flow is the first-return map on the variable
ρ2, shown in Fig. 9.2(b).

The attractor is shown in Fig. 9.2(a) is one half of an equivariant attractor. The
equivariance group is a discrete group of order two

(ρ1, ρ2, ρ3, ρ4, ρ5)
G−→ (ρ1,−ρ2, ρ3,−ρ4,−ρ5) (9.10)

As the control parameter ν2 is increased from ν2 = −0.0345 to ν2 = −0.0343
along the line (ν1, ν2, ν3, ν4) = (0.05, ν2, 0.03, 0.05) in the control parameter space,
an attractor merging (symmetry-restoring) crisis occurs. The equivariant connected
attractor is shown in Fig. 9.3.

The topology of this attractor is the same as that of the Lorenz attractor. This can
be made evident by identifying three of the five variables ρ with the X , Y , and Z
variables of the Lorenz system. Under the identification (ρ2, ρ4, ρ3) ≈ (X,Y, Z), it
is possible to construct the image attractor under the usual local diffeomorphism

u = ρ2
2 − ρ2

4

v = 2ρ2ρ4

w = ρ3

(9.11)
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(a) ρ2-ρ3 plane projection
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Fig. 9.2 Chaotic behavior generated by the ten-dimensional system in the five real dynamical
variables ρi. (a) Projection onto the ρ2-ρ3 plane is shown along with the Poincaré section. (b)
The first-return map on the Poincaré section is a unimodal map with a differentiable maximum.
Parameter values: ν1 = 0.050, ν2 = −0.0345, ν3 = 0.03, and ν4 = 0.05.
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Fig. 9.3 Projection of the chaotic attractor onto the ρ2-ρ3 plane after the attractor merging
crisis. Parameter values: ν1 = 0.050, ν2 = −0.0343, ν3 = 0.03, and ν4 = 0.05.

The projection of this image onto the (u,w) subspace is shown in Fig. 9.4. Branched
manifolds for the strange attractors shown in Figs. 9.2, 9.3, and 9.4 are shown in Fig.
9.5.

9.2 CONTINUOUS ROTATIONS

Laser models are usually expressed in terms of the electric field E(x, t), the polari-
sation of an optically active medium P(x, t), and some variable that represents how
the optically active medium is excited. When only one electric field mode is ex-
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Fig. 9.4 Image of the chaotic attractor without any residual symmetry. Parameter values:
ν1 = 0.050, ν2 = −0.0343, ν3 = 0.03, and ν4 = 0.05.

Branched manifold for Fig. 9.2(a) and its image.

Branched manifold for Fig. 9.3 and its image as shown in Fig. 9.4.

Fig. 9.5 Branched manifolds for dimensionally reduced complex dynamical systems.



CONTINUOUS ROTATIONS 239

cited, the electric field can be represented by a single complex variable in the form
E(x, t) = εX(t)ei(k·x−ωt). Here the space-time dependence of the electric field
mode is represented by the factor ei(k·x−ωt) and ε describes its polarization state.
The complex variable X(t) varies on a time scale much slower than the time scale
for the propagating wave [eiωt]. The polarization can be treated similarly.

9.2.1 Zeghlache-Mandel System

Following this procedure, Zeghlache and Mandel [139] proposed a laser model ex-
pressed in terms of two complex variables and one real variable (“2 1

2 complex vari-
ables”) as follows

Ẋ = −σ(1− iδ)X + σY

Ẏ = RX − (1 + iδ)Y −XZ
Ż = −γZ + 1

2 (XȲ + X̄Y )

(9.12)

In this model the complex variables X and Y represent the electric field E and
the atomic polarization P, which describes the response of the atomic system to
the imposed electric field. The normalized population inversion is represented by
the real variable Z. The control parameters (R, σ = γE

γP
, γ = γZ) represent the

pump rate (R) and the relaxation (decay) rates of the electric field, polarization, and
population inversion. The parameter δ is the detuning ratio, the difference between
the pumping frequency ω and the empty cavity resonance frequency ω0, normalized
byω0: δ = (ω−ω0)/ω0. When δ = 0 these equations reduce to the Lorenz equations
if we interpret X and Y as real variables.

This dynamical system in 2 1
2 complex variables is written as a real five-dimensional

dynamical system by expressing X and Y in terms of their real and imaginary parts
X = X1 + iX2, Y = Y1 + iY2:

Ẋ1 = −σ(X1 + δX2 − Y1)

Ẋ2 = −σ(X2 − δX1 − Y2)

Ẏ1 = RX1 − Y1 + δY2 −X1Z

Ẏ2 = RX2 − Y2 − δY1 −X2Z

Ż = −γZ + (X1Y1 +X2Y2)

(9.13)

9.2.2 Symmetries

These equations are invariant under the symmetryU(1) : (X,Y, Z)→ (Xeiθ, Y eiθ,Z),
as is easily verified. This symmetry is represented in the 2 1

2 and five dimensional
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systems by the matrix equations





eiθ 0 0
0 eiθ 0
0 0 1









X
Y
Z













cos θ sin θ 0 0 0
− sin θ cos θ 0 0 0

0 0 cos θ sin θ 0
0 0 − sin θ cos θ 0
0 0 0 0 1

















X1

X2

Y1

Y2

Z









U(1) SO(2) (9.14)

The invariant set for this rotation is theZ-axis and theU(1) orSO(2) group action
is represented byRZ(θ). The phase matrix for this dynamical system is determined
from the three equations of (9.12)

Eq. Term θ1 θ2

1 Y
2 X
3 XȲ





−1 1
1 −1
1 −1









θ1

θ2



 = 0
(9.15)

The independent row vector and the null vector are

Independent Row Vector Null Vector
[

1 −1
] [

1 1
] (9.16)

The symmetry is (X1 + iX2, Y1 + iY2) = (a1, a2) 7→ (a1e
iα, a2e

iα). From the
phase matrix we determine the invariant polynomials to be

a∗1a1 → X2
1 +X2

2 = u1

a∗2a2 → Y 2
1 + Y 2

2 = u2

a∗1a2 → (X1Y1 +X2Y2) + i(X1Y2 −X2Y1) = u3 + iu4

a1a
∗
2 → (X1Y1 +X2Y2)− i(X1Y2 −X2Y1) = u3 − iu4

The invariant polynomial equations involve the five invariant polynomialsui (u5 = Z)
and one syzygyu1u2−(u2

3u
2
4) = 0. The four real equations in the polar representation

involve the two positive radial variables ρ1, ρ2, the real variable ρ3, and the phase
difference Φ1 = φ1 − φ2.

9.2.3 Fixed Points

The fixed points are obtained as usual by setting all time derivatives equal to zero.
There is always one fixed point at the origin (X,Y, Z) = (0, 0, 0). If there is a second
(“real”) fixed point, it satisfies the relations

Z = R− (1 + δ2)

|X | =
√
γZ

Y = (1− iδ)X
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Fig. 9.6 Symmetry-restricted pitchfork bifurcation for the Zeghlache-Mandel equations as a
function of increasing R.

The second “fixed point,” is actually a continuous circle of fixed points. It bifurcates
from the fixed point at the origin in a symmetry-restricted pitchfork bifurcation as
R increases above 1 + δ2. This bifurcation diagram is shown in Fig. 9.6. The fixed
point at the origin is stable forR < 1 + δ2, unstable forR > 1 + δ2. The bifurcation
circle [U(1)] of fixed points is stable forR > 1 + δ2. For R < 1 + δ2 it is a circle of
imaginary fixed points.

Remark: Normally a pitchfork bifurcation involves a search for minima of the
potential V (x) = 1

4x
4 + 1

2µx
2. There is one stable equilibrium at x = 0 for µ > 0.

There are three equilibria forµ < 0, an unstable one atx = 0 and two stable equilibria
at x = ±√−µ. If for some physical reason x must be positive or zero (e.g., x
represents a radius) the pitchfork bifurcation is said to be symmetry-restricted.

9.2.4 Dynamics

The dynamics of the Zeghlache-Mandel equations can be determined, to some extent,
by integrating this real five-dimensional system. Projections of the attractor into the
electric field plane and polarization plane are shown in Fig. 9.7(a) and (b). Both
projections are quite “spiky.” However, the two projections are highly correlated,
as can be seen by superposing one on the other. To emphasize this point, we show
the Y1 versus X1 and Y2 versus X2 projections in Fig. 9.8(a) and (b). Both are
strongly suggestive of the Lorenz attractor. This should not be too surprising, as
these equations reduce to the Lorenz equations in the limit of zero detuning: δ → 0.

The evolution of the dynamics away from the Lorenz attractor is shown in Fig. 9.9.
In the left column we shown the flow projected onto the (X,Z) plane as a function
of increasing detuning. For δ = 0.002 the projection is indistinguishable from the
Lorenz attractor. As δ increases it appears that the attractor becomes somewhat
“shaky.”

When the detuning is increased up to δ = 0.69, a quasi-periodic motion is ob-
served (Fig. 9.9(c)). This is a two-frequency torus. These frequencies, fx and fy,
are associated with the rotation occurring in the planes (X1, X2) and (Y1, Y2), re-
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Fig. 9.7 Projections of the Zeghlache-Mandel attractor onto the (a) X1-X2 plane and (b) the
Y1-Y2 plane. Parameter values: R = 28.0, γ = 0.25, δ = 0.10, and σ = 2.0.
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Fig. 9.8 Projections of the Zeghlache-Mandel attractor onto the (a) X1-Y1 plane and (b) the
X2-Y2 plane. Parameter values: R = 28.0, γ = 0.25, δ = 0.10, and σ = 2.0.

spectively. Both are associated with a continuous rotation around the axis Oz. Other
types of quasi-periodic motions may be observed as exemplified with δ = 1.0 (Fig.
9.9(d)).

In the right column of Fig. 9.9 we plot the Poincaré section in the polarization plane
(Y1, Y2). Both directions of intersection of the flow with this plane are retained. The
dashed curve represents the intersection of this plane with the circle of fixed points
due to the continuous symmetry. The solid circles represent intersections of the
quasiperiodic motions with the Poincaré section.
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(a) δ = 0.002

(b) δ = 0.1

(c) δ = 0.69

(d) δ = 1.0

Fig. 9.9 Evolution of the dynamics as a function of the detuning δ. The left column corre-
sponds to (X1, Z) plane projections of the phase portraits embedded in the original phase space
R

5(X1, X2, Y1, Y2, Z). The right column provides Poincaré sections in the plane (Y1, Y2).
Both directions of intersections with a transverse plane are retained for these Poincaré sec-
tions. In the Poincaré section, the dashed line represents the section of the torus of fixed points.
Parameter values: R = 24.0, σ = 2.0, and γ = 0.25.
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9.2.5 Dynamics in Polar Coordinates

The reduced dynamical equations can also be expressed in a more traditional “polar”
decomposition. We introduce new variables (ρ, φ) according to

X = ρ1e
iφ1

Y = ρ2e
iφ2

Z = ρ3

where ρ1 > 0, ρ2 > 0, and −∞ < ρ3 < ∞. The dynamical system equations are
invariant under the tranformation

X → Xeiθ

Y → Y eiθ

The equations can be expressed in terms of the three variables ρi (i = 1, 2, 3) and
one linear combination of the two angles: φ1 − φ2. An independent linear combina-
tion leaves the equations unchanged, and so is similar to a “Goldstone mode.” The
dynamical system equations in the new set of variable are

ρ̇1 = −σ∆ cosα+ σρ2 cosΦ

ρ̇2 = Rρ1 cosΦ−∆ cosαρ2 − ρ1ρ2 cosΦ

ρ̇3 = −γρ3 + ρ1ρ2 cosΦ

Φ̇ = (σ + 1)∆ sinα−
(

σ
ρ2

ρ1
+R

ρ1

ρ2
− ρ1ρ3

ρ2

)

sin Φ

(9.17)

where we have defined
∆eiα = 1 + iδ
Φ = φ1 − φ2

Integration of the dynamical system equations in polar format (9.17) is much less
stable than integration of the same equations in cartesian format (9.13).

9.2.6 Reduction of Dimension by Symmetry

It is useful to introduce invariant coordinates. They can be chosen as

u1 = X2
1 +X2

2

u2 = Y 2
1 + Y 2

2

u3 = X · Y = X1Y1 +X2Y2

u4 = X × Y = X1Y2 −X2Y1

u5 = Z

(9.18)

These coordinates obey the following relation
(
X2

1 +X2
2

) (
Y 2

1 + Y 2
2

)
− (X1Y1 +X2Y2)

2 − (X1Y2 −X2Y1)
2

= 0

u1 u2 − u2
3 − u2

4 = 0
(9.19)
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The equations of motion for the five invariant coordinates are

u̇1 = −2σu1 + 2σu2

u̇2 = 2Ru3 − 2u2 − 2u3u5

u̇3 = (R− u5)u1 + σu2 − (σ + 1)(u3 − δu4)

u̇4 = −(σ + 1)(u4 + δu3)

u̇5 = −γu5 + u3

It is a simple matter to verify that the constraint surface

u1u2 − u2
3 − u2

4 = 0

is invariant directly from these equations, for

d

dt
(u1u2 − u2

3 − u2
4) = u1u̇2 + u̇1u2 − 2u3u̇3 − 2u4u̇4 = 0

As a result, the dynamics is confined to a four-dimensional subspace in R
5.

Mapping to the image dynamical system simplifies the analysis of this dynamical
system. A number of projections are shown in Fig. 9.10. The projections into the
(u1, u2), (u1, u3) and especially the (u1, u5) and (u3, u4) planes clearly show a
Rössler-type band with a simple folding. This suggests strongly that the dynamics is
three dimensional.

9.2.7 Dynamical Reduction

This system exhibits a strong correlation between the electric field and the polariza-
tion. This correlation effectively reduces the dimension even below the minimum
dimension (four) allowed by the symmetry restriction. The correlation reduces the
dimension to three. To show this is the case, we constructed a differential embedding
based on the Z coordinate. The projection of the attractor in the three-dimensional
(Z, Ż, Z̈) space onto the (Z, Ż) plane is shown in Fig. 9.11(a). The return map on the
Ż coordinate for the Poincaré section is shown in Fig. 9.11(b). The cusped nature of
the return map is very similar to the return map for the Lorenz attractor. It indicates
that tearing occurs in the five-dimensional system.

As previously discussed, an image system will greatly simplify the analysis by
disentangling the properties which are due to the symmetry. To mod out the symmetry
properties, both static and dynamic, the image system induced by theZvariable and its
successive time derivatives is used. Fig. 9.11 the dynamics can be described in a three-
dimensional phase space spanned by the derivative coordinates (x, y, z) = (Z, Ż, Z̈).
The phase portraits are similar to those generated by the image of the Lorenz system
(1.4). A first-return map to the Poincaré section in Fig. 9.11(a) is shown in Fig.
9.11(b). The maximum of this map is a cusp, as usually observed for the Lorenz
system. A sequence of attractors, return maps, and periodic orbits are shown in Fig.
9.12 for the differentially embedded attractor corresponding to the control parameters
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Fig. 9.10 Phase portraits of the image of the Zeghlache-Mandel equations for R = 28.0,
γ = 0.25, δ = 0.10, and σ = 2.0.
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Fig. 9.11 Phase portrait and first return map for the image of the Zeghlache-Mandel equations
for R = 24.0, γ = 0.25, δ = 0.01 and σ = 2.0. Here D1 = Z and D2 = Ż .

used for the cover attractor in Fig. 9.9. Fig. 9.13 provides a bifurcation diagram for
the differentially embedded (image) attractor without symmetry. Period doubling
cascades as well as some of the larger low-period windows are clearly visible in this
bifurcation diagram. The branched manifold that describes this strange attractor is
shown in Fig. 9.14.
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Fig. 9.12 Evolution of the dynamics as a function of the detuning δ. The attractors (a), (b)
are obtained from a differential embedding. The projection onto the (Z, Ż) plane is shown.
The dynamics is that of a Smale horseshoe. A return map on Ż is given for each. Period-3 (c)
and -2 (d) orbits are shown. Parameter values: R = 24.0, σ = 2.0, and γ = 0.25.
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Fig. 9.13 Bifurcation diagram versus the detuning δ computed in the Poincaré section PI of
the image system.
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Fig. 9.14 Template of the chaotic attractor generated by the system (9.13) when the con-
tinuous symmetry is modded out. It is a reverse horseshoe template with a global torsion of
one.

9.3 THOMAS’ SYSTEM

A system with an S6 symmetry has been proposed by R. Thomas [122]:

ẋ = −bx+ ay − y3

ẏ = −by + az − z3

ż = −bz + ax− x3
(9.20)

This dynamical system is invariant under the group C3 of rotations by 2π/3 radians
about the (1,1,1) axis that sends (X,Y, Z) 7→ (Y, Z,X) and the inversion group P
that sends (X,Y, Z) 7→ (−X,−Y,−Z). The direct product of these two groups is
C3 × P = S6. This group is generated by S6 = C3 × P consisting of a rotation by
2π/6 radians about the (1,1,1) axis followed by an inversion. The matrix generator
for this group is

γ =





0 −1 0
0 0 −1
−1 0 0



 (9.21)

with γ6 = I. This group is commutative.

9.3.1 Fixed Points

For all values of (a, b) the origin (x, y, z) = (0, 0, 0) is a fixed point. It is 6-fold
degenerate. The Jacobian is the cyclic matrix:

J =





−b a 0
0 −b a
a 0 −b



 (9.22)
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with eigenvalues−b+aεj where ε = e
2πi
3 and j = 0, 1, 2. There are two fixed points

along the (1, 1, 1) rotation axis at x = y = z = ±
√
a− b. The eigenvalues at these

fixed points are −b+ (3b− 2a)εj .
In general, this system has 27 fixed points. For b = 0.3 and a = 1.1 they are all

real and tabulated below.

x y z

F0 0.0000 0.0000 0.0000

FI ±0.8944 ±0.8944 ±0.8944

±1.0370 ±0.3098 ±0.0850
FII ±0.0850 ±1.0370 ±0.3098

±0.3098 ±0.0850 ±1.0370

±1.0128 ±0.8653 ±0.2502
FIII ±0.2502 ±1.0128 ±0.8653

±0.8653 ±0.2502 ±1.0128

±1.0953 ∓1.1746 ∓0.3643
FIV ∓0.3643 ±1.0953 ∓1.1746

∓1.1746 ∓0.3643 ±1.0953

±1.1796 ±0.8164 ∓1.1461
FV ∓1.1461 ±1.1796 ±0.8164

±0.8164 ∓1.1461 ±1.1796

The eigenvalues for these fixed points are

FI λ1,2 = +0.35± 1.1258 I
λ3 = −1.6

FII λ1,2 = +0.31506± 1.0653 I
λ3 = −1.5301

FIII λ1,2 = −.93704± 1.1034 I
λ3 = +0.97409

FIV λ1,2 = −1.1734± 1.5128 I
λ3 = +1.4469

FV λ1,2 = +0.69404± 1.7217 I
λ3 = −2.2880

All of these fixed points are either stable foci with an unstable perpendicular direction
or unstable foci with a stable perpendicular direction.
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Fig. 9.15 A single attractor generated by the Thomas system for a = 1.1. The 27 fixed points
are shown in the plane projection R

2(X, Y ). Note that points FI cannot be distinguished from
the point located at the origin of the projection R

2(X, Y ).

9.3.2 Symmetry

In order to have a better representation of the symmetry properties, we use the coor-
dinate transformation:

X =

√
3

2
(y − x)

Y = z − x+ y

2
Z = x+ y + z

(9.23)

The Z-axis is the (1,1,1) rotation axis while the (X,Y ) coordinates parametrize the
plane through the origin perpendicular to the rotation axis. Projection of the attractor
onto the X,Y plane clearly shows the 6-fold symmetry of the dynamical system.
For example, a single connected attractor for (a, b) = (1.1, 0.3) is shown in the x-y
projection in Fig. 9.15(a) and X-Y plane in Fig. 9.15(b). The locations of the 27
fixed points are shown in the latter projection where their symmetry is apparent.

A projection of the 6 7→ 1 image is obtained using the coordinate transformation:

u = <(X + iY )6 = X6 − 15X4Y 2 + 15X2Y 4 − Y 6

v = =(X + iY )6 = 6X5Y − 20X3Y 3 + 6XY 5 (9.24)

This projection is shown in Fig. 9.16. The inset to this figure shows the deformation
of the image attractor in the neighborhood of the origin.

9.3.3 Bifurcation Studies

The bifurcation diagram for the equivariant system (9.20) is complicated and difficult
to understand. The bifurcation properties of the 6 7→ 1 image are much simpler to
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Fig. 9.16 Image of the single attractor generated by the Thomas system for a = 1.1.
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Fig. 9.17 Bifurcation diagram for the Thomas system versus a for b = 0.3.

visualize and interpret. The two systems are locally diffeomorphic: therefore very
little information is lost in studying the simpler bifurcation diagram. A bifurcation
diagram for the 6→ 1 image of the Thomas attractor, shown in Fig. 9.16 for a = 1.1,
is presented in Fig. 9.17 as a function of a, 1.1 ≤ a ≤ 1.22, for fixed value of b = 0.3.
It should be clear from this figure that a bifurcation diagram based on the covering
attractor would be practically impossible to disentangle.
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Fig. 9.18 The period-1, -2, and -6 stable limit cycles shown at the beginning of the bifurcation
diagram Fig. 9.17 of the image system lift to pairs of symmetry-related orbits in the cover. The
covering orbits have three times the period of the image orbit.

9.3.4 Periodic Orbits

The bifurcation diagram shows that the image has a period-one orbit for a = 1.03
that undergoes a period-doubling bifurcation at a ' 1.035. A stable period-six orbit
exists for a short range of a control parameter values slightly below a = 1.05. These
orbits are simple to find in the image attractor, simply by allowing transients to die
out. The image orbits can easily be lifted into the covering system by inverting the
local diffeomorphism connecting the two. The lifted orbits are shown in Fig. 9.18.
Fig. 9.18(a) shows that the period-one orbit lifts to a pair of symmetry-related period-
three orbits in the covering system, while Fig. 9.18(b) shows that the period-two orbit
in the image lifts to a pair of symmetry-related period-six orbits in the cover. The
period-6 image orbit lifts to a pair of symmetry-related period-18 orbits in the cover,
as shown in Fig. 9.18(c).

9.3.5 Period-Doubling Cascades

The bifurcation diagram shows that for a slightly greater than 1.05 a crisis occurs and
the chaotic attractor becomes a repellor, as a globally attracting period-one orbit is
created in a saddle-node bifurcation. This orbit undergoes a period-doubling cascade
to create another strange attractor. Lifts of trajectories in this sequence are shown in
Fig. 9.19. This time the period-one orbit lifts to six symmetry-related orbits in the
cover. These are shown in Fig. 9.19(a). The six symmetry-related strange attractors
(in the cover) that result at the end of this periodic doubling cascade are shown in
Fig. 9.19(b). Finally, a first-return map for the image attractor shows that a simple
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Fig. 9.19 (a) Six period-1 limit cycles in the cover induce six simultaneous period-doubling
cascades leading to (b) coexisting attractors. (c) Unimodal first-return map with a complete
symbolic dynamics shows that the image strange attractor that appears in Fig. 9.16 is created
by a simple horseshoe mechanism.

stretch-and-fold mechanism is at work to create chaos in the image of the Thomas
dynamical system.

9.4 SYMMETRY BREAKING AND RESTORATION

9.4.1 Modeling

Model-making is a vast field. It usually proceeds along the following lines:

1. Construct a model, including some free parameters.
2. Fit observational data by adjusting the free parameters.
3. Determine if the fitted model is any good.

The first step in this process usually requires some insight into the physical pro-
cesses responsible for the data that have been or will be observed. The second step
usually involves some sort of optimization procedure, such as a least squares fit or a
maximum liklihood estimate. This step determines the “best” model within the class
that has been proposed. The fact that a particular model (including fitted parameters)
is the best within the class being considered is no guarantee that the model is any good
at all. This must be determined by some additional procedure. Unfortunately, this
last step is often overlooked. Proper implementation of this step falls within the realm
of the subject called statistics [102]. A number of statistical tests exist to determine
the worthiness of a model. Roughly speaking, all depend on two assumptions:

1. The model is linear in some sense (general linear model).
2. Observational errors are normally distributed.
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Chief among the goodness-of-fit tests is the χ2 test.
In recent years a lot of effort has gone into the development of nonlinear models

to describe physical systems that generate behavior that appears to be chaotic. At
present there is no Nonlinear counterpart to the χ2 test for linear models.

There is evidence that an entrainment test can be developed that will play the role,
for nonlinear systems, that the χ2 test currently plays for linear systems.

Suppose that a physical process is described by a set of coupled nonlinear ordinary
differential equations depending on control parameters and having the form

dxi

dt
= fi(x; c) (9.25)

For the moment we assume that all components of the phase space vector (x1, x2, . . . ,
xn) can be measured.

Next, assume that a set of coordinates (y1, y2, . . . , yn) is introduced in an attempt
to model the behavior of the corresponding coordinates in the physical phase space.
Further, we guess a set of that equations provides a reasonable model for the physical
behavior

dyi

dt
= fi(y; c

′) (9.26)

The fundamental question is: Is this model a good representation of the physical
process? If yes: How good?

To approach this question, we observe

1. If the model is exact (c′ = c) and
2. The initial conditions are identical (y(0) = x(0))

then in principle for all future times y(t) = x(t). Of course this is a nongeneric
situation. If either of the two conditions above is not satisfied (normally both are not
satisfied) the trajectories x(t) in the physical phase space and y(t) in the model phase
space will eventually diverge—the worse the model/initial condition difference, the
sooner the divergence.

9.4.2 Entrainment

In order to slow down or even prevent this divergence it is customary to add a pertur-
bation to the model equations to “nudge” the model behavior closer to the observed
physical behavior. The simplest class of perturbations is linear in the differences:

dyi

dt
= fi(y; c

′)− λij(yj − xj) (9.27)

Even in this form the perturbation has a tensor structure, with n2 components. A
simpler class of pertrubations involves only the diagonal subset, where only differ-
ences of the jth variable are used to nudge the equation for the evolution of the jth
variable. An even more economical class of perturbations involves the application of



SYMMETRY BREAKING AND RESTORATION 255

perturbation terms to the special subset of the most observable coordinates [61], such
as the x or y variables of the Rössler system.

When the control parameters are close in some sense (δc = c′ − c is small), then
only a small value of the coupling parameter λ should be required to keep the model
values y(t) entrained with the observed values x(t).

Entrainment tests can be carried out as follows. Fix λi > 0, c′ = c, and y(0) =
x(0). Under these conditions z(t) = y(t) − x(t) is zero. As δc increases, the state
variable differences |yi(t) − xi(t)| will slowly increase. The larger the value of λ,
the larger the value of δc before this difference becomes too large.

The entrainment test as presented in Eq. (9.27) lacks a certain symmetry: the
original dynamical system as represented by the forcing terms f(x; c) and the model
of it, as represented by the forcing terms f(y; c′) are not treated on an equal footing.
The dynamical system represented by these equations is reducible. For this reason the
difference yi−xi may not vanish even when δc is small and the coupling coefficients
λ are large.

9.4.3 Mutual Entrainment

To avoid this problem we propose a more symmetric version of the entrainment test
using an irreducible description of the coupled dynamics. In this description the
couple equations have the form

dxi

dt
= fi(x; c)− λi(xi − yi)

dyi

dt
= fi(y; c

′)− λi(yi − xi)

(9.28)

This couple set of equations describes a 2n-dimensional dynamical system with state
variables (x1, x2, . . . , xn; y1, y2, . . . , yn).

When c′ = c the coupled set of Eq. (9.28) has a two-fold symmetry under the
permutation group P2 that interchanges the x and y coordinates: x → y, y → x.
It is useful to choose linear combinations of the coordinates that are adapted to this
symmetry, namely Xi = 1

2 (xi + yi) and δi = 1
2 (xi − yi). In this coordinate system

the dynamical equations are

dXi

dt
= 1

2 (fi(X + δ; c) + fi(X − δ; c))

dδi
dt

= 1
2 (fi(X + δ; c)− fi(X − δ; c))− λiδi

(9.29)

This representation shows clearly that the n-dimensional subspace (X, δ = 0) is
invariant: an initial condition in this submanifold will remain in this submanifold.

When c′ 6= c the two-fold symmetry is broken, but it is possible to hope that there
still exists an n-dimensional invariant manifold for reasonably small values of the
coupling parameter λ. Eventually, for fixed values of λ, when δc = c′ − c becomes
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sufficiently large, it is expected that there is a bifurcation that allows motion to extend
into a manifold of dimension d, n < d ≤ 2n. The relation between the critical values
of δc and λ at which such a bifurcation occurs is currently not known.

The entrainment statistic we propose is based on the kind of computation shown
in Fig. 9.20. Two Rössler systems are coupled together as described in Equ. (9.28).
The mean value of |yi(t)−xi(t)|, averaged over the attractor, is plotted as a function
of the parameter difference δa = amodel − adata (adata = 0.398 and (b, c)model =
(b, c)data = (2.0, 4.0)) for several values of the coupling strength λ. Coupling in the
x-variable (i = 1) is shown in Fig. 9.20(a) and in the y-variable (i = 2) is shown in
Fig. 9.20(b). These plots show that the average mean error falls off sharply as the
control parameters of the model and the physical system approach equality, for fixed
value of the coupling parameter λ. Read in the vertical direction, they show that for
fixed value of the control parameter difference, increasing the coupling decreases the
mean error.

Coupling of the z-variable (i= 3) does not produce similar results,as observability
using the z variable is much degraded compared to observability using either of the
other two variables [61]. This lack of symmetry in the three variables of the Rössler
attractor is summarized in Fig. 9.21, which shows the mean error when the coupling
is done separately in the x-, y-, and z-directions, all with the same numerical value
of the coupling strength λi = 0.15. This figure shows pratically no response for
coupling in the z direction as the model parameters sweep past the actual parameter
values.
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(a) Coupling in the x-variable
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Fig. 9.20 Mean error |yi(t) − xi(t)| as a function of difference δa = amodel − adata for
several values of the coupling constant. (a) i = 1, coupling in the x-variable. (b) i = 2,
coupling in the y-variable.
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Fig. 9.21 Mean value of the error |yi(t)−xi(t)| for coupling in the x-, y-, and z-directions.
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10.1 DYNAMICAL SYSTEMS

Dynamical systems are sets of first-order ordinary differential equations of the form

dx

dt
= f(x; c) (10.1)

The variables x = (x1, x2, · · · , xn) are called state variables. They are coordinates
of a point p contained in a suitable phase space: x(p) = (x1(p), x2(p), · · · , xn(p)).
The phase space is a manifold that can have just about any topological structure. For
example, in the simple case n = 2 the phase space can be a plane R

2, a sphere S2,
a cylinder R

1 × S1, a torus S1 × S1, a Möbius strip, a Klein bottle, etc. Since our
objective in this work is to study dynamical systems with symmetry (under linear
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transformations), we constrain our study to dynamical systems in Euclidean spaces
R

n.
The parameters c = (c1, c2, · · · , ck) are called control parameters. They are

parameters that typically appear in the dynamical systems equations. For example, for
the Lorenz equations (2.1) the three control parameters are c= (c1, c2, c3) = (R, σ, b)
and for the Rössler equations (5.7) they are c = (c1, c2, c3) = (a, b, c). The control
parameters are points in a k-dimensional manifold whose global topology is less
important than that of the phase space.

The dynamical systems equations (10.1) are typically coupled nonlinear equa-
tions. They are deterministic under mild conditions on the source functions f(x; c).
Trajectories exist through any point at which a Lipschitz condition is satisfied. Such
trajectories are locally extendable and unique. Specifically, the theorem is as follows
[5].

Existence and Uniqueness Theorem: If the dynamical system dx/dt = f(x; c)
satisfies the Lipschitz condition

|f(x; c)− f(x0; c)| < K(c)|x− x0| (10.2)
at x0, then there is a positive number, s, and:

Existence: There is a set of functions φ(t) = (φ1(t), φ2(t), · · · , φn(t)) that
satisfies the dynamical system equations dφi(t)/dt = fi(φ(t); c) in the interval−s ≤
t ≤ +s, with φ(0) = x0.

Uniqueness: The function φ(t) is unique.
If the source functions f(x; c) are Lipschitz everywhere:

|f(x; c)− f(x′; c)| < K(c)|x− x′| all x, x′ ∈ R
n (10.3)

then a unique trajectory passes through every point in phase space and that trajectory
can be extended in the forward direction to t → +∞ and in the reverse direction to
t→ −∞.

Many of the equations studied in this work have polynomial source functions. This
means, in fact, that none of them satisfy the global Lipschitz conditions. Nevertheless,
we can salvage the essential nature of the global theorem if motion occurs in an
attractor that is bounded in phase space. Under this condition the Lipschitz condition
is satisfied by polynomial source functions over any bounded domain in R

n. Thus,
if the source terms are polynomial and motion occurs in a bounded domain, a unique
trajectory through any point exists and can be extended to t→ ±∞.

We point out here that many of the exciting results we have encountered occur
because the source terms are not polynomial and contain singularities. The Lipschitz
condition is not satisfied at such singularities. As a result, interesting things can and
do happen.

Another result in a general theory of dynamical systems would be very nice to
have. This is a general criterion under which it can be shown that motion occurs in a
bounded domain. While this can be shown for certain classes of dynamical systems,
such as the Lorenz and related equations, a general result of this type is currently not
available.
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10.2 CHANGE OF BASIS

The dynamical system equations (10.1) depend on the choice of coordinate system.
They may appear complicated in some coordinate systems, less so in others. Follow-
ing a time-honored principle of physics (Principle of Maximum Laziness) it is useful
to learn how to transform a dynamical system from one coordinate system to another.

Rather than present the general theory, we present a simple 2-dimensional example
from which the general result can easily be deduced. We treat a dynamical system
on R

2 given by

dx1

dt
= −αx1 + a(x2)2

dx2

dt
= −βx2 + b(x1)2 (10.4)

The phase space is described by a coordinate system with basis vectors e1, e2. In
this basis the coordinates of any point p are (x1(p), x2(p)), as shown in Fig. 10.1.
The vector describing the point p ∈ R

2 is

e1x
1(p) + e2x

2(p) =
(

e1 e2

)
[
x1(p)
x2(p)

]

(10.5)

Remark: In this section only we change notation slightly, to conform with stan-
dard practice in linear vector space theory. We use superscripts for coordinates and
subscripts to label basis vectors in linear vectors spaces (Rn). This is done to empha-
size the covariant-contravariant nature of the relation between coordinates and basis
vectors.

Now we choose a new coordinate system with basis vectors (e
′

1, e
′

2), related to the
original basis vectors by a linear transformation

(

e
′

1 e
′

2

)
=
(

e1 e2

)
[

cos θ − sin θ
sin θ cos θ

]

(10.6)

e1

e2
e1 e2X  (p)+1

X  (p)2

p

Fig. 10.1 Once a set of basis vectors e1, e2 has been defined in R
2, the coordinates

x1(p), x2(p) of any point p ∈ R
2 are defined.
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How are the coordinates x′1(p), x
′2(p) related to the coordinates x1(p), x2(p)? This

is easily answered by expressing the vector from the origin to p in matrix form in the
two coordinate systems:

(
e1 e2

)
[
x1

x2

]

=
(

e
′

1 e
′

2

)
[
x

′1

x
′2

]

(10.7)

By substituting the linear relation (10.6) for the basis vectors into (10.7) and using
linear independence arguments, we find

[
x1

x2

]

=

[
cos θ − sin θ
sin θ cos θ

] [
x

′1

x
′2

]

(10.8)

More generally, if e
′

j = eiM
i
j defines the coordinate transformation, then xi =

M i
jx

′j shows the covariant-contravariant nature of the transformation between basis
vectors and coordinates.

We can now use this information to determine what the dynamical system equations
look like in the new coordinate system. It is sufficient to express the original variables
x1, x2 in terms of the new variables. For the time derivatives we find

d

dt

[
x1

x2

]

=
d

dt

[
cos θ − sin θ
sin θ cos θ

][
x

′1

x
′2

]

=

[
cos θ − sin θ
sin θ cos θ

]
d

dt

[
x

′1

x
′2

] (10.9)

As far as the source terms go, we find
[
−αx1 + a(x2)2

−βx2 + b(x1)2

]

−→ (10.10)

[
a[sin2 θ(x

′1)2 + 2 sin θ cos θx
′1x

′2 + cos2 θ(x
′2)2]− α(cos θx

′1 − sin θx
′2)

b[cos2 θ(x
′1)2 − 2 sin θ cos θx

′1x
′2 + sin2 θ(x

′2)2]− β(sin θx
′1 + cos θx

′2)

]

Untangling these results, we find

d

dt

[
x

′1

x
′2

]

= g(x
′1, x

′2) (10.11)

where g(x′1, x
′2) = γ−1f(x→ γx

′

) and γ =

[
cos θ − sin θ
sin θ cos θ

]

.

The general result, for an arbitrary linear transformation γ defined by x = γx
′ is

that
if

dx

dt
= f(x) then

dx′

dt
= g(x′) = γ−1f(x→ γx′) (10.12)

This can be expressed in more elegant form as

γg(x′) = f(γx′) (10.13)
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10.3 SYMMETRY UNDER LINEAR TRANSFORMATIONS

In general, the form that the dynamical system equations take differs from coordinate
system to coordinate system:

Original Transformed
Coordinate System Coordinate System
dx

dt
= f(x; c)

dx′

dt
= g(x′; c)

(10.14)

g(x′; c) = γ−1f(γx′; c)

If g(x; c) = f(x; c), things would be simpler. The two sets of equations would
be identical. This provides a set of constraints on the structure and properties of
dynamical systems that we explore in the remainder of Part II.

Definition: A dynamical system is equivariant under a linear transformation γ if
f(x; c) = g(x; c), or

γf(x; c) = f(γx; c)
or γf(γ−1x; c) = f(x; c)

(10.15)

Example: Suppose a dynamical system is equivariant under the linear transfor-
mation

γ =







−1

2
−
√

3

2

+

√
3

2
−1

2







(10.16)

obtained by setting θ = 2π/3 in (10.9). This corresponds to a rotation by 2π/3
radians about an axis perpendicular to the x-y plane through the origin. Assume that
the dynamical system has fixed points at the origin (0, 0) and at some point on the
x-axis (x0, 0). Then

1. Equivarianceunder γ (and γ2) requires that there are two additional fixed points
at the images of (x0, 0) under γ and γ2: at x0(− 1

2 ,−
√

3
2 ) and x0(− 1

2 ,+
√

3
2 ).

2. The Jacobians ∂fi/∂xj at these three symmetric fixed points are related to each
other by a similarity transformation. As a result, these three fixed points have
identical stability properties.

3. Since the image of the origin under γ remains the origin, no new fixed points
are generated from the origin by this linear transformation. This forces the Ja-
cobian, ∂fi/∂xj , evaluated at (0, 0), to be invariant under γ: [∂fi/∂xj ](0,0) =

γ [∂fi/∂xj ](0,0) γ
−1.

Equivariance under a linear transformation imposes constraints on the form of the
forcing functions in the dynamical systems equations. We illustrate this idea with a
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simple example. We wish to show that the dynamical system

d

dt

[
x
y

]

=

[
−αx+ β(x2 − y2)
−αy − 2βxy

]

(10.17)

is invariant under the linear transformations γ and γ2 = γ−1, given in (10.16).
Verification of this claim involves a straightforward substitution of the expression for
(x, y) in terms of (x′, y′) given by





x

y



 =








−1

2
±
√

3

2

∓
√

3

2
−1

2












x′

y′



 (10.18)

into the dynamical systems equations (10.17),and showing that the resulting equations
have an identical form. There is nothing mysterious about this calculation. It is just
long, boring, and subject to error.

We therefore choose to do this calculation using an elegant trick. This trick exploits
a relation between rotation groups and complex numbers. Specifically, the linear
transformation Cθ acting on the complex number z = x + iy is simply a rotation:
Cθz = eiθz. The two equations above can be written as a single equation in one
complex variable (cf. Eq. (8.34)):

d

dt
(x+ iy) = −α(x + iy) + β(x2 + y2 − 2ixy) = −αz + βz̄2 (10.19)

where z̄ = x− iy is the complex conjugate of z. The action of C3 on this equation is

C3
dz

dt
= C3

(
−αz + βz̄2

)

e2πi/3 dz

dt
= −αze2πi/3 + βz̄2e−4πi/3

= e2πi/3
(
−αz + βz̄2

)

(10.20)

As a result, the set of equations (10.17) is equivariant under the group C3.

Remark: There are systematic ways for determining the structure of equations that
are equivariant under an arbitrary group G. They are generalizations of the procedure
we have just used for equations equivariant under the groups Cn. As such, these
methods can be regarded as generalizations of the methods of complex analysis that
we have just exploited for the rotation groups.

We summarize the relation between a linear transformation γ and functions equiv-
ariant under γ in two suggestive ways.

Commutation: γ commutes with f , or γ intertwines f :

γf = fγ or [γ, f ] = 0
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Similarity transform: f is invariant under a “similarity transform”:

γfγ−1 = f

10.4 GROUPS OF LINEAR TRANSFORMATIONS

In the previous section we hinted that a function f may be equivariant under more
than one linear transformation. This is the case. In this section we show that the
set of linear transformations that leave f unchanged in form forms a group. We also
present many examples of possible invariance groups.

Suppose a function f is equivariant under linear transformations γ1, γ2, γ3, · · · .
Then this set of linear transformations forms a group. To show this, we must show
that the four axioms that define a group are satisfied. These are the axioms of (a)
closure under multiplication; (b) associativity; (c) existence of an identity; and (d)
existence of an inverse. The group multiplication in this case is matrix multiplication.

a. Closure: Since f is equivariant under γi and γj , γif(x) = f(γix) and γjf(x) =
f(γjx). As a result

[γjγi] f(x) = γj [γif(x)] = γjf(γix) = f(γj [γix]) = f([γjγi]x)

This means that if f is equivariant under γi and γj , it is also equivariant under
their product γjγi.

b. Associativity: Matrix multiplication is associative:

(γiγj) γk = γi (γjγk)

c. Identity: The function is unchanged under “no change”:

f(x) = If(x) = f(Ix) = f(x)

d. Inverse: Every change of basis has an inverse. If the change of basis is represented
by the matrix γ, the inverse change of basis is represented by the inverse matrix
γ−1, with γγ−1 = I . Thus

f(x) = If(x) = γγ−1f(x) = γf(γ−1x)

As a result, γ−1f(x) = f(γ−1x).

Most of the groups that we will encounter satisfy a fifth condition:

γiγj = γjγi all i, j

Groups that satisfy this fifth condition are called commutative or abelian. While
commutativity will simplify some of our results, we emphasize here that all results
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developed later for equivariant covers hold for noncommutative as well as commuta-
tive groups.

We have already encountered a number of matrix groups. We review several groups
here.

At the abstract level there is only one group of order 2. There is one generator
A that obeys one relation: A2 = I . The two group operations are {I, A}. In R

3

this group has three different (faithful) matrix representations. In each, the identity
operation I is represented by the identity matrix I3, and the matrix representation of
the generator defines action of the group in R

3:

σZ RZ(π) P

A→





1 0 0
0 1 0
0 0 −1









−1 0 0
0 −1 0
0 0 1









−1 0 0
0 −1 0
0 0 −1





(10.21)

These three matrix representions ofA define the groupsσZ of reflections in theZ = 0
plane,RZ(π) of rotations about theZ-axis by π radians, andP of spacial inversions.

There is one group of order three. It has one generatorA that satisfies one relation:
A3 = I . The three group operations are {I, A,A2}. This group has only one faithful
(real) representation in R

3. In this representation

A =











−1

2
+

√
3

2
0

−
√

3

2
−1

2
0

0 0 1











(10.22)

This is the groupC3, consisting of rotations by 2π/3 (and 4π/3 and 6π/3 = 0) radians
about the Z-axis.

At the abstract level there are two groups of order four. One abstract group has one
generatorA that satisfies the single relation: A4 = I . The four group operations are
{I, A,A2, A3}. The other group (“four-group” or “viergruppe”) has two generators
A and B that satisfy three relations: A2 = I, B2 = I , and AB = BA. The four
group operations are {I, A,B,AB}.

The first of these two groups has two different representations in R
3. The matrix

representatives of the generatorA in these two representations are

C4 S4 = σZ C4





0 1 0
−1 0 0
0 0 1









0 1 0
−1 0 0
0 0 −1





(10.23)
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The group C4 with generatorC4 consists of rotations about theZ-axis through multi-
ples of π/2 radians. The generator S4 describes a rotation about the Z-axis through
π/2 radians followed by a reflection in the Z = 0 plane. The groups with generator
C4 and S4 are called (surprise!) C4 and S4, respectively.

The four-group with generators A and B also has two faithful representations
in R

3. In these representations the two linear operators A and B are reflections or
rotations, and their productAB is a rotation.

A B AB

σX σY RZ

Reflections





−1 0 0
0 +1 0
0 0 +1









+1 0 0
0 −1 0
0 0 +1









−1 0 0
0 −1 0
0 0 +1





RX RY RZ

Rotations





+1 0 0
0 −1 0
0 0 −1









−1 0 0
0 +1 0
0 0 −1









−1 0 0
0 −1 0
0 0 +1





(10.24)
In the first representation the operatorsA andB describe reflections in theX = 0 and
Y = 0 planes. Dynamical systems that are equivariant under this representation of the
four-group have strange attractors that are of necessity disconnected because of the
symmetry under the two reflections. This reduces our interest in this representation
of the four-group.

In the second representation of the four-group the three operators A, B, AB
describe rotations by π radians about the X-, Y -, and Z-axes. Dynamical systems
equivariant under this group show exciting properties. In the future, when we refer
to the four-group V4, we mean the representation generated by rotations.

10.5 PROPERTIES OF EQUIVARIANT DYNAMICAL SYSTEMS

For an equivariant dynamical system,dynamics in the neighborhood of a pointx ∈ R
n

looks the same as dynamics in the neighborhood of its image γx, γ ∈ G. This
observation has the following specific implications.

1. If x0 is a fixed point, then γx0 is a fixed point. At a fixed point, f(x0) = 0. As
a result, f(γx0) = γf(x0) = γ0 = 0.

2. The Jacobian [∂fi/∂xj ]x0
is related by a similarity transformation to the Jaco-

bian at the image point:
[
∂fi

∂xj

]

γx0

= γ

[
∂fi

∂xj

]

x0

γ−1 (10.25)

As a a result, if x0 and γx0 are fixed points, the eigenvalues of the Jacobians at
x0 and γx0 are identical. Symmetry-related fixed points have identical stability
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properties. In addition, the eigenvectors of the two Jacobians are related by the
similarity transformation γ.

3. If x0 is a fixed point that is left invariant under γ, then the Jacobian evaluated
at that fixed point commutes with γ:

[
∂fi

∂xj

]

x0

= γ
[

∂fi

∂xj

]

x0

γ−1.
4. If φ(t) = (φ1(t), φ2(t), · · · , φn(t)) is a solution to dxi/dt = fi(x; c) at

x0, then γφ(t) =
(

φ̃1(t), φ̃2(t), · · · , φ̃n(t)
)

, φ̃i(t) = γ j
i φj(t), is a solution to

dxi/dt = fi(x; c) at γx0.
5. If x0 is on a closed orbit φ(t), then γx0 is on the closed orbit φ̃(t) = γφ(t). If

φ(t) has period T , so that φ(t + T ) = φ(t), then φ̃(t) also has period T . The points
x0 and γx0 may be on different orbits or on the same orbit. If they are on the same
orbit, φ̃(t) = φ(t+ τ), where kτ = T and k is an integer, k > 1.

6. If x0 is “in” a strange attractor, γx0 is also. By “in” we mean that a trajectory
passes through x0 which lies in the closure of a strange attractor. This includes all
the unstable periodic orbits associated with (“in”) the strange attractor.

7. A strange attractor of an equivariant dynamical system may have a single con-
nected component. If the strange attractor possesses more than one (disconnected)
component, the components are mapped into each other by symmetry group opera-
tions γ ∈ G.

Example 1: The dynamical system (10.17) has a fixed point at the origin: (x, y) =
(0, 0). It is mapped into itself under the two operations γ and γ2 given in (10.18).
This fixed point is triply degenerate. There is a fixed point on the x-axis at (x, y) =
(α/β, 0) if α 6= 0 and β 6= 0 and α/β is real. Two additional fixed points occur
at γ±1(α/β, 0) = α/β(− 1

2 ,±
√

3
2 ). Each of these three symmetry-related fixed

points is nondegenerate. The total number of fixed points, including degeneracy, is
6 = 3(1) + 1× (1 + 1 + 1) = 2|C3|.

Example 2: The dynamical system defined by

d

dt





x
y
z



 =





−α1x+ a1yz
−α2y + a2zx
−α3z + a3xy





αi 6= 0
ai 6= 0

a′i = ai/αi > 0
(10.26)

is equivariant under the four groupV4 defined in (9.24). There is one 4-fold degenerate
fixed point at the origin (x, y, z) = (0, 0, 0). The other four fixed points occur at

x = ± 1
√

a′2a
′
3

y = ± 1
√

a′3a
′
1

z = ± 1
√

a′1a
′
2

(10.27)

where xyz > 0. That is, there is an even number of negative signs. The total number
of fixed points, including degeneracy, is 8 = 4(1) + 1× (1 + 1 + 1 + 1) = 2|V4|.

Generalization: If the image system has m fixed points, any of its covers with
G-fold symmetry has m|G| fixed points, counting degeneracy.
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10.6 PARTITION OF PHASE SPACE

An equivariance group G partitions the phase space R
n into |G| equivalent domains.

These are mapped into each other by the elements γi of the equivariance group. We
say that these domains are symmetry-related. We show that these domains can be
labeled by the |G| elements of the equivariance group.

Most points x ∈ Rn satisfy the condition that γix 6= x for all γi ∈ G, (γi 6= I):

γix 6= x γi ∈ G γi 6= I (10.28)

Points that obey this condition are called generic or nonsingular under the action of
G. Each such point occurs in a set of |G| points, technically called the orbit of x under
G. It is useful to partition the phase space into |G| open domains containing (almost)
all the generic points. Each of the |G| points in the orbit of a generic point belongs to
a different domain.

Example 1: The group Cn acts in R
3 through the generator





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 θ = 2π/n (10.29)

Singular points (0, 0, z) occur on the z-axis. Each off-z-axis point occurs in an n-
tuplet of symmetry-related points. The space R

3 can be partitioned into n open sets
by half-planes hinged on the z-axis and separated from each other by a dihedral angle
θ = 2π/n. The open domains do not include their boundary. The boundary of any
domain consists of the two enclosing open half-planes (nonsingular points), as well
as their intersection, the z-axis (singular points).

The |G| domains can be labeled by the group elements γi ∈ G. We choose one
of the open domains and call it the fundamental domain. The choice of fundamental
domain is arbitrary (like the starting line on a circular track). This domain is labeled
by the identity group operator: DI . If x ∈ DI , then γix is in a different domain
(γi 6= I). We label this domain Dγi

:

x ∈ DI ⇒ γix ∈ Dγi
(10.30)

The group operations permute the domains among themselves. If x ∈ Dγi
, then

x = γiy, y ∈ DI , so that

γjx = γj [γiy] = [γjγi] y ∈ Dγjγi
(10.31)

As a result, we can write
γjDγi

= Dγjγi
(10.32)

Thus, the action of the group G on the domain Dγi
can be described in purely group

theoretical terms, as follows

γjDγi
= Dγk

ΓReg
ki (γj) (10.33)
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The Regular |G| × |G| matrix representation ΓReg(G) of the group G is defined in
terms of its matrix elements ΓReg

ki (gα) by

gαgi = gkΓReg
ki (gα)

= 0 if gk 6= gαgi

= 1 if gk = gαgi
(10.34)

Example 2: For C3 the three symmetry-related domains are DI , DC3 , DC2
3
. The

operatorC3 maps I → C3, C3 → C2
3 , andC2

3 → I , so that the regular representation
is

I C3 C2
3

I
C3

C2
3





1 0 0
0 1 0
0 0 1









0 0 1
1 0 0
0 1 0









0 1 0
0 0 1
1 0 0





(10.35)

Example 3: For V4 the 4 × 4 matrix representatives of the identity and three
rotations are

I

I
Rx

Ry

Rz







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







Rx Ry Rz

I
Rx

Ry

Rz







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0













0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0













0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







(10.36)
It is useful to describe the geometry of the various domains. In particular, it is

useful to understand which domains are “close to” each other. Two domains in R
n

are “close to” each other if their closures share an n− 1 dimensional boundary.

Remark: This is useful definition, since a trajectory can leave one domain and
enter an adjacent domain. By genericity, a one-dimensional trajectory and an n− 1
dimensional boundary in R

n can intersect in a set of dimension (n− 1)+1−n = 0,
that is, at isolated points. Trajectories do not generically intersect lower dimensional
components of the boundary.

Example 4: For the group C4 acting in R
3, the fundamental domain can be chosen

as the union of the two open octants DI = (+ + +)∪ (+ +−). The octant (+ +−)
consists of all points with x > 0, y > 0, z < 0. We include in DI all points in
the boundary between these two octants: (x, y, z = 0) with x > 0, y > 0. Then
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C4 V4

f f

f f

C4

C2
4

I

C3
4

f f

f f

Z
Z

Z
Z

Z
ZZ�

�
�

�
�

��
I

RZ

RX

RY

Fig. 10.2 Adjacency diagrams for the four domains in R
3(X, Y, Z) under the group (a) C4

and (b) V4.

C4DI = DC4 = (−+ +) ∪ (−+−). The four domains are

Domain Label Domain

I (+ + +) ∪ (+ +−)
C4 (−+ +) ∪ (−+−)
C2

4 (−−+) ∪ (−−−)
C3

4 (+−+) ∪ (+−−)

(10.37)

DomainDI shares two dimensional boundaries with domainsDC4 andDC3
4
, but not

with DC2
4
. Similarly, DC4 is not adjacent to DC3

4
.

Similar results hold for Cn, n > 2. The domain labeled by Ck
n is adjacent to

the two domains labeled by Ck±1
n . Identical results hold for the groups S2n with

generators A = σzC2n and relations A2n = I .
It is useful to summarize these geometric (“nearness”) relations by an adjacency

diagram. In an adjacency diagram the |G| domains are represented by small circles.
Each circle (domain) is labeled by one of the group operations. If two domains are
adjacent the circles representing them are connected by a straight line. The adjacency
diagram for C4 is presented in Fig. 10.2(a).

For the four-group V4 generated by rotations in R
3 the domain decomposition

must be symmetric under interchange of the three rotation axes. That is, the domains
DRX

, DRY
, and DRZ

must be rotated into each other under the action of the group
C3 acting as a rotation group about the axis in the (1, 1, 1) direction. A suitable choice
of domains consists of the union of opposite octants, as follows:

Domain Label Domain

I (+ + +) ∪ (−−−)
RX (+−−) ∪ (−+ +)
RY (−+−) ∪ (+−+)
RZ (−−+) ∪ (+ +−)

(10.38)

The adjacency diagram for V4 is shown in Fig. 10.2(b). Each domain is adjacent to
every other domain.
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10.7 REPRESENTATIONS OF GROUPS

In previous sections we have spoken of abstract groups. We have also spoken of the
action of these groups as groups of linear transformations in n-dimensional linear
vector spaces. The step from an abstract group to its concrete action on a space is
through a set of matrices. These matrices are called a (matrix) representation of that
group. There is a very elegant and beautiful theory of the matrix representations of
groups. We summarize the most important aspects of that theory in the following
subsections.

10.7.1 Definition of Representation

A representation of a group G is a mapping of each group element gi ∈ G to an n×n
invertible matrix Γ(gi):

gi −→ Γ(gi) (10.39)

The group operations and their matrix representations must satisfy the group multi-
plication axioms:

gi ◦ gj = gk ⇒ Γ(gi)× Γ(gj) = Γ(gk) (10.40)

Here ◦ is the combinatorial operation in the abstract group and × is the standard
matrix multiplication operation.

10.7.2 Equivalent Representations

Two n× n matrix representations of a group G, Γ(a)(G) and Γ(b)(G), are said to be
equivalent if there is a nonsingular similarity transformation S for which

SΓ(a)(gi)S
−1 = Γ(b)(gi) all gi ∈ G (10.41)

The two sets of matrices, Γ(a)(gi) and Γ(b)(gi), act on n-dimensional spaces. Eq.
(10.41) simply means that the two representations act in the same linear vector space,
but are expressed with respect to different choice of basis vectors {e1, e2, · · · , en}
and {f1, f2, · · · , fn}, where ei = fjS

j
i.

Example: In R
2 the two element group {I, A} has representations

I A

Γ(a)

[
1 0
0 1

] [
1 0
0 −1

]

Γ(b)

[
1 0
0 1

] [
0 1
1 0

]

(10.42)
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These two representations are equivalent under the similarity transformation S =

1√
2

[
1 −1
1 1

]

. In R
3 this same abstract group has two representations

I A

Γ(c)





1 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 1





Γ(d)





1 0 0
0 1 0
0 0 1









1 0 0
0 0 1
0 1 0





(10.43)

that are not equivalent. It can easily be seen that there is no nonsingular matrix S
for which SΓ(c)S−1 = Γ(d). Simplest is to observe that tr Γ(c)(A) = 3 while tr
Γ(d)(A) = 1. More subtle is the observation that Γ(d) is a faithful representation of
{I, A} while Γ(c) is not (cf. subsection 10.7.3 below).

10.7.3 Faithful Representations

A matrix representation of G, Γ(G), is said to be faithful if, by knowing the matrix
Γ(gi), the group operation gi is uniquely determined.

Example: The two-group{I, A} has a matrix representationΓ(c) given in (10.43).
This representation is not faithful. The representation Γ(d) is faithful.

10.7.4 Reducible Representations

So, how many faithful matrix representations does a group have? This is actually not
a well-posed question: its answer cannot be given in terms of the properties of the
group itself.

We temporarily delay treating this question until the following subsection. We
first describe how the most general representations of a group are constructed.

Suppose G acts in an n-dimensional linear vector space through a matrix repre-
sentation Γ(G). We ask: is there some clever, or preferred, choice of basis vectors in
this space? A preferred choice would reduce Γ(G) to block diagonal form (cf. Table
8.1)

Γ(G) −→ SΓ(G)S−1 =

[
Γ(a)(G) 0

0 Γ(b)(G)

]

(10.44)

If a similarity transformationS can be found that reduces Γ(G) to block diagonal form,
then Γ(G) is said to be reducible. In this case Γ(a)(G) is an n1×n1 matrix representa-
tion of G acting on an n1-dimensional subspace of the original n-dimensional space,
and Γ(b)(G) is an n2 × n2 matrix representation of G acting on an n2-dimensional
subspace, wheren1+n2 = n. Then1- andn2-dimensional subspaces are orthogonal.
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This argument can be repeated on Γ(a)(G) and Γ(b)(G), and continued until the
matrices on the diagonal are no longer reducible.

10.7.5 Irreducible Representations

Eventually, all the matrix representations along the diagonal are no longer reducible.
These representations are said to be irreducible. The original matrix representation
Γ(G) is a direct sum of irreducible representations of G. As a matter of fact, every
matrix representation ofG is (equivalent to) a direct sum of irreducible representations
of G. (These remarks hold for compact groups and for a large class of noncompact
groups as well. Technically, the reducible representations are fully reducible for finite
and compact groups.)

So the proper question is: How many inequivalent irreducible representations of
G exist? The answer to this question depends entirely on the group G, through its
multiplication table. It is an “intrinsic” question: it does not depend at all on what
kind of space (i.e., dimension) G acts on—or even if G acts on a linear vector space.

The answer to this question is well known for all the groups under consideration
in this book.
• Every group has an unfaithful matrix representation, ΓId(g) = 1, called the

identity representation. It is unfaithful if |G| > 1.
• If G is commutative, then there are exactly |G| inequivalent irreducible repre-

sentations of G, and they are all one-dimensional.
• Whether or not G is commutative, the total number of matrix elements in all its

inequivalent irreducible representations Γ(λ)(G) is equal to the order of G:
∑

all irreps

d2
λ = |G| (10.45)

Here Γλ(g) is dλ × dλ matrix representation of G.
Elaboration: A finite groupG can be considered as a set of |G| points: each group

operation being a “point.” Once we have a space of points, the urge to introduce
a set of functions on this set of points (“function space”) is irrepressible. In fact,
each matrix element Γλ

ij(gα) (gα ∈ G) is a function on these |G| points. A function
space with |G| points has |G| basis functions. The set of all d2

λ matrix elements for
all inequivalent irreducible representations Γλ(g) constitutes such a complete set. It
is for these reason that

∑

all irreps d
2
λ = |G|. In addition to being complete these

functions are orthogonal.
Warning: These remarks are true for irreducible representations over the field of

complex numbers.
Examples: The two-element group {I, A} has two inequivalent (unitary) irre-

ducible representations
{I, A} I A

Γ(1) 1 1

Γ(2) 1 −1

(10.46)
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The group C3 has three unitary irreducible representations

C3 I C3 C2
3

Γ(1) 1 1 1
Γ(2) 1 ε ε2

Γ(3) 1 ε2 ε

ε = e2πi/3 (10.47)

The group Cn has n unitary irreducible representations:

Cn −→ Γ(k)(Cj
n) = e2πijk/n (10.48)

with k = 0, 1, 2, · · · , n− 1, n ' 0.
The four-groupV4 = {I, A,B,AB} (A2 = B2 = I, AB = BA) is commutative.

Its four unitary irreducible representations are

V3 I A B AB

Γ(1) 1 1 1 1
Γ(2) 1 1 −1 −1

Γ(3) 1 −1 1 −1
Γ(4) 1 −1 −1 1

(10.49)

The group of the square (Fig. 10.3) has as group operations the identity I , three
rotations Cj

4 , j = 1, 2, 3, two reflections in the x-and y-axes, and two reflections in
the diagonals. If ni are the dimensions of the irreducible representations,

∑

i

d2
i = |G| = 8 (10.50)

This group (every group) has one one-dimensional representation, the identity, with
d1 = 1. This group is noncommutative, so at least one representation must consist
of n× n matrices, n > 1. There is only one way to satisfy the Diophantine equation
above: d1 = d2 = d3 = d4 = 1 and d5 = 2. This group has five inequivalent unitary
irreducible representations.

10.7.6 Arbitrary Representations

An arbitrary representation Γ(G) of G is equivalent to a direct sum of unitary irre-
ducible representations of G. If the irreducible representations are Γ(1)(G),Γ(2)(G),
· · · ,Γ(ω)(G), then

Γ(G) '
ω∑

i=1

niΓ
(i)(G) (10.51)

The integers ni indicate how often the irreducible representation Γ(i) occurs in the
direct sum: ni ≥ 0.

Application: The two-group {I, A} has two one-dimensional unitary irreducible
representations. If Γ(G) is a representation of {I, A} acting in R

n, then

Γ(G) = n1Γ
(1)(G) + n2Γ

(2)(G), n1 + n2 = n (10.52)
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Fig. 10.3 The group of the square, D4, consists of the identity I, the three rotations Cj
4 ,

j = 1, 2, 3, two reflections in the horizontal and vertical axes (solid lines), and two reflections
in the diagonals (dashed lines).

As a result, there are exactly n + 1 inequivalent representations of the two element
group {I, A} acting in R

n. One of these representations is unfaithful—the repre-
sentation with n2 = 0. The two-group has exactly n distinct (inequivalent) faithful
representations when acting in R

n. We have seen this result already in R
3 (cf. Eqs.

(10.21)).

10.7.7 Real Representations

We are primarily interested in the action of G through real linear transformations. We
can construct real linear transformations from complex conjugate pairs of complex
representations.

Example: For the groupCn the irreducible (complex) representations are Γ(k)(Cj)
= e2πijk/n. The representation with k = 0 is the identity, and if n is even, the
representation with k = n/2 is real. The remaining representations are complex.
However, the direct sum of the two one-dimensional representations k and n− k is
equivalent to a real 2× 2 matrix representation

Γ(k)(Cj) + Γ(n−k)(Cj) =

[
e2πijk/n 0

0 e−2πijk/n

]

'








cos

(
2πjk

n

)

sin

(
2πjk

n

)

− sin

(
2πjk

n

)

cos

(
2πjk

n

)








(10.53)

This matrix representation is irreducible over the real numbers unless k = 0 or
k = n/2.
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As a special case, the group C3 has one real 1× 1 matrix representation and one
real 2× 2 matrix representation. The latter is irreducible over the real field:
C3 I C3 C2

3

Γ(1) (1) (1) (1)

Γ(2)

[
1 0

0 1

] [
cos
(

2π
3

)
+ sin

(
2π
3

)

− sin
(

2π
3

)
cos
(

2π
3

)

] [
cos
(

2π
3

)
− sin

(
2π
3

)

+ sin
(

2π
3

)
cos
(

2π
3

)

]

(10.54)

10.7.8 Important Representations

There are three important kinds of representations that we encounter frequently when
we study the action of a symmetry group G in a space R

n. These are: the identity
representation; the defining representation; and the regular representation.

10.7.8.1 Identity Representation: In this representation every group operation
gi ∈ G is mapped into the unit matrix In:

gα −→ ΓId(gα) = In (10.55)

10.7.8.2 Defining Representation: The action of the group G on the coordi-
nates x1, x2, · · · , xn is through the defining matrix representation:

gαxi −→ xjΓ
Def
ji (gα) = ΓDef

ij (g−1
α )xj (10.56)

Important Remark: A group G can act in R
n in many different ways, as we

have already seen. The action of the group in R
n is defined through the matrix

representation ΓDef(G). For example, the two-group {I, A} can act faithfully in R
3

through three distinct defining representations (cf. (10.21)). The group G acts on the
image dynamical system through the identity representation ΓId(G):

G acts on

covering dynamical system image dynamical system

G → ΓDef(G) G → ΓId(G)

(10.57)

10.7.8.3 Regular Representation: This representation describes the group
multiplication law. As opposed to the previous two representations, which are in
terms of n× n matrices acting on R

n, (n not related to G), the regular representation
is given in terms of |G| × |G| matrices. The regular representation is defined by per-
mutation matrices—matrices that contain one nonzero element +1 in each row and
column. This representation is defined by

gαgi = gjΓ
Reg
ji (gα)

ΓReg
ji (gα) =

0 gj 6= gαgi

1 gj = gαgi

(10.58)
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The regular representation is faithful and can be used to reproduce the group multipli-
cation table. We use the regular representation to describe how the symmetry-related
open domains of R

n are mapped into each other under the group operations gi ∈ G
(cf. (10.34)).

Example: The four open domains of R
3 that are related to each other under the

(rotation) four-group V4 are labeled by the four operations I, Rx, Ry, Rz (cf. Eq.
(10.24)). They are mapped into each other by the group operations in V4:

gαDgi
= Dgj

ΓReg
gjgi

(gα) (10.59)

The 4 × 4 matrices that constitute the regular representation of V4 are presented in
Eq. (10.36). The regular representation of V4 is equivalent to the direct sum of its
four irreducible representations in (10.49): ΓReg ' Γ(1) + Γ(2) + Γ(3) + Γ(4).

10.8 HOW MANY WAYS CAN A GROUP APPEAR?

The two-group {I, A} can act faithfully in R
3 in three inequivalent ways. Other

groups can act in a multiplicity of inequivalent ways in R
N . In this section we

compute the number of inequivalent ways that a group can act in R
N , for any group

and any N .
To lay the groundwork for this analysis, we review how we determined that {I, A}

can act faithfully in R
N in N inequivalent ways. The action of {I, A} is through

a direct sum of its irreducible representations: Γ = n1Γ
(1) + n2Γ

(2), where Γ(1)

and Γ(2) are given in (10.46) and n1 + n2 = N . Two representations Γ and Γ′ are
inequivalent if n2 6= n′

2. The representation is faithful unless n2 = 0.
It is possible to construct a generating function for the number of inequivalent

representations of {I, A} in R
N for any N . A generating function is a function that

generates answers to appropriate questions. Generating functions are used widely in
physics. For example, there is a generating function for Hermite polynomialsHn(x):

e2tx−t2 =

∞∑

n=0

tn

n!
Hn(x) (10.60)

This is to be interpreted as follows. The exponential on the left-hand side is to be
expanded in a Taylor series expansion and the terms rearranged into an ascending
power series in the variable t. The coefficient of tn/n! is the Hermite polynomial
Hn(x). To second order in t, this process is

e2tx−t2 = 1 + t(2x) +
t2

2
(4x2 − 2) + · · · (10.61)

The first three Hermite polynomials are thus H0 = 1, H1(x) = 2x, and H2(x) =
4x2 − 2.

A generating function for groups is constructed as follows. For representation Γ(i)

of dimension di we write the factor 1
1−xdiΓ(i) . When this is expanded we find

1

1− xdiΓ(i)
= 1 + xdiΓ(i) + x2di(Γ(i))2 + x3di(Γ(i))3 + · · · (10.62)
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We interpret this expansion as follows. From the first nontrivial term 1xdiΓ(i) we
understand there is one (1) representation of dimension di (from xdi ), and that rep-
resentation is Γ(i). From the next term 1x2di(Γ(i))2 we understand there is one (1)
representation of dimension 2di (x2di), and that is (Γ(i))2 → Γ(i) + Γ(i).

The group {I, A} has two irreducible representations. Every representation of
{I, A} is a direct sum of these two, with various multiplicities. The generating
function for this group includes a factor for each irreducible representation with
d1 = 1, d2 = 1:

G(Γ(1),Γ(2);x) =
1

1− xΓ(1)

1

1− xΓ(2)
= 1 + x

(

Γ(1) + Γ(2)
)

+ (10.63)

x2
(

(Γ(1))2 + Γ(1)Γ(2) + (Γ(2))2
)

+ · · ·+ xN

(
∑

n1+n2=N

(Γ(1))n1(Γ(2))n2

)

+ · · ·

The coefficient of xN informs us that there is one representation of dimension N of
the form (Γ(1))n1(Γ(2))n2 → n1Γ

(1) + n2Γ
(2) with n1 + n2 = N for each choice

of (n1, n2).
In order to count just the faithful representations, we must remove each of the

unfaithful representations (Γ(1))N (Γ(2))0 from this sum. This is done by subtracting
1 from the factor 1

1−xΓ(2) , leaving as generating function for faithful representations
of {I, A} in R

N

G(Γ(1),Γ(2);x) =
1

1− xΓ(1)

(
1

1− xΓ(2)
− 1

)

(10.64)

If we are interested in just the number of faithful representations, rather than
their detailed decomposition in terms of irreducible representations, we can drop the
information provided by the representation symbols Γ(i). The generating function
for the number of faithful representations of {I, A} in R

N is

GF (G = {I, A};x) =
1

1− x

(
1

1− x − 1

)

=
∞∑

N=1

NxN (10.65)

In R
3 (xN=3) there are 3 (coefficient of x3) faithful inequivalent representations of

the two-group.
These arguments generalize to arbitrary groups. If a group has representations

Γ(i) of dimension di, i = 1, 2, · · · , the generating function for inequivalent faithful
representations of dimension N is

G(Γ(1),Γ(2), · · · ;x) =
∏

i∈U

1

1− xdiΓ(i)




∏

j∈F

1

1− xdj Γ(j)
− 1



 (10.66)

Here i ∈ U means Γ(i) is not faithful (unfaithful) and j ∈ F means Γ(j) is faithful.
If only the number of inequivalent faithful representations is required, the symbols Γ
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can be dispensed with:

GF (G;x) =
∏

i∈U

1

1− xdi




∏

j∈F

1

1− xdj
− 1



 (10.67)

Remark: Only real representations should be used to determine the action of a
group G on R

N through real representations. For example, the group C3 has one
unfaithful representation of dimension 1 (the identity representation) and two faithful
representations, both also of dimension 1. However, these are complex. Their direct
sum is equivalent to a real faithful two-dimensional representation. As a result, the
generating function for the number of real inequivalent faithful representations of C3
in R

N is GF (C3;x) = 1
1−x

(
1

1−x2 − 1
)

.
Calculations can be expedited by introducing functions

hi = hi(x) =
1

1− xi
(10.68)

and expressing the generating functions in terms of products of these factors.

Example 1: The generating function for the group C3 is

GF (C3;x) = h1(h2 − 1) =
1

1− x

(
1

1− x2
− 1

)

= (10.69)

1x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + · · ·
Example 2: The group G = C3v is the group that leaves the equilateral triangle

invariant. It has six group elements and three irreducible representations that satisfy
n2

1+n2
2+n2

3 = 6,n1 = 1, n2 = 1, n3 = 2. The two one-dimensional representations
are real and unfaithful, the two-dimensional representation is real and faithful. The
generating function is

GF (C3v;x) = h2
1 (h2 − 1) =

(
1

1− x

)2(
1

1− x2
− 1

)

= (10.70)

1x2 + 2x3 + 4x4 + 6x5 + 9x6 + 12x7 + 16x8 + · · ·
Example 3: The groupD4 leaves the square invariant. It consists of the identity,

three rotationsCk
4 , k = 1, 2, 3, and two pairs of reflections. It has four unfaithful one-

dimensional real representations and one faithful two-dimensional representation.
The generating function is

GF (D4;x) = h4
1 (h2 − 1) =

(
1

1− x

)4(
1

1− x2
− 1

)

= (10.71)

1x2 + 4x3 + 11x4 + 24x5 + 46x6 + 80x7 + 130x8 + · · ·
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Example 4: The tetrahedral group T consists of 12 proper rotations that leave
the regular tetrahedron invariant. This group has three unfaithful one-dimensional
irreducible representations, A1, E+, E−, and one faithful three-dimensional repre-
sentation, T1. The two representations E+ and E− are complex conjugates; their
direct sum is equivalent to a 2 dimensional representation that is real, unfaithful, and
irreducible over the reals. This gives three real irreducible representations for T , and
a generating function for faithful representations that is

GF (T ;x) = h1h2(h3 − 1) =
1

1− x
1

1− x2

(
1

1− x3
− 1

)

= (10.72)

1x3 + 1x4 + 2x5 + 3x6 + 4x7 + 5x8 + · · ·
Example 5: The proper octahedral group O consists of the 24 proper rotations

that leave the cube invariant. This group has five inequivalent unitary irreducible
representations A1, A2, E, T1, T2 of dimensions 1, 1, 2, 3, 3, respectively. All are
real. The first three are unfaithful, the two three-dimensional representations are
faithful. The generating function is

GF (O;x) = (h1)
2h2

(
(h3)

2 − 1
)

=

(
1

1− x

)2
1

1− x2

((
1

1− x3

)2

− 1

)

=

(10.73)
2x3 + 4x4 + 8x5 + 15x6 + 24x7 + 36x8 + · · ·

The number of inequivalent ways the six groups discussed above can act faithfully
in spaces R

N , N = 3, · · · , 8 is summarized below.

N 3 4 5 6 7 8
Group
{I, A} 3 4 5 6 7 8
C3 1 2 2 3 3 4
C3v 2 4 6 9 12 16
D4 4 11 24 46 80 130
T 1 1 2 3 4 5
O 2 4 8 15 24 36

Remark: The Taylor series expansion of each of these generating functions can
easily be computed. The following Maple program carries out this expansion for the
last generating function.

> h1 := 1/(1− x) : h2 := 1/(1− x2) : h3 := 1/(1− x3) :
> f := h12 ∗ h2 ∗ (h32 − 1);

(
1

1− x

)2
1

1− x2

((
1

1− x3

)2

− 1

)

> taylor(f, x = 0, 10);
2x3 + 4x4 + 8x5 + 15x6 + 24x7 + 36x8 + 54x9 +O(x10)
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10.9 SUBGROUPS AND COSETS

It frequently happens that we encounter a subset of group operations {g1, g2, · · · , gh}
that close under the group multiplication operation. This means that the product of
any two operations in this set produces another operation in this set. When this is the
case, it is easy to show that the identity operation g1 = I is in this set. So also is the
inverse of every operation in this set. In short, this set is a group, H. We call H a
subgroup of G and write H ⊆ G. If H does not contain all the operations in G, that
is if |H| < |G|, then we callH a proper subgroup of G and writeH ⊂ G.

Example: The subset {I, RX} of V4 is closed under the group multiplication.
This subset forms a two-element subgroup of V4.

The order of a subgroup divides the order of its host group. If nG = |G| and
nH = |H|, then nG/nH = nC , where nC is an integer. If |H| = |G|, nC = 1,
otherwise nC > 1.

The subgroup H can be used to partition the group G into nC subsets, each con-
taining nH group operations. This decomposition can be carried out as follows. The
group operations g1, g2, · · · , gnG are written out, and those that belong to the sub-
groupH are removed from this list. For simplicity, we assume the group operations
are numbered so that the first nH belong to the subgroup H. One group operation
(ω2) is chosen from the remaining nG − nH group elements. This group operation is
multiplied by all the nH operations in the subgroupH. These nH operations are all
different from the first set of nH removed from the list of group operations. They are
removed, leaving nG − 2nH group operations. This procedure is repeated. During
the last sweep through this process, the group operation ωnC multiplies g1, · · · , gh

to reproduce the last set of nH group operations. Every group operation can then be
represented uniquely in the form (identifying ω1 = I)

gk = ωαgj
α = 1, 2, · · · , nC
j = 1, 2, · · · , nH

(10.74)

The subsets ωαg1, ωαg2, · · · , ωαgh = ωα ◦ {g1, g2, · · · , gh} are called cosets. Each
coset has |H| group operations in it. The group operations {ω1, ω2, · · · , ωnC} are
called coset representatives. The set of coset representatives is usually denoted C =
G/H. We have the result that |G/H| = |G|/|H|.

Example: The groupV4 acting in R
3 possesses the four group operations {I, RX ,

RY , RZ}. Assume a subgroup H contains the two operations {I, RX}. This is the
first coset in a coset deomposition. Removing these two operations from the four
belonging toV4 leaves two: {RY , RZ}. We can choose either of the group operations
in this coset to represent this coset. We arbitrarily choose RZ . Then the two group
operations in this coset can be written as the product of this coset representative RZ

with each of the two subgroup operations I and RX in turn:

RZ{I, RX} = {RZ , RY } (10.75)
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If we were to chooseRY rather than RZ to represent this coset, we would obtain the
same two group operations, but in a different order:

RY {I, RX} = {RY , RZ}

The idea of coset decomposition can be simply assimilated by pointing out that
every operation in a group can be identified with a “matrix element” in an nC × nH
matrix:

g1 = I g2 · · · gj · · · gnH

ω1 = I ω1g1 g2 · · · gj · · · gnH

ω2 ω2 ω2g2 · · · ω2gj · · · ω2gnH

...
...

...
. . .

...
. . .

...
ωα ωα ωαg2 · · · ωαgj · · · ωαgnH

...
...

...
. . .

...
. . .

...
ωnC ωnC ωnCg2 · · · ωnCgj · · · ωnCgnH

(10.76)

Since ω1 = g1 = I , the group labels identifying the rows and columns are redundent,
and the entire coset decomposition can be written in matrix form where the top row lists
the subgroup operations and the left-hand column provides the coset representatives.

Example: The subgroup decomposition for V4 described above is simply:
[

I RX

RZ RY

]

(10.77)

From this, we seeH = {I, RX} and the two coset representatives are ω1 = I, ω2 =
RZ . Each row contains a coset. Each row is obtained by multiplying the coset
representative at the left of the row into the subgroup operations in the top row.

Remark: Coset decompositions can be constructed by reversing the order of
multiplication: gk = gjωα. The decomposition is then represented by an nH × nC
matrix. If the group G is commutative, the two matrices describing these left- and
right-coset decompositions are transposes of each other. If G is not commutative,
these two matrices are not transposes of each other.

10.10 SINGULAR SETS

There are two types of singular sets associated with equivariant dynamical systems.
One is topological, the other is algebraic. The topological singular set depends on
the equivariance group and its defining matrix representation in R

N . The algebraic
singular set depends on the local diffeomorphism chosen to mod out the symmetry
group. The topological singular set is a subset of the algebraic singular set:

Singular set of G ⊆ Singular set of
∂f

∂x
(10.78)
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Although the two singular sets are often equal, we show below that this is not always
the case.

The topological singular set is determined by looking for the fixed points of each
linear transformation γi ∈ ΓDef(G). A point x is a fixed point of γi if γix = x. The
topological singular set is the union of the set of fixed points for all the equivariance
transformations γi, γi 6= IN .

Example 1: The singular set of the inversion groupP acting on R
3 is determined

from the singular set of the single group operation P :




−1 0 0
0 −1 0
0 0 −1









x1

x2

x3



 =





x1

x2

x3



⇒ x1 = x2 = x3 = 0 (10.79)

The topological singular set of P acting in R
3 is the origin.

The algebraic singular set is the set of points on which the Jacobian of the local
diffeomorphism that mods out the symmetry vanishes.

The algebraic singular set for the inversion group P acting in R
3 must be larger

than the topological singular set. The invariant polynomials are all of second degree:
X2, XY, Y 2, · · · . All matrix elements in the Jacobian must therefore be linear in
the coordinates. The determinant of the Jacobian must therefore be a homogeneous
polynomial of degree 3. The only homogeneous degree 3 function that has a single
singular point at the origin is (X2 + Y 2 + Z2)3/2. This is not a polynomial. For
this reason, in this case the topological singular set is a proper subset of the algebraic
singular set.

Equality of the two singular sets (a common occurrence) is shown for the group
V4 in the following example.

Example 2: The topological singular set of the four-group V4 in R
3 generated

by rotations consists of the union of the X-, Y -, and Z-axes. A useful 4 → 1 local
diffeomorphism that mods out the V4 symmetry in R

3 is

f1 = 1
2 (X2 − Y 2)

f2 = 1
2 (X2 + Y 2 − 2Z2)

f3 = XY Z

(10.80)

The Jacobian of this transformation is

[
∂fi

∂xj

]

=





X −Y 0
X Y −2Z
Y Z ZX XY




det−→ 2(X2Y 2 + Y 2Z2 + Z2X2) (10.81)

The Jacobian vanishes on the Z-axis X = 0, Y = 0. It also vanishes on the X- and
Y -axes. The algebraic singular set is the union of the three rotation axes. For this
equivariance group, the algebraic and topological singular sets are the same.
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10.11 ORBITS (KINETICS AND DYNAMICS)

“Orbit” is a technical term that has different meanings in the theory of groups and
the theory of dynamical systems. The difference between the two meanings is very
much like the difference between kinematics and dynamics in physics. Since we
are combining the theory of groups with the theory of dynamical systems, the two
concepts of orbits will be strongly linked.

In group theory the orbit of a point x ∈ R
N is the set of points γix, γi ∈ G. In

general, most points x ∈ R
N have full orbits: the set of points γix consists of |G|

distinct symmetry-related points. If x is a point that does not have a full orbit, there is
at least one γi ∈ G, γi 6= IN , that leaves x fixed: γix = x. In fact, the set of γi ∈ G
that leaves x fixed is a subgroupH ⊆ G. If the fixed point subgroupH of x is larger
than the identity subgroup IN , x is a singular point. Not only is it a singular point
under the group action (topological singularity), but by the inclusion (10.78) it is a
singular point of any local diffeomorphism that mods out the symmetry. The orbit of
any singular point x ∈ RN is the orbit of x under the coset representatives of G/H.
There are |G|/|H| distinct points in the orbit of x under G when x is singular.

An orbit in a dynamical system is a solutionφ(t) of the dynamical system equations
dxi/dt = fi(x; c). We usually mean closed orbits: trajectories that return to their
starting point after a finite timeT , the (minimum) period of the orbit: φ(t+T ) = φ(t).

If x0 is a nonsingular point on a dynamical orbit, then γix0 is also on a dynamical
orbit, for each γi ∈ G. There are |G| symmetry-related points γix0. The point γix0 is
on the orbit γiφ(t). The main question is whether the orbits φ(t) and γiφ(t) consist
of the same set of points or a different set of points.

If h points x0 = INx0 = γ1x0, γ2x0, · · · , γhx0 are on the same orbit they consti-
tute a subgroupH ⊆ G. If x0 = φ(0), the remaining h− 1 symmetry-related points
occur at φ( i

hT ), i = 1, 2, · · · , h − 1. There are nC − 1 additional orbits that are
symmetry-related to the orbit φ(t), where nC = |G/H|. These orbits are obtained
from the orbit φ(t) = φ1(t) by operating on φ1(t) with the coset representatives ωα:
φα(t) = ωαφ1(t). Along the orbit φα(t) the h points ωα ◦ {γ1, γ2, · · · , γh}x0 occur
at φα( i

hT ).

Example: Assume φ1(t) is a closed orbit of period T for a dynamical system
equivariant under V4. Assume that φ1(0) = x0, and that the point RXx0 6= x0 also
lies on this orbit, but the two other symmetry-related points RY x0 and RZx0 do not
lie on this orbit. Then φ1(

1
2T ) = RXx0. The orbit φ2(t) = RY φ1(t) has period

T , with φ2(0) = RY x0 and φ2(
1
2T ) = RZx0. If we choose RZ instead of RY as

the representative of the second coset, then φ̃2(t) = RZφ1(t) has the property that
φ̃2(0) = RZx0 and φ̃2(

1
2T ) = RY x0

Remark: The ideas expressed in the example above can be carried out in more
detail when the symbol sequence of the periodic orbit(s) is known in the image space.
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11.1 INVARIANT POLYNOMIALS

Our ultimate goal is to find the relation between equivariant dynamical systems and
locally identical (“locally diffeomorphic”) invariant dynamical systems. This is the
cover and image problem. The image dynamical system is always expressed in
terms of invariant polynomials. The cover dynamical system is expressed in terms
of equivariant polynomials. It is the objective of this chapter to describe invariant
polynomials, equivariant polynomials, and their properties.

11.1.1 What Are They?

Invariant polynomials are unchanged under all the group operations. If γi is a matrix
in the defining representation ΓDef(G) and pα(X) is an invariant polynomial, the
condition

pα(γiX) = pα(X) all γi ∈ ΓDef(G) (11.1)

defines an invariant polynomial.

289
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Example: Under the operationsC±1
3 of C3 acting in R

2 the coordinatesX and Y
transform as

[
X
Y

]′
=

[

− 1
2 ±

√
3

2

∓
√

3
2 − 1

2

] [
X
Y

]

=

[

− 1
2X ±

√
3

2 Y

∓
√

3
2 X − 1

2Y

]

(11.2)

Neither X nor Y is an invariant polynomial. Neither are the polynomials X2, XY ,
Y 2. However, p1(X,Y ) = X2 + Y 2 is invariant, since

p1(X
′, Y ′) = X

′2 + Y
′2 =

(

−1

2
X ±

√
3

2
Y

)2

+

(

∓
√

3

2
X − 1

2
Y

)2

=

X2 + Y 2 = p1(X,Y ) (11.3)
It can also be verified that the cubic polynomials p2(X,Y ) = X3 − 3XY 2 and
p3(X,Y ) = 3X2Y − Y 3 are invariant polynomials.

Remark: Products of invariant polynomials are also invariant polynomials. Thus,
it is an easy matter to construct some higher degree invariant polynomials as products
of p1, p2, and p3, as shown below

Degree Polynomial

4 p2
1

5 p1p2, p1p3

6 p3
1, p

2
2, p2p3, p

2
3

(11.4a)

In fact, not all the degree-6 polynomials are independent, for

p3
1 = (X2 + Y 2)3 = (X3 − 3XY 2)2 + (3X2Y − Y 3)2 = p2

2 + p2
3 (11.4b)

Of the four 6th degree polynomials, only 3 are linearly independent.
Invariant polynomials up to degree three are given for some simple groups in R

3:

Group Degree
1 2 3

σZ X, Y Z2, X2, XY, Y 2 XiY j(i + j = 3), Z2X, Z2Y

RZ Z X2, XY, Y 2, Z2 Z3, ZX2, ZXY, ZY 2

P − X2, Y 2, Z2, XY, Y Z, ZX −
C3 Z Z2, X2 + Y 2 X3 − 3XY 2, 3X2Y − Y 3

Z3, Z(X2 + Y 2)

(11.5)

11.1.2 How to Construct Invariant Polynomials

It is well known that any real function f(X) of a single real variableX , defined on the
symmetric interval (−a,+a), can be written as a superposition of an even function
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and an odd function

f(X) = feven(X) + fodd(X)

feven(X) =
1

2
[f(X) + f(−X)]

fodd(X) =
1

2
[f(X) − f(−X)]

(11.6)

Perhaps not quite so well known is that the odd function averages to zero under the
group inversion operation P : X → −X :

∑

g∈G
gfodd(X) = (I + P ) fodd(X) = fodd(+X) + fodd(−X) = 0 (11.7)

This result is a special case of a much more general result, valid for any group G
[25]. Every polynomial p(X) of several variables X = (X1, X2, · · · , XN) can be
decomposed into a sum of two polynomials

p(X) = pinv(X) + pcov(X) (11.8)

One is invariant under the group operations. The other averages to zero under the
group operations.

This theorem allows us to construct invariant polynomials by averaging. The
invariant part of any polynomial is constructed by the following averaging procedure

〈p(X)〉 =
1

|G|
∑

γ∈G
p(γX) (11.9)

The left-hand side is simply the invariant part of any polynomial, since

〈p(X)〉 = 〈pinv(X) + pcov(X)〉 = 〈pinv(X)〉+ 0 = pinv(X) (11.10)

The right-hand side of (11.9) is interpreted as follows. Compute the polynomial
p(γX) for each γ ∈ G, sum the |G| resulting polynomials, and divide by the order of
G.

Definition: The operator
(

1
|G|
∑

γ∈G γ
)

p(X) is called the Reynold’s operator.

Example: We apply the Reynold’s operator for the group C3 to the polynomial
X2:

1

|G|
X

γ∈G

γX2 =
1

3

(

X2 +

„

−1

2
X +

√
3

2
Y

«2

+

„

−1

2
X −

√
3

2
Y

«2
)

=
1

2
(X2 + Y 2)

(11.11)

This operator projects XY to the invariant 0 and Y 2 to the invariant polynomial
1
2 (X2 + Y 2).
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> with(linalg):
> n:=4:
> Gamma[1]:=matrix(3,3,[[0,1,0],[-1,0,0],[0,0,-1]]);

Γ1 =





0 1 0
−1 0 0

0 0 −1





> for i from 2 to n do
Gamma[i]:=multiply(Gamma[i-1],Gamma[1]):

od:
> V:=matrix(3,1,[[x],[y],[z]]):
> F(X,Y,Z):=Xˆ2*Z;

F (X,Y, Z) = X2Z

> f(x,y,z):=0:
for i from 1 to n do

VP:=multiply(Gamma[i],V):
xpr:=VP[1,1]: ypr:=VP[2,1]: zpr:=VP[3,1]:
f(x,y,z):=f(x,y,z)

+subs(X=xpr,Y=ypr,Z=zpr,F(X,Y,Z)):
od:
simplify(%/n);

−1

2
zx2 +

1

2
zy2

Fig. 11.1 Program for projecting symmetric part of a polynomial finv(x, y, z) from the
polynomial f(x, y, z). The matrix Γ1 is the generator for the action of S4 on R

3.

The Maple code shown in Fig. 11.1 can be used to project the invariant part out of
any polynomial. The first line loads the linear algebra package. The computation is
done for a group with one generator Γ1 and one relation Γ4

1 = Id. The second and
third lines introduce the order (n = 4) of this group and its generator. The matrix is
echoed back as a self-consistency check. This is the generator for the group S4. The
next line is a short “do” loop that generates the matrix representatives of the remaining
three group operations. The line following introduces the three coordinates (x, y, z)
in R

3 as the matrix V .
The function from which the symmetrized part is to be projected out is finally

introduced. In the case shown it is X2Z. For technical purposes the polynomial is
expressed in terms of capitals. The last line contains the do loop that projects out the
symmetric part of the polynomial F (X,Y, Z) = X2Z. It is 1

2 (−x2 + y2)z.

11.1.3 How Many Invariant Polynomials Are There?

As (11.5) shows, the number of invariant polynomials of any degree depends in detail
on the equivariance group. For some purposes, we would like to be able to count the
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number of functionally independent invariant polynomials as a function of symmetry
group G, more specifically its defining representation ΓDef(G) in R

N , and the degree
d.

It is possible to construct a generating function to do the counting. The generating
function is

f(u; ΓDef(G)) =
1

|G|
∑

g∈G

1

det|IN − uΓDef(g)| =

∞∑

d=0

n(d)ud (11.12)

In this expression n(d) is the number of functionally independent invariant polyno-
mials of degree d and u is an indeterminant.

This generating function can be derived from the Reynold’s projection operator.
The basic idea is similar to that used to construct generating functions for represen-
tations of a group G in R

N from knowledge of its irreducible representations.

Example 1: For the two-element groupRZ acting in R
3 we find

f(u;RZ) =
1

2







∣
∣
∣
∣
∣
∣

I3 − u





1 0 0
0 1 0
0 0 1





∣
∣
∣
∣
∣
∣

−1

+

∣
∣
∣
∣
∣
∣

I3 − u





−1 0 0
0 −1 0
0 0 1





∣
∣
∣
∣
∣
∣

−1






=

1

2

{
1

(1− u)3 +
1

(1− u)(1 + u)2

}

=
1 + u2

(1− u)3(1 + u)2
(11.13)

The generating functions for the three order-2 groups in R
3 are

G σZ RZ P
f(u,G) 1

(1− u)3(1 + u)1
1 + u2

(1− u)3(1 + u)2
1 + 3u2

(1− u)3(1 + u)3
(11.14)

The coefficients n(d) of the powers ud for these three generating functions are

0 1 2 3 4 5 6 7 8 9 10

σZ 1 2 4 6 9 12 16 20 25 30 36
RZ 1 1 4 4 9 9 16 16 25 25 36
P 1 0 6 0 15 0 28 0 45 0 66

(11.15)

Example 2: The generating function for polynomials invariant in X and Y under
C3 acting in R

2 is computed by summing three terms:

f(u; C3) =
1

3

(
1

det[I2 − uI2]
+

1

det[I2 − uM ]
+

1

det[I2 − uM2]

)

whereM is the 2×2 matrix generator of this group, given in (11.2). The determinant
is invariant under similarity transformations, so that we can do this computation by
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diagonalizing M and M 2 (separately!). The eigenvalues of M and M 2 are equal:
the two eigenvalues are ε = e2πi/3 and ε∗. As a result, the generating function is

f(u; C3) =
1

3

(
1

(1− u)2 +
2

(1− εu)(1− ε∗u)

)

=
1− u+ u2

(1− u)2(1 + u+ u2)
(11.16)

The Taylor series expansion of this function is

f(u; C3) = 1+1u2+2u3+1u4+2u5+3u6+2u7+3u8+4u9+3u10+· · · (11.17)

We point out that the coefficient of u6 indicates that there are three independent
degree-6 invariant polynomials in X and Y . The list given in (11.4a) includes four,
among which there is one constraint, (11.4b). This constraint indicates that of these
four, only three are functionally independent. The generating function for this group,
acting in R

3 instead of R
2, is obtained by multiplying the R

2 generating function
f(u; C3) given above by the factor 1

1−u .

Extended Remark: We can develop an appreciation for the algorithm (11.12) for
constructing generating functions f(u; ΓDef(G)) from the following considerations.
A generating function for monomials in R

2 based on the coordinatesX and Y is

f(u) =
1

1− uX
1

1− uY = 1 + u(X + Y ) + u2(X2 +XY + Y 2) + u3(X3 + · · ·

=
1

det

[
1− uX 0

0 1− uY

] (11.18)

If we are interested only in the number of independent terms of degree d, not in the
detailed form of these polynomials, we can drop the coordinate information (X,Y )
from this generating function, to obtain

f(u) =
1

det [I2 − uI2]
(11.19)

The monomials are all invariant under the trivial group containing one operation
G = Id, so that

f(u; ΓDef(Id)) =
1

|Id|
∑

g∈Id

1

[I2 − uΓDef(Id)]
(11.20)

Extending the symmetry to some larger group, for exampleRz or C3, requires intro-
duction of the representatives ΓDef(gi) of the additional group operations, as well as
averaging by the number of operations in the group.
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11.2 GENERATORS AND RELATIONS

From the examples carried out so far, it is clear that the higher degree invariant
polynomials are functionally dependent on some subset of lower degree invariant
polynomials. In general, it is possible to find a small set of invariant polynomials that
can be used to construct any invariant polynomial through the three operations

• scalar multiplication
• linear superposition
• polynomial multiplication.

Such a subset of invariant polynomials is called an integrity basis [25].

11.2.1 Integrity Basis

An integrity basis plays the same role for functions f(X1, X2, · · · , XN) on R
N as

a linear vector space basis plays for vectors in R
N . The integrity basis for the three

representations of the order-2 group {I, A} in R
3 are

Group Integrity Basis Number

σZ X,Y, Z2 3

RZ Z,X2, XY, Y 2 4

P X2, Y 2, Z2, XY, Y Z, ZX 6

(11.21)

The search for an integrity basis is simplified by a nice theorem by Noether.
The theorem states that for any equivariance group G the integrity basis consists of
homogeneous invariant polynomials of degree d, d ≤ |G| [25]. For the order-2 groups
the integrity basis consists of only first and second degree invariant polynomials.

11.2.2 How to Construct an Integrity Basis

An integrity basis can be constructed from a set of invariant polynomials in an algo-
rithmic way. The algorithm actually constructs a “Gröbner basis” (of functions). A
Gröbner basis is a minimal set of polynomials from which all possible polynomials
of a certain type can be constructed from the three operations of scalar multiplication,
“vector” addition, and “vector” multiplication. The term “vector” in this case refers to
polynomial functions. The Gröbner basis is the closest possible analog to the concept
of basis that we find so useful for linear vector spaces.

The algorithm for constructing a Gröbner basis from a set of polynomial functions
has been thoroughly studied and implemented in a number of symbol manipulation
packages. In Fig. 11.2 we show a simple Maple code for computing a Gröbner
basis from polynomials invariant under the group S4. There are nine such poly-
nomials of degree less than or equal to four. Of these, only six are necessary to
form a basis for the expansion of all S4-invariant functions. The first entry loads
the Gröbner basis package. The echo shows which subroutines are available. Sum-
maries of each subroutine and protocols for their use can be accessed in an intuitive
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> with(grobner);

[finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly]

> ?gbasis;
> [Coords]:=[X,Y,Z];
> [F]:=[Xˆ2+Yˆ2,Zˆ2,X*Y*Z,(Xˆ2-Yˆ2)*Z,Xˆ4+Yˆ4,

X*Y*(Xˆ2-Yˆ2),Xˆ2*Yˆ2,(Xˆ2+Yˆ2)*Zˆ2,Zˆ4];
> gbasis([F],[Coords]);

[XY 3, Y 4, XY Z,ZY 2, Y 2 +X2, Z2]

Fig. 11.2 Nine polynomials of degree ≤ 4 are invariant under the group S4. The code
segment shown constructs an integrity basis from these nine functions. The basis is six-
dimensional. The output polynomials are not necessarily invariant under the group action (e.g.,
XY 2, Y 4, ZY 2). Their invariant parts, pinv(X), are chosen to be integrity basis functions.

way (?gbasis). The coordinates are introduced as the array [Coords] and the
invariant polynomials of degree d ≤ |G| are introduced as another array, [F]. The
subroutine gbasis([F],[Coords]) returns the appropriate Gröbner basis. In
this case the output is the set [XY 3, Y 4, XY Z,ZY 2, Y 2 +X2, Z2].

Remark 1: The subroutine gbasis is designed to construct a minimal basis set
— a Gröbner basis. It is not designed to preserve the invariance (under G) property
of the input list of polynomials. In some cases the output list may contain polyno-
mials that are not invariant under G. In the case presented, three of the six integrity
basis functions are not invariant: XY 3, Y 4, and Y 2Z. The invariant part should be
projected out of each noninvariant polynomial in the Gröbner basis set.

Remark 2: It is sometimes obvious that one of the low degree (d ≤ |G|) invariant
polynomials cannot be a basis polynomial. For example,Z4 is the square ofZ2, so is
not functionally independent of Z2. As long as Z2 is in the set of basis polynomials,
there is no need for the polynomial Z4.

11.2.3 Relations

The homogeneous polynomials in an integrity basis are linearly independent but not
always functionally independent. They may satisfy some relation(s) of the form

sα(p1, p2, · · · , pK) = 0 (11.22)

Here p1, p2, · · · , pK are theK invariant polynomials that constitute an integrity basis
and sα is some polynomial function of its arguments. There may be more than one
independent polynomial relation: If so, the different relations are indexed by the
subscript α.

Definition: Functional relations of the form (11.22) are called syzygies [25].
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Table 11.1 The groups σZ , RZ , and P are three distinct faithful representations of the two-
group {I, A} in R

3. For each, we identify the invariant polynomials of degree d up to two,
the Grobner basis, the dimension of K the Grobner basis, all syzygies, and the equivariant
polynomials.

Group Invariant Grobner K Syzygies Equivariant
Polynomials Basis Polynomials

σZ X,Y p1 = X 3 − R1 = Z
X2, XY, Y 2, Z2 p2 = Y

p3 = Z2

RZ Z p1 = Z 4 R1 = X
X2, XY, Y 2, Z2 p2 = X2 R2 = Y

p3 = XY
p4 = Y 2 s4 = p2p4 − p2

3

P − p1 = X2 6 R1 = X
X2, Y 2, Z2 p2 = Y 2 R2 = Y
XY, Y Z,ZX p3 = Z2 R3 = Z

p4 = Y Z s4 = p1p2 − p2
6

p5 = ZX s5 = p2p3 − p2
4

p6 = XY s6 = p3p1 − p2
5

s7 = p1p4 − p5p6

s8 = p2p5 − p6p4

s9 = p3p6 − p4p5

In many cases, when there areK polynomials in an integrity basis for functions on
R

N invariant under G, there will beK−N independent functional relations (11.22):
α = N + 1, · · · ,K. We call these simple syzygies. There are instances of group
actions on R

N that produce nonsimple syzygies (e.g., P ,S4 on R
3).

In Table 11.1, for the three representations of the two-element group {I, A} acting
faithfully on R

3, we provide information about the invariant polynomials up to degree
2, the Gröbner basis, the dimension K of the Gröbner basis, the syzygies that are
satisfied, and the equivariant polynomials, to be discussed in Section 11.3.

The Gröbner basis for σZ has dimension K = 3, so there are no syzygies. The
Gröbner basis forRZ has dimensionK = 4, so there is 4− 3 = 1 simple syzygy for
RZ . The group P has 6 (nonsimple) syzygies.

Construction of syzygies also has a long history, and can therefore be carried out
algorithmically. The algorithm is as follows. Introduce one variable for each invariant
polynomial pi(X) in the Gröbner basis. If there are K invariant polynomials, this
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> p1:=Xˆ2: p2:=Yˆ2: p3:=Zˆ2: p4=Y*Z: p5=Z*X:
p6=X*Y:

> gbasis([p1-a1,p2-a2,p3-a3,p4-a4,p5-a5,p6-a6],
[X,Y,Z,a1,a2,a3,a4,a5,a6]);

· · · , a3a6−a4a5, a2a5−a4a6, a1a4−a5a6, a42−a2a3, a52−a1a3, a62−a1a2

Fig. 11.3 Segment of Maple code suitable for computing syzygies among the six integrity
basis polynomials for the groupP acting in R

3. The output shows six syzygies. These syzygies
are not simple, since 6 6= 6 − 3 (# syzygies 6= Dim. Integrity Basis − Dim R

N ).

involves introducing aK-vector (a1, a2, · · · , aK). Then find the Gröbner basis for the
functions [p1−a1, p2−a2, · · · , pK−aK ] usinggbasis([p1−a1, p2−a2, · · · , pK−
aK ], [X,Y, Z, a1, a2, · · · aK ]). The Gröbner basis functions that depend only on the
variables aj , sα(a1, a2, · · · , aK), are the polynomial constraints that are desired, and

sα(p1, p2, · · · , pK) = 0 (11.23)

are the syzygies. The syzygies for the action of P on R
3 are determined by the

segment of Maple code shown in Fig. 11.3.
There are six polynomial functions depending only on the ai. They lead directly

to the following syzygies:

s4(p1, p2, p3, p4, p5, p6) = p1p2 − p2
6 = 0

s5(p1, p2, p3, p4, p5, p6) = p2p3 − p2
4 = 0

s6(p1, p2, p3, p4, p5, p6) = p3p1 − p2
5 = 0

s7(p1, p2, p3, p4, p5, p6) = p1p4 − p5p6 = 0
s8(p1, p2, p3, p4, p5, p6) = p2p5 − p6p4 = 0
s9(p1, p2, p3, p4, p5, p6) = p3p6 − p4p5 = 0

(11.24)

When the syzygies are simple, their interpretation is simple. We create from N
equivariant coordinates (X1, X2, · · · , XN ) a set of K invariant coordinates (p1, p2,
· · · , pK). We will use these invariant coordinates to describe aK-dimensional space
R

K(p), just as we use the equivariant coordinates to parameterize anN -dimensional
space R

N (X). The mapping (X1, X2, · · · , XN )→ (p1, p2, · · · , pK) is a mapping of
anN -dimensional space into aK-dimensional space,whereK ≥ N and usuallyK >
N . The mappingX → p(X) actually maps the space R

N (X) into anN -dimensional
manifold embedded in R

K(p) (neglecting singularities of lower dimension). When
the syzygies are simple, the K − N polynomial relations sµ(p1, p2, · · · , pK) = 0
provideK−N nonlinear constraints to define theN -dimensional surface embedded
in R

K(p).
If there are more thanK−N syzygies, then they are in some sense not independent.

They still must define an N -dimensional subspace in R
K(p). To see how this comes

about, we compute the Jacobian of the matrix ∂sµ/∂pα for the groupP acting in R
3.

The six syzygies sµ, µ = 4, · · · , 9, are listed in Table 11.1. There are six invariant
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polynomials, so the Jacobian is a 6× 6 matrix:

∂sµ

∂pα
=

s4
s5
s6
s7
s8
s9











p2 p1 0 0 0 −2p6

0 p3 p2 −2p4 0 0
p3 0 p1 0 −2p5 0
p4 0 0 p1 −p6 −p5

0 p5 0 −p6 p2 −p4

0 0 p6 −p5 −p4 p3











(11.25)

This Jacobian is nonsingular if the pα are considered independent. However, they are
not independent. The relations among them are best visualized by replacing the pα

by the corresponding invariant polynomials (e.g., p1 → X2). This gives

∂sµ

∂pα
=











Y 2 X2 0 0 0 −2XY
0 Z2 Y 2 −2Y Z 0 0
Z2 0 X2 0 −2ZX 0
Y Z 0 0 X2 −XY −ZX
0 ZX 0 −XY Y 2 −Y Z
0 0 XY −ZX −Y Z Z2











(11.26)

This Jacobian has rank 3 = 6 − 3 = K −N . A maximal rank submatrix is easily
obtained by Gauss-Jordan reduction. It is





X2 0 0 +Y Z −ZX −XY
0 Y 2 0 −Y Z +ZX −XY
0 0 Z2 −Y Z −ZX +XY



 (11.27)

This submatrix corresponds to the three syzygies

s7 : (X2)(Y Z)− (ZX)(XY ) = p1p4 − p5p6 = 0
s8 : (Y 2)(ZX)− (XY )(Y Z) = p2p5 − p6p4 = 0
s9 : (Z2)(XY )− (Y Z)(ZX) = p3p6 − p4p5 = 0

(11.28)

Any subset of three syzygies with full rank can be used as constraints to define the
3-dimensional surface embedded in R

6(p).

Remark: It may be wondered if the syzygies themselves satisfy additonal syzy-
gies. That is, are there secondary relations of the form s̃j(s4, s5, · · · , s9) = 0? For
the polynomials pα considered as independent, the primary syzygies sµ(p1, · · · , pK)
do not satisfy secondary syzygies of the form s̃j(s4, s5, · · · , s9) = 0.

11.2.4 How to Read the Generating Function

The generating functionf(u; ΓDef(G)) for invariant polynomials contains a great deal
of information about the integrity basis and its syzygies, if only one understands how
to read it. We illustrate this reading process by considering a number of examples of
slowly increasing complexity.
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Example 1: The generating function f(u;σZ) is

f(u;σZ) =
1

(1− u)3(1 + u)
=

1

(1− u)2(1− u2)
(11.29)

There is one factor 1
1−u for the monomialX , one factor 1

1−u for the monomialY , and
one factor 1

1−u2 for the monomial Z2 in the integrity basis. There are three factors
in the denominator, each of the form 1−udi , one for each of the three Gröbner basis
polynomials of degree di.

We can determine the explicit form of the invariant polynomials by reintroducing
information about the Gröbner basis into the generating function:

f(u;σZ)→ 1

(1− uX)(1− uY )(1− u2Z2)
(11.30)

The power series expension of this function contains every invariant polynomial that
can be constructed from this integrity basis exactly once. The coefficient of ud

identifies the degree of this invariant polynomial. For example, one of the quartic
terms in this expansion is u4XY Z2.

Example 2: The generating function f(u;RZ) is

f(u;RZ) =
1 + u2

(1− u)3(1 + u)2
=

1 + u2

(1− u)(1− u2)2
(11.31)

There are three factors in the denominator. The factor 1
1−u is for the degree d = 1

integrity basis polynomial Z. But which two quadratic polynomialsX2, XY, Y 2 do
the two factors 1

(1−u2)2 represent? Shouldn’t there be another factor 1 − u2 in the
denominator? If there were a third factor 1− u2 in the denominator, we could write
the product of factors as follows

1

1− u
1

(1− u2)3
=

1

1− u
1

(1− u2)2
1

1− u2

=
1

1− u
1

(1− u2)2

{

1 + u2 + u4 + · · ·
︸ ︷︷ ︸

}

If this expression is truncated beyond the quadratic terms (the terms within the un-
derbrace are removed), the resulting expression is identical to the generating function
f(u;RZ) (11.31). This expression is trying to tell us that, at the level of (u2)2, one
of the three quadratic terms is a function of the other two. That is, the syzygy

(X2)(Y 2) = (XY )2

is reflected in the structure of the generating function.
We can restore information about the form of the polynomials that can be con-

structed from the integrity basis by rewriting the generating function to include in-
formation about the integrity basis:

f(u;RZ)→ 1 + u2XY

(1− uZ)(1− u2X2)(1− u2Y 2)
= (11.32)
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∑

n1,n2,n3

∑

d4

u1n1+2n2+2n3+2d4(Z)n1(X2)n2(Y 2)n3(XY )d4 (11.33)

In the summation above, the integersn1, n2, n3 can assume any values between 0 and
∞ while the integer d4 can only assume the two values 0 and 1. The sum includes
all possible monomials that can be constructed from the integrity basis exactly once,
and excludes no invariant polynomials.

Example 3: The generating function for the inversion group P acting in R
3 is

f(u;P) =
1 + 3u2

(1− u2)3
(11.34)

The factor 1
(1−u2)3 tells us that there are three degree-two polynomials that occur to

arbitrary powers in the expression for any polynomial. The numerator term can be
expressed as

1

(1− u2)3
= 1 + 3u2 + 6u4 + 10u6 + · · ·

︸ ︷︷ ︸
(11.35)

There are three other degree d = 2 polynomials in the integrity basis. The coefficient
3 in the numerator indicates that there are three syzygies that eliminate three of the
six integrity basis polynomials at and beyond the quadratic level. This summarizes
the three syzygies:

(X2)(Y 2) = (XY )2

(Y 2)(Z2) = (Y Z)2

(Z2)(X2) = (ZX)2
(11.36)

If the integrity basis information is placed back into the generating function, we find
f(u;P)→ 1 + u2(XY + Y Z + ZX)/(1 − u2X2)(1 − u2Y 2)(1 − u2Z2) = (11.37)

X

n1,n2,n3

X

d1,d2,d3

u2n1+2n2+2n3+2d1+2d2+2d3 (X2)n1 (Y 2)n2 (Z2)n3 (XY )d1 (Y Z)d2(ZX)d3

In this expansion the ni and dj have the usual properties: 0 ≤ ni <∞ and dj = 0, 1.
Example 4: The generating function for C3 acting in R

2 is

f(u; C3) =
1− u+ u2

(1− u)2(1 + u+ u2)
=

1 + u2 + u4

(1− u3)2
(11.38)

This last identity is not difficult to show. This form for the generating function tells
us that there are two cubic polynomials that must be present in all powers. The
numerator term can be reinterpreted as

1

1− u2
= 1 + u2 + u4 + u6 + u8 + · · ·

︸ ︷︷ ︸

When the terms of degree six and higher are neglected, the result is the numerator in
the generating function (11.38). If we replace the integrity basis information in the
generating function and carry out the standard Taylor series expansion, we find

f(u; C3)→
∑

n1,n2

∑

d3

(X3 − 3XY 2)n1(3X2Y − Y 3)n2(X2 + Y 2)d3 (11.39)
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According to the generating function, the integers n1 and n2 can assume any integer
values 0, 1, 2, · · · ,∞ but the integer d3 can assume only the restricted values 0, 1, 2.

Example 5: The generating function for C3 in R
2 is

f(u; C3) =
1 + · · ·+ u2(3−1)

(1− u3)2
(11.40)

The generating function f(u; Cn) for Cn acting in R
2 can be obtained from f(u; C3)

by the substitution 3→ n everywhere:

f(u; Cn) =
1 + u2 + · · ·+ u2(n−1)

(1− un)2
(11.41)

The interpretation of this generating function, and its implication for the structure
of invariant monomials, is essentially the same as for the function f(u; C3) given in
(11.39), except that now d3 = 0, 1, 2 · · · , n− 1 and the nth degree invariants are the
real and imaginary parts of (X + iY )n.

Example 6: The generating function for polynomials invariant under V4 acting
on R

3 is

f(u;V4) =
1

4

{
1

(1− u)3 +
3

(1 + u)2(1− u)

}

=
1− u+ u2

(1− u)(1− u2)2
(11.42)

With a little algebra this rational fraction can be rewritten as

f(u;V4) =
1 + u3

(1− u2)3
(11.43)

In this form we see immediately that an arbitrary polynomial can be expressed as a
linear combination of all the invariant polynomials, which have the form

1 + u3(XY Z)

(1 − u2X2)(1 − u2Y 2)(1 − u2Z2)
→

X

(X2)n1 (Y 2)n2 (Z2)n3 (XY Z)d4 (11.44)

where as usual d4 = 0, 1 only.
In Fig.11.4 we provide a segment of a Maple code that can be used for constructing

the generating function f(u;G) for a group of order |G| = n(= 4). It is assumed
that the matrices Γ(gi) have previously been constructed (e.g., Fig. 11.1). The group
used in this example is C4 acting in R

3.

11.3 EQUIVARIANT POLYNOMIALS

The polynomials in an integrity basis can be used to generate all polynomials invariant
under an equivariance group G. Every invariant function finv(X1, X2, · · · , XN)
can be expressed as a function of the polynomials p1(X), p2(X), · · · , pK(X) in an
integrity basis:

finv(X) = f(p1(X), p2(X), · · · , pK(X)) (11.45)
There are many functions that are not invariant underG. How can they be represented?
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> n:=4: f:=0:
> for i from 1 to n do

f:=f+1/det(Id-scalalmul(Gamma[i],u)):
od:

> simplify(%/n);

1 + u4

(1− u)3(1 + u)2(1 + u2)

Fig. 11.4 This snippet of Maple code computes the generating function f(u; C4) for polyno-
mials of degree d invariant under the group C4. The four matrices Γi are assumed previously
defined for the group action of C4 on R

3.

11.3.1 How Many Equivariant Polynomials Are There?

It is possible to construct a generating function for linearly independent equivariant
(i.e., non invariant) polynomials by degree. If f(u;G) is the generating function for
invariant polynomials of degree d on R

N , then its complement

fcov(u;G) =
1

(1− u)N
− finv(u;G) (11.46)

is the generating function for equivariant polynomials. The term 1/(1 − u)N is
the generating function for all polynomials of degree d on R

N . This expression
simply says that the total number of independent invariant polynomials and equivariant
polynomials of degree d exhaust the polynomials of degree d on R

N .

Examples: For R
3 the generating function for polynomials of degree d is 1/(1−

u)3. For the groups σZ ,RZ ,P the generating functions for invariant and equivarient
polynomials are

G finv(u;G) fcov(u;G)

σZ
1

(1− u)3(1 + u)1
u

(1− u)3(1 + u)1

RZ
1 + u2

(1− u)3(1 + u)2
2u

(1− u)3(1 + u)2

P 1 + 3u2

(1− u)3(1 + u)3
u(3 + u2)

(1− u)3(1 + u)3

(11.47)

ForRZ we find

fcov(u;RZ) =
2u

(1− u)(1− u2)2

= 2u+ 2u2 + 6u3 + 6u4 + 12u5 + 12u6 + 20u7 + · · ·
(11.48)
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It is easily verified that the number of invariant (cf. (11.15)) and covariant polynomials
of degree d is equal to the total number of linearly independent polynomials of degree

d on R
3: (d+ 3− 1)!

(3− 1)!d!
.

What fraction of all polynomials of degree less than or equal to d is invariant under
G? We answer this by summing the coefficients n(d) for the generating function
f(u;G) (in the limit d→∞ the sum is the generating function) and comparing with
a similar sum for the generating function 1/(1− u)N for polynomials on R

N . The
limit can be carried out as u→ 1. Of course the sums do not converge, but the limit
of their ratio is well defined. We find

Ratio = lim
u→1

f(u;G)
1/(1− u)N

= lim
u→1

1

|G|
∑

g∈G

(1− u)N

[IN − uΓDef(g)]
(11.49)

Only the first term in this sum, corresponding to g = I , survives the limit. As a result,
we find that the ratio of invariant polynomials to all polynomials is 1

|G| . This is true
for any equivariance group G acting on any space R

N .

11.3.2 How to Construct Equivariant Polynomials

In order to construct any possible equivariant polynomial it is sufficient to identify just
a few—a basis, so to speak (“ring basis”) [25]. The remainder can all be constructed
by multiplying this small set of equivariant polynomials by invariant polynomials.
We will illustrate with several examples.

Example 1: For σZ acting in R
3 we construct a list of all polynomials in R

3 up
to degree d = |σZ | = 2:

1

X,Y , Z

X2, XY , Y 2, Z2, XZ, Y Z

(11.50)

Next, we remove all invariant polynomials (underlined) from this list. This leaves
three polynomials: Z,XZ, Y Z. The lowest degree polynomial remaining is Z. This
is removed from the list, as well as all products of Z with invariant polynomials.
Once these are removed, no polynomials of degree d ≤ 2 remain, and the process
terminates. A basis for the noninvariantpolynomials consists of the single equivariant
polynomial Z. Every function on R

3 can be written in the form

f(X,Y, Z) = f0(p1, p2, p3)1 + f1(p1, p2, p3)R1 (11.51)

In this expression the pi are the invariant polynomials (p1, p2, p3) = (X,Y, Z2), 1
is the lowest degree invariant polynomial (always uniquely 1), and R1 = Z is the
unique noninvariant generating polynomial for σZ in R

3.
This procedure can be followed to construct a ring basis, or basis set of covariant

polynomials, for any group G acting in any space R
N . The ring basis for the three
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faithful representations of the two-group {I, A} acting in R
3 are

σZ 1 Z
RZ 1 X,Y
P 1 X,Y, Z

(11.52)

This information has been collected in Table 11.1.

Example 2: Polynomials up to degree three in two variables are

1
X Y

X2 + Y 2 X2 − Y 2 2XY
X3 − 3XY 2 3XY 2 − Y 3 X(X2 + Y 2) Y (X2 + Y 2)

For C3 acting in R
2 the invariant polynomials are 1, X2 +Y 2, X3−3XY 2, 3X2Y −

Y 3. The first-degree polynomialsX and Y are not invariant, so R1(X,Y ) = X and
R2(X,Y ) = Y . Of the three second-degree polynomials, one linear combination
is invariant. It is useful to choose two orthogonal linear combinations (under any
reasonable inner product) as two additional invariant polynomials:

R3(X,Y ) = X2 − Y 2, R4(X,Y ) = 2XY (11.53)

Two linear combinations of the four cubic terms are invariant. The remaining two
can be obtained by multiplying the degree-one covariant polynomials (X,Y ) by the
degree-two invariant polynomial X2 + Y 2. The ring basis for C3 acting in R

2 is
therefore

R0 = 1, R1 = X, R2 = Y R3 = X2 − Y 2, R4 = 2XY (11.54)

Example 3: This analysis can be repeated for Cn acting in R
2. It is simplified by

forming complex linear combinations z = X + iY and z̄ = X − iY . The invariants
of degree k ≤ n are 1, z̄z, 1

2 (zk + z̄k) = Re(zk) and 1
2i (z

k − z̄k) = Im(zk). The
covariant polynomials are the real and imaginary parts of zk, k = 1, 2, · · · , n − 1.
The ring basis is

R0 = 1, R1,2 =
Re

Im
z, R3,4 =

Re

Im
z2, · · · R2n−3,2n−2 =

Re

Im
zn−1 (11.55)

Example 4: For V4 acting in R
3 the integrity basis is X2, Y 2, Z2, XY Z. The

monomials X,Y , and Z are clearly not invariant. In addition, the degree-two terms
XY, Y Z,ZX are not invariant. All other covariant polynomials are products of one
of these six covariant polynomials with an invariant polynomial. The ring basis is

R1 = X R2 = Y R3 = Z
R0 = 1

R4 = Y Z R5 = ZX R6 = XY
(11.56)
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Remark: The ring basis/invariant polynomial decomposition is the function space
analog of the coset decomposition for groups. A side-by-side comparison illustrates
the relation:

g = ωα × hi ωα ∈ G/H hi ∈ H ⊂ G
Poly−
nomial

= Ri × f(p1, .., pK) Ri ∈ Ring
Basis

pi(X) ∈ Integrity
Basis

(11.57)

This analogy will be made much clearer in the following section. It cannot be pushed
too hard, since there is only one combinatorial operation in the group while there are
three in the space of functions.

11.4 BASIS SETS FOR IRREDUCIBLE REPRESENTATIONS

When G acts faithfully on R
N through the defining matrix representation ΓDef(G), at

least one of the coordinates (X1, X2, · · · , XN ) is not an invariant. In general we can
divide the N coordinates into two subsets: one subset is invariant under the action
of G; the other subset is covariant. The latter subset can be further divided if G has
more than one irreducible representation different from the identity representation.

The two-element group {I, A} has two inequivalent irreducible representations.
When acting in R

3 it has three inequivalent faithful representations. Invariant poly-
nomials are basis functions for the identity representation Γ(1) and the covariant
polynomials are basis vectors for the faithful representation Γ(2). This information
is summarized in the character table

{I, A} I A σZ RZ P
Γ(1) 1 1 X,Y, Z2 Z,X2, XY, Y 2 X2, Y 2, Z2, XY, Y Z, ZX

Γ(2) 1 −1 Z X, Y X, Y, Z
(11.58)

The information in this table is to be interpreted as follows. For the representation
RZ , the generator A → RZ acts on the invariant polynomials through the iden-
tity representation and acts on the covariant polynomials through the representation
Γ(2)(RZ):

Z,X2, XY, Y 2 RZ−→ Z, (−X)2, (−X)(−Y ), (−Y )2 = Z,X2, XY, Y 2

X,Y
RZ−→ −X,−Y

For the group C3 acting on R
3 there are three representations. The character table

is (ε = e2πi/3)

C3 I A A2 Basis Polynomials

Γ(0) 1 1 1 Z,X2 + Y 2, (X ± iY )3

Γ(1) 1 ε ε2 X + iY, (X − iY )2

Γ(2) 1 ε2 ε X − iY, (X + iY )2
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Since the action of C3 on R
3 is through a real matrix representation, we combine the

two complex conjugate representations Γ(1) and Γ(2) = Γ(−1) into a single real 2×2
matrix representation. The character table is

C3 I A A2 Basis Polynomials

Γ(0) 1 1 1 Z,X2 + Y 2, X3 − 3XY 2, 3X2Y − Y 3

Γ(1) + Γ(−1) 2 −1 −1 X,Y,X2 − Y 2, 2XY

The first row contains invariant polynomials. It is sufficient to list only the polynomials
in the integrity basis. The covariant polynomials are listed in the second row. It is
sufficient to list only the polynomials in the ring basis.

Remark: In writing the character table, we include the trace of the matrices
representing the group operations, rather than the full 2× 2 matrices themselves.

For the group C4 acting in R
3 there are four one-dimensional representations that

are irredicuble over the complex field. They are given by

Cj
4 → Γ(k)(Cj

4) = e2πijk/4 (11.59)

The representation Γ(0) is the 1 × 1 identity representation, and since 4 is even the
representation with k = n/2 = 4/2 = 2 is also real. The other two representations
Γ(1) and Γ(3) = Γ(−1) are complex conjugates. Their direct sum is equivalent to a
real faithful 2× 2 matrix representation that is irreducible over the real numbers but
reducible over the complex numbers. These matrix representations are summarized
in the character table

C4 I C4 C2
3 C3

4 Basis Polynomials

Γ(0) 1 1 1 1 Z, X2 + Y 2, X4 − 6X2Y 2 + Y 4,
4X3Y − 4XY 3

Γ(1) + Γ(−1) 2 0 −2 0 X, Y, X3 − 3XY 2, 3X2Y − Y 3

Γ(2) 1 −1 1 −1 X2 − Y 2, 2XY
(11.60)

The group V4 acting in R
3 through rotations around the three coordinate axes has

character table and basis functions

V4 I RX RY RZ Basis Polynomials

Γ(1) 1 1 1 1 X2, Y 2, Z2, XY Z
Γ(2) 1 1 −1 −1 X,Y Z

Γ(3) 1 −1 1 −1 Y, ZX

Γ(4) 1 −1 −1 1 Z,XY

(11.61)

The integrity basis “carries” the identity representation. The six basic covariant
polynomials in the ring basis occur in three pairs. One pair carries each of the three
other unfaithful 1×1 matrix representations Γ(2),Γ(3),Γ(4). For example, the action
of the rotation RX on the three coordinates is (X,Y, Z)

RX−→ (+X,−Y,−Z). As a
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result, I and RX map X to +X and Y Z into +Y Z, while RY and RZ map X and
Y Z into −X and−Y Z, as indicated in the second row of the character table.

Remark: The covariant polynomials can be indexed by the representation that
they carry (R(i), i = 2, 3, 4), and within this representation, by an additional index
(Rj , j = 1, 2). For V4 we have

R
(2)
1 = X R

(2)
2 = Y Z

R
(3)
1 = Y R

(3)
2 = ZX

R
(4)
1 = Z R

(4)
2 = XY

(11.62)

The invariant polynomials in the integrity basis are indexed by the identity representa-
tion: R(1)

i = pi(X). This information will be useful when establishing the structure
that equivariant dynamical systems equations can assume.

These relations are used to construct dynamical systems equations with arbitrary
equivariance group in the following chapter.
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12.1 PROPERTIES OF EQUIVARIANT DYNAMICAL SYSTEMS

The properties of equivariant dynamical systems Ẋ = F (X) are highly constrained
by the symmetry group G. The number of fixed points is to some extent determined
by G. The singular set SS(G) is completely determined by the action of G on R

N

through the defining matrix representation ΓDef(G). Most important, the structure of
the forcing functions F (X) is determined by ΓDef(G), the spectrum of irreducible
representations of G, and the ring basis functionsR(α)(X) that transform under these
irreducible representations.

12.1.1 Fixed Points

The number of fixed points (including degeneracy) of a dynamical system equivariant
under a group G is an integer multiple of |G|.

Example: The Lorenz system has three fixed points. The real nonzero pair
(±
√

b(R− 1), ±
√

b(R− 1), R − 1) is symmetry-related and nondegenerate. The
fixed point at the origin (0, 0, 0) is doubly degenerate. Counting degeneracy, there
are 4 = 2|RZ | fixed points.

309
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Fixed points can be of two types:

1. Nondegenerate Fixed Points: If X0 is a nondegenerate fixed point, the points
γX0 in its orbit under γ ∈ ΓDef(G) are also nondegenerate fixed points. There
are |G| fixed points on the orbit (under G) of any nondegenerate fixed point.

2. Degenerate Fixed Points: If X0 is a degenerate fixed point, there is at least one
group operation gi 6= Id for which γ(gi)X0 = X0. The set of group operations
gi ∈ G that leave X0 fixed form a subgroupH, I ⊂ H ⊆ G. The fixed point
is |H|-fold degenerate. The orbit of X0 under G is identical to the orbit of X0

under the coset representatives in G/H. There are |G/H| = |G|/|H| |H|-fold
degenerate fixed points in the orbit of X0 under G.

The relation between the order of G and the number of fixed points of a dynamical
system D equivariant under G has previously been described (cf. Section 10.11).

12.1.2 Flows on SS(G)

The singular set SS(G) (cf. Section 10.10) is invariant. This means that if one point
on a trajectory is in the singular set, the entire trajectory is in the singular set.

Suppose X0 = X(t0) ∈ SS(G). This means that there is at least one linear
transformation, γ ∈ ΓDef(G), γ 6= Id, that maps X0 into itself:

γX0 = γX(t0) = X(t0) (12.1a)

After a short interval δt, the initial condition moves to X(t0 + δt), where

X(t0 + δt) = X(t0) +
dX

dt

∣
∣
∣
∣
X0

δt = X(t0) + F (X0)δt (12.1b)

The action of γ on X(t0 + δt) is

γX(t0 + δt) = γX(t0) + γF (X0)δt = X(t0) + F (γX0)δt =

X(t0) + F (X0)δt = X(t0 + δt) (12.1c)

In short, if X(t0) ∈ SS(G), then X(t0 + δt) ∈ SS(G).
Example 1: The singular sets of σZ , RZ , and P acting in R

3 are the X-Y plane
Z = 0, the Z-axis X = Y = 0, and the origin X = Y = Z = 0. A point in the
Z = 0 plane will evolve in the Z = 0 plane under a σZ -equivariant flow. A point on
the Z-axis will move along the Z-axis under anRZ equivariant flow. The origin is a
fixed point under a P-equivariant flow.

Example 2: The singular set ofV4 acting in R
3 through three mutually orthogonal

rotations is the union of the three rotation axes, say the X-, Y -, and Z-axes. The
origin is a fixed point. An initial condition on any of the rotation axes will be confined
to that axis for all times under a V4-equivariant flow.
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12.1.3 Structure of Equivariant Dynamical Systems

The structure of a dynamical system that is equivariant under a symmetry group G is
rigidly constrained by G. The dynamical system equations are expressed in terms of
functions of the

1. Invariant polynomials p1(X), p2(X), · · · , pK(X)

2. Equivariant polynomialsR(α)
i (X)

3. Defining matrix representation ΓDef(G)
4. Irreducible representations Γ(α)(G).

We illustrate these concepts with a number of examples.
Example 1: The group σZ acts in R

3 through the defining matrix representation
given in Section 10.7. There are three invariant polynomials in the integrity basis:
p1 = X, p2 = Y, p3 = Z2. There is one equivariant polynomial R1 = Z (in the
ring basis). There are two irreducible representations Γ(1) (identity) and Γ(2) (cf. Eq.
(10.46)). An RZ equivariant dynamical system must have the form

σZ :
d

dt





X
Y
Z



 =





f10
f20
Zf31



 =






f10 0
f20 0

0 f31






[
1

Z

]

(12.2a)

In these equations the fij are invariant functions: they are functions of the invariant
polynomials in the integrity basis. Similar reasoning is used to expressRZ equivariant
dynamical systems and P equivariant dynamical systems in similar form:

RZ :
d

dt





X
Y
Z



 =





Xf11 + Y f12
Xf21 + Y f22

f30



 =






0 f11 f12
0 f21 f22

f30 0 0











1

X
Y






(12.2b)

P :
d

dt





X
Y
Z



 =





Xf11 + Y f12 + Zf13
Xf21 + Y f22 + Zf23
Xf31 + Y f32 + Zf33





=





0 f11 f12 f13
0 f21 f22 f33
0 f31 f32 f33












1

X
Y
Z








(12.2c)

The total number of invariant functions required to specify these three equivariant
dynamical systems is

Coupled to σZ RZ P
Invariant 1 2 1 0
Ring Basis 1 4 9

Total 3 5 9

(12.3)
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For the Lorenz equations (1.2) the five invariant functions are f11 = −σ, f12 = +σ,
f21 = R− Z, f22 = −1, f30 = −bZ +XY .

Example 2: For the group C3 acting in R
3 the coordinate Z is a basis function

for the identity representation Γ(0) while the two coordinates X and Y carry the
real two-dimensional representation Γ(+1) + Γ(−1). The four ring basis functions
that transform under Γ(+1) + Γ(−1) are X, Y, X2 − Y 2, 2XY (cf. (11.60)). The
structure of dynamical systems equivariant under C3 is therefore

C3 :
d

dt





X
Y
Z



 =





Xf11 + Y f12 + (X2 − Y 2)f13 + 2XY f14
Xf21 + Y f22 + (X2 − Y 2)f23 + 2XY f24

f30





The equivariance condition F (γX) = F (X) places constraints on eight of these
functions. Specifically, f21 = −f12, f22 = +f11, f23 = +f14, and f24 = −f13.
The equations of motion are therefore

C3 :
d

dt





X
Y
Z



 =






0 f11 f12 f13 f14
0 −f12 +f11 +f14 −f13
f30 0 0 0 0















1

X
Y

X2 − Y 2

2XY










(12.4)
The invariant functions fij depend on the invariant polynomials p1 = Z, p2 =
X2 + Y 2, p3 = X3 − 3XY 2, p4 = 3X2Y − Y 3.

Example 3: For the four-group V4 acting in R
3 by three mutually orthogonal

rotations, the polynomials R(2)
1 = X, R

(2)
2 = Y Z carry the representation Γ(2),

the polynomials R(3)
1 = Y, R

(3)
2 = ZX carry Γ(3), and R(4)

1 = Z, R
(4)
2 = XY

transform under Γ(4) (cf. (11.61)). The dynamical systems equations have the form

V4 :
d

dt





X(2)

Y (3)

Z(4)



 =





Xf11 + Y Zf12
Y f21 + ZXf22
Zf31 +XY f32



 =








0 f
(2)
11 f

(2)
12 0 0 0 0

0 0 0 f
(3)
21 f

(3)
22 0 0

0 0 0 0 0 f
(4)
31 f

(4)
32

























1

R
(2)
1

R
(2)
2

R
(3)
1

R
(3)
2

R
(4)
1

R
(4)
2


















(12.5)

In this case a total of six invariant functions of the four integrity basis functions
X2, Y 2, Z2, XY Z is required to specify a V4 equivariant dynamical system.
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The general situation can be gleaned from the three examples presented above.
Each of the N coordinates X1, X2, · · · , XN is a basis function for one of the ir-
reducible representations of the equivariance group G. It is useful to include this
information with the basis function. For example, if Xi transforms under Γ(α)(G),
that information can be included by writing Xi as X(α)

i , as in Example 3. The time
derivative dX(α)

i /dt can only be expressed in terms of the ring basis functions that
carry the representation Γ(α)(G). As a result, equivariant dynamical systems can be
represented in the form

dX
(α)
i

dt
=
∑

s

f
(α)
is (p1, p2, · · · , pK)R(α)

s (12.6)

In this expression, the index i identifies all the distinct coordinates that transform under
Γ(α)(G) while the index s identifies all distinct the ring basis functions that transform
under the same irreducible representation. The functions f (α)

is (p1, p2, · · · , pK) are
invariant under the the action of the group. The number of invariant functions required
to determine a G-equivariant dynamical system is

# =
∑

α

n(α)r(α) (12.7)

where n(α) is the number of coordinates X (α)
i (i = 1, 2, · · · , n(α)) that transform

under the representation Γ(α)(G) and r(α) is the number of ring basis functionsR(α)
s

(s = 1, 2, · · · , r(α)) that transform under the same irreducible representation of G.
The sum extends over all irreducible representations of G, including the identity
representation, for which the (invariant) ring basis function is uniquelyR(Id)(G) = 1
and r(Id) = 1.

It is a simple matter to verify that Eqs. (12.2), (12.4), and (12.5) are special cases of
Eq. (12.6), while the dimensions given in Eq. (12.3) are special cases of Eq. (12.7).
The number of invariant polynomials required to define C3-equivariant dynamical
systems is 5 = 1 × 1 + 1 × 2 + 1 × 2, while the number required to determine
V4-equivariant dynamical systems is 6 = 1× 0 + 1× 2 + 1× 2 + 1× 2.

The results (12.6) and (12.7) are consequences of an elegant symmetry. This
symmetry will be described more fully in Section 14.1, on Schur symmetries.

12.2 INJECTION RN (X) → RK(P )

The mapping of an N -dimensional dynamical system Ẋ = F (X) on R
N (X) with

symmetry group G to an N -dimensional dynamical system u̇ = g(u) on R
N (u) that

is everywhere locally identical but without any symmetry (or with smaller symmetry
group H ⊂ G) is conveniently done in two steps. The first step is a |G| → 1 map
that removes the symmetry at the expense of mapping the dynamical system into an
intermediate phase space R

K(p) of larger dimension whenK > N . The second step
is a one to one linear projection of the dynamical system in R

K(p) into R
N (u). The
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first mapping, R
N (X) → R

K(p), is a |G| → 1 local diffeomorphism. The second
map is many to one as a projection of the K-dimensional phase space down to the
N -dimensional phase space R

K ↓ R
N (K > N ), but it is a one to one projection

of the N -dimensional dynamical system embedded in R
K(p) to an N -dimensional

dynamical system in R
N (u). We discuss each of the two mappings separately before

discussing the composition of the two mappings.

12.2.1 Jacobian of the Transformation

The coordinates of a dynamical system Ẋ = F (X) equivariant under G are X1, X2,
· · · , XN . The invariant polynomials p1(X), p2(X), · · · , pK(X) are coordinates that
are invariant under G. It is useful to choose the polynomials in an integrity basis as
coordinates for a locally diffeomorphic dynamical system without symmetry. The
dynamical equations of motion in this |G| → 1 image dynamical system are

dpα

dt
=
∂pα

∂Xi

dXi

dt
=
∂pα

∂Xi
Fi(X) (12.8)

The Jacobian∂pα/∂Xi is a property of the groupG through the defining representation
ΓDef(G). It is completely independent of the dynamics. The dynamics in R

K(p)
separates into a kinematic part (i.e.,depends on geometry) ∂pα/∂Xi, and a dynamical
part originating from Fi(X).

The Jacobian ∂pα/∂Xi is a K ×N matrix whose rows index the integrity basis
polynomials and whose columns label the equivariant coordinates. The Jacobians for
the equivariance groups σZ , RZ , P , C3, and V4 are:

σZ RZ P

X
Y
Z2





1 0 0
0 1 0
0 0 2Z





Z
X2

XY
Y 2







0 0 1
2X 0 0
Y X 0
0 2Y 0







X2

Y 2

Z2

Y Z
ZX
XY











2X 0 0
0 2Y 0
0 0 2Z
0 Z Y
Z 0 X
Y X 0











C3 V4

Z
X2 + Y 2

X3 − 3XY 2

3X2Y − Y 3







0 0 1
2X 2Y 0

3(X2 − Y 2) −6XY 0
6XY 3(X2 − Y 2) 0







X2

Y 2

Z2

XY Z







2X 0 0
0 2Y 0
0 0 2Z
Y Z ZX XY







(12.9)
Observation 1: All nonzero matrix elements in the Jacobian are linear in the

ring basis functions. The invariant ring basis function 1 occurs when one or more
coordinatesX(Id)

i carry the identity representation of the symmetry group G.
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Observation 2: Many matrix elements of the Jacobian are zero. If more matrix
elements are nonzero than the dimension of the ring basis, then there must be relations
among the nonzero matrix elements.

New Algorithm: As a consequence of the first observation, we have an alternative
procedure for constructing a basis set for equivariant polynomials: Take all partial
derivatives of the integrity basis functions∂pα/∂Xi and choose a linearly independent
subset of these derivatives.

Example: ForV4 the integrity basis consists of the four polynomialsX2, Y 2, Z2,
XY Z. The set of all possible derivatives consists of those polynomials that appear
in the Jacobian for V4. The derivatives of the invariants with respect to X , namely
X and Y Z, transform identically and carry the representation Γ(2)(V4); similarly for
the pairs (Y, ZX) and (Z,XY ).

12.2.2 Rank

At generic points in R
N (X) the rank of the Jacobian ∂pα/∂Xi is full: that is, it is as

large as possible, equal to N . This means that the nonlinear mapping Xi → pα(X)
is locally 1-1 and invertible. However, there are points in R

N(X) at which the rank
drops belowN . For the five group actions on R

3 described by the Jacobians in (12.9),
we find the following results:

Group Rank Co−Rank Singular Set

σZ 2 1 Z = 0
RZ 1 2 X = Y = 0
P 0 3 X = Y = Z = 0
C3 1 2 X = Y = 0
V4 1 2 X = Y = 0;Y = Z = 0;Z = X = 0

0 3 X = Y = Z = 0

(12.10)

The Jacobian ∂pα/∂Xi provides an analytic expression for the singular set SS(G).
The Jacobian is an important bridge between geometry and analysis.

12.2.3 The Inversion Map

Away from the singular set SS(G) the Jacobian ∂pα/∂Xi has full rank. This means
that the coordinate transformation (X1, X2, · · · , XN )→ (p1, p2, · · · , pK) is locally
one to one between neighborhoods of generic points in R

N (X) and suitable N -
dimensional neighborhoods of the image points in R

K(p). Every point in R
K(p) that

is in the image of R
N(X) but not in the image of SS(G) ⊂ R

N (X) has |G| inverse
images in R

N (X). The inverse mapping

R
K(p) −→ R

N (X) (12.11)

has |G| “sheets.”



316 EQUIVARIANT DYNAMICS IN RN

This is exactly analogous to well-known results from the analysis of complex
functions. If z is a complex variable, the cube root function w = z1/3 has three
covering sheets (Fig. 12.1). Away from the singularity at z = 0, z has three distinct
cube roots: w = +z1/3 = |z|1/3eiφ, w = |z|1/3eiφ+2π/3, and w = |z|1/3eiφ+4π/3

As z is moved around the circle |z|1/3eiθ, starting from θ = φ and moving to θ → 2π,
one cube root |z|1/3eiφ in sheet 0 moves smoothly to the next cube root |z|1/3eiφ+2π/3

in sheet 1. As θ increases further from 2π to 4π the covering point moves from
the second cube root in sheet 1, w = |z|1/3eiφ+2π/3, to the next cube root, w =
|z|1/3eiφ+4π/3, in sheet 2. A further increase of θ from 4π to 6π returns the third
cube root, in sheet 2, to the starting point, in sheet 0. At the same time the point in the
z plane traverses the circle in that plane three times. Other fractional powers, z1/n,
n a positive integer, have n covering sheets. These n-fold covers behave exactly as
(in fact, are isomorphic to) the action of the group Cn in the cover-image problem.

These considerations suggest, correctly, that the multisheet cover-image problem,
well known from classical complex analysis, is a particular case of a far more general
and powerful mathematical procedure involving arbitrary groupsG which do not nec-
essarily have a single generator and are not necessarily commutative. The preimage
problem z = wn familiar from complex analysis is identical to the group problem
when G = Cn, a group with one generator Cn and one relation: (Cn)n = Id.

When we remove the singular set SS(G) from R
N (X) we are left with an open

set (manifold) in R
N (X). The coordinate transformation (X1, X2, · · · , XN ) →

(p1, p2, · · · , pK) provides a |G| → 1 map of the open set R
N (X)−SS(G) to a man-

ifold in R
K(p). This image manifold in R

K(p) has |G| covering sheets in R
N (X).

There are no natural boundaries separating one sheet from another. When we fol-
low the inverse image in R

N (X) of a point in this open manifold in R
K(p) as p

moves around a closed contour, it is never possible to tell when you have left one
covering sheet and entered another. The existence of distinct sheets is a “nonlocal”
phenomenon. The boundary between sheets is an arbitrary but necessary distinction.
We have identified such boundaries for many group actions previously (cf. Section
10.6).

12.3 STRUCTURE OF FLOWS IN RK(P )

The image of the flow in R
K(p) is invariant underG. The dynamical system equations

are
dpα

dt
=
∂pα

∂Xi
Fi(X) =

∂pα

∂Xi
f

(β)
is (p)R(β)

s (X) (12.12)

In this expression we have used the resolution (12.6) of the driving functionsFi(X) =

f
(β)
is (p)R

(β)
s (X) as linear superpositions of the ring basis functions R(β)

s (X) with
invariant coefficients f (β)

is (p). The matrix elements of the Jacobian (∂pα/∂Xi) and
the forcing functions Fi(X) = f

(β)
is (p)R

(β)
s (X) are both linear in the ring basis

functions. As a result, the source terms for the flow dpα/dt are bilinear in the ring
basis functions. Only invariant bilinear terms can occur among the forcing functions.
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Fig. 12.1 The complex cube root function is a three-sheeted cover of the complex plane.
Starting at a one goes around a circle a → b → · · · → o three times in the z plane, while
going around the three sheeted cover only once. Each trip around the circle in the z plane lifts
to a different sheet in the cover. The path in the cover begins in sheet 0, proceeds to sheet
1, then sheet 2 before returning to sheet 0. The location of the connection (“cut” or “branch
line”) between the sheets is arbitrary: It is not possible, locally, to tell when the path has left
one sheet and entered another.
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12.3.1 Injected Flow is |G| → 1 Image

Since the flow in R
K(p) is invariant underG, the bilinear terms (∂pα/∂Xi)R

(β)
is must

be expressible in terms of the integrity basis functions pα(X). We illustrate with two
examples.

Example 1: ForRZ acting on R
3, the four invariant polynomials arep1 = Z, p2 =

X2, p3 = XY, p4 = Y 2. The dynamical equations in R
4(p) are

d

dt







p1

p2

p3

p4







=







0 0 1
2X 0 0
Y X 0
0 2Y 0











0 f11 f12
0 f21 f22
f30 0 0









1
X
Y



 =







f30 0 0 0 0
0 0 2f11 2f12 0
0 0 f21 f11 + f22 f12
0 0 0 2f21 2f22















1
p1

p2

p3

p4









(12.13)

For the Lorenz dynamical system (Eq. (12.2b)) this set of equations is equivalent to

d

dt







p1

p2

p3

p4







=







−b 0 1 0
0 −2σ 2σ 0
0 R− Z −σ − 1 σ
0 0 2(R− Z) −2













p1

p2

p3

p4







(12.14)

This four-dimensional system is highly dissipative,as the trace of the driving functions
is −b− 3(σ + 1) compared with −b− σ − 1 for the Lorenz system itself.

Example 2: For C3 acting on R
3, the four invariant polynomials are p1 = Z, p2 =

X2 +Y 2, p3 = X3−3XY 2, p4 = 3X2Y −Y 3. The dynamical equations in R
4(p)

are

d

dt







p1

p2

p3

p4







=







0 0 1
2X 2Y 0

3(X2 − Y 2) −6XY 0
6XY 3(X2 − Y 2) 0






×





+f11X + f12Y + f13(X
2 − Y 2) + f14(2XY )

−f12X + f11Y + f14(X
2 − Y 2)− f13(2XY )

f30





=







f30 0 0 0 0
0 2f11 2f13 2f14 0
0 0 3f11 3f12 3f13
0 0 −3f12 3f11 3f14















1
p2

p3

p4

p2
2









(12.15)
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12.3.2 Invariant Manifold IN(0)

The integrity basis p1(X), p2(X), · · · , pK(X) provides a mapping of the open set
R

N (X)−SS(G) into anN -dimensional manifold embedded in R
K(p). Points in this

manifold are parameterized in a one to one way by the coordinates (X1, X2, · · · , XN)
in a fundamental domain in R

N (X).
In general this manifold is not easy to describe. However, when the integrity basis

pα(X) satisfies simple syzygies, the manifold in R
K(p) is an algebraic manifold. It

is then very easy to describe.
One or more constaints of the form sµ(p1, p2, · · · , pK) = 0 define a submanifold

in R
K(p) provided the Jacobian ∂sµ/∂Xj has full rank. If the functions sµ are alge-

braic (polynomial) functions, the manifold defined in this way is called an algebraic
manifold.

One smooth function sN+1(p1, p2, · · · , pK) of K variables places one constraint
on theK variables when the function is required to be constant: sN+1(p1, p2, · · · , pK)
= 0. TheK coordinates are constrained to lie in aK−1 dimensional manifold. Two
smooth functions place two constraints, and theK coordinates are typically confined
to a K − 2 dimensional manifold. Continuing on in this way, K − N functions
restrict the coordinates (p1, p2, · · · , pK) to lie in anN -dimensional manifold. When
the functions sµ (the syzygies) are simple, the N -dimensional manifold is an alge-
braic manifold. The injected flow dpα/dt = gα(p) is confined to thisN -dimensional
manifold.

Definition: The set IN (0) is the N -dimensional subspace in R
K(p) defined by

the K −N simple syzygies sµ(p).
Example 1: For RZ acting in R

3(X) there are four integrity basis functions:
p1 = Z, p2 = X2, p3 = XY, p4 = Y 2. There is one syzygy among these four
integrity basis functions:

s4 = p2p4 − p2
3

The four coordinates map R
3(X)− Z-axis into a three dimensional manifold I3(0)

in R
4(p). This surface is an algebraic manifold. It is parameterized by the (X,Y, Z)

coordinates in a fundamental domain: for example X ≥ 0, Y and Z, avoiding the
Z-axis X = Y = 0. This surface is also an invariant surface: an initial condition
in this surface will evolve in this surface under the flow equations. This is easily
verified, for

d

dt
(p2p4 − p2

3) = p2
dp4

dt
+ p4

dp2

dt
− 2p3

dp3

dt
= p2(2f21p3 + 2f22p4)+

p4(2f11p2 + 2f12p3)− 2p3(f21p2 + [f11 + f22]p3 + f12p4)

= 2 (f11 + f22)
(
p2p4 − p2

3

)
(12.16)

The equation of motion (12.16) for s4 shows that once s4 = p2p4−p2
3 = 0 it remains

zero forever. Further, the value of s4 relaxes exponentially to zero as e−2(σ+1)t.
Example 2: For C3 acting in R

3 the invariant polynomials in the integrity basis
are p1 = Z, p2 = X2 + Y 2, p3 = X3 − 3XY 2, p4 = 3X2Y − Y 3 and the single
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simple syzygy is s4 = p2
3 + p2

4− p3
2. The equation of motion for this function can be

constructed from the flow equations (12.15) and is

ds4
dt

= 6f11
(
p2
3 + p2

4 − p3
2

)
= 6f11s4 (12.17)

Remark 1: It is for these reasons that we define the image of R
N (X) in R

K(p) as
IN (0): This is the invariant manifold of dimensionN defined by the K −N simple
syzygies sµ(p) = 0, µ = N + 1, · · · ,K.

Remark 2: As Eqs. (12.16) and (12.17) make clear, when the syzygies are simple
they obey equations of motion of the form

dsµ

dt
= hµ(sN+1, · · · , sK) (12.18)

where the functionshµ(sN+1, · · · , sK) are polynomial in the sµ with coefficients that
are invariant functions and no constant terms, since dsµ/dt is zero on the invariant
surface IN (0). When the syzygies are not simple, equations of the form (12.18) are
still satisfied. Such equations must involve all the syzygies.

Example 3: For the group P with invariant polynomials pα and syzygies sµ as
defined in Table 11.1, and dynamics as parameterized in Eq. (12.2c) by the functions
fij , the six syzygies obey the following equations of motion:

d
dt











s4
s5
s6
s7
s8
s9











=











2(T − f33) 0 0 2f23 2f13 0
0 2(T − f11) 0 0 2f31 2f21
0 0 2(T − f22) 2f32 0 2f12
f32 0 f23 T + f11 −f12 −f13
f31 f13 0 −f21 T + f22 −f23
0 f12 f21 −f31 −f32 T + f33





















s4
s5
s6
s7
s8
s9











(12.19)
In this expression T = f11 + f22 + f33. These equations are even linear in the six
syzygies.

12.3.3 Stratification IN(c)

The phase space R
K(p) can be “stratified” into a K − N dimensional family of

manifolds, each of dimensionN . TheK−N parameters themselves form a manifold
of that dimension. This is analogous to decomposing R

3 into a 1-dimensional family
of planes z = c. Each point in R

3 can be expressed in terms of a coordinate pair



STRUCTURE OF FLOWS IN RK(P ) 321

(x, y) in the “base manifold” R
2 and a coordinate z = c in the one parameter family

that defines the stratified planes.
In R

K(p) the “base manifold” is the N -dimensional manifold IN (0), parame-
terized by N coordinates (X1, X2, · · · , XN ) in a fundamental domain in R

N (X).
There is a K − N dimensional family of N dimensional manifolds determined by
treating the K − N simple syzygies sµ(p1, p2, · · · , pK) (µ = N + 1, · · · ,K) as
coordinates:

sN+1(p1, p2, · · · , pK) = cN+1

...
...

...
sK(p1, p2, · · · , pK) = cK

(12.20)

Together, theN coordinates (X1, X2, · · · , XK) in a fundamental domain in R
N (X)

and the K −N “syzygy coordinates” (cN+1, · · · , cK) provide a complete parame-
terization for the K invariant coordinates (p1, p2, · · · , pK) in R

K(p):

(X1, X2, · · · , XK ; cN+1, · · · , cK) � (p1, p2, · · · , pK)

For fixed c, each manifold IN (cN+1, · · · , cK) is invariant under the group action

(X1, X2, · · · , XK)
G−→ (X

′

1, X
′

2, · · · , X
′

K)

in R
N (X). However, only the manifold IN (0) is invariant under the flow dpα/dt =

gα(p).

12.3.4 Attracting Manifold

Attracting manifolds are important tools for the study of ordinary differential equa-
tions.

Definition: A manifold M (m) ⊂ R
N (dim M (m) = m < N ) is an attracting

manifold for a flow if

a. Every point p ∈ R
N sufficiently near M (m) is attracted exponentially quickly to

M (m), and remains in M (m) once it crosses its boundary.
b. M (m) contains an invariant manifold IM under the flow.
c. Every point p ∈M (m) is attracted exponentially quickly to IM.

Speaking poetically, this means that if an initial condition, p ∈ R
N , for the flow is

sufficiently near M (m) it never gets away from M (m), and if it is in M (m) the flow
never gets out ofM (m), since it remains forever inM (m) and eventually winds up in
IM.

The image IN (0) of R
N (X) in R

K(p),

R
N (X) −→ IN (0) ⊂ R

K(p)

is an attracting manifold for the image of the flow Ẋ = F (X) in R
K(p) when the

origin 0 ∈ R
K−N is a stable fixed point for the syzygies. We have seen that IN (0) is
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invariant under the flow. Example 1 above (Eq. (12.16)) shows that initial conditions
near M (m) are attracted exponentially quickly to IN (0). The same is true of Eq.
(12.17) if f11 < 0, and of Eq. (12.19) if all the eigenvalues at the origin have negative
real parts.

12.3.5 Structure of the Invariant Equations

The dynamical system equations in R
K(p) assume the form

dpα

dt
= gα(p) (12.21)

The forcing functions gα(p) can be determined in terms of the forcing functions
Fi(X) and the ring basis functions Rβ

js(X), as shown in (12.13) and (12.15). The
image of R

N (X) in R
K(p), namely, theN -dimensional surface IN (0), is an invariant

manifold for the image flow, attracting under suitable conditions.

12.4 PROJECTION RK(P ) ↓ RN(U)

The second step required to mod out the symmetry of an N -dimensional equivariant
dynamical systemD : Ẋ = F (X) in R

N (X) involves projecting theK-dimensional
space R

K(p) into an N -dimensional space R
N (u). Since K ≥ N and usually

K > N , this projection is usually many to one. The key to this projection is that it
should be one to one between the manifold IN (0) ⊂ R

K(p) and the image Euclidean
space R

N (u). If it is one to one, it is invertible.

12.4.1 Coordinates u and Coordinates p

The proper way to look at |G| → 1 images of dynamical systems equivariant under
a symmetry group G is as flows in the space R

K(p) in the manifold IN (0). This
study involves K ≥ N first-order ordinary differential equations, of which N are
functionally independent. There is a strong prejudice that anN -dimensional dynam-
ical system should be expressed in terms of exactlyN first-order ordinary differential
equations. To honor this prejudice, it is sufficient to choose N independent func-
tions of the K coordinates p in the manifold IN (0). Another way to look at this is
that we choose a projection of the N -dimensional manifold IN (0) ⊂ R

K(p) to an
N -dimensional space R

N (u). This projection must have suitable properties:

1. The projection IN (0) ↓ R
N (u) must be one to one.

2. The image of IN (0) should cover as much of R
N (u) as possible, preferably

all.

We impose the first condition to guarantee that the |G| → 1 nature of the local diffeo-
morphism is entirely contained in the first map R

N (X)→ R
K(p). We introduce the

second condition to try to avoid the situation that the image of a dynamical system
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in R
N (u) is constrained to be in some subset of R

N (u). It is not always possible to
satisfy the second condition.

To guarantee the one to one nature of the projection, we require the projection to
be linear. It is given explicitly by

ur =

K∑

α=1

Trαpα 1 ≤ r ≤ N (12.22)

This projection may introduce singularities. These singularities are independent of the
singularities in the injection map R

N (X)→ R
K(p), which consists of the topological

singular set SS(G). Sometimes these singularities are unavoidable, as in the case
P acting in R

3(X). The Jacobian of this projection is simply the constant matrix
J(u← p) = ∂ur/∂pα = Trα.

A number of examples will make this projection process clear. For σZ equivariant
dynamical systems on R

3 no projection is required, since R
3(p) is 3-dimensional.

Projections from R
4 ↓ R

3 and R
6 ↓ R

3 are required for the other two faithful
representations of the two-group in R

3.

Example 1—RZ: We choose three coordinates (u, v, w) defined in terms of the
four invariant coordinates Z, X2, XY, Y 2 in the integrity basis as follows:





u
v
w



 =





0 1 0 −1
0 0 2 0
1 0 0 0











p1 = Z
p2 = X2

p3 = XY
p4 = Y 2







=





X2 − Y 2

2XY
Z



 (12.23)

This projection is invertible from the invariant set I3(0) ⊂ R
4(p)↔ R

3(u), since

p1 = w p2 =
1

2

{√

u2 + v2 + u
}

p3 =
1

2
v p4 =

1

2

{√

u2 + v2 − u
} (12.24)

The positive square root is chosen in this inversion.

Example 2—C3: We choose three coordinates (u, v, w) defined in terms of the
four invariant coordinates Z, X2 + Y 2, X3 − 3XY 2, 3X2Y − Y 3 in the integrity
basis as follows:





u
v
w



 =





0 0 1 0
0 0 0 1
1 0 0 0











p1 = Z
p2 = X2 + Y 2

p3 = X3 − 3XY 2

p4 = 3X2Y − Y 3







=





X3 − 3XY 2

3X2Y − Y 3

Z





(12.25)
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This projection is invertible from the invariant set I3(0) ⊂ R
4(p)↔ R

3(u), since

p1 = w p2 = (u2 + v2)1/3

p3 = u
p4 = v

(12.26)

The real positive cube root is chosen in this inversion. All the other rotation groups
Cn in R

3 are treated the same way. For these groups, we have p1 = Z, p2 =
X2 + Y 2, p3 = Re (X + iY )n, p4 = Im (X + iY )n, the new coordinates are
u = p3, v = p4, w = p1. The inversion is immediate for p1, p3, p4 and for
p2 it is p2 = (u2 + v2)1/n. The rotation group RZ = C2 can be put into this
form also, simply by choosing the integrity basis functions in the same way, as
p2 = X2 + Y 2, p3 = X2 − Y 2, p4 = 2XY .

Example 3—P: We choose three coordinates (u, v, w) defined in terms of the six
invariant coordinatesX2, Y 2, Z2, Y Z, ZX, XY in the integrity basis as follows:





u
v
w



 =





1 −1 0 0 0 0
1 1 −2 0 0 0
0 0 0 1 1 1















p1 = X2

p2 = Y 2

p3 = Z2

p4 = Y Z
p5 = ZX
p6 = XY











=





X2 − Y 2

X2 + Y 2 − 2Z2

XY + Y Z + ZX





(12.27)

This projection is invertible on the invariant set. However, this projection introduces
singularities beyond those of the singular set SS(G), consisting of the origin. These
new singularities are unavoidable.

Example 4—V4: We choose three coordinates (u, v, w) defined in terms of the
four invariant coordinatesX2, Y 2, Z2, XY Z in the integrity basis as follows:





u
v
w



 =





1 −1 0 0
1 1 −2 0
0 0 0 1











p1 = X2

p2 = Y 2

p3 = Z2

p4 = XY Z







=





X2 − Y 2

X2 + Y 2 − 2Z2

XY Z





(12.28)

This projection is also invertible from R
3(u) back to I3(0).
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12.4.2 “Radicals”

The inversion formula (12.24) and (12.26) show that expressions for the K invari-
ant coordinates p1, p2, · · · , pK in terms of the N invariants u1, u2, · · · , uN can be
nonlinear, whereas the forward relation (12.22) is linear. This is true in general.

To show this, it is useful to append to the N linear combinations u1, u2, · · · , uN

a set of K − N additional functions rN+1, · · · , rK that are also linear combina-
tions of the pα. This is done so that a linear transformation relates the K-tuple
(p1, p2, · · · , pK) with the augmentedK-tuple (u1, u2, · · · , uN ; rN+1, · · · , rK). The
simplest way to define these additional functions is by completing the matrix Trα de-
scribing the linear transformation ur = Trαpα into a square K × K matrix. It is
useful to complete this rectangular matrix to an orthogonal matrix when possible.

Example: For V4 we introduce one (K −N = 4− 3 = 1) additional function r4
according to








u1

u2

u3

r4








=








1 −1 0 0
1 1 −2 0
0 0 0 1

1 1 1 0














p1 = X2

p2 = Y 2

p3 = Z2

p4 = XY Z







=








X2 − Y 2

X2 + Y 2 − 2Z2

XY Z

X2 + Y 2 + Z2








(12.29)

The fourth row in this matrix is orthogonal to the first three, by design. Since the first
three rows are mutually orthogonal, the matrix is orthogonal and its inverse is easily
computed. We find







p1 = X2

p2 = Y 2

p3 = Z2

p4 = XY Z







=
1

6







3 1 0 2
−3 1 0 2

0 −2 0 2
0 0 6 0













u1

u2

u3

r4







(12.30)

The three integrity basis functions p1, p2, p3 are dependent on the new coordinate r4.
The new invariant functions are linearly independent of the invariant coordinates

uj but they are not functionally independent of the uj . For systems with simple
syzygies

sµ(p1, p2, · · · , pK) = 0 µ = K + 1, · · · , N
the new coordinates rµ (µ = N + 1, · · · ,K) satisfy K −N polynomial equations.
These are derived from the syzygies by expressing the pα in terms of the K-tuple
(u1, u2, · · · , uN ; rN+1, · · · , rK) and substituting these expressions into the syzygies.
As a result, we obtain a set ofK −N polynomial equations in theN variables u and
K −N variables r. Since the equations are polynomial, their K −N solutions for
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r in terms of the N variables u are called “radicals” even if the equations cannot be
solved in closed form by the standard operations (+,−,×,÷,√ ).

Example: There is one simple syzygy for V4. It is

p1p2p3 − p2
4 = 0 (12.31)

Substituting the solutions for pα in terms ofu1, u2, u3, r4 obtained from (12.29) (e.g.,
p1 = 1

6 (3u1 + u2 + 2r4)) into this syzygy, we find the following syzygy for the new
coordinates (u1, u2, u3; r4)

108r44 − 4r34 + (9u2
1 + 3u2

2)r4 + (u3
2 − 9u2

1u2) = 0 (12.32)

This equation can be solved (in principle) for r4 as a function of (u1, u2, u3) in closed
form using the quartic formula. The result is given in terms of “radicals”: square
roots, cube roots, fourth roots.

12.4.3 Inversion u → p

The general procedure for computing the inverse map (u1, u2, · · · , uN ) → (p1, p2,
· · · , pK) should now be clear. The radicals rN+1, · · · , rK are determined as nonlin-
ear functions of the N variables (u1, u2, · · · , uN). The linear relation between the
K variables pα and theK variables (u; r(u)) is inverted to determine theK variables
pα on theN -dimensional manifold IN (0) uniquely in terms of theN variables u and
the K −N variables r(u), themselves determined by the N variables u.

Example: For V4, a point in the image space R
3(u) is determined by the triple of

coordinates (u1, u2, u3). The radical r4 is determined in terms of this triple by the
syzygy (12.31), implemented as in (12.32). This value of r4 is introduced into the
matrix inverse relation (12.30) to determine the values of the quartet (p1, p2, p3, p4)
in terms of the triple (u1, u2, u3) and the subsidiary dependent coordinate r4(u).

12.5 STRUCTURE OF FLOWS IN RN (U)

A G-equivariant dynamical system D : Ẋi = Fi(X) on R
N (X) is mapped to a

dynamical system without residual symmetry D : u̇r = hr(u; r(u)) on R
N (u) by

a |G| → 1 local diffeomorphism. The local diffeomorphism is constructed in two
steps:

R
N (X) −→ IN (0) ⊂ R

K(p)

↓

R
N (u)

(12.33)

The first step is a nonlinear |G| → 1 map. The second step is a linear projection of the
N -dimensional manifold IN (0) to the N -dimensional space R

N (u). The two steps
in this mapping have been described in Sections 12.2 and 12.3.
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12.5.1 Composition of Jacobians

The Jacobian of the transformation is the composition of the Jacobians of the two
separate maps. It is

∂ur

∂Xi
=
∂ur

∂pα

∂pα

∂Xi
(12.34)

TheK×N matrix ∂pα/∂Xi contains information about the topology of the singular
set SS(G).

Example 1: For RZ acting in R
3 the 3 × 4 matrix ∂ur/∂pα is given in (12.23)

and the 4× 3 matrix ∂pα/∂Xi is presented in (12.9). The composition is





0 1 0 −1
0 0 2 0
1 0 0 0











0 0 1
2X 0 0
Y X 0
0 2Y 0







=





2X −2Y 0
2Y 2X 0
0 0 1



 (12.35)

The five nonzero matrix elements are expressed in terms of the three ring basis func-
tions 1, X, Y . There are two relations: (∂u/∂X)11 = 2X = (∂u/∂X)22 and
−(∂u/∂X)12 = 2Y = (∂u/∂X)21.

Example 2: For C3 acting in R
3 the 3× 4 matrix ∂ur/∂pα is presented in (12.25)

and the 4× 3 matrix ∂pα/∂Xi is given in (12.9). Their composition is





0 0 1 0
0 0 0 1
1 0 0 0











0 0 1
2X 2Y 0

3(X2 − Y 2) −6XY 0
6XY 3(X2 − Y 2) 0







=





3(X2 − Y 2) −6XY 0
6XY 3(X2 − Y 2) 0

0 0 1





(12.36)

Although the ring basis consists of the (2×3−1) functions1, X, Y, X2−Y 2, 2XY ,
the Jacobian is a function of only three. There are again symmetries among the five
nonzero matrix elements of the Jacobian∂u/∂X. The symmetries are: (∂u/∂X)11 =
(∂u/∂X)22 = 3Re (X + iY )3−1 and −(∂u/∂X)12 = (∂u/∂X)21 = 3Im (X +
iY )3−1. The results are unchanged for the group Cn acting in R

3, subject to the
replacement 3→ n in the expressions above. The singular set of the Jacobians in all
cases is the singular set of the geometric transformation: the Z-axis X2 + Y 2 = 0.

Example 3: For V4 acting in R
3 the matrices ∂ur/∂pα, ∂pα/∂Xi, and ∂ur/∂Xi

are:




1 −1 0 0
1 1 −2 0
0 0 0 1











2X 0 0
0 2Y 0
0 0 2Z
Y Z ZX XY







=





2X −2Y 0
2X 2Y −4Z
Y Z ZX XY



 (12.37)
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The Jacobian is 8(X2Y 2 + Y 2Z2 + Z2X2). The singular set consists of the union
of the three rotation axes.

Example 4: For the inversion group P acting in R
3 we have for the Jacobian





1 −1 0 0 0 0
1 1 −2 0 0 0
0 0 0 1 1 1















2X 0 0
0 2Y 0
0 0 2Z
0 Z Y
Z 0 X
Y X 0











=





2X −2Y 0
2X 2Y −4Z

Y + Z Z +X X + Y





(12.38)

The Jacobian is 8 [XY (X + Y ) + Y Z(Y + Z) + ZX(Z +X)]. The singular set
consists of the union of the one-dimensional setsXi = Xj = 0 andXi = Xj +Xk =
0, (i 6= j 6= k). The topological singular set for this symmetry is SS(P) = (0, 0, 0).
In this case the algebraic singular set of the local diffeomorphism ∂ur/∂Xi does not
coincide with the topological singular set of the group P .

12.5.2 Form of Flows

The structure of the image flow, D, in R
N (u): u̇r = hr(u; r(u)), is determined

directly from the chain of transformations:

dur

dt
=
∂ur

∂pα

∂pα

∂Xi

dXi

dt
=
∂ur

∂pα

∂pα

∂Xi
Fi(X) = hr(u; r(u)) (12.39)

The matrix elements∂ur/∂pα are constants. The matrix elements∂pα/∂Xi are linear
in the ring basis functions with coefficients that are invariant functions. The same is
true of the forcing functions Fi(X). In general the forcing functions hr(u; r(u)) are
bilinear combinations of the ring basis functions. These combinations are invariant
under the group action, so can be expressed in terms of the integrity basis functions
pα. These in turn can be expressed linearly in terms of the new set of N invariant
coordinates u1, u2, · · · , uN and theK−N auxiliary coordinates rN+1, · · · , rK . As
a result, equivariant polynomial forcing functions Fi(X) in the covering dynamical
system D map to invariant polynomial forcing functions hr(u; r(u)) in the image
dynamical system. The functions hr(u; r(u)) are polynomial in the coordinates u
and r. However, the auxiliary dependent coordinates r(u) are not polynomial in
the variables u. As a result, the driving functions hr(u; r(u)) are in general not
polynomial functions of the N -image coordinates u1, u2, · · · , uN .

Example 1: Dynamical systems equivariant under C3 have the form shown in
(12.4). If the five independent functions fij are polynomial in the four invariants
p1 = Z, p2 = X2 + Y 2, p3 = X3 − 3XY 2, p4 = 3X2Y − Y 3, the equivariant
dynamical system is polynomial in the coordinates (X,Y, Z). The image equations
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in I3(0) have the form shown in (12.15). The image dynamical system equations
in R

3(u) for u = X3 − 3XY 2, v = 3X2Y − Y 3, w = Z are obtained simply by
multiplying from the left by the matrix ∂ur/∂pα in (12.25):

d

dt





u
v
w



 =





3f11u+ 3f12v + 3f13r
2
4

−3f12u+ 3f11v + 3f14r
2
4

f30



 u2 + v2 = r34 (12.40)

These equations are not polynomial in the new coordinates (u, v, w) since r4 is not
polynomial in these coordinates. It is worse: the invariant functions fij(p1, p2, p3, p4)
depend on the radical: fij(u, v, w; r4), so they are also not polynomial. In general
the image equations of a C3 equivariant dynamical system can be expressed in the
form

dur

dt
=

m∑

0

hr,s(u, v, w)rs
4 (12.41)

The upper limit in the sum (m) depends on the syzygy. In the case at hand it is
2 = 3− 1, since r4 and r24 cannot be expressed as polynomial functions of (u, v, w)
while r34 can be. The functions hr,s(u, v, w) can be explicitly constructed from
the functions fij that appear in (12.40). Analogous results hold for Cn-equivariant
dynamical systems in R

3(X) and their invariant image equations in R
3(u): it is only

necessary to replace 3 by n in the summation above.

12.5.3 Polynomial Dynamical Systems

Sets of ordinary differential equations are difficult enough to study without looking
for additional difficulties. It is for this reason that most modeling in this area is done
with polynomial functions. It is this desire for simplicity that has hindered the study
of cover and image dynamical systems in two ways.

If the functions F (X) of the equivariant dynamical system are polynomial in
the coordinates (X1, X2, · · · , XN ), it is not likely that the forcing functions in the
image dynamical system, h(u; r(u)), are polynomial in the invariant coordinates
(u1, u2, · · · , uN ). The image forcing functions are polynomial in the invariant co-
ordinates (p1, p2, · · · , pK), but K −N of these must be expressed as radicals, as is
apparent in (12.39). It is only when the functions fij(p1, · · · , pK) have a very special
form that radicals do not appear in the image flow. For example, f30 must be indepen-
dent of r4. For the first equation, f11u+ f12v + f13r

2
4 can depend only on (u, v, w)

and integer powers of r34 . As a result, it would be almost a miracle if an equivariant
dynamical system with polynomial forcing functions had an image dynamical system
that had previously been studied (i.e., with polynomial forcing functions).

The same is true in reverse. It is easy to choose and study image dynamical systems
with polynomial forcing functions h(u1, u2, · · · , uN ). However, when such image
dynamical systems are lifted to covering dynamical systems with symmetry group
G, nonpolynomial terms are also introduced. As a result, the polynomial nature of
forcing terms is generally lost under local diffeomorphisms, going in both directions.
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13.1 IMAGE ATTRACTORS

The image dynamical system is the foundationupon which all its G-equivariant covers
are built. It is therefore useful—even imperative—to understand in detail all the most
important properties of the image dynamical system.

13.1.1 Phase Space

The variables that describe the image dynamical system are (u1, u2, . . . , uN). These
represent points in an N -dimensional phase space. The phase space is often taken to
be R

N . However, the phase space is more generally anN -dimensional manifold M
N .

We have already seen that the phase spaces for typical image dynamical systems are
N dimensional algebraic submanifolds of R

K defined byK−N algebraic constraints
called syzygies.

331
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13.1.2 Control Parameter Space

In general the flow depends on control parameters (c1, c2, . . . , cK). The control
parameters often model physical operating conditions (e.g., temperature ∆T in a
fluid experiment, losses γ in a laser cavity). At a mathematical level there are never
enough parameters to represent all possible perturbations of a dynamical system.
This is in stark opposition to the study of the simplest dynamical systems governed
by Catastrophe heory [32]. In this case a finite, even small, number of parameters
is often sufficient to describe all possible perturbations of a potential. It is for this
reason that topology is the necessary and preferred tool for the analysis of ordinary
differential equations.

Example: Imagine a perturbation of the form εx3 added to the forcing term of the
first of the Rössler equations ẋ = −y − z. There is no change in the values of the
three control parameters (a, b, c) that can compensate for this cubic perturbation.

13.1.3 Image Dynamical Equations

The dynamical system equations on M
N have the general form

dui

dt
= gi(u; c) (13.1)

where u = (u1, u2, ..., uN ) ∈ M
N and c = (c1, c2, . . . , cK). Normally this set of

equations is invariant under only the identity operation, independent of the values of
the control parameters. However, this is not a necessary condition for any discussions
that follow.

The forcing functions gi(u; c) should satisfy a Lipschitz condition over a domain
where a strange attractor exists. Typically, the functions gi(u; c) are chosen to be
smooth; differentiable or piecewise differentiable; polynomial, analytic, or rational.
The functions g(u; c) never depend on “radicals” unless they are obtained by modding
the symmetry out of an equivariant dynamical system. As a result, when we lift the
invariant dynamical system (13.1) to its G-equivariant covers, we cannot expect the
forcing terms of the covering dynamical system to be polynomial if the source terms
for the invariant dynamical system are polynomial.

13.1.4 Fixed Points

Strange attractors generated by equations of the form (13.1) are organized most
strongly by their fixed points. When the functions gi(u; c) are polynomial, their
fixed points can be located systematically by algorithms of algebraic topology [25].
Fig. 13.1 presents a Maple worksheet that computes the fixed points of the Lorenz
dynamical system.

As with previous Maple codes (cf. Fig. 11.1 and Fig. 11.2) the appropriate packages
are read in, followed by the polynomial source terms for the dynamical system, in
this case the Lorenz equations. A coordinate system is established, and the gbasis
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> with(linalg):
> with(grobner);

[finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly]

> f[1]:=-sigma*x+sigma*y:
> f[2]:=R*x-y-x*z:
> f[3]:=-b*z+x*y:
> [F]:=[f[1],f[2],f[3]];

F := [−σx+ σy,Rx− y − xz,−bz + xy]

> X:=[x,y,z]:
> gbasis(F,X);

[−bz + y2, yz + y −Ry, z2 + z −Rz, x− y]

> gsolve(F,X);

[[[z, y, x], plex(x, y, z), { }], [[b−Rb+ x2,−x+ y, z + 1−R], plex(z, y, x), { }]]

> J:=Jacobian(F,[x,y,z]);

J :=





−σ σ 0
R− z −1 −x
y x −b





> x:=0:y:=0:z:=0:
> eigenvalues(J);

−b,−σ
2
− 1

2
+

√

σ2 − 2σ + 1 + 4Rσ

2
,−σ

2
− 1

2
−
√

σ2 − 2σ + 1 + 4Rσ

2

Fig. 13.1 Maple code illustrating how to find fixed points of a dynamical system and eigen-
values at a fixed point.

routine returns the fixed points. The outputs are to be read as each term within the
square brackets [ ] being set to zero. The first fixed point,[x,y,z], is the computer’s
way of saying x = 0, y = 0, z = 0. The second output consists of all of the solutions
to the equations b − Rb + x2 = 0, −x + y = 0, and z + 1 − R = 0. It may not
seem like a computer is needed to describe this obvious solution. What is significant
is that the last equation always involves just one coordinate (the last in the coordinate
list), so can always be solved by one-dimensional methods. In this case the simple
solution is z = R− 1. The remaining two solutions are obtained by working right to
left to find x = y and x = ±

√

b(R− 1).
In addition to the number of fixed points and their locations, the stability of each

fixed point is an important piece of information. The stability of a fixed point is
determined by linearizing the flow in the neighborhood of the fixed point. This
produces a Jacobian matrix, as previously discussed. The call to jacobian does
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this. The eigenvalues determine the stability of the fixed point, and the eigenvectors
provide the information about the flow directions in the neighborhood of the fixed
point. The call to eigenvalues generates the three eigenvalues of the fixed point
at the origin. A call to eigenvectors would produce the eigenvector for each
eigenvalue.

Eigenvalues and eigenvectors at the nontrivial fixed points are treated similarly, but
with the following caveat. In those cases the output consists of analytic expressions
that are very complicated. Though correct, they are basically useless for interpretive
purposes. In such cases it is best to assign numerical (in fact, decimal!) values to all
control parameters so that the output consists of real (or complex) numbers. These
are always much easier to interpret than analytic expressions that run on for pages.

13.1.5 Symbolic Dynamics

It is enormously useful to have available a description of the flow dynamics in terms
of symbol dynamics. In general, symbolic dynamics involves decomposing the phase
space into a (relatively) small number of nonoverlapping domains, each labeled by
a symbol σ1, σ2, . . . , σs. Any trajectory under the flow u̇i = gi(u; c) can then be
labeled by a sequence of symbols that reflect the successive regions of the phase
space that the trajectory traverses. Ideally, a suitable symbolic dynamics satisfies two
conditions:

1. There is one to one correspondence between (infinite) symbol sequences . . .
σi1σi2σi3 . . . and points in the phase space M

N , except possibly for a set of
measure 0.

2. A minimal number of symbols is used.

In low dimensional dynamical systems (dL < 3) and very likely in higher dimen-
sional dynamical systems as well, information about the partition of the phase space
can be compressed into very small regions of the phase space. This idea is illustrated
in Fig. 13.2, which shows the branched manifold for a low dimensional dynamical
system that generates Smale horseshoe dynamics. In the projection to the branched
manifold all the partition information is contained in the branch line. The branch line
is partitioned into two segments labeled 0 and 1. Every trajectory passes through one
of these two segments. There is a one-to-one correspondence between trajectories
and infinite symbol sequences consisting of 0’s and 1’s. Finite sequences terminate
at a fixed point.

Information about the partition of the three-dimensional phase space R
3(u) is

contained in the inverse image of the branch line, specifically, the inverse image of
the two segments 0 and 1. The inverse image consists of all points that limit on these
segments under the Birman-Williams projection.

13.1.6 Transition Matrices

A trajectory in a region σi can evolve directly to some regions σj and not to others.
The collection of allowed transitions is represented by a transition matrix T . This is
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0

1 0

1

Fig. 13.2 Smale horseshoe branched manifold.

an s× s matrix defined by

Tij = 1 if . . . σiσj . . . can occur
Tij = 0 if . . . σiσj . . . cannot occur

Transition matrices for dynamical systems have been used liberally in Part I of this
work.

There are some degrees of freedom in the choice of symbols for a dynamical
system. For example, the branched manifold for the figure 8 knot (cf. Fig. 14.4) has
four branch lines and 8 branches. The symbolic dynamics can either be based on
four symbols, each representing a branch line, or on eight symbols, each representing
a branch, or flow region. When each branch is uniquely represented by a source
branch line and a sink branch line, the two labeling schemes are equivalent. When
this is not the case (e.g., Smale horseshoe branched manifold), it is useful to divide
each branch line into a number of disjoint segments, each feeding a different branch.
Two equivalent transition matrices for the figure 8 knot branched manifold have been
presented: an 8× 8 matrix in Fig. 14.4 and a 4× 4 matrix in Fig. 14.7.

Transition matrices are useful for counting the number of orbits of periodp that can
exist in a dynamical system. An initial condition on segment i can evolve to segment
j, and j to k, if the product of matrix elements TijTjk = 1. If

∑

j TijTjk = n, an
initial condition on segment i can propagate to segment k vian intermediate segments
j. If k = i, there are n period-2 orbits that start and end on segment i and go through
various intermediate branchs j. By similar reasoning, if the product of n matrix
elements TijTjk · · ·Tmi = 1 (no intermediate sums), there is a period-n orbit whose
symbol sequence is (ijk · · ·m). The number of period-two orbits, N(2), is related
to the trace of T 2 and T , by

2N(2) = tr T 2 − tr T (13.2a)
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A similar result holds for the number of orbits, N(p), of period p and the trace of
various powers of the transition matrix T

p×N(p) = tr T p −
∑

k÷p

k ×N(k) (13.2b)

The sum is over all values of k (integer) that divide p, k < p. This sum removes all
orbits of period k that “go around” more than once.

13.1.7 Topological Entropy

An upper bound for the topological entropy of a dynamical system can be constructed
from its transition matrix [34]. The topological entropy, hT , estimates the growth in
the number of orbits of period p with the period through

N(p) ≈ ephT (13.3)

Since pN(p) = tr T p −∑k÷p kN(k) ≈ tr T p we have

hT = lim
p→∞

1

p
log tr T p

The trace of the matrix is invariant under a similarity transformation. In particular, ifT
is diagonalized, or at least reduced to upper or lower triangular form with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λs, it follows that

tr T p = λp
1 + λp

2 + · · ·+ λp
s

p→∞−→ λp
1

As a result
hT = logλ1 (13.4)

where λ1 is the largest eigenvalue of T .

13.1.8 Higher Dimensions

A complete classification theory for low (dL = 2+λ1/|λ3| < 3) dimensional strange
attractors is now available. This involves a hierarchy of four levels of structure:

1. Periodic orbits in strange attractors;
2. Branched manifolds, which organize periodic orbits;
3. Bounding surfaces embedded in R

3 (or M
3) that organize branched manifolds;

4. Intrinsic genus-g surfaces, which organize the extrinsic surfaces embedded in
R

3.

This classification will be reviewed in Chapter 15.
We are nowhere near understanding how to describe or even classify chaos in

higher dimensions. However, it seems clear that at least two features useful for
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the description of low dimensional attractors will carry their usefulness into higher
dimensions. These are:

1. Flow Tubes. These are regions of space that carry the flow. In low dimensions
these regions limit to branches.

2. Mixing Boxes. These are regions of the space where flows from different parts
of phase space get “squeezed together.” In low dimensions these regions limit
to branch lines and their inflow and outflow branches.

The decomposition of phase space into flow tubes and mixing boxes is compatible with
symbolic dynamics in higher dimensional flows and transition matrices to describe
allowed symbol sequences.

13.2 LIFTS TO COVERS

A strange attractor SA without symmetry can be lifted to a strange attractor that is
equivariant under a symmetry group G. We have studied lifts with many different
symmetry groups G in Part I.

13.2.1 Symmetry Group G

The properties of the lift depend in a crucial way on the properties of the group G. In
fact, they depend on different properties on G.

Order: They depend on the order |G| of G. This is the number of group operations
in G. The groups C3, C4, V4 have orders |C3| = 3, |C4| = 4, |V4| = 4. We speak of
|G|-fold covers of strange attractors SA.

Group/Subgroup Structure: Properties of lifts depend on the group/subgroup
structure of G. As an example, the subgroup structure of the two order-4 groups C4
and V4 is

C4 V4

{
I, C4, C

2
4 , C

3
4

}
{I, RX , RY , RZ}

↓
{
I, C2

4

}

↓

↙ ↓ ↘
{I, RX} {I, RY } {I, RZ}
↘ ↓ ↙

I I

Generators: The properties of lifts are very strongly correlated with the way a
group is constructed from its generators. For example, Cn has one generator γ (cf.
Eq. 10.48 with j = k = 1). The generator γ obeys the relation γn = I. In our
applications we have chosen γ to represent rotations through 2π/n radians about a
preferred axis. The four-groupV4 has two generators γ1 and γ2 that obey the relations
γ2
1 = γ2

2 = I, γ1γ2 = γ2γ1. The four group operations are {I, γ1, γ2, γ1γ2}. In our
applications, we have chosen γ1 = RX (π) and γ2 = RY (π), so that γ1γ2 = RZ(π).
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13.2.2 Phase Space

If SA is the strange attractor in anN -dimensional phase space R
N (u) or M

N (u), its
G-equivariant covers live in a phase space R

N (X) of the same dimension as long as
|G| is finite.

The groupG can be used to partition phase space into |G| domains. All the domains
are equivalent: each looks like every other. One of these domains can be arbitrarily
chosen as the fundamental domain. This is labeled by a group operation: the identity.
Points in the fundamental domain can be mapped into the remaining domains by
action of the group operators. If x ∈ DI, then gx ∈ Dg . More generally the action of
any group operation in any domain is

gαDgβ
= gαgβDI = Dgαgβ

(13.5)

The group operators act to permute the domains among themselves.
The domains partition the phase space

R
n ≈ Dg1 ∪ Dg2 ∪ · · · ∪ Dg|G|

=
⋃

g∈G
Dg (13.6)

where g1 = I. It is unimportant whether the domains are open or closed.
The most important feature of the domain decomposition of R

N is adjacency. Two
domains are adjacent if the intersection of their closures contains anN−1dimensional
boundary component. A trajectory can generically pass from one domain to another
if they are adjacent; otherwise it cannot.

13.2.3 Representations

Groups are abstract objects. They act on physically important things—points in phase
space, coordinates, equations of motion—through their matrix representations. Often,
through carelessness or laziness, we fail to distinguish between an abstract group and
its action on physical objects. For example, we sometimes fail to distinguish between
the groupRZ(π) and the transformation (X,Y, Z)→ (−X,−Y,+Z). To be precise,
there is a two-element group {I, γ} and γ acts in R

3 through the matrix representation

γ →





−1 0 0
0 −1 0
0 0 +1





This same group has two other faithful matrix representations in R
3 that we identify

with the inversion group P and the reflection group σZ .
The point to be made is that the matrix representations of a group are not exactly

the same thing as the group itself. For our purposes, the group G acts on dynamical
systems in three different ways through three matrix representations. These three
types of matrix representations are inequivalent except in some of the simplest cases.
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13.2.3.1 Defining Matrix Representation The action of the group G in R
N

is defined through its effect on the coordinates of a point in R
N . This group action is

specified by the defining matrix representation

gXi = XjΓ
Def
ji (g) g ∈ G (13.7)

Defining matrix representations of the two-element group {I, γ} are given in (10.21),
of the three-element group {I, γ, γ2} in (10.18), and the two four-element groups
{I, γ, γ2, γ3} and {I, γ1, γ2, γ1γ2} in (10.24).

13.2.3.2 Irreducible Representations Invariant polynomials play a funda-
mental role in mapping an equivariant dynamical system to an image dynamical
system without any residual symmetry. Invariant polynomials, and functions of them,
are acted on (“carry” or “support”) the identity representation of a group

gfinv(p1, p2, . . . , pk) = finv(p1, p2, . . . , pk)ΓId(g)

ΓId(g) = [1]

Polynomials that are not invariant—the so-called covariant polynomials—carry the
other irreducible representations of G. These representations depend on G alone, not
on the action of G in R

N . They are well known for all finite groups and have been
available for more than one hundred years. The ring basis functions Rα

i,µ(X) can be
grouped into sets that carry the different irreducible representations of G:

gR
(α)
i,µ (X) = R

(α)
j,µ Γ

(α)
ji (g) (13.8)

Example: To illustrate this idea, we discuss the groupCn. This group is commuta-
tive, and therefore has one dimensional irreducible representations over the complex
numbers. They are

γj → Γ(k)(γj) = e2πijk/n (13.9)

The single generator γ satisfies γn = I and describes rotations through 2π/n radians.
The distinct irreducible representations are labeled by the integer k, k = 0 (identity
representation), 1,2,. . . ,n− 1, with the relations

Γ(k+n)(g) = Γk(g)

Γ(n−k)(g) = Γk(g)∗
(13.10)

If n is even, Γ(n/2)(g) is real. All other representations are complex. Since they act
on real functions, we would like to construct real representations from these complex
one dimensional representations:

Γ(k)(θ) + Γ(n−k)(θ) '
[

cos kθ sin kθ
− sin kθ cos kθ

]

θ =
2πj

n
6= π (13.11)

These are irreducible over the reals unless k = 0 or n/2, n even.
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Each real 2 × 2 representation (13.11) with 0 < k < n/2 has two pairs of basis
vectors among the ring basis functions. These are:

Ring Functions
Basis Vector µ = 1 µ = 2

i = 1 R1,1 = Re(X + iY )k R1,2 = Re(X − iY )n−k

i = 2 R2,1 = Im(X + iY )k R2,2 = Im(X − iY )n−k

13.2.3.3 Regular Representation Every group has a regular representation. It
is defined by the action of the group on itself

ggα = gβΓ
(Reg)
βα (g)

Γ
(Reg)
βα (g) =

1 if gβ = ggα

0 if gβ 6= ggα

(13.12)

The regular representation is a mapping of each group operation into a permutation
matrix P . This is a matrix with exactly one element +1 in each row and each column;
all other matrix elements are zero.

Example: The Regular representation forCn is determined fromγjγi = γk=j+i =
γkΓReg

ki (γj), so that ΓReg
ki (γj) = 0 unless k = j+i mod n. ForC3, this representation

is
I γ γ2





1 0 0
0 1 0
0 0 1









0 0 1
1 0 0
0 1 0









0 1 0
0 0 1
1 0 0




(13.13)

It consists of 3 × 3 matrices because |C3| = 3, not because this group (may) act in
R

3.
The regular representation plays an important role in the study of equivariant

dynamical systems because it describes how the group operations gα ∈ G permute
the domains into which the phase space R

N is decomposed:

gDgα
= ggαDI = Dggα

= Dgβ
ΓReg

βα (g)

Γ
(Reg)
βα (g) =

1 if gβ = ggα

0 if gβ 6= ggα

(13.14)

Here DI is the fundamental domain R
N (X)/G.

13.2.4 Local Diffeomorphism

Image dynamical systems are lifted to covering dynamical systems using local diffeo-
morphisms. These are mappings relating equivariant coordinates (X1, X2, . . . , XN)
with invariant coordinates (u1, u2, . . . , uN). If the Jacobian ∂ui

∂Xj
of this transforma-

tion is non singular everywhere, the dynamical systems based on the coordinates u
and X are equivalent. Interesting things can only happen when the Jacobian vanishes
somewhere in R

N (X). In fact, there are two singular sets:
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1. SS(G)
2. SS

(
∂u
∂X

)

The first is the singular set of G. This is the union of the set of points in R
N (X) that

are invariant under at least one group operation g ∈ G, g 6= I. The second is the set

of points in R
N (X) on which det

[
∂ui

∂Xj

]

= 0. These two singular sets satisfy the

inclusion
SS(G) ⊆ SS

(
∂u
∂X

)

(13.15)

A coordinate transformation X→ u that saturates this inclusion is optimal.

13.3 COVERING ATTRACTORS

When the image flow satisfies (13.1), the covering flow satisfies

dXj

dt
=
∂Xj

∂ui

dui

dt
=

[
∂X
∂u

]−1

ji

gi(u(X); c) = Fj(X; c) (13.16)

These relations have been discussed many times throughout this work.
The covering flow Ẋj = Fj(X; c) is a dynamical system, so should be studied along

the lines recommended for the dynamical system u̇i = gi(u; c). Not surprisingly, the
properties of the covering and image dynamical systems are closely related.

13.3.1 Phase Space

The phase space is R
N (X). The fundamental domain DI = R

N (X)/G has a one-to-
one correspondence with R

N (u). The other domains are obtained by mapping DI
under G: Dg = gDI.

13.3.2 Control Parameter Space

The control parameter spaces R
K(c) for g(u; c) and F (X; c) are identical. However,

there is the extra freedom of choice for the action ofG on R
N (X). To be more specific,

by choosing different displacement coordinates for the axis around which RZ(π)
acted to lift the Rössler system to its RZ(π) equivariant double covers in Chapter
5, we are able to create several structurally stable double covers and a continuum of
structurally unstable double covers. Thus, the choice of how ΓDef(G) acts in R

N (X)
can be considered as an additional set of control parameters for the cover, over and
above the controls c ∈ R

K .
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13.3.3 Lipschitz Conditions

Even if g(u; c) obeys a Lipschitz condition, F (X; c) may not because of the presence
of
(

∂u
∂X

)

in (13.16) and the existence of a singular set SS
(

∂u
∂X

)

in R
N (X). The lack

of the Lipschitz condition for the forcing terms presents an opportunity. Existence
and uniqueness of (global) solutions is not guaranteed by this no-longer-applicable
theorem. Yet they remain true (!) since the theorem is true for the image and lifts of
these trajectories into the covers are well defined, unique, and infinitely extendable
as long as they avoid SS

(
∂u
∂X

)

in R
N (X). This provides an opportunity to sharpen

the existence and uniqueness theorem in the future.

13.3.4 Fixed Points

Every fixed point in R
N (u) has |G| preimage fixed points in R

N (X). In the generic
case these |G| fixed points are all distinct: one occurs in the fundamental domain DI =

R
N (X)/G, and an image occurs in each of the other domains Dg. In the nongeneric

case a fixed point may occur onSS(G), as for example the origin (X,Y, Z) = (0, 0, 0)
for the Lorenz system. In such a case a subgroupH ⊆ G leaves this point fixed. This
fixed point is |H|-fold degenerate. There are |G/H| = |G|/|H| such fixed points.
They may be labeled by the coset representatives of G/H whenH 6= G.

In the generic case when |G| distinct fixed points in R
N (X) cover a fixed point in

R
N (u),

1. All fixed points—|G| in R
N (X) and their image in R

N (u)—have the same
eigenvalue spectrum.

2. The eigenvectors at the fixed point in R
N (u) are related to the eigenvectors at

each of the |G| fixed points in R
N (X) by the Jacobian matrix.

To show this, we compute the Jacobian ∂Fi

∂Xj
at any of the points p in R

N (X) that
cover q in R

N (u)

∂Fi

∂Xj
=

∂

∂Xj

(
∂Xi

∂ur
gr

)

=
∂Xi

∂ur

∣
∣
∣
∣
p

∂gr

∂Xj

∣
∣
∣
∣
p

=
∂Xi

∂ur

∣
∣
∣
∣
p

∂gr

∂us

∣
∣
∣
∣
q

∂us

∂Xj

∣
∣
∣
∣
p

(13.17)

All |G| Jacobians
(

∂Fi

∂Xj

)∣
∣
∣
p

are related by similarity transformations to the single

Jacobian
(

∂gr

∂us

)∣
∣
∣
q
. They all have identical eigenvalue spectra. Their eigenvectors

are all related to the eigenvectors of
(

∂gr

∂us

)∣
∣
∣
q

by the linear transformation
(

∂us

∂Xj

)∣
∣
∣
p
.

This argument can be extended to degenerate fixed points with care. The problem is
that

(
∂Xi

∂ur

)∣
∣
∣
p

becomes singular at a degenerate fixed point, although
(

∂Xi

∂ur

)∣
∣
∣
p

(
∂ur

∂Xs

)∣
∣
∣
p
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= δij is well defined. This in fact provides constraints on the matrix
(

∂gr

∂us

)∣
∣
∣
q

at the
image of a degenerate fixed point.

More precise statements can be made about the Jacobian
(

∂Fi

∂Xj

)∣
∣
∣
p

at a degenerate
fixed point p:

ΓDef
ij (g)

(
∂Fj

∂Xk

)

p

=

(
∂Fi

∂Xj

)

p

ΓDef
jk (g) (13.18)

where gp = p. This intertwining relation forces constraints on the structure of the
Jacobian at a degenerate fixed point. These are described in more detail in Section
14.1.

13.3.5 Lyapunov Exponents and Fractal Dimensions

The spectrum of local Lyapunov exponents λ1, λ2, . . . , λN at any generic point in
R

N (X) is identical to the spectrum of these local exponents at the image point in
R

N (u).
The spectrum of fractal dimensions at a point is a local function of the local

Lyapunov exponents at that point. The spectrum of Lyapunov exponents for closed
periodic orbits is a nonlocal function of the local Lyapunov exponents along that orbit.
Essentially, the Lyapunov exponents along a periodic orbit are the integrated local
Lyapunov exponents along the orbit.

These observations lead to the following conclusions:

1. “The” fractal dimension (any of them) of a covering attractor at a point p ∈
R

N(X) is the same as the fractal dimension of the image attractor at the image
point q ∈ R

N (u). This result holds for all points p that cover q.

2. The spectrum of Lyapunov exponents of a covering orbit is equal to the spectrum
of Lyapunov exponents of its image.

13.3.6 Symbolic Dynamics

The fundamental domain R
N (X)/G is homeomorphic with R

N (u), except possibly
for measure zero sets on the boundary of R

N (X)/G. The two have homeomorphic
decompositions (partitions) into regions labeled by symbolsσ1, σ2, . . . , σs in R

N (u).
In the fundamental domain these s symbols receive also a domain label:

σi ⊂ R
N (u)→ σiI ⊂ R

N (X)/G (13.19)

In other domains they receive the appropriate domain label: σig , g ∈ G. As a result,
if s symbols are required to partition the phase space R

N (u), s× |G| symbols suffice
to partition the covering space. These partitions satisfy
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That is, each σig ⊂ Dg ⊂ R
N (X) maps to the same σi ⊂ R

N (u). In addition, the
partitions are permuted among themselves by G exactly as the domains are

gσigα
= σigβ

ΓReg
βα (g) (13.20)

This result is sufficiently important that we emphasize it again: In the symbolic
dynamics for the equivariant dynamical system, each symbol σig carries two pieces
of information:

1. A symbol (i) from the image dynamical system.
2. An operation (g) from the equivariance group G.

13.3.7 Transition Matrices

The image dynamical system has a symbolic dynamics with s symbols and every one
of its covers has a symbolic dynamics with s|G| symbols. Dynamics in the image is
encoded by an s× s transition matrix Tij , 1 ≤ i, j ≤ s. Dynamics in any cover must
be encoded by an s|G| × s|G| transition matrix

Tigα,jgβ
1 ≤ i, j ≤ s, 1 ≤ α, β ≤ |G|

There are two constraints on the transition matrix for any cover

Tigα,jgβ

maps to−→ Tij

Tigα,jgβ
= gTigα,jgβ

= Ti(ggα),j(ggβ)

(13.21)

The first condition is an expression of the cover-image relation. The second condition
expresses the equivalence of the |G| domains of R

N (X) under the group action.
The second condition can be exploited by setting gα = I. The first index on

the transition matrix then becomes (i, I). That is, it represents the subset in the
fundamental domain DI that maps to the domain (partition) σi ⊂ R

N (u). If Tij = 1

(in R
N (u)), this subset has an allowed transition to the subset j in one of the domains

Dgβ
in the structurally stable case. Thus

TiI,jgβ
= 1

TiI,jgγ
= 0 γ 6= β

(13.22)
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By using the transitivity of the group action

gTiI,jgβ
= Tig,j(ggβ ) = 1

gTiI,jgγ
= Tig,j(ggγ ) = 0 γ 6= β

(13.23)

In short, if we know the destination under the flow of each of the s partitions in the
fundamental domain DI = R

N (X)/G, we have this information for the s partitions
in each of the other domains.

A simple example will clarify this discussion.
Example: An image dynamical system is appropriately encoded by two symbols

σ0 andσ1. The allowed symbol sequences are described by the 2×2 transition matrix

T =

[
0 1
1 1

]

(13.24)

withT00 = 0. This dynamical system is lifted to a cover with C3 symmetry. Symbolic
dynamics in any cover involves six symbols σ(i,α), i = 0, 1, α = 0, 1, 2. The 6× 6
transition matrix can be expressed as follows

T =

I γ γ2

0 1 0 1 0 1

I

γ

γ2

0

1

0

1

0

1

























(13.25)

We assume in the cover chosen that the partition 0 in the fundamental domain DI
maps to the partition 1 in this same domain, but that the partition 1 in DI maps into
the domain Dγ , where it covers both partitions 0 and 1. This provides the information
for the top two rows of T .

T =

I γ γ2

0 1 0 1 0 1

I

γ

γ2

0

1

0

1

0

1













1
1 1

1
1 1

1
1 1













(13.26)

The top two rows can be mapped to the next two rows by the transitivity of the group
action under γ (second constraint, Eq. (13.21)). The last two rows are obtained by
acting again with γ.
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This matrix can be expressed in a more natural form by permuting the rows and
columns

T =

0 1
I γ γ2

I γ γ2

0

1

I

γ
γ2

I

γ
γ2












0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0












=

[
T00Γ

Reg(g−1
0 ) T01Γ

Reg(g−1
0 )

T10Γ
Reg(g−1

1 ) T11Γ
Reg(g−1

1 )

]

(13.27)

In this expression g0 = I expresses the condition that the partition 0 in the fundamental
domain is mapped back into the fundamental domain; g1 = γ expresses the condition
that the partition 1 in the fundamental domain is mapped into domain Dγ . The
matrices ΓReg for C3 are given in (13.13).

This representation of the transition matrix has two strengths:

1. It emphasizes the dynamics in the image system through the matrix elements
Tij of the transition matrix.

2. It makes apparent where each of the partitions (0 or 1) in the fundamental
domain are mapped to the cover that is chosen.

Example: Transition matrices for the covers of the Rössler system with topological
indices (0,1) and (1,1) can be rewritten as

(0, 1) (1, 1)

I I RZ RZ

0 1 0 1

I 0 1 1 0 0
I 1 0 0 1 1
RZ 0 0 0 1 1
RZ 1 1 1 0 0

I I RZ RZ

0 1 0 1

I 0 0 0 1 1
I 1 0 0 1 1
RZ 0 1 1 0 0
RZ 1 1 1 0 0

l l
0 1

0 ΓReg(I−1) ΓReg(I−1)
1 ΓReg(R−1

Z ) ΓReg(R−1
Z )

0 1

0 ΓReg(R−1
Z ) ΓReg(R−1

Z )
1 ΓReg(R−1

Z ) ΓReg(R−1
Z )

(13.28)

In these expressions ΓReg(I) =

[
1 0
0 1

]

and ΓReg(R−1
Z ) =

[
0 1
1 0

]

.
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13.3.8 Topological Entropy

Every covering attractor has the same topological entropy as the image attractor from
which it is lifted.

The topological entropy is the logarithm of the largest eigenvalue of the transition
matrix. Assume the s× s transition matrix T for the image system has eigenvector
a = (a1, a2, . . . , as)

t with largest eigenvalue λ1, so that

T a = λ1a (13.29a)

Every n × n permutation matrix P has maximal eigenvalue +1 with corresponding
eigenvector 1 = (1, 1, . . . , 1)t:

P 1 = 11 (13.29b)

The transition matrix for any cover has the form of an outer product

Tiα,jβ = TijPαβ(i, j) (13.30)

wherePαβ(i, j) is a permutation matrix. It is an easy matter to check that the s|G|×1
column vector a× 1 = (a11t, a21t, . . . , as1t)t is an eigenvector of this matrix with
eigenvalue λ1, independent of P (i, j). This is the largest eigenvalue of the transition
matrix (13.30). Since every cover has a transition matrix of this form, we conclude
that the image and all its covers have the same topological entropy. This conclusion
is independent of equivariance group G and index of the cover.

13.4 INDEX

The examples presented in Section 13.3.7 extend to covers of any image dynamical
system with an arbitrary equivariance groupG. The dynamics in the image system are
governed by s symbols σ1, σ2, . . . , σs and determined by an s × s transition matrix
Tij . Symbolic dynamics in the cover is determined by s|G| symbols. Each symbol
carries two labels

σi gα 1 ≤ i ≤ s, 1 ≤ α ≤ |G|
↗ ↖

Dynamics in Symmetry of
the image the cover

A structurally stable cover is determined by the image of the partition i in the funda-
mental domain Di under the flow:

i→ Dg(i) (13.31)

Once the assignments (13.31) have been made, the s|G| × s|G| transition matrix for
the covering dynamical system is uniquely determined. It is

Tiα,jβ = TijΓ
Reg
αβ

(
g(i)−1

)
(13.32)
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Definition: The Index for a cover equivariant under G is an assignment of a group
operation to each symbol in the image, that is σi → g(i):

σ1 → g(1), σ2 → g(2), . . . , σs → g(s)

Important Remark: The permutation matrix P (i, j)αβ in the expression (13.30)
for the transition matrix for any cover depends only on the first index i. It depends
on the group G through the index component g(i):

P (i, j)αβ = ΓReg
αβ

[
g(i)−1

]

Important Remark: Each symbol can be assigned one of |G| group operations.
There are s symbols. Therefore there are |G|s symbol assignments. Each index
describes a different cover of the image.

Example: In the image the symbol sequence . . . σiσjσk . . . can occur if TijTjk 6=
0. In the cover σi lifts to σi,α, and likewise for σj and σk.

σiσjσk
lift−→ σi,ασj,βσk,γ

Such a path exists if the product of the transition matrix elements is nonzero

Tiα,jβTjβ,kγ = TijΓ
Reg
αβ

(
g(i)−1

)
TjkΓReg

βγ

(
g(j)−1

)

= TijTjkΓReg
αβ

(
g(i)−1

)
ΓReg

βγ

(
g(j)−1

)

There is only one path from domain α to domain β, and one from β to γ. To see if
there is a path α→ γ we sum overall possible intermediate domains to find

∑

β

Tiα,jβTjβ,kγ = TijTjkΓReg
αγ

(

[g(j)g(i)]
−1
)

(13.33)

If TijTjk 6= 0 there is a path from iα to kγ that covers . . . σiσjσk . . . provided that
ΓReg

αγ

(

[g(j)g(i)]−1
)

= 1.

Remark: It may be disturbing to see that the effect of the symmetry operators
appear in the transition matrix through the matrix

ΓReg
(
g−1

)
= ΓReg (g)

t

The origin of this slightly uncomfortable feature arises in the different conventions
used in Dynamical Systems theory and in Group theory.

In the former a symbol sequence

-
. . . σi σj σk . . .

t increasing

advances (in time) from left to right. In group theory the most popular convention
has the sequence of group operations
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�
. . . gk gj gi . . .

t increasing

operating from right (first) to left (last). This difference of conventions requires the
use of matrix transposes, or equivalently, inverse group operations, in the construction
of cover transition matrices.

13.5 SPECTRUM OF COVERS

If the image attractor SA requires s symbols and the equivariance group is G:

1. Every cover requires s|G| symbols.

2. There are |G|s indices, each describing a different cover.

13.5.1 Topological Selection Rules

In the absence of topological “selection rules” there are no index restrictions. How-
ever, index assignments are sometimes forbidden by topological considerations. A
clear-cut case occurs for G = σZ in R

3. In this case the invariant set is theX-Y plane
Z = 0 and every equivariant cover is disconnected. The only allowed index for the
σZ -invariant lift of the Smale horseshoe in this case is (0, 1)→ (I, I).

For RZ and P acting in R
3 the singular set has dimension 1 and 0, respec-

tively. Neither provides an obstruction to the flow. Image systems requiring 2, 3,
4, . . . symbols for coding have 22, 23, 24, . . . distinct indices, and therefore there are
as many inequivalent covers withRZ or P symmetry.

13.5.2 Connectedness

Equivariant attractors with different indices are different. However, they fall into
broad equivalence classes. One primary discriminant among equivariant covers is
their connectivity properties. Connectivity of an attractor can be defined in several
different ways. A symmetric attractor is connected if:

1. The attractor’s branched manifold is connected (useful for low-dimensional
attactors with dL < 3).

2. The closure of the attractor is connected.
3. The attractor’s attracting manifold is connected.
4. Some trajectory requires all s|G| symbols.

Connectivity properties of covering attractors are most easily determined from
the last condition. Assume that the index is g(1), g(2), · · · , g(s). An initial condi-
tion in DI can reach any of the domains Dg(i), and from there it can propagate to
any of the domains g(j)Dg(i) = Gg(j)g(i) , etc. The group operations in the index
(g(1), g(2), · · · , g(s)) generate a subgroup H ⊆ G when all possible products are
taken in all possible orders. The cover consists of |G|/|H| = |G/H| disconnected
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components. Each component is labeled by a coset representative ωi in the coset
G/H. Any trajectory . . . σiασjβσkγ . . . in the identity component of the discon-
nected cover has an image in the component labeled by the coset representative ω.
The image is

. . . σiασjβσkγ · · ·
map by ω−→ . . . σi(ωgα)σj(ωgβ )σk(ωgγ ) . . . (13.34)

If G = H the cover consists of one component and it is connected.

13.5.3 Structurally Stable Covers

We have seen in several examples (cf. Chapter 5) that equivariant covers can be struc-
turally stable or structurally unstable. The difference depends on the relation between
the partition decomposition and the boundaries of the domain Dg . If the partitions
(e.g., branch lines) do not intersect domain boundaries, the cover is structurally sta-
ble. If the intersection is nonempty, the cover is structurally unstable. Structurally
unstable covers occur naturally in parameterized families of covers. We have seen
this in our discussion of peeling bifurcations (Chapter 5), where the location of the
RZ(π) rotation axis was parameterized by a “lift control parameter” µ.

In Fig. 13.3 we show arrangement of four branches of covers of the Smale horseshoe
branched manifold that are equivariant under C4 (Fig. 13.3(a)) and V4 (Fig. 13.3(b)).
In both cases the four branches are contained entirely within the domains Dg that
partition R

N (X). The covers, whatever the index, are structurally stable.

4

X
0

1

I

1

C4
2

C4
3

1

0

0 1
I

0

C
Y

(a) C4

X
0

IR

R

1
0 1

I

R

Y

Z X

Y

(b) V4

Fig. 13.3 Possible arrangement of the branch lines in two different four-fold covers of the
Smale horseshoe branched manifold. (a) C4, (b) V4. In (b), dashed lines indicate branch line
is below the Z = 0 plane. The width increases with distance from this plane.
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13.5.4 C4-Equivariant Covers

The cover of the Smale horseshoe with index (0, 1)→ (I, C4) is connected. For this
coverH is generated by I, C4 and consists of the four group operations I, C4, C

2
4 , C

3
4 ,

so that H = G and |G|/|H| = 1. The cover with index (0, 1) → (C2
4 , I) has two

components, sinceH =
{
I, C2

4

}
. The coset representatives for G/H may be chosen

as {ω1, ω2} = {I, C4}. One component of the cover is labeled by the group index
I. It is the component with branch lines or intervals in DI. The symmetry-related
component is labeled by the coset representativeC4. To any trajectory (e.g.,a periodic
orbit) in the identity component there corresponds a symmetry-related trajectory in
the C4 component. The two symbol sequences are related simply by multiplying by
the coset representative:

Component I (s1, I)(s2, I)(s3, C
2
4 )(s4, I)(s5, C

2
4 ) · · ·

↓
Component C4 (s1, C4I)(s2, C4I)(s3, C4C

2
4 )(s4, C4I)(s5, C4C

2
4 ) · · ·

An equivariant cover of a strange attractor is defined by the group label assigned
to each symbol and used to label orbits in the image attractor. For a strange attractor
classified by a branched manifold with two branches, there are |G|2 structurally stable
covers with |G|-fold symmetry.

For the symmetry group C4 these 16 distinct C4-invariant covers are organized as
follows.

C4

symbol group labels

0 I I C2
4 C2

4 I I C4 C4 C2
4 C4 C3

4

1 I C2
4 I C2

4 C4 C3
4 C2

4 C3
4 C3

4 C4 C3
4

s.d. dual pair s.d. d.p. d.p. d.p. d.p. d.p. s.d. s.d.

4 components 2 components connected covers

The four-fold cover with index (0, 1)→ (I, I) consists of four disconnected pieces.
The cover with index (0, 1) → (I, C2

4 ) consists of two disconnected pieces. Two
branch lines, I and C2

4 , are in one component while the other two, C4 and C3
4 , lie in

the other component. The cover with index (0, 1)→ (C2
4 , I) is dual to that with index

(I, C2
4 ). Duality is defined by exchanging the sinks for the two sources. The four-fold

cover with index (0, 1)→ (C2
4 , C

2
4 ) also consists of two components. It is self-dual.

The remaining 12 covers are connected. For each there is a path in the attractor from
any branch line to any other branch line. These 12 are divided into five dual pairs
(Ci

4, C
j
4) ↔ (Cj

4 , C
i
4), i 6= j, i, j not both even, and two self-dual covers (C i

4, Ci
4),

i = 1, 3. Among these last five dual pairs only one has been presented in the table:
the dual partner is easily obtained by the transformation (gi, gj)← (0, 1)→ (gj , gi).

Fig. 6.31 shows a structurally stable strange attractor with V4 symmetry and index
(0, 1) → (I, RX). Since H = {I, RX} the cover is disconnected, consisting of two
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components labeled by the coset representative of

G/H = {I, RX , RY , RZ}/{I, RX} = {I, RY }
The component shown in that figure is identified by its label ω = RY .

13.5.5 V4-Equivariant Covers

The Smale horseshoe branched manifold can be lifted to many differentV4 equivariant
covers: |G|2 = 42 = 16 indices are possible. For several choices of indices the
following results occur:

Index (g1, g2) SubgroupH Coset Representatives G/H # Components

(I, I) I {I, Rx, RY , RZ} 4
(I, RX) {I, RX} {I, RY } 2

(RY , RY ) {I, RY } {I, RX} 2
(RX , RY ) {I, RX , RY , RZ} I 1

The 16 four-fold covers of the Smale horseshoe branched manifold with V4 sym-
metry are partitioned as follows

V4

symbol index

0 I I I I RX RY RZ RX RY RZ

1 I RX RY RZ RX RY RZ RY RZ RX

s.d. 3 dual pairs 3 self-dual covers 3 dual pairs
4 components 2 components connected covers

The cover (0, 1) → (I, I) consists of four disconnected components. The next
nine consist of two disconnected components. There are three dual pairs: (I, RX)↔
(RX , I), etc. and three self-dual covers: e.g., (RX , RX). For example, the cover
with index (0, 1) → (I, RZ) has one component containing branch lines I and RZ ,
while the symmetry-related component (under either RX or RY ) contains branch
lines RX and RY . Similarly for the self-dual cover (0, 1) → (RZ , RZ). The three
covers with indices (I, RX), (I, RY ), (I, RZ) are related to each other by rotations
about the (1, 1, 1) axis by 2π/3 radians, i.e., by the group C3.

The remaining six covers (three dual pairs) consist of a single connected compo-
nent. There is a path in each of these branched manifolds from any branch line to
any other branch line. There are three dual pairs, such as (RX , RY ) ↔ (RY , RX).
In addition, the three (RX , RY ), (RY , RZ), (RZ ,RX), are mapped into each other
under C3, as are their duals. If we regard the symmetry-related attractors (under
C3) as essentially equivalent, the breakdown of distinct V4-invariant covers of Smale
horseshoe dynamics is

# Components # Dual Pairs # Self-Dual Pairs
4 0 1(I, I)
2 1 (I, RX) 1 (RX , RX)
1 1 (RX , RY ) 0
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In summary, there are six (= 2 × (0 + 1 + 1) + 1 × (1 + 1 + 0)) topologically
distinct types of double covers of the basic Smale horseshoe branched manifold with
V4 symmetry.

13.6 LIFTS OF ORBITS

An orbit of period p in an image strange attractor SA can be covered by |G| orbits of
period p, |G|/2 orbits of period 2p, . . . , |G|/m orbits of period mp in G-equivariant
covering attractors. The details depend on the orbit chosen and the index of the cover.

When the cover consists of |G| disconnected components (σi → g(i) = I, each
i, so H = I), every orbit in SA has |G| distinct covers, each with the same period.
An orbit of period p in SA can have one covering orbit of period p|G| only when the
covering attractor is connected (H = G). These are limiting cases.

The general case depends on a the symbol sequence of the image orbit and the
index of the cover in a very precise way.

An orbit of periodp inSA is represented by product ofp transition matrix elements:

TabTbc . . . TopTpa = 1

To see if this orbit is covered by an orbit of period p in the cover, we carry out a
similar computation with transition matrices for the cover chosen

Taα,bβTbβ,cγ . . . Too,pρTpρ,aα =

TabTbc . . . TopTpaΓReg
αα

(

[g(a)g(b) . . . g(o)g(p)]−1
)

This calculation can be carried out at the level of matrix multiplication. This was
done explicitly in Section 6.8. The computation can also be carried out at the group
level. We do this now.

The matrix element ΓReg
αα (g(orbit)−1) is non zero only when the group operator is

the identity. This group operator is obtained directly from:

1. the symbol sequence in SA
2. the index of the cover.

The algorithm is

a b . . . o p

↓ ↓ ↓ ↓
g(a) g(b) . . . g(o) g(p) = g(orbit) = k

That is, each symbol in the image orbit is replaced by the appropriate group operation
from the index. The product is computed. This identifies a group operation with the
orbit: g(orbit) = k. If k = I, ΓReg(k) = I|G|, tr ΓReg(k) = |G|, and the image orbit
of period p in SA is covered by |G| orbits, each of period p.
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If k 6= I, then k generates a subgroup K ⊆ G. In fact, K ⊆ H ⊆ G. The
subgroupK has one generator and is defined by one relation: km = I. The subgroup
is K = {I, k, k2, . . . , km−1}.

In this case the original orbit has a covering orbit of period |K|p in the identity
component of the cover. If K ⊂ H, there are additional orbits of period |K|p in the
identity component of the cover. These are indexed by the coset representatives of
H/K. The original covering orbit of period |K|p is mapped into these partner orbits
as shown in Eq. (13.34). The set of |H|/|K| orbits of period |K|p in the identity
component are mapped into the remaining disconnected components of the cover by
the coset representatives of G/H. The decomposition into covering orbits breaks
down as follows:

p
lifts to−→ |G|

|H| × |H|
|K| × |K|p

# of disconnected
components of SA

# of disconnected
cover orbits in iden-
tity component of
SA

period of each cover-
ing orbit

Example 1—C4: We construct lifts of the saddle-node pair 101, 100 in the Smale
horseshoe branched manifold. The C4-equivariant cover is assumed to have index
(0, 1) → (I, C4). The subgroup H = {I, C4, C

2
4 , C

3
4} = C4 = G, so that covering

orbits of period 3, 6, or 12 are possible. To resolve the issue quickly,

1 0 0 1 0 1

↓ ↓ ↓ ↓ ↓ ↓
C4 I I = C4 C4 I C4 = C2

4

Since g(100) = C4 and km = I for m = 4, K = H = G and 100 has one lift of
period 12. Similarly, g(101) = C2

4 and km = I for m = 2, so 101 has one lift of
period 6 and a partner in the same connected cover. The partner is obtained from the
original by multiplying by the coset representative C4. The symbolic sequences for
these lifts are

100→ (1, I)(0, C4)(0, C4) (1, C4)(0, C
2
4 )(0, C2

4 )

(1, C2
4 )(0, C3

4 )(0, C3
4 ) (1, C3

4 )(0, I)(0, I) (1, I) · · ·

101→ (1, I)(0, C4)(1, C4) (1, C2
4 )(0, C2

4 )(1, C2
4 ) (1, I) · · ·

↓
(1, C4)(0, C

2
4 )(1, C2

4 ) (1, C3
4 )(0, I)(1, I) (1, C4) · · ·

Example 2—V4: The two period-3 orbits 101 and 100 in the Rössler attractor are
shown in Fig. 13.4. The lifts of these two orbits into the V4 -equivariant cover with
index (0, 1)→ (RY , RZ) are shown in Fig. 13.5.
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Fig. 13.4 Period-3 orbits embedded within the Rössler attractor.
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Fig. 13.5 V4-fold cover with index (0 → RY , 1 → RZ) of the period-three orbits shown in
Fig.13.4. Covers of: (a) (100); (b) (101). In both cases the covers consist of two symmetry-
related period-6 orbits.

The group operations for these two orbits are obtained as before

1 0 0 1 0 1
↓ ↓ ↓ ↓ ↓ ↓
RZ RY RY = RZ RZ RY RZ = RY

so that g(100) = RZ , g(101) = RY . Both period-3 orbits lift to period-6 orbits in
the connected cover. Each has a partner, obtained from the coset representative in
H/K. These figures show that the image orbits are very similar, but their covers are
quite dissimilar, as they visit different domains in R

3(X). The covers have symbol
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sequences

100→ (1, I)(0, RZ)(0, RX) (1, RZ)(0, I)(0, RY )
↓ RX

(1, RX)(0, RY )(0, I) (1, RY )(0, RX)(0, RZ)

101→ (1, I)(0, RZ)(1, RX) (1, RY )(0, RX)(1, RZ)
↓ RY

(1, RX)(0, RY )(1, I) (1, RZ)(0, I)(1, RY )

Table 13.1 provides information about lifts of all the orbits of period p ≤ 5 in
the horseshoe into the V4-equivariant cover with index (0, 1) → (RX , RY ). This
information is simple to compute with the algorithms providing for the computation
of the group-subgroup chain K ⊆ H ⊆ G.

Remark: The sugroup K is generated by a single group operation. If G has two
or more generators,K 6= G. In such a case, no period-p orbit in the image is covered
by an orbit of period |G|p in any of its covers.

13.7 STRUCTURALLY UNSTABLE COVERS

When the image of the singular set in R
3(u1, u2, u3) intersects the image attractor, the

singular set intersects the equivariant covering attractor in R
3(X). The intersection

has absolutely no effect on the image attractor but a profound effect on the covering

Table 13.1 Lifts into V4-equivariant cover with index (0, 1) → (RX , RY ) of horseshoe
orbits with p ≤ 5. The cover is connected since H = G. P is the period of each of the cover
orbits.

Orbit Symbolic Πg(i) k H/K |H/K| m p P

1 1 RY RY {I, RX} 2 2 1 2
2 10 RY RX RZ {I, RX} 2 2 2 4
41 1011 RY RXR

2
Y RZ {I, RX} 2 2 4 8

31 101 RY RXRY RX {I, RY } 2 2 3 6
31 100 RY R

2
X RY {I, RX} 2 2 3 6

42 1001 RY R
2
XRY I G 4 1 4 4

42 1000 RY R
3
X RZ {I, RX} 2 2 4 8

51 10111 RY RXR
3
Y RX {I, RY } 2 2 5 10

51 10101 (RY RX)2RY RY {I, RX} 2 2 5 10
52 10011 RY R

2
XR

2
Y RY {I, RX} 2 2 5 10

52 10100 (RY RX)2RX RX {I, RY } 2 2 5 10
53 10001 RY R

3
XRY RX {I, RY } 2 2 5 10

53 10000 RY R
4
X RY {I, RX} 2 2 5 10
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attractor. To be precise, the covering attractor is structurally unstable. A perturbation
of the location of the intersection changes the periodicity, structure, and organization
of many unstable periodic orbits in the cover. The bifurcation due to this structural
instability has been named the peeling bifurcation [67].

In the structurally unstable case the flow from one of the intervals of the branch
line in the fundamental domain is split into components that flow to two different
branch lines in adjacent domains. As an example, we consider a cover of the Smale
horseshoe branched manifold with V4 symmetry and index (0, 1) → (I, RY ). This
cover has two disconnected components. Now we displace the image attractor so
branch 0 intersects the image of the Z-axis u1 = u3 = 0, u2 ≤ 0. Then the
flow from 0(I) is split between the branch line in the fundamental domain and the
domain RZ . There is a path from branch line I to every other branch line. As a
result, the structurally unstable attractor is now connected. It is labeled by the index
(0, 1)→ (I +RZ , RY ). After the u2 ≤ 0 axis passes through branch 0 to the space
between the two branches, the cover becomes once again structurally stable, has index
(0, 1)→ (RZ , RY ), and is connected. The intersection of the half axis u1 = u3 = 0,
u2 ≤ 0 with branch 0 causes a global symmetry-restoring bifurcation. In this case
the bifurcation is summarized by

Index (0→ I, 1→ RY ) (0→ I +RZ , 1→ RY ) (0→ RZ , 1→ RY )

structurally stable structurally unstable structurally stable
(13.35)

Remark: In structurally unstable cases the flow is split between branch lines in
adjacent domains (Fig. 11.1). The connectivity of the structurally unstable cover is
determined by computing the subgroup H, now using all appropriate group labels.
For example, H for (0, 1) → (I, RY ) is generated by I and RY and is the two-
element group H = {I, RY }, whereas in the structurally unstable case (0, 1) →
(I+RY , RZ),H is generated by I,RZ ,RY and consists of all four group operations:
H = {I, RX , RY ,RZ} = G. In this case |G|/|H| = 1 shows that the cover has one
connected component.

In a structurally stable G-equivariant cover each σi(I) provides initial conditions
for flows to intervals in the same domain Dg(i). When this is not the case, the cover
is structurally unstable. In the structurally stable case perturbations of the position of
the covering attractor SA with respect to the (algebraic) singular set of the Jacobian
∂ui/∂Xj has no affect on the number, type, and organization of the unstable periodic
orbits in SA. In the structurally unstable case, a perturbation has a pronounced affect
on all three.

As an example we consider a one-parameter family of local V4-equivariant diffeo-
morphisms for which the structurally stable cover has index (0, 1)→ (I, RY ) in one
limit (s = 0) and has index (0, 1) → (RZ , RY ) in the other (s = 1). In the interval
describing structurally unstable covers the index is (0, 1) → (I + RZ , RY ). This
means that some initial conditions on the interval 0I flow to (0I or 0RZ

) or to (1I or
1RZ

). The connectivity of the cover is determined by constructing the groupH ⊂ G
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from all components of the index:

Index (0, 1) −→ (I, RY ) (I +RZ , RY ) (RZ , RY )
GroupH : {I, RY } {I, RX , RY , RZ} {I, RX , RY , RZ}
Structural Stability : Stable Unstable Stable
Connectivity : 2 Components Connected Connected

On entering the structurally unstable region in parameter space, the cover exhibits a
symmetry-restoring bifurcation: the two disjoint components join to form a single
connected component. A connected structurally unstable cover with V4 symmetry
and index (0, 1)→ (I, RY +RZ) is shown in Fig. 6.31(b).

The analysis of the spectrum, symbolic dynamics, and labeling of covers of peri-
odic orbits inSA in structurally unstable covers proceeds as in Section 13.5. The prin-
cipal differences are that the groupsH andKmust be replaced by groupsH′,K′ gen-
erated from all symbols in the index. For example, in the structurally unstable cases
described above,H′ is generated by I, RZ andRY , so thatH′ = {I, RX , RY , RZ} =
G. The structurally unstable cover is connected.

The orbit 001 ⊂ SA lifts to a series of topologically distinct orbits, with distinct
symbol sets and even periods, under this family of local diffeomorphisms. These are
obtained by assigning the first/second symbols 0 the allowed group labels I ,RZ . The
results can be summarized as follows

Index
(I, RY ) → (I +RZ , RY ) → (RZ , RY )

Assignment
0→ I
0→ I

0→ I, 0→ RZ

0→ RZ , 0→ I
0→ RZ , 0→ RZ

Orbit

0I0I1RY
0RY

0RY
1RY

0I0I1RZ
0RX

0RX
0RY

0I0RZ
1RZ

0RX
0RX

0RY

0I0RZ
1I 0RY

0RX
0RY

In this summary, the period-6 orbit that occurs in the structurally unstable cover
depends on the order in which the image of the singular set in R

3(u) passes through
the two orbit segments labeled 0. That is:

(I, RZ)
↗ ↘

00 → (I, I) (RZ , RZ)
↘ ↗

(RZ , I)

As a rotation axis sweeps through the branch 0 in the image attractor, the period-three
orbit 001 lifts to a series of period-six orbits in the structurally unstableV4-equivariant
lift. The lifted orbits deform into each other during the bifurcations induced by this
structural instability.
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14.1 SCHUR SYMMETRIES

Schur’s lemmas play a fundamental role in the analysis of the representations of
groups and algebras. They are powerful tools for the construction of a complete set
of irreducible representations of any group. We exploit the first of Schur’s lemmas
to determine the most general form that a dynamical system in R

N can have if it
is equivariant under a group G. The structure is determined by the representations
ΓDef(G) and ΓRing(G).

14.1.1 Schur’s lemmas

Although only one of the two lemmas of Schur is needed for our purposes, the lemmas
are so powerful, so pretty, and so similar, we provide the proofs of both. The proofs
are summarized in Figs. 14.1 and 14.2.

The essential idea is that groups act on linear vector spaces through linear trans-
formations. These are determined by matrices. The matrices are the group represen-
tations.

Definition: A subspace is invariant if it is mapped into itself under all linear
transformations associated with the matrix representation of the group.

359



360 SYMMETRIES DUE TO SYMMETRY

Schur’s Lemma #1

D(x) acts in V

Irreducible Invariant

M D(x) = D(x) M all x

1. Every linear transformation has one nonzero eigenvector.

{M − λI}u = 0 u 6= 0, some λ

2. The vectors u that obey (1) form a subspace U ⊂ V .

3. This linear vector subspace is invariant under D(x):

{M − λI}D(x)u = D(x) {M − λI}u = 0

4. V has only two subspaces invariant underD(x). The subspaceU is not empty.
U = V . Therefore

{M − λI}U = {M − λI}V = 0
M = λI

Fig. 14.1 The proof of Schur’s first lemma is carried out in four steps, summarized above.
The proof is very similar to the proof of Schur’s second lemma.

When a linear transformation acts on a linear vector space, the linear vector space
can be decomposed into invariant subspaces. Every linear vector space always has
two invariant subspaces. One consists of the entire linear vector space. The other
consists of the zero vector. It may have many other invariant subspaces.

Definition: A matrix representation Γ(G) acting on a linear vector space V is
irreducible if the only two subspaces of V that are invariant under the action of Γ(G)
on V are the spaces V and 0.

Example 1: The group of orthogonal transformations acting in R
3 is generated

by three 3× 3 matrices
2

4

1 0 0
0 cos θx sin θx

0 − sin θx cos θx

3

5

2

4

cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy

3

5

2

4

cos θz sin θz 0
− sin θz cos θz 0

0 0 1

3

5

(14.1)
The representation of the rotation group generated by the 3 × 3 matrices above is

irreducible.
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Schur’s Lemma #2

D1(x) V1 D2(x) V2

acts in acts in
Irreducible Invariant Irreducible Invariant

"
"

"
"

""

V1

D1(x)

�
�

��3
-

"
"

"
"

""

T

V2

D2(x)

~u

~0

T D1(x) = D2(x) T all x

1. Tu = 0 (u = 0 Satisfies this.)

2. The vectors u that obey (1) form a subspace U ⊂ V1.

3. This linear vector subspace is invariant under D1(x):

T D1(x) u = D2(x) T u = 0

4. V1 has only two subspaces invariant under D1(x):

U = V1 T = 0

U = 0 T is faithful, T−1 exists, and
D2(x) = TD1(x)T−1

Fig. 14.2 The proof of Schur’s second lemma is carried out in four steps, summarized above.
The proof is very similar to the proof of Schur’s first lemma.

Example 2: A group G acts on an n-dimensional linear vector space V through a
set of matrices, each of which has the following block-diagonal form:

ΓRed(G) =

[
A 0
0 B

]

(14.2)

HereA is an nA×nA matrix andB is an nB ×nB matrix, where nA +nB = n and
nA, nB > 0. In this case the nA + nB dimensional space V decomposes into two
subspaces V = VA ⊕ VB of dimensions nA and nB , respectively. Both subspaces
are invariant under the group action through the matrix presentation ΓRed(G).

We now describe the two lemmas of Schur.
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Schur’s Lemma #1: Assume that the representationD(x) acts on the linear vector
space V , and that D(x) is irreducible and V is invariant under D(x). Assume also
that a matrix M commutes with D(x), all x:

MD(x) = D(x)M all x

Then M is a multiple of the identity matrix: M = λI .

Proof: There is a vector u ∈ V that satisfies (M − λI)u = 0, since every matrix
M over an algebraically closed field has a nonzero eigenvector. The vectors u that
satisfy this relation form a subspace U ⊂ V . It is easy to check that if two vectors
u1, u2 ∈ V satisfy this relation, arbitrary linear combinations αu1 + βu2 of these
vectors also satisfy this relation. The linear vector subspace U is invariant under the
action D(x), for

{M − λI}D(x)u = D(x) {M − λI}u = 0

V has only two invariant subspaces under D(x): V itself and the zero subspace.
Since u 6= 0, U = V . Therefore

{M − λI}U = {M − λI}V ⇒M = λI

This proof of Schur’s first lemma is summarized in Fig. 14.1.

Schur’s Lemma #2: Assume that the representationD1(x) acts on the linear vec-
tor space V1, and thatD1(x) is irreducible and V1 is invariant underD1(x). Assume
the same forD2(x) acting on V2. Finally, assume that the linear transformation T (T
is a matrix) maps V1 → V2 and that

TD1(x) = D2(x)T, all x

Then eitherT = 0orT is one to one (faithful),T−1exists, andD2(x) = TD1(x)T−1,
so that D1(x) is equivalent to D2(x).

Proof: There is a vector u ∈ V1 that satisfies Tu = 0. At the very least, the vector
u = 0 satisfies this. The vectors u ∈ V1 that satisfy Tu = 0 form a linear vector
subspace U ⊂ V1. It is easy to check that if two vectors u1, u2 ∈ V1 satisfy this
relation, arbitrary linear combinations αu1 + βu2 of these vectors also satisfy this
relation. The linear vector subspace U is invariant under the action D1(x), for

TD1(x)u = D2(x)Tu = 0

V1 has only two subspaces invariant under D1(x), U = 0 and U = V1. If U = V1,
then the image of every vector in V1 is zero, so T = 0. If U = 0, the only vector
annihilated by T is the zero vector, so that T is 1-1, faithful, and has an inverse.
Multiplying by T−1 on the right of the intertwining relation in the statement of the
theorem, we find

D2(x) = TD1(x)T−1
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In other words, the two representations are related by a similarity transformation, so
are equivalent.

This proof of Schur’s second lemma is summarized in Fig. 14.2. The proofs of
the two lemmas have been designed so they can be given in a parallel fashion.

Remark: In the proofs of the two lemmas given above, we have nowhere used any
of the structure available from the group axioms. The proofs involve only the concept
of invariant subspace from linear algebra: nothing more, nothing less. It does not
even depend on the fact that we are talking about representations of a group. So the
conclusions are valid for any kind of a representation: group; algebra; field; semi-
group; vector space; even a point set. Schur’s lemmas belong to a deeper substratum
of algebraic verity than do the concepts they usually are applied to [135].

Example 3: The finite rotation group Cn acting in the plane R2 is generated by
the operation Cn

Cn =

[
cos θ sin θ
− sin θ cos θ

]

θ =
2π

n
, n integer (14.3)

For n = 2 this representation is reducible, for the generator commutes with an
arbitrary diagonal matrix:

[
−1 0

0 −1

] [
a 0
0 b

]

=

[
−a 0

0 −b

]

=

[
a 0
0 b

] [
−1 0

0 −1

]

For other values ofn this 2×2 matrix representation is also reducible over the complex
numbers. The complex invariant subspaces are spanned by the linear combinations
x+ iy and x− iy. In this basis, the matrix representative for Cn is equivalent to

Cn '
[
e2πi/n 0

0 e−2πi/n

]

and the most general matrix that commutes with this matrix is diagonal, M =
[
a 0
0 b

]

. The groups Cn have only one-dimensional irreducible representations.

14.1.2 How to Use Schur’s Lemmas

In this section we illustrate the power of Schur’s first lemma by using it to determine
the structure of a matrix defined by a particular relation.

We assume a group G has inequivalent irreducible representations Γ(1),Γ(2),Γ(3),
Γ(4), · · · of dimensions n(1), n(2), n(3), n(4), · · · . We also assume that G has rep-
resentations Γ(L) and Γ(R) that may be reducible. It is a remarkable fact that these
representations can always be written as direct sums of irreducible representations if
G is finite, discrete, or compact. Thus, we may write these two representations as, for
example

Γ(L) =







Γ(1) 0 0 0
0 Γ(2) 0 0

0 0 Γ(1) 0

0 0 0 Γ(4)







Γ(R) =





Γ(1) 0 0
0 Γ(2) 0

0 0 Γ(3)



 (14.4)
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Example: A matrix M intertwines the two reducible representations Γ(L) and
Γ(R) defined above if: Γ(L)M = MΓ(R). In order to determine the structure of M ,
we partition the rows of M according to the structure of the reducible representation
Γ(L) and the columns ofM according to the structure of the reducible representation
Γ(R):







Γ(1) 0 0 0
0 Γ(2) 0 0

0 0 Γ(1) 0

0 0 0 Γ(4)
















M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43










=










M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43














Γ(1) 0 0

0 Γ(2) 0
0 0 Γ(3)





(14.5)

In this block submatrix decomposition, the blocksMij have the appropriate size: For
example, the submatrixM32 is an n(1)× n(2) matrix. Eq. (14.5) can be brought to a
simpler form by multiplying out the products and subtracting one side from the other:










Γ(1)M11 −M11Γ
(1) Γ(1)M12 −M12Γ

(2) Γ(1)M13 −M13Γ
(3)

Γ(2)M21 −M21Γ
(1) Γ(2)M22 −M22Γ

(2) Γ(2)M23 −M23Γ
(3)

Γ(1)M31 −M31Γ
(1) Γ(1)M32 −M32Γ

(2) Γ(1)M33 −M33Γ
(3)

Γ(4)M41 −M41Γ
(1) Γ(4)M42 −M42Γ

(2) Γ(4)M43 −M43Γ
(3)










= 0

(14.6)
Each of the submatrices in (14.5) is zero, if Γ(i) 6= Γ(j), or else a multiple of the
identity if Γ(i) = Γ(j). In particular, M12 = M13 = M21 = M23 = M32 = M33 =
M41 = M42 = M43 = 0 while M11 = λ1In(1) ,M22 = λ2In(2) ,M31 = λ3In(1) . As
a result, the matrix M has the explicit structure

M =










λ1In(1) 0 0

0 λ2In(2) 0

λ3In(1) 0 0

0 0 0










(14.7)

It is completely determined by the three scalarsλ1, λ2, λ3 in the appropriate positions.

Remark: Calculations of this type are facilitated by labeling the blocked rows and
columns by the irreducible representations contained in the reducible representations
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Γ(L) and Γ(R). For example, for M we find

Γ(1) Γ(2) Γ(3)

Γ(1)

Γ(2)

Γ(1)

Γ(4)







M11 0 0
0 M22 0

M31 0 0
0 0 0







(14.8)

Only the submatrices indexed by the same irreducible representations are nonzero,
and each such submatrix is a multiple of an appropriate sized identity matrix. The
scalar factors λi are not related to each other.

Important Remark: Ifm(α) is the number of times the irreducible representation
Γ(α) occurs in Γ(L) and n(α) is the number of times the irreducible representation
Γ(α) occurs in Γ(R), the number of independent nonzero scalars λ required to define
the matrix M is

# scalars =
∑

α

m(α)n(α) (14.9)

For Γ(L) these four numbers are (2, 1, 0, 1) and for Γ(R) they are (1, 1, 1, 0). The
inner product of these two vectors of integers is (2, 1, 0, 1) · (1, 1, 1, 0) = 3.

14.1.3 Application to Equivariant Dynamical Systems

In this section we illustrate how Schur’s first lemma is used to determine the structure
of a set of equations that is equivariant under the action of a group G acting in R

N

through the defining matrix representation ΓDef(G). The result is expressed in terms
of the defining matrix representation ΓDef(G) and the matrix representation of the
group acting on the ring basis functions: ΓRing(G).

The equations of motion have the form

Ẋi = Fi(X) = fir(p)Rr(X) (14.10)

In this expression Rr(X) are the ring basis polynomials, including the single invariant
function 1. The action of a group operation g ∈ G on this equation is given by

g
d

dt
Xi = gfir(p)Rr(X)

ΓDef
ij (g−1)

d

dt
Xj = gfir(p)g

−1 gRr(X)

ΓDef
ij (g−1)

d

dt
Xj = gfir(p)g

−1 ΓRing
rs (g−1)Rs(X)

(14.11)

Since the functions fir(p) are invariant, gfir(p)g
−1 = fir(p). Now multiply through

by the matrix ΓDef
ji (g) and sum over dummy indices

d

dt
Xj = ΓDef

ji (g)fir(p)Γ
Ring
rs (g−1)Rs(X)

(14.10)
= fjs(p)Rs(X) (14.12)
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The basis polynomialsRs(X) are linearly independent, so we can equate their coef-
ficients in the last equality, to find

ΓDef
ji (g)fir(p)Γ

Ring
rs (g−1) = fjs

ΓDef
ij (g)fjs(p) = fir(p)Γ

Ring
rs (g)

(14.13)

This expression is identical in form to Eq. (14.5) under the identifications Γ(L) ↔
ΓDef , Γ(R) ↔ ΓRing, and M ↔ fir. The structure of the set (matrix) of invariant
functions that defines the equivariant equations can simply be determined by the
procedure indicated in Eq. (14.8).

Example 1: The group C3 has only one dimensional irreducible representations.
The action of C3 in R3 is through a defining 3 × 3 matrix representation. The basis
functions for the irreducible representations areX+ iY ,X− iY , andZ. These three
functions carry the irreducible representations Γ(+1), Γ(−1), and Γ(0), respectively,
where Γ(m)(Cn

3 ) = e2πimn/3. There are five functions in the ring basis: The invariant
1, the linear combinations = X + iY and X − iY , and the bilinear polynomials
(X − iY )2 = X2 − Y 2 − 2iXY and (X + iY )2 = X2 − Y 2 + 2iXY . These last
two basis functions carry the irreducible representations Γ(+1) and Γ(−1). The 3× 5
matrix of invariant functions fir(p) can be partitioned with respect to the coordinate
basis functionsX + iY , X − iY , Z and the ring basis functions 1,X + iY , X − iY ,
X2 − Y 2 − 2iXY , X2 − Y 2 + 2iXY as follows:

Γ(0) Γ(+) Γ(−) Γ(+) Γ(−)

Γ(+)

Γ(−)

Γ(0)





0 f11 + if12 0 f13 + if14 0
0 0 f11 − if12 0 f13 − if14
f30 0 0 0 0




(14.14)

The second line is the complex conjugate of the first, so that the complex functions
fij(p) in this line are the conjugates of the complex function in the first row. By taking
the real and imaginary parts of the equation for d

dt (X + iY ) = (f11 + if12)(X +
iY )+ (f13 + if14)(X

2−Y 2− 2iXY ) we find the canonical form for the dynamical
equations inR3 that are equivariant under the action of the groupC3. These equations
are

d

dt





X
Y
Z



 =





0 f11 −f12 f13 f14
0 f12 f11 f14 −f13
f30 0 0 0 0













1
X
Y

X2 − Y 2

2XY









(14.15)

Example 2: Identical arguments can be applied to study dynamical systems in
R3 that are equivariant under the rotation group Cn. This group has only one dimen-
sional (complex) irreducible representations. These are Γ(k), defined by Γk(Cm

n ) =
e2πikm/n, with the identification Γ(k) = Γ(k±n). The basis functions for the defining
matrix representation are X + iY,X − iY, Z, so ΓDef contains only the three repre-
sentations Γ(+),Γ(−),Γ(0). The ring basis contains the constant 1 and the real and
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imaginary parts of (X±iY )k, for k = 1, 2, · · · , n−1. The pairX+iY,X−iY carry
the representations Γ(+),Γ(−). The pair (X∓ iY )n−1 also carry the same two repre-
sentations Γ(+),Γ(−). All other ring basis functions (X± iY )k, k = 2, 3, · · · , n−2
carry representations that are not equivalent to any of the three representations con-
tained in the defining matrix representation ΓDef . As a result, the equations for Cn

equivariant dynamical systems can be expressed in the form

Γ(0) Γ(+) Γ(−) Γ(+) Γ(−)

Γ(+)

Γ(−)

Γ(0)





0 f11 + if12 0 f13 + if14 0
0 0 f11 − if12 0 f13 − if14
f30 0 0 0 0





(14.16)

where the rows are indexed by the polynomialsX + iY,X − iY, Z and the columns
are indexed by the polynomials 1, X+ iY,X− iY, (X− iY )n−1, (X− iY )n−1. The
equivariant dynamical systems equations have the form

d

dt





X
Y
Z



 =





0 f11 −f12 f13 f14
0 f12 f11 f14 −f13
f30 0 0 0 0













1
X
Y

Re (X − iY )n−1

Im (X − iY )n−1









(14.17)
The structure is the same as for C3 equivariant dynamical systems. All dynamical
systems in R

3 that are equivariant under rotation groupsCn are determined by just five
invariant polynomial functions fij(p), and they appear in the dynamical equations as
shown in Eqs. (14.15) and (14.17).

Example 3: For the group P in R
3 there are two irreducible representations,

Γ(1) = Id and Γ(2). The coordinatesX,Y, Z each carry the representation Γ(2). The
ring basis consists of the invariant 1 and the three polynomials X,Y, Z. A table for
the irreducible content of the two representations ΓDefand Γring gives

Γ(1) Γ(2)

ΓDef 0 3
ΓRing 1 3

(14.18)

As a result, P equivariant dynamical systems in R
3 are defined by (0, 3) · (1, 3) =

0× 1 + 3× 3 = 9 invariant functions fij(p).

14.2 CAUCHY-RIEMANN SYMMETRIES

The Jacobian of the transformation from the equivariant coordinates (X1, X2, · · · ,XN )
to the invariant coordinates (u1, u2, · · · , uN) exhibits symmetries that reduce, for
the groups Cn, to well-known symmetries. These are the Cauchy-Riemann relations
of classical complex analysis. These symmetries extend to arbitrary equivariance
groups. We analyze these symmetries in this section.
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14.2.1 Cauchy-Riemann Conditions for Analytic Functions

The classical Cauchy-Riemann symmetries of complex analysis arise as a condition
for a complex mapping z → w to be “analytic.” In this mapping z is a complex
variable z = x+ iy and its imagew = f(z) = u+ iv is also a complex variable. The
real functions u = u(x, y) and v = v(x, y) are functions of the real and imaginary
parts of z. The condition that the mapping be analytic is that the derivative dw/dz
exists, independent of direction. The derivative can be written as follows

dw

dz
=

(
∂u
∂xdx+ ∂u

∂y dy
)

+ i
(

∂v
∂xdx+ ∂v

∂ydy
)

dx+ i dy
(14.19)

We unwind this expression as follows

w′(dx+ idy) =

[
∂u

∂x
+ i

∂v

∂x

]

dx+

[
∂v

∂y
− i ∂u

∂y

]

i dy (14.20)

It is useful (as well as correct) to treat the “infinitesimals” dx and dy as linearly
independent basis vectors in some sort of linear vector space. This said, we can
equate the coefficients of the two basis vectors dx and dy on the two sides of this
expression to find

w′ =

[
∂u

∂x
+ i

∂v

∂x

]

=

[
∂v

∂y
− i ∂u

∂y

]

(14.21)

Equating the real and imaginary parts of these expressions, we find not only the
Cauchy-Reimann conditions for a mapping to be analytic:

∂u

∂x
= +

∂v

∂y
∂v

∂x
= −∂u

∂y

(14.22)

but also two equal expressions for the complex derivative, given in Eq. (14.21).
There is another way to look at the Cauchy-Riemann conditions that is ultimately

equivalent but in some sense more useful, and certainly more beautiful. In this
interpretation, we assume that the line integral of w(z) is independent of the path,
and depends only on the endpoints of the path. If this is the case, the line integral that
begins and ends at the same point a in the complex plane vanishes, so that

∮

w(z)dz = 0

This condition can be reexpressed in a form that is familiar from the analysis of vector
fields in 2 and 3 dimensions:

∮

(u+ iv) · (dx + idy) =

∮

u dx − v dy + i

∮

v dx+ u dy (14.23)
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The well-known condition that both the real and imaginary closed contour integrals
vanish is given by Stokes’ theorem in the plane:

∮

u dx− v dy = 0 ⇔ −∂v
∂x
− ∂u

∂y
= 0

∮

v dx+ u dy = 0 ⇔ +
∂u

∂x
− ∂v

∂y
= 0

(14.24)

The results on the right are immediate consequences of the requirement that the curl
of the vector fields (u,−v, 0) and (v, u, 0) vanish. For example,

∇×(u,−v, 0) =

∣
∣
∣
∣
∣
∣

i j k
∂
∂x

∂
∂y

∂
∂z

u(x, y) −v(x, y) 0

∣
∣
∣
∣
∣
∣

= 0i + 0j +

(

−∂v
∂x
− ∂u

∂y

)

k = 0

Stokes’ theorem guarantees that the closed contour integral vanishes, or that line
integrals between the same endpoints are equal, provided that the curl of the vector
field vanishes everywhere inside the region of the plane R

2 interior to the closed
contour or bounded by the two paths beginning and ending at the same points, and
that there are no singularities in this region.

This interpretation of the Cauchy-Riemann conditions is powerful because it allows
us to deform contours throughout a plane, provided we do not allow the contour to
cross singularities or to enter “forbidden” regions—for example, holes in the plane
that transform the region from simply connected to multiply connected. Such a
deformation is illustrated in Fig. 14.3. In this figure we show a small closed contour
that is gradually expanded until it moves up against the outer closed contour C0

and the three interior closed contours Ci, i = 1, 2, 3. In the region between these
contours the function w = f(z) is assumed to be analytic. There are three short
curves that connect the outer contour C0 to each of the three interior contours Ci.
The line integral goes along each of these three arcs twice, once in each direction.
These six contributions to the total line integral cancel out pairwise, leaving only
the contributions around the outer and three interior contours. The contour integral
around the original tiny contour is zero, and it remains zero all the while that the
contour is deformed. This shows that

∮

C0

f(z)dz +

3∑

i=1

∮

Ci

f(z)dz = 0 (14.25)

The integral is clockwise around the three contours Ci and counterclockwise around
the contour C0. With this interpretation, it is just a short step to the discussion of
Laurent expansions around singularities and the Cauchy integral theorems. These
are in some distant sense related to singularities of local diffeomorphisms, a point to
which we will not return.
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C0

C1

C2

C3

Fig. 14.3 Expansion of a small closed contour into an entire region of the multiply connected
complex plane. The expansion can be carried out wherever f(z) = u(x, y)+ iv(x, y) satisfies
the Cauchy-Riemann, or vanishing curl conditions. The components of the line integrals in
opposing directions, connecting the outer contour C0 with the three inner contours Ci, cancel
pairwise. The final result is that the closed contour integral around the outer contour C0 is
equal to the sum of the three closed contour integrals around the three interior holes in the
plane, where the integrals are all taken in the clockwise or the counterclockwise direction.

14.2.2 Examples for Analytic Functions

The simplest analytic map is w = z2, for which we find

w(z) = u(x, y) + iv(x, y) = (x+ iy)2 = (x2 − y2) + i2xy (14.26)

From this we conclude that u(x, y) = x2 − y2 and v(x, y) = 2xy. The Cauchy-
Riemann conditions are immediately verified:

∂u

∂x
= +2x

∂u

∂y
= −2y

∂v

∂x
= +2y

∂v

∂y
= +2x

(14.27)

It is useful to treat the Cauchy-Riemann conditions as the Jacobian of the trans-
formation between the variables (u, v) and the variables (x, y):

∂(u, v)

∂(x, y)
=

∣
∣
∣
∣
∣
∣
∣
∣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣
∣
∣
∣
∣
∣
∣
∣

(14.28)

The Cauchy-Riemann conditions require two symmetries among the four matrix ele-
ments: the diagonal matrix elements are equal and the off-diagonal matrix elements
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are opposite in sign, so that

∂(u, v)

∂(x, y)
=

∣
∣
∣
∣
∣
∣
∣
∣

∂u

∂x

∂u

∂y

−∂u
∂y

∂u

∂x

∣
∣
∣
∣
∣
∣
∣
∣

det−→
(
∂u

∂x

)2

+

(
∂u

∂y

)2

=

(
∂v

∂x

)2

+

(
∂v

∂y

)2

≥ 0

The Jacobian is singular only where∇u = ∇v = 0.

Example 1: For the complex mapping w = zn, n integer, the derivative is w′ =
dw/dz = nzn−1, from which it is easy to obtain ∂u

∂x = ∂v
∂y = < n(x + iy)n−1 and

∂v
∂x = −∂u

∂y = = n(x + iy)n−1. In this example, the z variable provides an n-fold
cover of the w variable. There are n values of the variable z, related to each other
by phase factor multiplication zk = eiφzj , where zj and zk are two of the n distinct
values of z(6= 0) that map to a single value of w, and eiφ is a phase factor with
φ = 2π/n or an integer multiple of this angle. In alternate words, w has n distinct
nth roots, one of which belongs to a fundamental domain and the remaining n − 1
belong to symmetry-related domains, or “sheets” (cf. Fig. 12.1).

Example 2: As a final example of the Cauchy-Riemann conditions in complex
analysis, we treat the logarithmic map w = ln(z). With r =

√

x2 + y2 and φ =
tan−1(y/x), we find

w = ln(z) = u+ iv = ln(r ei(φ+2πk)) =
1

2
ln(x2 + y2) + i(φ+ 2πk)

with k integer. From this, we determine

∂u

∂x
= +

x

x2 + y2

∂u

∂y
= +

y

x2 + y2

∂v

∂x
= − y

x2 + y2

∂v

∂y
= +

x

x2 + y2

(14.29)

In this mapping, w provides an infinite-sheeted cover of the complex variable z: In
the z plane the angle φ ranges from 0 to 2π, while in the w plane its lift ranges from
−∞ to +∞.

14.2.3 Application to Equivariant Dynamical Systems

To illustrate the relation between the Cauchy-Riemann conditions in complex analysis
and the analogous relations in the study of local diffeomorphisms, we consider first
the Jacobian associated with the symmetry group RZ acting in R

3, where the local
diffeomorphism is u = X2 − Y 2, v = 2XY,w = Z:

∂(u, v, w)

∂(X,Y, Z)
=

∣
∣
∣
∣
∣
∣
∣

2X −2Y 0
2Y 2X 0

0 0 1

∣
∣
∣
∣
∣
∣
∣

(14.30)
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The Jacobian must be expressed in terms of the ring basis functions. For this group,
these three functions are 1, X, Y . One of the three coordinates carries the identity
representation of this group, so that we can equate one of the new invariant coordinates
with one of the original coordinates: w = Z. The contribution of this equality to the
Jacobian is the ring invariant 1 in the lower right-hand corner of the Jacobian matrix.
The matrix elements in the corresponding rows and columns in this matrix are zero.
This leaves four matrix elements in the Jacobian of the transformation that are not
necessarily zero. These must be expressed in terms of the two remaining (equivariant)
ring basis functions. Since 4 − 2 = 2, there must be two relations among these
four remaining matrix elements. The two relations are exactly the Cauchy-Riemann
relations — no big surprise since we are working with a complex structure in this
local diffeomorphism.

The general situation can be inferred from the preceeding discussion. An equiv-
ariance group G acts in R

N (X) through the defining matrix representation ΓDef(G).
This representation contains a spectrum of irreducible representations of G, and
in particular, the identity representation is contained n(Id) times in ΓDef(G). The
implication of this statement is that n(Id) of the new invariant variables can be
equated directly to an equal number of the original equivariant variables: uj = Xj ,
j = N − n(Id) + 1, · · · , N . The ring basis consists of 1 + nRing basis functions, of
which one is the invariant 1 and nRing are equivariant polynomials. The Jacobian of
the |G| → 1 local diffeomorphism (X1, X2, · · · , XN) → (u1, u2, · · · , uN) has the
structure

∂(u1, u2, · · · , uN )

∂(X1, X2, · · · , XN )
=

[
M 0

0 In(Id)

]

(14.31)

The (N −n(Id))2 matrix elements of the (N −n(Id))× (N −n(Id)) matrixM must
be expressed in terms of the nRing equivariant polynomials in the ring basis. Usually
there are more matrix elements than equivariant polynomials in the ring basis, so that
relations among the matrix elements are forced. In particular, there are

# (Cauchy−Riemann Relations) = (N − n(Id))2 − nRing (14.32)
relations among these matrix elements if this difference is positive. Some of the
relations may take the form of setting a matrix element equal to zero.

Example 1: For P acting in R
3(X), the defining matrix representation has the

decomposition ΓDef ' 0Γ(Id) + 3Γ(2), so that N = 3 and n(Id) = 0. The ring basis
consists of 1, X, Y, Z, so that nRing = 3. The number of Cauchy-Riemann relations
expected is

#

(
Cauchy-Riemann

Relations

)

= (N − n(Id))2 − nRing → (3− 0)3 − 3 = 6 (14.33)

For the local diffeomorphism u = 1
2 (X2 − Y 2), v = 1

2 (X2 + Y 2 − 2Z2), w =
XY + Y Z + ZX , the Jacobian is

∂(u, v, w)

∂(X,Y, Z)
=





X −Y 0
X Y −2Z

Y + Z Z +X X + Y



 (14.34)
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The three matrix elements in the second row can be taken as independent. The remain-
ing six are linear combinations (including 0) of these three independent equivariant
ring basis functions. The Cauchy-Riemann relations for P are

∂u

∂X
=

∂v

∂X
− ∂u
∂Y

=
∂v

∂Y

∂u

∂Z
= 0

∂w

∂X
=

∂v

∂Y
− 1

2

∂v

∂Z

∂w

∂Y
= −1

2

∂v

∂Z
+

∂v

∂X

∂w

∂Z
=

∂v

∂X
+
∂v

∂Y
(14.35)

Example 2: For V4 acting in R
3(X), the defining matrix representation has the

decomposition ΓDef ' 0Γ(Id) + Γ(2) + Γ(3) + Γ(4), so that n(Id) = 0. The four
invariant polynomials in the integrity basis areX2, Y 2, Z2, XY Z. In addition to the
invariant 1, the equivariant terms in the ring basis consist of all derivatives of the four
invariant polynomials with respect to X,Y , and Z, specifically the six polynomials
X,Y, Z, Y Z, ZX,XY , so thatnRing = 6. The number of Cauchy-Riemann relations
expected is

#(Cauchy−Riemann Rels.) = (N−n(Id))2−nRing → (3−0)2−6 = 3 (14.36)

For the local diffeomorphismu = 1
2 (X2−Y 2), v = 1

2 (X2+Y 2−2Z2), w = XY Z,
the Jacobian is

∂(u, v, w)

∂(X,Y, Z)
=





X −Y 0
X Y −2Z

Y Z ZX XY



 (14.37)

One of the three Cauchy-Riemann relations is ∂u
∂Z = 0. The remaining two are

∂u
∂X = ∂v

∂X = X and − ∂u
∂Y = ∂v

∂Y = Y .

14.3 CLEBSCH-GORDAN SYMMETRIES

During the final stages of the construction of the image dynamical system equations
from the equivariant equations, the matrix elements of the Jacobian must be combined
with the ring basis functions according to the transformation

dur

dt
=
∂ur

∂Xi
fisRs (14.38)

The matrix elements ∂ur/∂Xi of the Jacobian are linear in the ring basis functions,
as are the source terms fisRs in the equivariant equations. The construction of
invariant driving functions depends on finding bilinear combinations of the ring basis
functions that are invariant functions. This is equivalent to coupling basis vectors for
direct products of two irreducible representations of a group to form basis vectors for
the identity representation of the group. Technically, this is a problem of determining
Clebsch-Gordan coupling coefficients.
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14.3.1 Clebsch-Gordan Coupling Matrices

Clebsch-Gordan coupling theory is most widely known through its applications in
quantum theory, in particular, through the angular momentum coupling coefficients.
But it is much more widely applicable. In particular, it applies to the irreducible
representations of all groups. To make this explicit, we consider the group G with
irreducible representations Γα acting in invariant spaces V α of dimension nα. The
nα different basis vectors in V α are labeled by an index i = 1, 2, · · ·nα. We use

Dirac notation to identify the basis vectors in V α:
∣
∣
∣
∣

α
i

〉

. The action of g ∈ G on
these basis vectors is

g

∣
∣
∣
∣

α
i

〉

=

∣
∣
∣
∣

α
j

〉〈
α
j

∣
∣
∣
∣
g

∣
∣
∣
∣

α
i

〉

=

∣
∣
∣
∣

α
j

〉

Γα
ji(g) (14.39)

As usual, intermediate dummy indices are summed over. The direct product linear
vector space V α ⊗ V β has as basis vectors the direct product of the basis vectors in

each of the two spaces:
∣
∣
∣
∣

α
i

〉

⊗
∣
∣
∣
∣

β
j

〉

=

∣
∣
∣
∣

α β
i j

〉

. Generally this direct product
space is reducible (not invariant). It is useful to decompose this reducible space into
the direct sum of irreducible spaces V γ : V α ⊗ V β =

∑

γ n
γV γ where nγ ≥ 0.

Example: When electrons with orbital angular momenta l = 2 and l = 1 interact
in a spherically symmetric system, the two electron system can have total angular
momentum L = 3, 2, 1. States with L = 3, M in the range −3 ≤ M ≤ +3, are
formed by constructing linear combinations of the single electron states according to

∣
∣
∣
∣
2 1

3
M

〉

=

∣
∣
∣
∣

2 1
m1 m2

〉〈
2 1
m1 m2

∣
∣
∣
∣
2 1

3
M

〉

︸ ︷︷ ︸

(14.40)

The sum extends over all intermediate dummy indices (i.e.,m1,m2). The underlined
coefficients in this expression are the angular momentum coupling coefficients: The
Clebsch-Gordan coupling coefficients for the rotation group SO(3). They can be
worked out, and have been extensively tabulated since they are so useful.

14.3.2 Applications to Finite Groups

For finite groups the coupling scheme is exactly the same:
∣
∣
∣
∣
αβ

γ
k

〉

=

∣
∣
∣
∣

α β
i j

〉〈
α β
i j

∣
∣
∣
∣
αβ

γ
k

〉

(14.41)

If the irreducible representation Γγ is contained more than once in the direct product

Γα⊗Γβ , an additional index must be inserted in both the ket basis vector
∣
∣
∣
∣
αβ

γ
k
, µ

〉

and in the Clebsch-Gordan coefficient
〈
α β
i j

∣
∣
∣
∣
αβ

γ
k
, µ

〉

to distinguish among
the different subspaces that transform under the same irreducible representation.
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For the purposes at hand, we are only interested in pairs of irreducible representa-
tions whose direct product contains the identity representation. This information can
be teased out of the group character table. We give two examples.

Example 1: The group C3 has three irreducible representations, Γ(i), i = +, 0,−.
Pairwise products of these three one-dimensional representations are one-dimensional
and have the following irreducible representation content:

Γ(0) Γ(+) Γ(−)

Γ(0) Γ(0) Γ(+) Γ(−)

Γ(+) Γ(+) Γ(−) Γ(0)

Γ(−) Γ(−) Γ(0) Γ(+)

(14.42)

From this, we learn the obvious: to construct an invariant we must combine a complex
representation with its conjugate, or self-conjugate in the case of the real representa-
tion Γ(0).

Example 2: The groupT that maps the tetrahedron into itself, excluding reflection
operations, consists of 12 group operations. There is one identity operation, three two-
fold rotations about the midpoints of opposite edges, and eight three-fold rotations
about axes that pass through one vertex and the center of the opposite face. The
character table for this group is

T E C2(3) C3(4) C2
3 (4) Basis Functions

A 1 1 1 1 x2 + y2 + z2

E1 1 1 ε ε2 x2 + εy2 + ε2z2

E2 1 1 ε2 ε x2 + ε2y2 + εz2

F 3 −1 0 0 x, y, z

(14.43)

The representationsE1 andE2 are complex conjugate: their direct sumE = E1⊕E2

is a real 2 × 2 matrix representation that is irreducible over the real numbers but
reducible over the complex field. The two real basis functions for E are equivalent
to linear combinations of the complex basis functions for E1 and E2: x2 − y2 and
x2 + y2 − 2z2. The direct products of the three real representations are given in the
table

A E F

A A E F
E E 2A+E 2F
F F 2F A+E + 2F

(14.44)

For this group there are three cases in which the direct product of two irreducibles
produces a representation degeneracy that must be lifted with an additional index µ
as described above: E ⊗ E, E ⊗ F , and F ⊗ F . As we are only interested in pairs
of irreducible representations that can couple to yield the identity representation, the
only tensor products of interest for this group are A⊗A, F ⊗ F , and E ⊗E, and in
this last case the two distinct invariants that can be created by coupling pairs of basis
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vectors that transform underE must be distinguished by an index. In the caseE⊗E
the two sets of functions that transform under the identity representation A can be
read directly from the matrix of Clebsch-Gordan coefficients

∣
∣
∣
∣

A
1

1

〉 ∣
∣
∣
∣

A
1

2

〉 ∣
∣
∣
∣

E
1

〉 ∣
∣
∣
∣

E
2

〉

∣
∣
∣
∣

E E
1 1

〉

∣
∣
∣
∣

E E
1 2

〉

∣
∣
∣
∣

E E
2 1

〉

∣
∣
∣
∣

E E
2 2

〉














1√
2

0
1√
2

0

0
−i√

2
0

−1√
2

0
i√
2

0
−1√

2
1√
2

0
−1√

2
0














(14.45)

For basis functions
〈

x

∣
∣
∣
∣

E
1

〉

=
1√
2
(x2 − y2) and

〈

x

∣
∣
∣
∣

E
2

〉

=
1√
6
(x2 +

y2 − 2z2) the two scalars are
〈

x

∣
∣
∣
∣

A
1

1

〉

=

√
2

3

[
x4 + y4 + z4 − (y2z2 + z2x2 + x2y2)

]

〈

x

∣
∣
∣
∣

A
1

2

〉

= 0

(14.46)

For the representation F the three basis vectors are (x, y, z). Only one scalar results
from the direct product F ⊗ F : it is the invariant x2 + y2 + z2. In fact, for T this is
the only Clebsch-Gordan resolution of interest, since the basis vectors (X,Y, Z) are
the equivariant coordinates that define the dynamical system.

14.3.3 Application to Equivariant Dynamical Systems

Most of the groups that we have considered so far are commutative, and therefore
have only one-dimensional irreducible representations. For such groups the Clebsch-
Gordan coupling problem is rather simple. We illustrate how this works for the
commutative group C3 acting in R

3. We also illustrate how the Clebsch-Gordan
symmetry appears in the reduction of equivariant to invariant dynamical systems in
more general cases.

In the case of C3 the nontrivial irreducible representations are complex, so the
the equivariant dynamical system equations must be written in complex form to take
advantage of the irreducible properties of its representations. In complex form the
equivariant equations are

d

dt





X + iY
X − iY
Z



 =





0 f11 0 f13 0
0 0 f∗

11 0 f∗
13

f30 0 0 0 0













1
X + iY
X − iY

(X − iY )2

(X + iY )2









(14.47)
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The invariant dynamical system equations, in complex form using (X+iY )3 = u+iv,
are

d

dt





u+ iv
u− iv
w



 =





3(X + iY )2 0 0
0 3(X − iY )2 0
0 0 1



×





0 f11 0 f13 0
0 0 f∗

11 0 f∗
13

f30 0 0 0 0













1
X + iY
X − iY

(X − iY )2

(X + iY )2









=





3(X + iY )2
{
f11(X + iY ) + f13(X − iY )2

}

3(X − iY )2
{
f∗
11(X − iY ) + f∗

13(X + iY )2
}

1× f30 × 1



 (14.48a)

=





0 3f11 0 3f13
0 0 3f∗

11 3f∗
13

f30 0 0 0











w
u+ iv
u− iv
r24







(14.48b)

In proceeding to the last equation, we have used the relations






Z
(X + iY )3

(X − iY )3

(X2 + Y 2)2







=







w
u+ iv
u− iv
r24







(14.49)

It is no surprise that:

1. In final form the invariant equations are expressed in terms of a small set of
nonzero invariant functions fij whose number is determined by the spectrum
of irreducible representations in ΓDef and ΓRing (cf. Equ. (14.9)).

2. A small set of invariant polynomials w, u, v and the radical r4.

3. The latter set of functions consists of only those invariant polynomials that can
be constructed as invariant bilinear combinations of the ring basis set according
to the Clebsch-Gordan series

〈

x

∣
∣
∣
∣

A
1

〉

=

〈

x

∣
∣
∣
∣

α β
i j

〉〈
α β
i j

∣
∣
∣
∣
αβ

A
1

〉

= R
(α)
i (X)R

(β)
j (X)

〈
α β
i j

∣
∣
∣
∣
αβ

A
1

〉 (14.50)
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For C3 the ring basis functions and their transformation properties are

Irreducible Ring Basis
Representation

Γ(0) R
(0)
1 = 1

Γ(+) R
(+)
1 = X + iY, R

(+)
2 = (X − iY )2

Γ(−) R
(−)
1 = X − iY, R(−)

2 = (X + iY )2

The only invariant polynomials that can be constructed from this set are

R
(0)
1 R

(0)
1 = 1× 1 = 1 = 1

R
(+)
1 R

(−)
1 = (X + iY )(X − iY ) = X2 + Y 2 = r4

R
(+)
1 R

(−)
2 = (X + iY )(X + iY )2 = (X + iY )3 = u+ iv

R
(+)
2 R

(−)
1 = (X − iY )2(X − iY ) = (X − iY )3 = u− iv

R
(+)
2 R

(−)
2 = (X − iY )2(X + iY )2 = (X2 + Y 2)2 = r24

(14.51)
Since only the ring basis functionsR(0)

1 , R
(+)
2 , R

(−)
2 occur in the Jacobian, the only

invariant functions that can occur in the final expression for the invariant dynamical
system are the functions 1, u+ iv, u− iv, and r24 . These results can be summarized
in the following table:

Ring R
(0)
1 R

(+)
1 R

(−)
1 R

(+)
2 R

(−)
2

Jacobian

R
(0)
1

1
f30

0 0 0 0

R
(+)
2 0 0

u− iv
3f∗

11
0

r24
3f∗

13

R
(−)
2 0

u+ iv
3f11

0
r24

3f13
0

(14.52)

The column on the left shows the ring basis functions that occur in the Jacobian
∂ui/∂Xj . Only three ring basis functions occur in the Jacobian, 1, (X+iY )2, (X−
iY )2, so only those three are listed. The top row lists all the ring basis functions that
have the appropriate transformation properties. “Appropriate transformation proper-
ties” means simply that they transform under the same irreducible representations as
occur in ΓDef(G). For C3 all (linear combinations of) the ring basis functions carry
one of the irreducible representations in ΓDef(C3), so all five are listed in the top row
of this table. The entries in this table are of two types. If the identity representation
is not contained in the direct product Γ(α) × Γ(β), the matrix element is 0. If the
identity representation is contained in the direct product Γ(α)×Γ(β), the invariant(s)
constructed from R

(α)
i (X) ×R(β)

j (X) is listed, together with the invariant function
fij that is coupled to R(β)

j (X) in the equivariant dynamical system. The invariants
can be expressed in either the invariant coordinate systsem (u, v, w) or the original
coordinate system (X,Y, Z).
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Remark: For the group Cn, n > 3, the analysis proceeds as shown in Eq. (14.51).

The invariants inΓJacob transform likeΓ0 andΓ±1. They are 1 and Re
Im

(X∓iY )n−1.

Although the ring basis has 1 + 2(n − 1) functions, only five transform under the
irreducible representations contained in ΓDef ' Γ0 + Γ+ + Γ−. These are R(0) =

1, R
(±)
1 = (X± iY )1, R

(±)
2 = (X∓ iY )n−1. Therefore, for Cn the table in (14.52)

is replaced by

Ring R
(0)
1 R

(+)
1 R

(−)
1 R

(+)
2 R

(−)
2

Jacobian

R
(0)
1

1
f30

0 0 0 0

R
(+)
2 0 0

u− iv
nf∗

11
0

rn−1
4

nf∗
13

R
(−)
2 0

u+ iv
nf11

0
rn−1
4

nf13
0

(14.53)

The general algorithm should now be clear. The invariant equations are

dui

dt
=

∂ui

∂Xj
Fj(X) (14.54)

The driving functions are replaced by their expansion in terms of the appropriate ring
basis functions

Fj(X) −→ fj;βs(p)R
β
s (X) (14.55a)

and the Jacobian are expressed in terms of the appropriate ring basis functions

∂ui

∂Xj
−→ Jij;αrR

α
r (X) (14.55b)

The invariant equations have the form

dui

dt
= Jij;αrR

α
r (X)fj;βs(p)R

β
s (X) = {Jij;αrfj;βs(p)}

{
Rα

r (X)×Rβ
s (X)

}

(14.56)
The Jacobian matrix elements Jij;αr vanish unless Γ(α) × Γ(β) contains the iden-
tity. If so, these matrix elements are the Clebsch-Gordan coefficients that couple
{
Rα

r (X)×Rβ
s (X)

}
to the invariant(s) that can be projected out. The coefficient of

this invariant is the linear combination of invariant functions
{
∑

j Jij;αrfj;βs(p)
}

.

14.4 CONTINUATIONS

Analytic continuation of functions of a complex variable plays an important role in
pure and applied mathematics,experimental and theoretical physics,and the engineer-
ing disciplines. The classical formulation of analytic continuations involves complex
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variable f(z) = u+ iv, where z = x+ iy, singularities, and some magic involving
somehow bypassing or avoiding the singularity in an elegant way. We have found all
three ingredients in some of our applications of local diffeomorphisms to the theory of
dynamical systems. These have involved the rotation groups Cn. Many other groups
can be used to map equivariant to image systems, or lift image systems to equivariant
covers. We would therefore expect that the concept of “analytic continuation” can
be extended beyond the applications to rotation groups Cn and the complex variable
z = x+ iy on which they act.

In this expectation we are correct. Analytic continuation can be extended to a more
general setting involving dynamical systems, groups, and topology. In two different
ways, in fact. One is “topological continuation”, the other is “group continuation.”
These are illustrated by application to a flow represented by a particular branched
manifold—the figure 8 branched manifold, in Sections 14.4.2 and 14.4.3. First,
we review the basic idea of analytic continuation so that the resonance between the
classical theory of analytic continuation of complex functions and the newer theory
of topological and group continuation of flows can be highlighted.

14.4.1 Analytic Continuation

A function of a single complex variable z is said to be analytic on a domain if
it is differentiable and satisfies the Cauchy-Riemann conditions everywhere on the
domain. Analytic functions are very highly constrained: they have a very rich, rigid,
beautiful set of properties. The cost for this is that they form a very restricted set of
functions defined on the complex plane. Most functions on the complex plane are
functions of the complex variable z and its conjugate z while analytic functions do
not depend on z.

One of the beautiful properties of analytic functions is the property of analytic
continuation. If

• f1(z) is analytic on a domain D1 in the complex plane
• f2(z) is analytic on a domain D2 in the complex plane
• The domains overlap in an open set: D1 ∩D2 6= φ
• f1(z) = f2(z) for all z ∈ D1 ∩D2

then f1(z) is called “the analytic continuation” of f2(z) to domainD1, and by symme-
try f2(z) is called the analytic continuation of f1(z) to domainD2. If a function has
an analytic continuation to some domain, that analytic continuation is unique. There
is an “existence and uniqueness” theorem for analytic continuations (if it exists, it is
unique).

Example: The factorial function

n! = 1× 2× 3× · · · × n (14.57a)

is one of the workhorses of mathematics and physics. It is defined recursively as
a multiplicative function for all the positive integers n = 1, 2, . . . . Its value for
n = (1, 2, 3, 4, 5, . . . ) is n! = (1, 2, 6, 24, 120, . . . ). It is also useful to define 0! = 1.
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The first step in generalizing this function is to construct an integral representation
for it:

(n− 1)! = ΓM (n) =

∫ ∞

0

e−ttn−1dt n integer, n > 0 (14.57b)

The second equality is the definition of ΓM (n). The first equality is demonstrated by
carrying out a succession of integrations by parts.

This function can be extended from the positive integers to the real numbers by
replacing n→ x:

ΓI(x) =

∫ ∞

0

e−ttx−1dt x real, x > 0 (14.57c)

This reduces to ΓM (n) for x→ n.
This gamma function was extended off the real axis into the positive half of the

complex plane by Euler, by replacing x→ z:

ΓE(z) =

∫ ∞

0

e−ttz−1dt z complex, Re z > 0 (14.57d)

The integral over t remains along the positive real axis. The complex function defined
by Eq. (14.57d) is analytic.

Euler defined a version of this complex function in the form of a multiplicative
limit

ΓEM (z) = lim
n→∞

nz

z

(0 + 1)(0 + 2)(0 + 3) · · · (0 + n)

(z + 1)(z + 2)(z + 3) · · · (z + n)
(14.57e)

for all values of z except for the negative integers and 0: z 6= 0,−1,−2, · · · . It
is possible to show that ΓEM (z) = ΓE(z) in the positive half plane. Therefore the
multiplicative limit ΓEM (z) is an analytic continuation of Euler’s gamma function
ΓE(z) into the entire complex plane except for z − 1 a negative integer.

Obsevation: Each extension ΓM (n) → ΓI(x) → ΓE(z) → ΓEM (z) can be
regarded as a “continuation”. The last is an analytic continuation. The function
ΓEM (z) is unique although its representation (as a limit) is not. In practice, ΓEM (z)
is computed by extending ΓE(z) from the positive half plane into the negative half
plane by successively applying the continuation formula

ΓEM (z)ΓEM (1− z) =
π

sinπz
(14.57f)

The complex gamma function has an elegant representation as a sum over simple
poles:

ΓEM (z) =

∞∑

n=0

An

(z + n)
(−1)nn!An = 1 (14.57g)

It may be objected that this representation of the gamma function is “recursive” in
that it is defined in terms of itself (n!), but this is not the case, as it is defined in terms
of the factorial function defined for the positive integers (and 0) given in Eq. (14.57a).
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Fig. 14.4 Branched manifold for the figure 8 knot. This branched manifold describes a
dynamical system that is equivariant under the symmetry group RZ(π). The transition matrix
indicates the connectivity of the branches of this template.

14.4.2 Topological Continuation

The very first branched manifold described by Birman and Williams in [15] is the
branched manifold of the figure 8 knot. This branched manifold is shown in Fig.
14.4.

This branched manifold arises in a very natural way. Imagine a current flowing
through a straight wire. The current flow generates a magnetic field. All magnetic
field lines are closed. They are circles in planes perpendicular to the wire. If the wire
is deformed, most of the closed field lines (analogous to periodic orbits in a dynamical
system) are destroyed. If the wire is deformed into a figure 8 knot, a countable subset
of closed field lines is not destroyed. These closed field lines are organized in a very
specific way with each other. Their organization can be specified by their mutual
linking numbers. In fact, Birman and Williams argue that all closed field lines can be
homotoped to the branched manifold shown in Fig. 14.4. Homotoping is a continuous
deformation in which the closed lines undergo no self- or mutual intersections. Thus,
their topological organization is uniquely specified by the branched manifold.

The figure 8 knot, and its branched manifold, can be exhibited in a way that makes
the rotation symmetry explicit. The branched manifold has eight branches, (a0, a1),
(b0, b1), and the symmetry-related branches (α0, α1), (β0, β1). These are shown in
Fig. 14.4. The branch line a is the source for flows through branches a0 and a1;
similarly for the other three branch lines and six branches. As usual, a trajectory is
labeled by the branches through which it travels.

There are four fundamental (lowest period) orbits, which may be taken as (a0b0),
(α0β0), and (a1α1), (b1β1). The linking numbers of these periodic orbits with the
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Fig. 14.5 Image of the branched manifold of the figure 8 knot and its transition matrix.

symmetry axis are
a0 b0 0
α0 β0 0
a1 α1 +1
b1 β1 −1

The symmetry of this dynamical system can be reduced by modding out theRZ(π)
symmetry. This has the effect of identifying the branches a ↔ α and b ↔ β. The
resulting branched manifold without symmetry is shown in Fig. 14.5. The image
system has four branches and three fundamental orbits

α0 β0 0
α1 +1
β1 −1

The flows on the cover branched manifold in Fig. 14.4 and the image branched
manifold in Fig. 14.5 are locally diffeomorphic. There is a 2 → 1 relation between
them.

This branched manifold, with four branches and two branch lines, has many in-
equivalent double covers. One is the original branched manifold of the figure 8 knot.
Other inequivalent covers can be constructed by changing the topological index ¯̄n,
changing the groupG,or changing both. The index for the image is three-dimensional:
¯̄n = (n(α0β0), nα1 , nβ1).

The image branched manifold shown in Fig. 14.5 has topological index

¯̄n(n(α0β0), nα1 , nβ1) = (0,+1,−1) (14.58)

If we construct a double cover of this branched manifold with this index, we recover
the original figure 8 branched manifold when G = RZ . However, it is possible to
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Fig. 14.6 Another lift of the image branched manifold shown in Fig. 14.5. This cover retains
the original symmetry group RZ(π) of the branched manifold of the figure 8 knot, but has a
different topological index. The transition matrix differs from that shown in Fig. 14.4.

place the rotation axis in many other places. For example, if we move the rotation
axis so that the topological index is

¯̄n(n(α0β0), nα1 , nβ1) = (0, 0,−1) (14.59)

the double cover is topologically distinct from the original branched manifold in Fig.
14.4. The double cover obtained in this way is shown in Fig. 14.6. Its transition matrix
is presented also. This branched manifold has: four branch lines; eight branches; and
five fundamental orbits—a1, α1, (a0, b0), (α0, β0), (b1, β1).

The image branched manifold Fig. 14.5 and its two double covers Fig. 14.4 and Fig.
14.6 are all locally diffeomorphic. The double covers are topological continuations
of each other. They both cover the same image and have the same symmetry, but the
singular sets of their local diffeomorphisms have different topological indices with
the image. The image has many other double covers withRZ symmetry, each with a
different topological index. All are topological continuations of each other. All have
different transition matrices.

14.4.3 Group Continuation

The image branched manifold in Fig. 14.5 can be lifted to a double cover with inversion
symmetryP . This lift is shown in Fig. 14.7. Its transition matrix is the same as that of
the original figure 8 branched manifold shown in Fig. 14.4. The branched manifolds
of Fig. 14.4 and Fig. 14.7, and the flows they represent, are group continuations of
each other.

The general case is as follows. Two dynamical systems, D1 and D2, with equiv-
ariance groups G1 and G2, are group continuations of each other if the two groups
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Fig. 14.7 A cover of the image branched manifold shown in Fig. 14.5. This cover has
symmetry group P . It is a group continuation of the original branched manifold of the figure
8 knot, which has symmetry group RZ(π) and is shown in Fig. 14.4. Both covers have the
same transition matrix. The transition matrices in Fig. 14.4 and this figure are distinct, but
equivalent, ways to present the same information.

have the same order and diffeomorphic imagesD when the symmetry is modded out.
These conditions can be represented as follows

D1

G1
→ D ← D2

G2
(14.60)
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15.1 COVERS AND IMAGES

Cover-image relations occur naturally whenever a g → 1 (g ≥ 2) local diffeomor-
phism can be constructed and used to lift a strange attractor in R

n (n ≥ 3) to a g-fold
cover in R

n. Local diffeomorphisms can be constructed algorithmically whenever a
symmetry group of order g = |G| is identified and its action on R

n is given through
a defining representation (cf. Chapters 3–6).

We have studied the cover-image relation primarily in R
3 for two important rea-

sons. Most of the strange attractors that have been studied so far exist in R
3. More

importantly, chaos in three dimensions is reasonably well understood by now [33,34];
this is not the case for chaos in dimensions n > 3.

389
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Strange attractors in R
3 are conveniently described by the branched manifold they

project to under the Birman-Williams identification. If the branched manifold of an
image attractor hasm branches b1, b2, · · · , bm and n branch lines l1, l2, · · · , ln, then
its G-equivariant cover is described by a branched manifold withm× g branches and
n× g branch lines. Each branch in the cover is described by two indices: bi and gj .
Each of the g branches (bi, gj), j = 1, 2, · · · , |G| maps to the same branch bi in the
image. Under the action of the symmetry group operation gk, the branch (bi, gj) is
mapped to the branch (bi, gkgj):

gk(bi, gj) = (bi, gkgj)

Similar statements hold for the branch lines in the G-equivariant cover and its image.
A strange attractor can be lifted to many inequivalent covering strange attractors,

each with the same equivariance group G. These inequivalent strange attractors can
be distinguished by an index. We have introduced the index as a topological quantity,
but in fact it is really an algebraic quantity. The index is equivalent to a transition
matrix: it specifies the connectivity between the branches (bi, gj) and (bi′ , gj′), or
equivalently between the branch lines (li, gj) and (li′ , gj′). A transition matrix in the
cover is allowed if, under the g → 1 local diffeomorphism to the image, it projects
to the transiton matrix describing the image branched manifold. We can rephrase
this condition as follows: The index of a cover is a matrix. The spectrum of indices
allowed for a cover is the set of inverse images of the transition matrix for the image
branched manifold.

The symmetry group G serves to provide labels that distinguish among the g lifts
of each branch bi and each branch line lj . Pairs of group elements serve to identify
the nonzero matrix elements in the transition matrix for the cover. Transitivity under
the group action serves to place constraints on the allowed covers.

There are other ways to achieve these ends. One of them will be described at length
in this chapter. In some sense it is more satisfying than the approach using symmetry
groups, as the spectrum of indices in the cover is generated by the dynamics itself,
rather than by a symmetry.

This alternative approach depends on “bounding tori” [124,125]. These are smooth
surfaces that surround strange attractors, or more precisely, the branched manifolds
that characterize them. Bounding tori can be constructed algorithmically and enu-
merated systematically. They organize the branched manifolds that can exist within
them in the same way that branched manifolds organize the unstable periodic orbits
that they carry (“within them”). There is a much richer variety of bounding tori
than equivariant covers. And there are many g → 1 local diffeomorphisms among
bounding tori with the proper properties. We turn our attention now to bounding tori.

15.2 BOUNDING TORI

Our description of “equivariance without groups” will be carried out for strange
attractors in R

3 because all the apporpriate tools are available in this dimension.
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15.2.1 Strange Attractors in R3

Three-dimensional strange attractors have a spectrum of three Lyapunov exponents
that satisfy λ1 > 0, λ2 = 0, λ3 < 0, where the sum of the three exponents is less
than zero. As a result, the Lyapunov dimension dL = 2 + ε < 3, where ε = λ1/|λ3|.

The Birman-Williams theorem has been a powerful tool for the analysis of such
strange attractors. Essentially, this theorem identifies all points with the same future.
Equivalently, points along the same stable manifold are projected down along this
manifold to a point on an unstable manifold. This projection has two types of singu-
larities: branch lines and splitting points. Flows from different parts of the attractor
come together at branch lines, and flows on different “sides” of splitting points go
to different parts of the attractor. The image of the flow under the Birman-Williams
projection is a semiflow—a flow with a unique future but not a unique past. The
semiflow exists on a caricature of the strange attractor—a two-dimensional structure
that is a manifold almost everywhere. It is called a branched manifold.

Branched manifolds were originally introduced in order to provide an organi-
zational structure for all the unstable periodic orbits in a strange attractor [14, 15].
Subsequently they have been used to identify and to characterize strange attractors
[87,127]. Information about branched manifolds can be extracted from experimental
data [89].

The objective of this section is the construction of two-dimensional boundaries
surrounding (or containing) branched manifolds. These boundaries play the same
role for branched manifolds as branched manifolds play for periodic orbits in strange
attractors. The boundaries are “branched manifold organizers.”

15.2.2 Blow-Ups of Branched Manifolds

Strange attractors are generated by vector fields. A vector field, for example, is the
set of three forcing functions (f1, f2, f3) that define a deterministic flow in any of
the three-dimensional dynamical systems treated so far in this work. Singularities of
vector fields are points at which the vector field has a zero (fixed point): (f1, f2, f3) =
(0, 0, 0). A singularity is isolated, or nondegenerate, if it does not split into two or
more singularities under perturbation. The fixed points of the vector field play a
major role in organizing the structure of the flow that is generated by the vector
field [100]. When the vector field generates a strange attractor, that attractor can be
projected down to a semiflow on a branched manifold. There are no fixed points in the
semiflow. In fact, the flow on the branched manifold is everywhere bounded above
zero. The structure of the branched manifold is determined to a great extent by the
distribution of the singularities of the vector field.

Remark: In the work that follows the only singularities that we consider are the
zeroes of the vector field. We explicitly do not consider discontinuities, points of
nondifferentiability, or poles of vector fields.

It is useful and also possible to partition R
3 into two parts. One part contains all

the singularities of the vector field that generates the flow; the other part contains
the branched manifold that is a rigorous caricature of the strange attractor. This is
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done as follows [125]. Each point in the branched manifold is surrounded by a small
open ball of radius ε. The union of these open balls is a three-dimensional manifold
because all of the singularities in the branched manifold (splitting points and branch
lines) have been eliminated by this smoothing. This three-dimensional manifold fits
over the branched manifold like a glove over a hand. This manifold is an attracting
manifold for the semiflow on the branched manifold. The attracting manifold has the
following properties:

Trapping: Once a trajectory enters the attracting manifold, it never escapes.
Relaxing: Points within the attracting manifold approach the attractor exponentially

fast.
Singularities: The vector field within the attracting manifold has no singularities.
Boundary Is Orientable: The boundary of the attracting manifold is two-sided. The

branched manifold is on the inside and all the singularities of the vector field
are on the outside.

15.2.3 The Boundary

The boundary is two-dimensional and two-sided: there is an inside and an outside.
The inside contains the attractor. The outside contains the singularities of the flow.
Once a trajectory passes through the boundary (only one direction of passage is
possible) it is trapped inside forever, and rapidly (exponentially, with exponent λ3)
“falls” to the branched manifold under the flow that limits to the semiflow on the
branched manifold.

Since this surface is the boundary of a three-dimensional manifold, it has no
boundary itself. This is a result of a powerful theorem of topology: the boundary of
a boundary is empty [108].

There is something magic about two-dimensional surfaces without boundaries.
They have all been classified [134]. The subset of orientable (two-sided) two-
dimensional manifolds without boundary consists of the sphere (torus with no holes),
the torus (with one hole), and the torus with g holes. These are collectively called
tori with g holes, or genus-g surfaces, g = 0, 1, 2, · · · . All tori with g holes are
topologically equivalent. “The” torus with g holes is not equivalent to the torus with
g′ holes, g 6= g′. The three-dimensional manifold surrounded by a torus with g holes
is called a genus-g handlebody.

The branched manifold describing any three-dimensional strange attractor is em-
bedded in a genus-g handlebody that is bounded by a genus-g torus.

This classification is intrinsic. A more refined classification describes the extrinsic
classification: how the genus-g surface is embedded in R

3 or M
3. At present this is

an open problem for genus-g bounding tori. However, this problem has been solved
in the genus-one case. The extrinsic classification of genus-one tori will be described
in Section 16.5.
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15.2.4 Euler Characteristic

There is a beautiful result of a topological nature that allows us to classify these
boundaries in a simple and elegant way. This is a topological index (an integer), first
proposed by Euler [5]. This index is called the Euler characteristic of a manifold. We
describe it briefly for a bounded two-dimensional manifold. It generalizes to higher
dimensional bounded manifolds easily.

Every bounded two-dimensional surface can be “triangulated.” That is, it is ap-
proximated by a series of triangles. Adjacent triangles share common points and
edges. The Euler characteristic for a surface is

χ(S) = N0 −N1 +N2 (15.1)

The characteristic is the alternating sum of the number of points or vertices (N0), the
number of edges (N1), and the number of triangles (N2). In this triangulation, or
approximation by simplices, the alternating sum is independent of the triangulation
used.

Boundaries of the attracting manifolds constructed above are tori of genus g. All
genus-g tori are topologically equivalent. The Euler characteristic of a torus of genus
g is [5]

χ(genus g torus) = 2− 2g

This integer plays a fundamental role in our classification of dynamical systems in
R

3 whose dynamics is more complicated than simple stretch-and-fold dynamics.

15.2.5 Poincaré-Hopf Index Theorem

The Euler characteristic of a manifold is an incredibly powerful tool, due in part to
a theorem by Poincaré, the Poincaré-Hopf index theorem. This theorem relates the
singularities of a vector field on a manifold with the topological index of the manifold.

Many different vector fields can be defined on a manifold S. Each vector field on
a manifold has an index. This is the sum over the indices of each of its nondegenerate
singularities. Each isolated singularity has an index that is related to its stability.
The index of an isolated singularity is (−1)nu , where nu is the number of unstable
(positive) eigenvalues of the flow,linearized at the singular point—that is, the Jacobian
evaluated at the singularity. The Poincaré-Hopf index theorem states [5]

∑

all singularities

(−1)nu = χ(S) (15.2)

That is, the sum over all isolated singularities of a vector field defined on a manifold
S is equal to the Euler characteristic of the manifold. The result is independent of
vector field: it holds for all vector fields on S.

This beautiful result is important because it relates dynamics (vector fields) with
topology (Euler characteristic). We use this result below to place constraints on the
types of flows that can support strange attractors in R

3.
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15.2.6 Surface Singularities

Flows can be constructed that limit to the semiflow on the branched manifold. These
flows obey the standard conditions on the Lyapunov exponents: λ1 > 0, λ2 = 0, λ3 <
0 and λ1 + λ2 + λ3 < 0. Since there are no fixed points on the branched manifold,
these flows in R

3 have no singularities inside the boundary just constructed, by con-
tinuity. However, they can be restricted to the boundary [125]. The flow, restricted to
the boundary, usually does have singularities. These occur naturally when the flow
intersects the boundary perpendicularly. When this occurs, the flow direction is per-
pendicular to the boundary, and the flow, restricted to the boundary, appears to have
a fixed point on the boundary. This fixed point must be a saddle, since it inherits the
remaining two Lyapunov exponents λ1 > 0 and λ3 < 0 along the eigendirections,
locally tangent to the surface at the singularity. As a result, all singularities of the
flow, restricted to the two-dimensional genus-g surface, are saddles. This geometry
is illustrated in Fig. 15.1 [124,125].

For our purposes S is the boundary surrounding a branched manifold: a genus-g
surface. The Euler characteristic of a genus-g surface is χ(genus g) = 2− 2g. The
vector field is any that limits to the semiflow on the branched manifold. Such a vector
field can have singularities when restricted to the surface S. Every such singularity
has index−1 since nu = 1. As a result, the number of singularities on the surface is
exactly 2g − 2, since

∑

singularities on S

(−1)1 = 2− 2g (15.3)

Example: Two representations of the Lorenz attractor are shown in Fig. 15.2.
Fig. 15.2(a) shows the standard “masked” branched manifold, surrounded by a torus
with two holes. The vector field, restricted to this torus, has singularities at the two
points marked × on the Z-axis. For this representation g = 2 and 2g − 2 = 2.
Fig. 15.2(b) shows an “induced” representation of the Lorenz attractor, as previously
discussed in Chapter 6. In this case there are no singularities on the outer boundary
of this torus. Neither are there any singularities for the flow around the holes on the

Fig. 15.1 Flows surrounding a branched manifold induce singularities on the torus that
encloses the branched manifold. This torus has three holes, two surrounding the foci on the
left and the right, one surrounding the regular saddle in the middle.
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(a) Standard mask (b) Induced representation

Fig. 15.2 Genus-g surfaces surrounding two representations of the Lorenz strange attractor.
(a) The branched manifold for the standard masked representation of the attractor is enclosed
in a torus with two holes on which the flow has two singularities. The two singularities occur
where the Z-axis pierces the genus-2 bounding torus. They occur on the exterior boundary in
this projection. (b) The branched manifold for the induced representation of this attractor is
enclosed in a torus with three holes. The flow has four singularities on this genus-3 surface. The
four singularities have been moved to the edge of the middle inner hole in this projection. The
middle hole has been formed by removing a thin tube surrounding the Z-axis from the genus-2
bounding torus, and following the deformation shown in Fig. 15.3. The round holes exclude
the two unstable foci from the interior of the bounding torus. The “square hole” excludes the
regular saddle at the origin.

left and the right. However, the hole in the middle shows four singularities. These
have been emphasized by drawing sharp corners on this hole. This hole is obtained
by removing the Z-axis from R

3, and then twisting either of the lobes by π radians
in an appropriate direction. For this representation g = 3 and 2g − 2 = 4. The
deformation that transforms Fig. 15.2(a) to Fig. 15.2(b) is shown in Fig. 15.3.

15.3 CANONICAL FORM

In this section we develop a useful way to classify flows that generate strange attractors
in R

3. Specifically, we introduce a canonical form to describe the flow. We use as
the prototype of a canonical the bounding torus shown in Fig. 15.2(b).

A canonical form has two aspects: topological and dynamical.
At the topological level we project a genus-g torus onto a plane in such a way

that the projection shows a disk boundary with g interior holes. Such a projection
can always be constructed by suitably deforming the torus. This projection carries
topological information but no dynamical information.

At the second level of detail we dress the projection with flow information. This
introduces a dynamical component into the canonical form. In the projection, all
singularities occur either on the disk outer boundary (cf. Fig. 15.2(a)) or on one or
more interior holes. In the canonical form all singularities are moved to the interior
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(a) (c)

(d)(b)

Fig. 15.3 Transformation of the branched manifold for the Lorenz attractor from the standard
Lorenz “mask” form to the “induced” form is done by carrying out a series of simple topological
transformations (a) → (b) → (c)→ (d).

holes. Specifically, we adopt the following convention for the projection of the flow
on a canonically dressed genus-g torus onto a disk with g holes in the plane [124]:

a. There are no singularities on the disk outer boundary. The flow is in a single
direction around this exterior boundary.

b. All singularities occur on the interior holes. Holes with singularities have an even
number of singularities: 4, 6, · · · .

c. The flow around any interior hole without singularities is in the same direction as
the flow on the boundary.

The dressed torus in Fig. 15.2(a) is not canonical while that in Fig. 15.2(b) is
canonical.

Canonical forms are useful because they can be classified and enumerated. It is
always possible to construct a canonical projection. We describe how in a number of
different ways, and give several examples.

Each hole in a projection surrounds a point in the vector field on R
3 that has a

singularity. For example, the two “round holes” in Fig. 15.2(b) exclude the two foci
of the Lorenz flow from the attracting manifold containing the strange attractor. The
“square hole” in the middle, with four singularities, excludes the saddle at the origin.
More generally, holes without singularities surround foci and holes with singularities
surround saddles (four singularities) or degenerate singular points. A degenerate
critical point with any kind of n-fold symmetry is surrounded by a hole with 2n
singularities.

Foci have handedness. If you extend the fingers of your right hand around the
focus in the flow direction, your thumb points along the rotation axis in the “positive”
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(b)

(c)
Fig. 15.4 (a) The flow generated by the Lorenz equations can be projected onto a twisted
sheet in such a way that the spins of the two foci are on the same side of the sheet. (b) When the
twisted sheet is untwisted, the flows around the exterior boundary and the two interior holes
without singularities are in the same direction. All four singularities are on the interior hole
in the middle. (c) This simple graphic representation serves as a canonical form for the flow
restricted to the genus-g boundary of an attracting manifold containing the branched manifold
for the Lorenz attractor.

direction (by convention). The plane, or any smooth deformation of it, also has two
sides. They can be called up and down, or positive and negative.

A canonical projection can be constructed as shown in Fig. 15.4. Pass a two-sided
surface through each of the foci in such a way that the positive axis of each focus
is on the positive side of this surface. Then deform the surface to a plane. This
automatically generates a canonical form for the flow.

If canonical forms exist for all flows, then even the most complicated branched
manifold that we have encountered can be transformed to this form. The prime
candidate here is the figure 8 branched manifold, shown in Fig. 15.5. A schematic
representation of this branched manifold is shown in Fig. 15.5(a). This schematic rep-
resentation contains no torsion information. In fact, dressed tori are compatible with
many different torsions within each branch or flow region. The torsion information
is suppressed mostly to make the figures simpler to draw and easier to understand.

Two of the branches are redrawn in Fig. 15.5(b) to exhibit clearly the periodic
boundary conditions that exist in this flow. This allows us to wrap the flow around a
cylinder, as shown in Fig. 15.5(c). The representation in Fig. 15.5(c) could have been
inferred from that in Fig. 15.5(a) directly, but it is easier through the intermediary
shown in Fig. 15.5(b). Looking from along the axis of the cylinder, and flattening
the flow down along the line of sight, provides a schematic of the flow as shown in
Fig. 15.5(d). A simple pair of moves takes us from there to the representation of Fig.
15.5(e). By moves similar to those given in Fig. 15.4, we obtain Fig. 15.5(f) from
Fig. 15.5(e). The canonical form for the flow on the figure 8 branched manifold is a
“pinwheel” with four wings [124].
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(a)

~

~

(b)

(c) (d)

(e) (f)

Fig. 15.5 (a) Schematic representation of the figure 8 branched manifold (b) has periodic
boundary conditions. This means that the flow (c) can be wrapped around a cylinder, and
then (d) flattened when viewed along the axis of the cylinder. (e) Two moves convert this
representation into (f) a pinwheel with four wings.

15.4 PROPERTIES OF THE CANONICAL FORM

It is always possible to find a projection of a genus-g surface onto a two-dimensional
surface that has a standard form. The standard form consists of a disk with an outer
boundary and with g interior holes. Every disk with g holes is equivalent to every
other disk with g holes: this is merely a reflection of the fact that all (intrinsic) genus-g
surfaces are topologically equivalent.

This equivalence disappears when the genus-g surface is dressed with a flow. A
genus-g surface can be dressed in many inequivalent ways with a flow having exactly
2g− 2 singularities. This is true even for canonically dressed surfaces. However, the
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canonically dressed surfaces can be classified, described, and counted. We actually
classify the projections of these dressed tori on two-dimensional surfaces.

The enumeration depends on the properties of the canonically dressed surfaces.
In fact, canonically dressed surfaces have a rather rigid structure. The structure and
properties of these surfaces, and the flows on them, are described in this section.

15.4.1 Disk Boundary

For the canonical form, the flow on the disk outer boundary is unidirectional. There
are no singularities on the boundary.

15.4.2 Interior Holes of Two Types

There are g interior holes. All singularities occur on these holes. There are two types
of interior holes.

1. There are n1 holes without singularities. The flow is in a uniform direction
around such holes. In the canonical form the flow around these holes is in the
same direction as the flow around the disk outer boundary. These interior holes
surround part of the vector field on R

3 outside the torus with a singularity of
focus type. The circulation around the focus is determined by the flow direction
around the hole.

2. There are n2 holes with singularities. There is always an even number of
singularities, starting with 4 [124]. A hole with four singularities surrounds
a regular saddle in the vector field external to the torus. Holes with 6, 8, · · ·
singularities surround a degenerate saddle, of the type that possesses symmetry
group C3, C4, · · · . These degenerate critical points perturb to a spectrum of
nondegenerate saddles with the same index. All singularities come in pairs:
one member (s) of each pair splits flows into two separate regions, the other
member (j) shows where flows from two different regions join. A hole with
2n singularities is surrounded by n pairs of (s, j) singularities. Each pair is
associated with a nearest-neighbor “round” hole.

We show interior holes with 0, 2, 4, and 6 singularities in Fig. 15.6. The hole
in Fig. 15.6(a) has no singularities. It separates a focus from the flow. The flow
inside the boundary bears an imprint of this focus outside the boundary. The regular
saddle shown in Fig. 15.6(c) induces four singularities on the hole surrounding it.
This saddle also leaves its imprint on the structure of the flow in its neighborhood.
The three-fold degenerate saddle shown in Fig. 15.6(d) induces 2×3 singularities on
the surrounding hole. This degenerate saddle also provides an unmistakable imprint
on the structure of the flow in the interior of the embedding manifold.

Holes supporting only one (s, j) pair of singularities do not have the same prop-
erties as holes with 0, 4, 6, · · · singularities. As shown in Fig. 15.6(b) they do not
leave an imprint on the surrounding flow. They can be removed by “zipping them
up.” That is, we identify the two boundaries connecting the s and j singularities.
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(a) 0 singularity

s

(b) 2 singularities

jj

s

s

(c) 4 singularities

s

s

s

jj

s

(d) 6 singularities

Fig. 15.6 Interior holes with (a) 0, (b) 2, (c) 4, and (d) 6 singularities. Only holes with 2
singularities can be removed without changing the asymptotic structure of the flow.

Holes with two singularities can be encountered for a number of reasons. They are
often drawn in representations of the standard Smale horseshoe branched manifold
to allow easy distinction between the two branches. Such holes do not exist except
in the hyperbolic limit, which has never been observed in experimental data, or even
in simulations of ordinary differential equations. Such holes can be observed when
a large number of orbits have been pruned away. They can be observed in Rössler
dynamics and in the Shimizu-Morioka attractor for some parameter values. They are
encountered in short data sets. They also occur around real and virtual saddle-node
pairs, as shown in Fig. 15.6(b). In all these instances, holes with two singularities can
be topologically zipped up. The two singularities and the hole they are on disappear
without changing the aysmptotic properties of the flow.

Round holes and “square” holes (i.e., with singularities) show clearly how the flow
in the canonically dressed torus is organized. The total number of holes is the genus
of the torus:

n1 + n2 = g

n1 > n2 ≥ 1
(15.4)
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Two inequivalent canonically dressed genus-5 tori are shown in Fig. 15.7. The
canonically dressed torus shown in Fig. 15.7(a) can be regarded as a 4-fold cover
of a Smale horseshoe branched manifold with symmetry group C4. For this cover
n1 = 4, n2 = 1. The “square” hole in the middle has eight singularities. One pair
is associated with each of the four uniflow holes. In each pair there is a splitting
singularity and a joining singularity. The canonically dressed torus shown in Fig.
15.7(b) can also be regarded as a 4-fold cover of a Smale horseshoe branched mani-
fold. It is a double cover of a double cover (cf. Figs. 6.35 and 6.36). For this cover
n1 = 3, n2 = 2. The two square holes each have four singularities, or two pairs
of singularities. In each pair there is a splitting singularity and a joining singularity.
There is no diffeomorphism that maps the flow of Fig. 15.7(a) to that of Fig. 15.7(b).

Remark 1: The two flows are related by topological continuation under certain
conditions. Suppose the flow in each of these two genus-5 tori is related to a flow in a
genus-1 torus by a 4→ 1 local diffeomorphism. Then the flow in (a) can be mapped
in a 4→ 1 way onto the image flow, and the image flow can be lifted into the 1→ 4
cover in (b).

(a) (b)

Fig. 15.7 Two genus-5 dressed tori. (a) One of the four-fold covers of the Smale horseshoe
branched manifold, with C4 symmetry, can be enclosed by this surface. (b) This surface also
encloses a four-fold cover of the Smale horseshoe branched manifold. This is a double cover
of a double cover (cf. Figs. 6.35 and 6.36). The cover itself has only a two-fold symmetry.

Remark 2: Although there is a vast variety of canonical bounding tori, two classes
occur sufficiently often that they deserve labels. One class consists of “cyclic bound-
ing tori” with n round holes and a single hole with 2n singularities. Genus-(n+ 1)
bounding tori with this structure are labeled Cn. The bounding torus C4 is shown
in Fig. 15.7(a). The other class is “linear” with n round holes separated by n − 1
“square holes” with four singularities each. Genus-(2n− 1) bounding tori with this
structure are labeled An. The bounding torus A3 is shown in Fig. 15.7(b).

15.4.3 Homotopy Group

Of the genus-g surfaces, only the sphere (g = 0) is simply connected. All others are
multiply connected.
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A genus-g surface has a homotopy group with 2g generators. The generators can
be regarded as simple closed loops in the torus that cannot be continuously deformed
to a point. Neither can any be deformed to any other, or to a “linear” combination of
others [108,134].

The 2g generators of a homotopy group split into two subsets, each containing g
generators. These are called meridians and longitudes. Meridians and longitudes for
a genus-g torus are shown in Fig. 15.8.

L1 L 2
L g

M  gM  2
M  1

Fig. 15.8 Longitudes Li and meridians Mj for a genus-g torus.

When the torus is dressed with a flow, the meridians and longitudes pick up a
dynamical as well as a topological meaning. When the dressing is canonical, the
properties of the generators become very powerful tools for studying the flow.

Meridians and longitudes on genus-g tori have the following properties. These are
topological properties, independent of flows.

1. The g meridians can be chosen in such a way that they are pairwise noninter-
secting.

2. The g longitudes can be chosen in such a way that they are pairwise noninter-
secting.

3. Every longitude intersects each meridian at most once.
4. Every meridian intersects each longitude at most once.
5. Each meridian intersects at least one longitude, and vice versa.

Meridians and longitudes on canonically dressed genus-g tori (g > 1) have an
additional set of properties. These are dynamical properties, directly related to the
flow.

1. One longitude can be chosen around each of the g interior holes.
2. The inner product v· ds is positive everywhere along each longitude around a

uniflow hole. Here v is the vector field, restricted to the bounding torus, and
ds is the element of arc length along the longitude.

3. The inner product v· ds alternates in sign along a longitude around an interior
hole with singularities.

4. All g meridians can be chosen in such a way that they bound two-dimensional
surfaces inside the torus on which the flow is everywhere nonzero. In particular,
the flow passes through the disk bounded by each meridian always in the same
direction, as shown for the genus-1 torus in Fig. 15.9.
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Fig. 15.9 Meridians bound disks that can be chosen transverse to the flow. These disks
are components of the global Poincaré surface of section. Longitudes surround each of the g
interior holes, and can be chosen to “follow the flow” (v·ds > 0) around each of the interior
uniflow holes.

5. Any trajectory generated by the flow can be specified by the sequence of its
intersections with the g surfaces bounded by the g independent meridians. In
fact, if g > 1, all but one of the g meridians connect a uniflow hole with
the boundary. The remaining meridian, and the surface it bounds, provide
redundant information and can be eliminated for dynamical purposes.

6. The g − 1 surfaces bounded by the g − 1 meridians connecting uniflow holes
with the boundary are the g − 1 components of the Poincaré section for the
flow.

Remark: Until now it has not been possible to state with precision what the
structure of the Poincaré section of a flow looks like. The last item in the list above
makes this clear, at least for flows in R

3: The Poincaré section for a flow that can
be enclosed in a genus-g torus consists of the union of g − 1 disjoint surfaces. Each
surface is bounded by a generator of the homotopy group. Specifically, each such
generator is a meridian that connects an interior uniflow hole with the disk boundary.

15.4.4 Further Properties

We have introduced bounding tori as branched manifold organizers. So far we have
not made much of a connection between branched manifolds and these tori. We now
make a useful connection, for the case g > 1. All branch lines can be moved so that
they occur in one of the g − 1 components of the Poincaré section.

In schematic representations of canonically dressed tori we will identify the g− 1
components of the Poincaré section with g − 1 branch lines for whatever branched
manifold is enclosed in the genus-g torus. In Fig. 15.7 these have been represented
as straight line segments connecting each internal uniflow hole with the disk exterior
boundary. There are four such line segments in each of the two genus-5 canonical
forms shown in that figure. A uniflow hole can share more than one line segments
with the boundary, as seen in Fig. 15.7(b).
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15.5 HOW TO CLASSIFY DRESSED TORI

Canonically dressed tori carry two pieces of information. The topological piece of
information is encoded entirely by the genus, g, of the torus. All genus-g tori are
topologically the same surface. Genus is the primary descriptor of canonically dressed
tori. The dynamical piece of information is encoded in the canonical flow used to
dress the genus-g surface. A genus-g torus can be dressed in many inequivalent ways.
The objective of this section is to develop methods for distinguishing among genus-g
tori that carry nondiffeomorphic dynamical flows. Three methods are presented.

The first method is based on the distribution of singularities among the n2 holes
with singularities. It leads to a partial classification by Young partitions and a complete
classification by words of length g − 1 based on n2 symbols. The second method is
based on uniflow holes and leads to a classification in terms of a sequence of integers
1, 2, · · · , n1 of length g − 1, with repetitions of some integers. The third approach
is based on the g − 1 components of the Poincaré section, or equivalently the g − 1
branch lines in these components. It leads to a classification in terms of sequences of
length g − 1 containing the integers 1, 2, · · · , k, where k ≤ n2.

In any canonically dressed torus the uniflow holes, singular holes, and branch lines
are related to each other in a unique way. This means that the three classification
schemes are fundamentally equivalent. However, for some purposes one is more
useful than the other two. It is for this reason that all three are presented.

Remark: The symbol sequence is generated by a walk around the exterior bound-
ary of the disk in the direction of the flow. This generates an infinite symbol sequence
that repeats itself after every g − 1 symbols. For this reason, we can argue that
bounding tori are classified by a “periodic orbit” of period g − 1.

15.5.1 Singular Holes

The interior holes in the projection of a canonically dressed genus-g torus are of two
types. There are n1 uniflow holes andn2 holes with singularities, wheren1+n2 = g.
Each hole with singularities has an even number of singularities, starting with 4. The
sum of all the singularities is 2g − 2.

The singularities come in pairs. There is one singularity of type s and one of type
j between a hole with singularities and each of its nearest neighbor uniflow holes.
Since singularities come in pairs, it is more economical to count the number of pairs
than the number of singularities. Specifically, a canonically dressed genus-g surface
has g − 1 pairs of singularities in the standard projection.

These pairs can be distributed among the n2 singular holes so that one hole has λ1

pairs, another has λ2, and so forth, with
λ1 ≥ λ2 ≥ · · · ≥ λn2 ≥ 2

λ1 + λ2 + · · ·+ λn2 = g − 1
(15.5)

These inequalites can be used to further refine the classification of canonically dressed
tori.
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Example: A torus has genus 9. It can be canonically dressed in a number of
different ways. Three different ways are summarized in Table 15.1. The partition
of 8 = 9 − 1 into a nonincreasing set of integers, all greater than 1, contains the
following partitions: (8), (6,2), (5,3), (4,4), (4,2,2), (3,3,2), (2,2,2,2). These sets are
represented by Young partitions, as is done to classify representations of permutation
groups and Lie groups. To each partition there corresponds at least one canonically
dressed flow. We note for later reference that for partitions with lrows there is a unique
correspondence between Young partitions and canonically dressed tori if l = 1 or
l = 2. We also note that a uniflow hole can be joined to the boundary by no more than
l branch lines. Uniflow holes connected to the boundary by 2 [(6,2), (5,3), (4,4)], 3
[(4,2,2)], and 4 [(2,2,2,2)] branch lines are explicitly shown in Table 15.1. The global
Poincaré surface of section for each canonical form in this table has eight (8 = g−1)
disjoint components. Only some are shown explicitly.

There are several different ways to encode canonically dressed tori. These encod-
ings are a useful way to discriminate among different canonically dressed tori with
the same Young partition.

In one approach a letter is assigned to each hole with singularities. For example,
the three singular holes associated with the Young partition λ = (3, 3, 2) are labeled
a, b, c. Starting on the disk boundary at some point, labeled × in Fig. 15.10, we
encounter all g = 9 holes, some more than once. In fact, we alternately encounter
uniflow holes and singular holes. Each time a singular hole is encountered its label
is written down. The number of times each label is encountered is determined by
the Young partition. For the canonical torus, the labeling, and the starting point
shown in Fig. 15.10 the sequence of encounters is abbbccaa. Continuing around
a second time reproduces this set of 8 = 9 − 1 symbols. In fact, this sequence
can be regarded as a periodic orbit of period eight containing λ1 = 3 symbols a,
λ2 = 3 symbols b, and λ3 = 2 symbols c. If some reasonable convention is adopted
(e.g., alphabetization) one of the eight symbol strings related to each other by cyclic

a b

c

x

abbbccaa

Fig. 15.10 For the canonical torus, the labeling, and the starting point shown above, the
sequence of encounters is abbbccaa. Any cyclic permutation of these 8 = g − 1 symbols
serves as a label for this canonical torus. We typically choose the alphabetically earliest
symbol sequence to name the canonical form: aaabbbcc.
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Table 15.1 Canonically dressed tori of genus 8 are described by Young partitions with n2

rows. One canonically dressed torus is provided for each of the allowed Young partitions with
eight boxes.

n2 λ Young Partition Canonical Torus

1 (8)

2 (6,2)

2 (5,3)

2 (4,4)

3 (4,2,2)

3 (3,3,2)

4 (2,2,2,2)
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permutation (i.e., changing the starting point) can be used to identify the periodic orbit,
and to represent the canonically dressed torus—uniquely! The unique identification
for this canonically dressed torus is aaabbbcc = a3b3c2, adopting the alphabetical
convention.

Other periodic words with 3a’s,3 b’s, and 2 c’s can occur. These are summarized in
Table 15.2. This table shows the four inequivalent flow distributions associated with
the Young partition λ = (3, 3, 2). They are uniquely associated with the “periodic
orbits” aaabbbcc, aaabbccb, aaabccbb, and aaacbbbc. Sinceλ1 = λ2, there is an a↔
b equivalence. This equivalence reduces the number of inequivalent flow distributions
associated with this (partially degenerate) Young partition.

As Table 15.2 makes clear, there is an isomorphism between the problem of con-
structing and identifying flow distributions and a polygon partition problem. The
problem can be framed in the following delightful way. The owner of an island wants
to sell lots on the island. The island has n units of waterfront. How many different
ways (up to cyclic permutation) can the owner divide the island into lots so that

1. every lot is connected
2. every lot has at least two units of shorefront.

The rules for allowed words will be presented at the end of this section, in a more
sympathetic language.

15.5.2 Uniflow Holes

A dual method for classifying flows with the same partition emphasizes the uniflow
holes rather than the singular holes. It is illustrated in Fig. 15.11. The starting point is
chosen arbitrarily (× in this figure). Following the flow on the boundary, the uniflow
holes are numbered in the order they are encountered. For the torus shown each
of the first five holes encountered was not previously encountered. However, the
uniflow hole encountered after hole 5 has already been numbered (3). The next hole

1

2 4

5

x

3

6

Fig. 15.11 Dual method for classifying flows with the same partition emphasizes the uniflow
holes rather than the singular holes. For the labeling and starting point shown, the dual label
is (12345363). By changing the starting point and numbering, the lowest possible sequence
is (12134156).
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Table 15.2 All canonically dressed flows described by words with 3 a’s, 3 b’s, and 2 c’s are
shown.

Dressed Flow Word Partition of Polygon

a b

c

x

a

bcc
c b

b

ba
a a

a

b

c

a
a

b
c

b

a a a b b b c c

a b

cx

a

b

b

a
a

c
c

ba a a b b c c b

a b

c

x

a

b

b

a
a

c
b

ca a a b c c b b

a c b

x

a

c

c

a
a

b
b

ba a a c b b b c
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hasn’t previously been encountered, and is labeled 6. The last hole to be encountered
has already been labeled (3). The sequence for this torus is (12345363). For this
torus n1 = 6, so that the largest integer encountered is 6. Moving the starting point
produces a different sequence of the integers1→ 6. One number is encountered three
times because one hole (numbered 3 in Fig. 15.11) has three branch lines attached
to it. The other integers are encountered once each, indicating that each of the other
uniflow holes is attached to a single branch line. By changing the starting point, the
lowest possible sequence is (12134156).

The relation between the symbol sequences of the canonically dressed tori associ-
ated with Young partitionλ = (3, 3, 2) based on the singular holes (previous section),
uniflow holes (this section), and branch lines (next section) is summarized in Table
15.3.

Remark: It is useful to choose the starting point and the hole labeling scheme
to achieve the “lowest possible” sequence. This is obtained for the canonical form
shown in Fig. 15.11 by choosing the starting point just above the circle hole 3, and
starrting the numbering from this hole. The lowest possible label for this canonical
torus is (12314156).

15.5.3 Branch Lines

The Poincaré section for a dressed genus-g torus has g − 1 components. In the
canonical projection these are represented as branch lines. The branch lines connect
uniflow holes with the disk boundary. Since there are g − 1 branch lines and n1 =
g − n2 uniflow holes, some of these holes are connected to the boundary by more
than one branch line if n2 > 1. None of the holes is connected to the boundary by
more than n2 branch lines. This is a simple consequence of counting.

The third way for identifying canonically dressed tori depends on the observations
made in the previous paragraph. Starting at any point on the disk boundary, follow the
boundary in the direction of the flow. The algorithm is illustrated in Fig. 15.12. Each
time a uniflow hole is encountered, indicate the total number of branch lines connected
to that hole. For the starting point indicated by × and the flow direction indicated

x

2

1

2

1 1

2

2

1

Fig. 15.12 Algorithm for identifying canonically dressed tori. For the labeling and the
starting point shown, this torus is identified by the symbol sequence (21121212). The lowest
cyclic permutation is (11212122).



410 SYMMETRY WITHOUT GROUPS: “TOPOLOGICAL SYMMETRY”

by the arrow in this figure, the integer sequence is 21121212. Continuing around
this path repeats this integer sequence. This pereiod-8 orbit can be labeled by its
“lowest” word (“alphabetic” ordering under cyclic permutation), which is 11212122.
The occurrence of the integer 1 four times means that four uniflow holes have one
branch line each. The occurrence of the integer 2 four times means that two uniflow
holes are connected by two branch lines (each) to the disk boundary. The total number
of branch lines is 8 = 9− 1 and the total number of uniflow holes is 6 = 4 + 2. The
genus is 9, the word length is 8, the number of singular holes is 3.

For the flows shown in Table 15.2 the encoding by this procedure is given in Table
15.3. This encoding is unique.

Table 15.3 Degeneracies of Young partitions can be lifted by encoding the periodic orbits
obtained by walking around the disk boundary in the direction of the flow. Encodings using
singular holes, uniflow holes, and branch lines for the Young partition λ = (3, 3, 2) are
compared.

Singular Holes Uniflow Holes Branch Lines

aaabbbcc 12134156 11311313
aaabbccb 12134536 11212122
aaabccbb 12134564 11221212
aaacbbbc 12314564 11221122

15.5.4 Allowable Orbits

The results of the previous three subsections make it clear that there is a one to one
correspondence between canonically dressed tori of genus-g and periodic orbits of
period g − 1. It is possible to infer the rules for allowed orbits. These rules are
presented for the encoding using branch line information, described in the previous
subsection. The rules are:

1. An allowed orbit is a sequence of g − 1 integers 1, 2, · · · , k, k ≤ [ 1
2 (g − 1)].

2. The integer n (n > 1) occurs in n-tuples.
3. Between any two successive n’s in an n-tuple there must exist at least one

integer 1.
4. Multiplets cannot interleave (cf. Fig. 15.13).
5. The smallest representative under cyclic permutation is chosen to represent the

periodic orbit.

Example: Fig. 15.14 shows a dressed torus of genus 9. The dressing has Young
partition λ = 24. The periodic orbits that describe this canonical form are aabccddb,
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3

2
No

3

Yes
2

Fig. 15.13 Multiplets cannot interleave.

a

c

b

d

1 2 3

4

5

Fig. 15.14 Dressed torus of genus 9. The dressing has Young partition λ = 24. It is identified
by the period-8 words: (aabccddb), (12131454), (12313132) under the three coding schemes
presented.

12343532, 12313132 in the three coding methods described in the previous three
subsections. The third word is the most useful for constructing transition matrices.

Remark: From the projection it is a simple matter to construct the periodic orbit
that describes the canonically dressed torus. For the periodic orbit (in any of the three
coding schemes) it is almost as simple to recover (uniquely) the canonically dressed
torus.

15.6 TRANSITION MATRICES

The g − 1 components of the Poincaré section play the same role for a canonically
dressed torus as the |G| branch lines do for the |G|-equivariant lifts of an image
dynamical system. Whereas the branch lines for the latter are labeled by the group
operations g1 = Id, g2, · · · , g|G|, the components for the former are labeled by an
integer 1, 2, · · · , g − 1. Just as a transition matrix is useful for describing flows in
equivariant covers, transition matrices are useful for describing flows in canonically
dressed tori.

When it comes to placing branched manifolds inside canonically dressed tori, we
can move each branch line onto one of the components of the Poincaré section. In
this case branched manifolds inside a given genus-g bounding torus, including as a
special case (topological) lifts of an image attractor, will be labeled by two indices:

1. a symbol from the image branched manifold
2. an integer from the Poincaré section.

Components of the Poincaré section are generalizations of the group operations gi

in equivariant covers. To put this another way: all flows that can be obtained as
equivariant covers of an image dynamical system can be obtained as a (small) subset
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of the flows that can be described by canonically dressed tori. Specifically, this subset
includes only those canonical bounding tori with a symmetry group.

The two canonically dressed tori of genus 5 are shown in Fig. 15.15. Both have
a symmetry group: C4 and C2, respectively. The two are completely described by
their Young partitions (4) and (2,2), since the number of rows is l ≤ 2. The transition
matrix for each torus is presented below the torus. The transition matrix is to be
interpreted in the usual way. For example, the flow emerging from the component 2
of the Poincaré section for C4 flows to components 2 and 3 of the Poincaré section:
T22 = 1, T23 = 1.

The transition matrices of Fig. 15.15 reveal a general property of transition matrices
for all canonically dressed tori. There are two matrix elements +1 in each row and
each column. All other matrix elements are zero.

The transition matrix for any canonically dressed torus can be written as the sum
of two (g − 1)× (g − 1) matrices. Roughly and not quite accurately, one describes
dynamics and the other describes connectivity (structure):

T = TDyn + TStr (15.6)

15.6.1 The Cyclic Matrix

If we start at any point on the disk boundary and proceed in the direction of the flow
we encounter the g− 1 branch lines in a specific order. They can be numbered in the

21

34

2

4

31

C4 A3







1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1













1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0







Fig. 15.15 Two canonically dressed tori of genus 5 are completely described by their Young
partitions (4) and (2,2).
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order in which they are encountered. With this numbering TDyn is a cyclic matrix:

(TDyn)i,i+1 = 1 1 ≤ i, i+ 1 ≤ g − 1

(TDyn)g−1,1 = 1
(15.7)

All other matrix elements of this cyclic permutation matrix are zero.
In Fig. 15.16 we show one of the canonically dressed tori with genus 9 and Young

partition λ = (3, 3, 2). The branch lines are numbered sequentially, 1, · · · , 8 in the
order in which they are encountered when following the flow around the boundary
(“under the dynamics”). The results are independent of the starting point because of
cyclic invariance. The dynamical matrix TDyn is shown below the canonical torus. It
is a cyclic matrix, with T 8

Dyn = I8.

6 5

4

3

2

1 8

7

TDyn =

2

6

6

6

6

6

6

6

6

6

6

4

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

TStr =

2

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

Fig. 15.16 One of the canonically dressed tori with Young partition λ = (3, 3, 2).

15.6.2 The Structure Matrix

The structure matrix TStr is in some sense the complement of the cyclic matrix TDyn.
We start at the inside boundary of each branch line and see where the flow takes us.
For the canonical torus of Fig. 15.16, 1 → 1, 2 → 2, 3 → 6 → 8(→ 3), 4 → 4,
5 → 5, 7 → 7. The connectivity is described by five 1-cycles (1), (2), (4), (5), (7)
and one 3-cycle (3,6,8), with 5×1+1×3 = 8. This is reflected in the second matrix
shown in Fig. 15.16. It has five matrix elements +1 on the diagonal: (TStr)i,i = 1,
i = 1, 2, 4, 5, 7. The remaining three nonzero matrix elements describe the 3-cycle:
(TStr)3,6 = (TStr)6,8 = (TStr)8,3 = 1.



414 SYMMETRY WITHOUT GROUPS: “TOPOLOGICAL SYMMETRY”

15.6.3 Encoding the Structure Matrix

The structure matrix is a (g−1)× (g−1) permutation matrix with only g−1 matrix
elements different from zero. It becomes useful to assume that the information in this
matrix can be encoded using only g − 1 pieces of information (possibly fewer).

Each branch line is in a k-cycle, k ≤ [ 12 (g − 1)]. For each of the g − 1 branch
lines, indicate the length of the cycle it belongs to. For example, for the canonical
torus of Fig. 15.16 this representation is

1 1 3 1 1 3 1 3 (15.8)

The three 3’s in positions 3, 6, 8 belong to a triplet. The remaining branch lines
belong to 1-cycles. The symbol sequence is placed in a (g − 1) × (g − 1) matrix,
along the diagonal. The diagonal matrix elements that are greater than 1 are moved
to the off-diagonal positions that reflect the structure of the n-tuple, as shown below.















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 3















−→















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0















Remark 1: The symbol sequence is exactly the symbol sequence that classifies the
canonically dressed torus, using the prescription given in Section 15.5.4 for classifying
these flows. As a result, there is a simple, direct, and unique relation between the
periodic orbits that label canonical tori and the transition matrix that describes the
structure of the flow.

Remark 2: To determine the structure matrix it is sufficient to indicate the branch
lines involved in k-cycles. For the example above this reduces to (3, 6, 8)(1)(2)(4)(5)
(7). Specification of the cycle structure immediately translates into the matrix TStr.
The cycles identify the nonzero matrix elements. One-cycles correspond to diagonal
matrix elements. In fact, these need not be written down explicitly: the branch lines
involved are the complement of those specified in the k cycles, k > 1. As a result, it
is sufficient to describe the flow above by the three cycle (3, 6, 8).

Remark 3: This is similar to the convention adopted in discussions of the permu-
tation group, where group operations are often described by their nontrivial cycles.

15.7 ENUMERATION TO GENUS 9

In this section we describe all canonically dressed tori up to genus g = 9. We conclude
with remarks about entropy.
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15.7.1 Genus 1

There is one canonically dressed torus of genus 1. This torus, and its canonical planar
projection, are both shown in Fig. 15.9.

A genus-1 surface bounds many of the low-dimensional strange attractors that
have been successfully analyzed to date [34]. These analyses have exploited the
topological organization of the unstable periodic orbits in the strange attractor, using
the fact that they are organized by the same stretch-and-fold mechanism that creates
the strange attractor. The tools used include computation of linking numbers of pairs
of orbits or their braids [87,89,127]. Although the theory of braids is over a century
old, it is remarkable that a second, even more refined tool was developed relatively
recently for the analysis of braids. This tool is the set of relative rotation rates of
either a single orbit or a pair of periodic orbits [116].

15.7.2 Genus > 1

There is no canonically dressed torus of genus 2. This is because the Euler charac-
teristic is −2 but interior holes must have either 0 or 4, 6, 8, · · · singularities.

For flows in tori with genus g > 1 linking numbers still provide a useful tool for
teasing out the structure of enclosed branched manifolds. It is not yet clear in exactly
what capacity (if any) the relative rotation rates can be used to elicit information about
the flow.

15.7.3 Genus 3

There is one canonically dressed genus-3 torus. It is shown in Fig. 15.17 along with
three of its codings by periodic orbits. The structure part of its transition matrix is
also given.

21 1 2a
a a
1 2
1 1

TStr =

[
1 0
0 1

]

Fig. 15.17 There is one canonically dressed torus of genus 3.

15.7.4 Genus 4

There is one canonically dressed torus of genus 4. Since g− 1 = 3 there is only one
possible Young partition: (3). The canonically dressed torus, its three descriptions
by periodic orbits of period 3, and the structure part of its transition matrix are shown
in Fig. 15.18.
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a
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1 1 1
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
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1 0 0
0 1 0
0 0 1





Fig. 15.18 There is one canonically dressed torus of genus 4.

15.7.5 Genus 5

There are two canonically dressed tori of genus 5. Each one is uniquely described by
a Young partition. The allowed partitions are (4) and (2,2). Both are shown in Fig.
15.19.

1 2

34

4 3

21

a

a a a a
1 2 3 4
1 1 1 1

TStr =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 2

2

4

3 31 a b

a a b b
1 2 3 2
1 2 1 2

TStr =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







Fig. 15.19 There are two canonically dressed tori of genus 5.

15.7.6 Genus 6

There are two canonically dressed tori of genus 6. Once again each is uniquely
described by its Young partition. The two allowed partitions are (5) and (3,2). Both
are presented in Fig. 15.20.

15.7.7 Genus 7

At this stage we lose the nondegeneracy between Young partitions and canonically
dressed tori that we have seen up to this point. Young partitions have g−1 = 6 boxes.
The allowed Young partitions are (6), (4,2), (3,3), and (2,2,2). The last partition, with
three rows, allows two distinct, inequivalent canonical flows. This degeneracy is lifted
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Fig. 15.20 Two canonically dressed tori of genus 6.

by the periodic words that describe the two different canonical tori. These statements
are summarized in Fig. 15.21.

15.7.8 Genus 8

Genus-8 canonically dressed tori are described by Young partitions with seven boxes.
The allowed partitions are (7), (5,2), (4,3), and (3,2,2). Degeneracy enters with the
last partition, which describes three inequivalent flows. The spectrum of allowed
canonical flows is summarized in Fig. 15.22.

15.7.9 Genus 9

For genus 9 there are 15 canonically dressed tori. There are four partitions with
either one or two rows: (8), (6,2), (5,3), and (4,4). Each describes one flow. The two
partitions with three rows are (4,2,2) and (3,3,2). Each describes (by accident) four
different flows. The four-row partition (2, 2, 2, 2) = (24) describes three inequivalent
flows. The 15 = 4 + 2× 4 + 3 flows are described by their branch line encoding and
Young partition in Table 15.4. The last three flows in this list, all described by the
Young partition (24), are shown in Fig. 15.23.

15.7.10 Entropy

There is one topological torus of genus g for each g, g ≥ 0. When dressed with a
flow, the number of inequivalent canonically dressed tori increases with g. We have
computed the number of canonical bounding tori, N(g), as a function of genus g by
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Fig. 15.21 Five canonically dressed tori of genus 7. Two inequivalent flows have Young
partitions 23. The structure part of the transition matrix is given on the right.
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Fig. 15.22 There are six canonically dressed tori of genus 8.
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Fig. 15.23 Three canonical flows are associated with the Young partition 24 of genus 9.

hand up to g = 11, and recursively using a FORTRAN code up to g = 20 [50]. The
results are summarized in Table 15.5.

There appears to be a strong analogy between the growth in the number of unstable
periodic orbits,N(p), with period p in a strange attractor,and the growth in the number
of canonical bounding tori, N(g), with the genus g. In the former case the growth
defines an entropy, the topological entropy, through

N(p) ' ehTp =⇒ hT = lim
p→∞

log(N(p))

p
(15.9a)

Since N(g) also grows rapidly, and since canonical bounding tori are classified by
periodic orbits of period g − 1, it makes intuitive sense to test whether the growth is
exponential. We test this hypothesis by estimating N(g) through

N(g) ' ehBT(g−1) ?
=⇒ hBT = lim

g→∞
log(N(g))

g − 1
(15.9b)

Estimates of hBT up to g = 20 are contained in Table 15.5. It is possible to construct
rigorous lower and upper bounds on hBT:

log(2) ≤ hBT ≤ log(3)
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Table 15.4 Canonical flows that dress a genus-9 torus are listed in “alphabetic” order. Their
Young partitions are also given.

Period-8 Orbit Young Partition

1 1 1 1 1 1 1 1 1 (8)
2 1 1 1 1 1 2 1 2 (6,2)
3 1 1 1 1 2 1 1 2 (5,3)
4 1 1 1 2 1 1 1 2 (4,4)
5 1 1 1 2 2 1 2 2 (4,2,2)
6 1 1 1 3 1 3 1 3 (4,2,2)
7 1 1 2 1 2 1 2 2 (3,3,2)
8 1 1 2 1 2 2 1 2 (4,2,2)
9 1 1 2 2 1 1 2 2 (3,3,2)

10 1 1 2 2 1 2 1 2 (3,3,2)
11 1 1 3 1 1 3 1 3 (3,3,2)
12 1 2 1 2 1 2 1 2 (4,2,2)
13 1 2 2 2 1 2 2 2 (2,2,2,2)
14 1 2 3 1 3 1 3 2 (2,2,2,2)
15 1 4 1 4 1 4 1 4 (2,2,2,2)

Table 15.5 Number of canonical bounding tori as a function of genus, g.

g N(g) log[N(g)]/(g − 1) g N(g) log[N(g)]/(g − 1)

3 1 0.000000 12 145 0.452430
4 1 0.000000 13 368 0.492340
5 2 0.173287 14 870 0.520653
6 2 0.138629 15 2211 0.550086
7 5 0.268240 16 5549 0.574758
8 6 0.255966 17 14290 0.597957
9 15 0.338506 18 36824 0.618465

10 28 0.370245 19 96347 0.637540
11 67 0.420469 20 252927 0.654782
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In fact, it is possible to construct a closed form expression forN(g). This expression
involves the coupling coefficients of the angular momentum algebra—in particular, it
counts the number of ways g− 1 spins S = 1 can couple to total angular momentum
STot = 0. The expression is relatively simple when g− 1 is prime. Fig. 15.24 shows
a plot of log(N(g− 1))/(g− 1) vs. 1/(g− 1) for primes up to 2000. It appears that
the limit is the rigorous upper bound: hBT → log(3) = 1.098612 [50].
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Fig. 15.24 The ratio log[N(g)]/(g − 1) appears to converge at log(3).

15.8 COMPATIBLE BRANCHED MANIFOLDS

Bounding tori are branched manifold organizers in the same way that branched man-
ifolds are periodic orbit organizers. Just as we can specify which orbits can be found
on a branched manifold, we can also specify which branched manifolds are com-
patible with a bounding torus. The object of the present section is to provide this
specification.

The most basic condition is that the flow along the individual branches is in the
same direction as the flow inside the canonical bounding torus. The second condition
is that branches connect components of the Poincaré section that are specified by
the transition matrix. More specifically, there is at least one branch connecting each
such pair of components. The information about branches is simply represented by a
return map.

15.8.1 Return Maps

A genus-g canonical bounding torus has a global Poincaré section with g−1 compo-
nents. Branch lines in any compatible branched manifold within the bounding torus
can be moved to the components of the Poincaré section. Any compatible branched
manifold has g − 1 branch lines.
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An initial condition on branch line i (1 ≤ i ≤ g − 1) flows to two other branch
lines, j, j′, that are specified by the transition matrix. The cyclic part of the transition
matrix, TDyn, provides one value for j. This is j = i+1 (mod g−1) in the canonical
cyclic numbering of branch lines. The connectivity part of the transition matrix, TStr,
indicates the other value for j. This is j = f(i) (6= i+1). As an example, one branched
manifold that is compatible with the bounding torus C3 is shown in Fig. 15.25(a).
This branched manifold has seven branches. Its return map, shown in Fig. 15.25(b),
indicates how the g − 1 branch lines are mapped among themselves [21,125]. The
return map shows, for example, that an initial condition on branch line 1 is mapped
back to branch line 1 for 0 < x <∼ 1

2 , where x indicates distance measured along the
branch line “from inside to outside.” That is, x = 0 is on the boundary of the inner
circle and x = 1 is on the outer disk boundary. For∼ 1

2 < x < 1 an initial condition
on branch line 1 flows to branch line 2. Comparable statements hold for the other
branches. While representations of the form shown in Fig 15.25(b) (and previously
in Figs. 6.9 and 6.15) are convenient, they become profligate as g− 1 becomes large
(larger than 2), since the (g − 1)× (g − 1) “matrix” of return maps becomes sparse.
A more economical representation of the same information is presented in Fig. 15.26.
In this representation only the nonempty “matrix elements” in the return map of Fig.
15.25(b) are presented. The bottom row shows the part of the map described by the
matrix TStr and the top shows the part of the map described by the matrix TDyn.
There is a total of g − 1 pairs of maps in this representation. A branched manifold
compatible with a canonical genus-g torus has a minimum of 2(g − 1) branches.

Branched manifolds cannot be reconstructed from return maps without providing
additional information. Two pieces of information are required for each branch. One
piece of information describes how a branch twists in transition from branch line i
to branch line j. This can simply be determined by counting the signed crossings of

a
b
c

3

2

1

(a) Branched manifold

1

2

2 3

3

1

(b) First-return map

Fig. 15.25 (a) Branched manifold with seven branches. This is one of many branched
manifolds that are compatible with the bounding torus C3. (b) Return map for the branches
of this branched manifold. Each branch line is mapped to two branch lines. Two branches
connect branch lines 2 and 3. For this reason the 3 × 3 “matrix” of return maps is sparse.



424 SYMMETRY WITHOUT GROUPS: “TOPOLOGICAL SYMMETRY”

the two edges of each branch. This information can be provided by “dressing” each
branch in the return map with this integer. This integer has been attached to each of
the seven branches shown in the return map of Fig. 15.26. In particular, the branch
from branch line 2 to 2 has zero torsion (2 0−→ 2), while the two branches flowing
from branch line 2 to 3 have torsions +1 and +2 (2 +1,+2−→ 3).

The other piece of information required for a complete specification of the branched
manifold describes how the branches that meet at a branch line are organized. This
is the “layering” information. One way to provide this information is shown in Fig.
15.26. Three branches meet at branch line 3: 2

+1,+2−→ 3 and 3
0−→ 3. These branches

are labeled α, β, γ in the order they are joined at branch line 3, seen from the top
down. Ordering information is provided for the branches at the other two branch
lines as well. This information can be summarized in a (g − 1) × (g − 1) (sparse)
matrix, as follows:

3
+1
α

+2
β

0
γ

2
+1
α

0
β

1
0
α

−1
β

Target
Source 1 2 3

To determine the torsion of the branches emanating from branch line i (convention:
right-hand rule) read the integers vertically. To determine the order in which the
branches are connected at branch line j (convention: top to bottom) read the Greek
letters across.

1

2 3 1

32

21 3

+1 −1+1
+2

0 0 0
βα γ

α α
β

β

Fig. 15.26 A more economical presentation of return maps for branched manifolds in a
genus-g torus. There are only 2 × (g − 1) panels in this representation of the return map.
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Remark: In reading return maps of the form shown in Fig. 15.25(b) and the table
above, the torsion information is organized vertically and the layering information is
organized horizontally. Torsion information is attached to branches that originate on
a branch line. This information is organized over the source branch line (vertically).
Layering information is attached to branches that meet at a branch line. This infor-
mation is organized across the target branch line (horizontally). Torsion information
is obtained by looking forward, in the direction of the flow. Layering information is
obtain by looking backward, in the direction the flow comes from.

15.8.2 Selection Rules

These topological tools (torsion and layering information) simultaneously provide
rigid constraints on the useful degrees of freedom for the structure of chaotic flows
in three dimensions. The rigidity is provided by the selection rules on the twisting
and layering properties of the branches in a branched manifold.

The torsions of two branches enamating from adjacent parts of a branch line must
obey an atomic physics–like selection rule:

∆t = ±1, 0 (15.10)

The three branches emerging from branch line 2 in the example above have torsions
0, + 1, + 2 moving from x = 0 (inside) to x = 1 (boundary). If we fix the torsion
of the branch 2

0−→ 2 to be 0, the only possibilities for the torsions of these three
branches are:

2→ 2 2→ 3 2→ 3

0 +1 +2
0 +1 0
0 0 +1
0 0 −1
0 −1 0
0 −1 −2

There are also selection rules for layering information. One involves branches
emerging from the same branched line. It is shown in Fig. 15.26. The branch 2

+1−→
3(α) must join branch line 3 above the branch 2

+2−→ 3(β). The possibility 2
+1−→ 3(β)

2
+2−→ 3(α) is forbidden by continuity considerations.
The other class of selection rules, involving flows to one target branch line from

from two different source branch lines, is illustrated in Fig. 15.27. In Fig. 15.27(a)
two branches meet at a branch line. One branch comes through each of the two flow
tubes feeding the component of the Poincaré section that contains the branch line
shown. As a control parameter is increased, one of the branches may expand and
fold over. The three branches can meet as shown in Fig. 15.27(b), but if they meet as
shown in Fig. 15.27(c) causality will be violated: Points at the intersection of these
branches have two different futures.
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(a) (b) (c)

X
X

Fig. 15.27 Selection rules. (a) Two flow tubes meet at one component of the Poincaré section.
The flow through one flow tube becomes more unstable with change in control parameters,
requiring two branches to encode the dynamics. One organization of the three branches is
possible (b) while another is not (c). The flow in (c) violates causality where an intersection is
forced at the point labeled ×.

15.8.3 Perestroikas of Branched Manifolds

Perestroikas of branched manifolds have been described in [75] for flows in a genus-
1 torus. We briefly review these results here, because they can be extended without
difficulty to flows in higher genus surfaces.

A flow with a genus-1 surface can exhibit chaotic behavior provided it projects
under the Birman-Williams identification to a branched manifold with more than one
branch. As control parameters change, the number of branches as well as the degree to
which they overlap can change. In Fig. 15.28 we show the intersection of a 2-branch
manifold with a Poincaré section, and illustrate one possible sequence of events that
can occur as control parameters are varied. In this sequence the orientation-preserving
branch grows as the control parameter changes.

α α α α

0
0

0

0

1 1
1 1

Fig. 15.28 As a control parameter is varied, the branches of a branched manifold can grow
or contract. Here the orientation-preserving branch grows in the progression from left to right.

If the control parameter continues to change it is possible for a new branch to be
created. Fig. 15.29 shows four possible ways this new branch can be created. The
only four possibilities for the perestroika creating a third branch are shown in this
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1
0 1 2 0
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β

β

α

γ γ
0
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γ

0β

Fig. 15.29 As control parameters continue to increase, a third branch can be added. It can
be added in the four ways shown to the two already present in Fig. 15.28. All four three-branch
manifolds possess the same (bare) return map. The four return maps are distinguished by the
dressing symbols that contain torsion and layering information.

figure. This limited range of possibilities is constrained by continuity arguments. It
should be emphasized that the four bare return maps are identical. The four return
maps for these three possible three-branch manifolds differ only in their dressing.

If the control parameter continues to change a fourth branch can be added, or one
of the three branches already present can be removed. Addition or deletion of single
branches can occur only at the extremities. Single branch addition or deletion is
subject to constraints imposed by the uniqueness theorem. Two allowed perestroikas
and one forbidden perestroika for one of the three-branched manifolds of Fig. 15.29
are shown in Fig. 15.30.

(a) (b) (c)
Fig. 15.30 (a) This 4-branch template is an initial stage of the gateau roulé, seen in laser
experiments [34] and nerve firing studies [37]. (b) This 4-branch template is seen in the Duffing
oscillator [36]. (c) This flow violates causality because of the self-intersection (arrow).

Perestroikas for flows contained in genus-g bounding tori are described similarly.
The flow leaving branch line i splits into one component flowing to branch line i+ 1
(under TDyn) and another part flowing to branch line f(i) (under TStr). The return
map over branch line i consists of two panels. One possible perestroika is shown in
Fig. 15.31. In this series of return maps tearing [between f(i) and i+1] occurs in the
transition from one branch line [f(i)] to the other [i+1]. Within a single branch line
only folding is possible. Tearing is indicated by a discontinuity. Folding is indicated
by the existence of a two-sided derivative at extrema [21,75].

For a flow in a genus-g bounding torus, the return map consists of g−1 panel pairs
of the type shown in Fig. 15.31. Each pair can independently exhibit perestroikas as
shown in the figure.
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i

i+1

f(i)

ii

(a) (b) (c)
Fig. 15.31 Return map for a branched manifold compatible with a genus-g torus. The return
map consists of a set of g − 1 pairs of panels. Each describes how the flow from branch line i
is mapped to the two branch lines allowed by the structure of the bounding torus. Each panel
pair can undergo a perestroika of the type shown above. The perestroikas of each panel pair
need not be correlated.

Continuity conditions and the uniqueness theorem impose constraints on pere-
stroikas. The change in global torsion on branches originating from adjacent posi-
tions on the same branch line obeys the “atomic selection rule” ∆t = ±1, 0. The
layering information must respect the uniqueness condition. When two branch lines
are connected by two or more branches, the torsion and layering information must
satisfy constraints as illustrated in Fig. 15.30. When three or more branches join at a
branch line, they must satisfy constraints of the type illustrated in Fig. 15.27.

15.9 HOW TO EXTRACT FROM EXPERIMENTAL DATA

If the dynamics that governs a physical process generates a low-dimensional (dL < 3)
strange attractor contained in a genus-g surface, how is one to know?

Usually all that is available from measurements is a single scalar time series of
finite length, with some noise component. In order to “reconstruct” an attractor it is
necessary to embed the time series in R

3, or at least some 3-dimensional manifold.
There are many ways to embed data: time delay, differential embeddings, integro-
differential embeddings, fractional derivatives and integrals constructed from Fourier
processing, Hilbert transforms, etc. These have been described in [34].

The traditional embedding into R
3 is the time delay embedding:

X(t)→ X(t) = [X(t), Y (t), Z(t)] = [X(t), X(t− τ1), X(t− τ2)] (15.11)

This is a two-parameter family of embeddings, depending on the delay parameters
τ1 and τ2. It is not an embedding (it is an injection) for τ1 = τ2 and for τ1 = 0 or
τ2 = 0. It is “delay” if τ1 > 0 and τ2 > 0. Advance embeddings are also possible:
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they are equivalent to delay embeddings with some redefinition of the coordinates.
Values of the delays τ1, τ2 that provide embeddings exist in open sets in the (τ1, τ2)
parameter plane. Embedding islands are separated from each other. The topological
properties of an embedded attractor can differ from island to island, but only in a
systematic way. All embeddings provide the same information about the mechanism
that generates chaos. This is discussed in some detail in [126].

We adopt the differential embedding

X(t) = X(t)

Y (t) = Ẋ(t)

Z(t) = Ẏ (t)

(15.12)

This embedding is related by an affine transformation to the delay embedding with
τ2 = 2τ1 and τ1 = τ small. That is, Ẋ ∼ X(t + τ) − X(t − τ) and Ẍ(t) ∼
X(t + τ) − 2X(t) + X(t − τ). The dynamics is defined by the single nontrivial
equation

Ż(t) = f(X,Y, Z) = f(X, Ẋ, Ẍ) =
d3X

dt3
(15.13)

If X(t) is generated by an equivariant dynamical system (i.e., Lorenz attractor with
RZ symmetry), the function f(X,Y, Z) is of necessity odd:

f(−X,−Ẋ,−Ẍ) = −f(X, Ẋ, Ẍ) (15.14)

As a result, this type of embedding cannot recover full information about the symmetry
of the original system. Specifically, parity and layering information is lost.

The fixed points of the dynamical system in the differential embedding all live
on the X axis. In order to recover information about the underlying dynamics the
observed scalar time series X(t) must be generic. That is, all the fixed points in the
underlying dynamics must have differentX values.

Remark: Since all fixed points in a differential embedding occur along the X-
axis, it would appear that the only bounding tori that can be recovered from this type
of embedding have the linear structure of the type An. That this is not true will be
shown in the two examples presented in Figs. 15.32 and 15.33.

The procedure for recovering information about the structure of the underlying
flow from a scalar time series is as follows:

1. Construct a differential embedding of the generic time series X(t) in R
3.

2. Project this embedding onto theX-Y =X-Ẋ plane. The flow circulates clock-
wise in this plane.

3. Verify that this is an embedding by checking that all crossings are transverse.
If any tangencies occur, stop and search for a new time series X(t).

4. Identify the “round” holes in this embedding.
5. Associated with each there is at least one region in which squeezing occurs.

These are regions where the flows from two different holes come together. They
can be identified by the presence of transverse crossings of flows originating
from different regions in the phase space.
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(e) Transition matrix

Fig. 15.32 (a) Canonical bounding torus C4 of genus 5. (b) The double cover of the Lorenz
flow with RZ(π/2) symmetry axis through the saddle in the middle is compatible with this
bounding torus. A time series is collected by projecting down onto the horizontal axis. The
axis is chosen to maximally separate the foci. (c) Time series X(t) shows four unstable foci
visited in a definite order. (d) The projection of the differential embedding onto the X-Ẋ plane
shows four round holes and four squeezing regions. (e) The transition matrix is the sum of a
cylcic matrix and one giving the structure of the bounding torus: C4.
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6. Associate a branch line with each of the squeezing regions.
7. Construct the transition matrix for the embedded flow.
8. Reduce the transition matrix to canonical form (cf. Fig. 15.16) by a similarity

transformation (permutation matrix). This is facilitated by a clever choice
for numbering the squeezing regions. The clever choice is made as follows.
Begin anywhere in the flow, and follow around the (outer) boundary until all
squeezing regions have been encountered once before returning home. Label
the squeezing regions in the order in which they have been encountered. This
generates the cyclic part of the transition matrix.

9. Subtract TDyn from T to recover TStr. This describes the structure of the
genus-g surface.

We illustrate this algorithm for the flow in two inequivalent genus-5 surfaces: C4

and A3. Fig. 15.32(a) shows the canonical form C4 with genus-5. A flow that is
compatible with this canonical form is shown in Fig. 15.32(b). This flow is a double
cover of the Lorenz dynamical system with the RZ(π/2) symmetry axis passing
through the origin. A time series X(t) is collected by projecting the flow onto an
axis that maximally separates the four foci. This is the X-axis in Fig. 15.32(b). The
time series X(t) is plotted in Fig. 15.32(c). It is apparent from the time series that
there are four unstable foci, and that they are visited in a definite order. A differential
embedding is constructed from the time series X(t). Its projection is shown in Fig.
15.32(d). Four circular holes are apparent in the embedding. These holes are labeled
A, B, C, D. Four squeezing regions are identified and labeled sequentially1, 2, 3, 4,
starting fromA. The transition matrix is constructed from theX-Ẋ embedding using
the numbering of the squeezing regions. This is shown in Fig. 15.32(e), expressed as
the sum of a cyclic matrix (1 → 2 → 3 → 4 → 1) and a diagonal matrix. This is
sufficient to identify the bounding torus as C4.

As a second example we consider a flow inside the other canonical genus-5 bound-
ing torus: A3. The canonical formA3 is shown in Fig. 15.33(a). A flow that is com-
patible with this canonical form is shown in Fig. 15.33(b). This flow is a double cover
of the Lorenz dynamical system with the RZ(π) symmetry axis passing through a
focus. A time series X(t) is collected by projecting the flow onto an axis (again, the
X-axis) that maximally separates the three foci. The time series X(t) is plotted in
Fig. 15.33(c). It is apparent from the time series that there are three unstable foci.
A differential embedding is constructed from the time series X(t). Its projection is
shown in Fig. 15.33(d). Three circular holes are apparent in the embedding. These
holes are labeled A, B, C. Four squeezing regions are identified and labeled se-
quentially 1, 2, 3, 4, starting from A. The transition matrix is constructed from the
X-Ẋ embedding using the numbering of the squeezing regions. This is shown in
Fig. 15.33(e), expressed as the sum of a cyclic matrix (1→ 2→ 3→ 4→ 1) and a
matrix describing a 2-cycle. This is sufficient to identify the bounding torus as A3.

We emphasize here that the reconstructed attractor is diffeomorphic with the orig-
inal attractor. It may not be identical (isotopic) because the folding directions in the
embedded attractor are determined by the (anti)symmetry of the functionf(X, Ẋ, Ẍ),
and this may not reflect the symmetry of the original underlying attractor.
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(e) Transition matrix

Fig. 15.33 (a) Canonical bounding torus A3 of genus 5. (b) The double cover of the Lorenz
flow with RZ(π) symmetry axis through either focus is compatible with this bounding torus.
A time series is collected by projecting down onto an axis chosen to maximally separate the
foci. (c) Time series X(t) shows three unstable foci. (d) The projection of the differential
embedding onto the X-Ẋ plane shows three round holes and four squeezing regions. (e) The
transition matrix is the sum of a cyclic matrix and one giving the structure of the bounding
torus: A3.
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15.10 PERESTROIKAS OF CANONICAL TORI

Dynamical systems equations are expressed in terms of state variables and control
parameters. The systems studied in this work typically involve only three state vari-
ables, as the theory of 3-dimensional dynamical systems is well understood, while
dynamical systems in higher dimensions are not understood at all. All of the dynami-
cal systems studied so far depend on a finite, in fact a very limited, number of control
parameters. As the control parameters are varied, the system responds by changing:
its spectrum of periodic orbits as well as their type (all unstable vs. some stable,
strange attractor(s) vs. stable fixed points or periodic orbits), the number and labeling
of branches needed to describe flows, etc. By varying a limited number of control
parameters it is possible to exhibit only a limited number of changes in behavior.

In this section we wish to describe “perestroikas” of dynamical systems—more
specifically, of their bounding tori. Perestroika means change. We use as our model
for this discussion the methods and theory developed to study the perestroikas of
catastrophes: scalar functions (potentials) depending on many variables [32]. As
a particular example, we can think of the “Ginzburg-Landau” family of potentials
V (x) = 1

4x
4 + 1

2ax
2. This is a one-parameter family of potentials. A very useful

question to ask is: How does this family behave under an arbitrary perturbation
V (x) → V ′(x) = V (x) + f(x), where f(x) is arbitrary? The question can be
answered locally, in the neighborhood of the critical points (where dV ′(x)/dx = 0).
The answer is that the most general perturbation can be encapsulated in the two-
parameter family of functions

V ′(x) =
1

4
x4 +

1

2
ax2 + bx (15.15)

Once the most general unfolding of the original function has been determined, it is a
straightforward matter to study the properties—the perestroikas—that this family of
functions can undergo.

More generally, there is a theory of “unfoldings” (universal perturbations) of
mappings of R

m → R
n that constitutes the theory of singularities of mappings

[6,7,16,38]. This is a generalization of Catastrophe theory. In many cases there is a
finite-dimensional unfolding: this means that there is only a finite number of param-
eters (such as a and b above) involved in the universal perturbation. In all cases the
universal perturbation is local, valid only in the neighborhood of the critical points.

We would like to create a theory of unfoldings of dynamical systems in order to
study the perestroikas that they can exhibit. There is such a theory for the neighbor-
hoods of the fixed points of a flow. However, this is also a local theory—valid only in
the neighborhood of the fixed points. This theory can be applied to degenerate fixed
points, such as those that give rise to interior holes of a bounding torus with more
than four singularities.

We are interested in a larger, much more difficult problem. The problem is: given
a dynamical system depending on n state variables and k control parameters, what is
the family of perturbations of the source terms that allow us to construct all possible
“global perturbations” of that dynamical system. Not only is this vague (what is a
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“perturbation”?), but it is at present not possible to answer. We don’t even know if the
dimension of such a universal perturbation is countable or uncountable. For this rea-
son, we cannot approach this question along the same lines exploited for Catastrophe
theory. Our approach must use the most powerful tools currently available—these
are topological in nature. In the remainder of this section, and those that follow, we
adopt the following approach. We assume that there is some “universal perturbation.”
Each term in such a perturbation is coupled to some “perturbation parameter” (like
b in Eq. (15.15)). We assume one or more perturbation parameters are responsible
for producing any global perestroika that is topologically possible—not forbidden
by topological selection rules. We therefore undertake a study of “topological pere-
stroikas.” The unfoldings we exploit are topological in nature.

When perturbation parameters change, lots of exciting things can happen to a
strange attractor.

1. Under small changes the symbols that code periodic orbits do not change but
the spectrum of periodic orbits does change. This is described by changes in
the basis sets of orbits [88], not very well understood for the Smale horseshoe
mechanism and basically not understood at all in any other case.

2. Under larger changes the spectrum of symbols does change. This means that
branches are added to or deleted from the branched manifold that the chaotic
flow projects to [65]. Branched manifold perestroikas have been discussed in
Sect. 15.9.

3. Under yet larger changes the topological organization of the branched manifolds
may change. This involves changes in the topology of the surface bounding
the flow [21,75].

In this section we describe perestroikas of bounding tori. As usual, it is easiest
to approach this study by starting with the larger structure and determining how it is
reduced in size by reversible transformations. After all, it is easier to see what we
can lose than what we can gain.

We approach this study by looking at the flow organized by a genus-g torus. Then
we restrict the flow through one of the 2(g − 1) flow tubes, finally extinguishing the
flow. This is responsible for a change in the genus of the torus bounding the flow that
remains.

The flow rearrangement depends strongly on whether the flow through an exterior
flow tube or an interior flow tube is shut down. We treat the two cases separately.

15.10.1 Exterior Flow Tubes

Exterior flow tubes are described by the cyclic part of the transition matrix. One
boundary of an exterior flow tube, in the canonical representation, is the outside
boundary of the disk describing the canonical flow.

As usual, we illustrate the concepts by discussing an example. Fig. 15.34 shows
a canonical genus-6 torus, with standard labeling of branch lines and holes. The
exterior flow tubes describe transitions from branch line i to branch line i + 1 (or
5→ 1).
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Fig. 15.34 Genus 6 canonical bounding torus 11212, aaabb, or 12343. Flows in the exterior
flow tubes is cut off successively at i, ii, and iii.

Assume that the flow 1 → 2 is gradually restricted and eventually annihilated as
some perturbation parameter is changed. This is represented by the × at (i) in Fig.
15.34. The flow originating from branch line 1 must return to branch line 1. If there
is only one branch 1 → 1 the flow will settle on a stable limit cycle. In order for a
strange attractor to remain, there must be at least two branches from branch line 1
back to branch line 1.

Almost all initial conditions on any other branch line will eventually find their way
to branch line 1, where they will be trapped forever around hole 1. A measure-zero
set of initial conditions on branch lines 2, 3, 4, 5 define unstable periodic orbits that
never encounter branch line 1. All other points on these branch lines provide initial
conditions for transient orbits that transit branch lines 2–5 for longer or shorter times
before falling into the basin of 1. In other words, closing off the flow 1→ 2 creates
an attractor (stable limit cycle or strange attractor) around 1 and drains the flow from
the neighborhoods of the other foci.

If we now also restrict the flow 5 → 1, represented by the × at (ii) in Fig.
15.34, the flow originating on branch lines 2–5 cannot reach branch line 1. We
set up the possibility of a second, disconnected attractor. The flow in this attractor
circulates among the branch lines 3, 4, and 5. Initial conditions on branch line 2
provide transients that eventually drain to this second attractor. There may be a set
of unstable periodic orbits around hole 2 if there is more than one branch in 2→ 2.

Finally, if we restrict the flow 2 → 3 (the × at (iii) in Fig. 15.34) we prevent
the escape of the flow from the neighborhood of focus 2, and create conditions for a
third disconnected attractor. Once again, this is a stable limit cycle if 2→ 2 has one
branch, and there may be a strange attractor if 2→ 2 supports more than one branch.

When the flow 1→ 2 is cut off, the transition matrix undergoes the transformation









1 1 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 0 1 0 0









× at (i)
−→










1 0 0 0 0

0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 0 1 0 0










(15.16)
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The transition matrix for the full flow, on the left in (15.16), is irreducible as a
matrix. No similarity transformation can transform it to a block-diagonal form over
the integers 0 and 1. Irreducible for a dynamical system means that any branch line
can be reached from any other branch line.

The transition matrix for the restricted flow, on the right in (15.16), is reducible as
a matrix. This means that in a block submatrix decomposition one of the off-diagonal
submatrices is zero while the other is not. The 1×4 off-diagonal submatrix of zeroes
reflects the condition that no flow escapes from branch line 1 to other branch lines.
The other off-diagonal submatrix is nonzero. Its structure informs us that transients
reach branch line 1 via branch line 5.

The concepts of reducible, fully reducible, and irreducible for the matrix repre-
sentations of groups and algebras apply equally well to flows generated by dynamical
systems:

Representation Property of Dynamical System

Reducible Transients flow to an attractor.
Fully Reducible There is a complete set of disjoint

attractors and no transients.
Irreducible There is one attractor, no transients,

and anywhere can be reached from anywhere else.

In the example above, the original flow is irreducible. Restricting the flow 1→ 2,
at (i), produces an attractor at 1 with transients involving branch lines 2, 3, 4, 5. This
flow is reducible. Restricting the flow further at 5→ 1, at (ii), isolates the attractor
around 1 and produces another attractor involving branch lines 3, 4, 5 with transients
from branch line 2. This flow is also reducible. Finally, restricting the flow out of 2
[2→ 3, at (iii)] produces disjoint attractors around 1, around 2, and around (3, 4, 5).
This flow is fully reduced. It consists of irreducible flows bounded by the genus-1
surfaces containing hole 1, hole 2, and the genus-3 surface containing holes 3, b, 4.
In the latter flow the canonical form is obtained by identifying branch lines 3 and
5. Cutting the flow at (i), (ii), and (iii) is responsible for the transition from the
irreducible flow in the orignal genus-6 surrounding torus to a fully reducible flow in
A1 ∪ A1 ∪ A2.

We discuss in some more detail what happens when we cut off the flow in an
exterior flow tube i→ i+ 1, where f(i) 6= i. An example is shown in Fig. 15.35(a),
where the flow 3 → 4 is obstructed. In this case transients originate on branch line
4. After transients die out, the flow is restricted to branch lines 5, 1, 2, 3. What is
the nature of the residual attractor? The residual flow has the structure shown in Fig.
15.35(b). To obtain this form, we eliminate branch line 4 and identify branch lines
3 and 5. We keep the inputs to branch line 3 (columns) and the outputs from branch
line 5 (rows). The sequence of transition matrices for the full flow, the reducible flow
obtained by cutting off the flow 3→ 4, and the residual attractor after transients have
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Fig. 15.35 Genus-6 canonical bounding torus 11212, aaabb, or 12343. Flow is cut off in
the exterior flow tube 3 → 4, yielding canonical form C3. If the flow 4 → 5 is also cut off,
the canonical form is now fully reduced: C3 ∪ A1.

died out, is:








1 1 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 0 1 0 0









×
−→









1 1 0 0 0
0 1 1 0 0
0 0 0 × 1
0 0 0 1 1
1 0 1 0 0









−→





1 1 0
0 1 1
1 0 1





1
2

3 + 5

(15.17)
The last matrix is obtained by eliminating branch line 4: the column containing the
× in the middle matrix. Row 4 is also eliminated. The adjacent columns (and rows)
are combined and identified as 3 + 5. The column labeled 3 + 5 contains the inputs
to branch line 3: [0, 1, 1]t indicates that the branch lines 2 and (3 + 5) feed (3 + 5).
The row labeled (3 + 5) contains the outputs from branch line 5: [1, 0, 1] indicates
that the output from branch line 5 flows to branch lines 1 and (3+ 5). This transition
matrix clearly identifies the bounding torus for this attractor as C3.

If the flow 4→ 5 is also obstructed (Fig. 15.35(a)) the attractor is fully reducible
and contained in the union of two bounding tori: C3 ∪ A1.

The general case for constructing the attractor obtained after obstructing the flow
i→ i+ 1 in an exterior flow tube can be deduced from the examples above:

If f(i) = i, the attractor, after transients have died out, is contained in A1 with
one branch line.

If f(i) 6= i then f(i) = j ≥ i+ 2 (mod g − 1).

1. Eliminate branch lines i+ 1, · · · , j − 1, and corresponding rows and columns
in the transition matrix.

2. Identify branch lines i and j as a single branch line (i, j).
3. Column i is input to column (i, j): the inflows to branch line i remain the

inflows to the combined branch line (i, j).
4. Row j is input to row (i, j): the outflows from branch line j remain the outflows

from the combined branch line (i, j).
5. The residual flow has g− 1− (j − i) branch lines and lives in a torus of genus
g − (f(i)− i).
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15.10.2 Interior Flow Tubes

Interior flow tubes are described by the structure part of the transition matrix. Flows
through these tubes involve no part of the exterior disk boundary in the canonical
projection.

Once again, two cases deserve separate discussions. This time the distinction
depends on the hole with singularities that is adjacent to the extinguished flow. The
difference depends on whether this hole has more than four singularities or exactly
four singularities.

The basic idea is the same in both cases. Removing the flow in an interior flow tube
removes an (s, j) pair of singularities from the adjacent hole with singularities. If the
hole originally had 2p singularities, once the flow has been closed off the adjacent
hole has 2p− 2 singularities. If 2p− 2 ≥ 4, the perestroika removes one round hole
and one branch line. On the other hand if 2p − 2 = 2, this hole can be zipped up
and away. The resulting canonical torus has four fewer singularities and two fewer
holes. One round hole and one hole with four singularities are removed in this type
of perestroika. These ideas are illustrated with a number of examples.

Example 1: The flow in the canonical torus shown in Fig. 15.36 is restricted at
×: 1 → 1. Hole a′ has two fewer singularities than hole a. Restriction of the flow
eliminates the singularity pair (s, j), absorbs hole 1 into hole a, creating hole a′ with
6− 2 = 4 singularities, and removes branch line 1.
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Fig. 15.36 The flow is restricted at interior flow tube 1 → 1. This removes the (s, j)
singularity pair, absorbs hole 1 into hole a, producing hole a′ with two fewer singularities.
When hole 1 is absorbed, branch line 1 disappears.

Example 2: The flow in the same canonical torus is restricted at a different interior
flow tube, as shown in Fig. 15.37: 5 → 3. In this case the (s, j) pair is eliminated,
hole 3 is absorbed into hole a producing hole a′ with 4 singularities, and the flow is
rearranged into the canonical form shown at the right in Fig. 15.37. In both this and
the previous example the genus is reduced by one, as is the number of branch lines.

Example 3: The flow in the same canonical torus is now restricted at yet another
interior flow tube, as shown in Fig. 15.38: 3 → 5. The (s, j) pair is eliminated by
this flow restriction and hole 3 is merged into hole b, which now has two singularities.
This hole can be zipped away. The remaining flow is of type C3. It is obtained from
the original flow by removing holes 3 and b and the two branch lines (3 and 5) attached
to hole 3.
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Fig. 15.37 The flow is restricted at interior flow tube 5 → 3. This removes the (s, j)
singularity pair, absorbs hole 3 into hole a, producing hole a′ with two fewer singularities.
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Fig. 15.38 The flow is restricted at interior flow tube 3 → 5. This removes the (s, j)
singularity pair, absorbs hole 3 into hole b, producing hole b′ with two fewer singularities. This
hole is zipped away. When hole 3 is absorbed into b, the two branch lines attached to it are
eliminated.

Example 4: The flow in the canonical torus shown in Fig. 15.39 is restricted at
the interior flow tube 2 → 6 indicated by the ×: 2 → 6. The (s, j) pair shown is
thus eliminated and hole 2 is merged into hole b. The new hole b′ = 2 + b has 2
singularities, and can be zipped away. The new flow has the canonical form shown at
the right in this figure. It has two fewer holes (2, b) and two fewer branch lines (2, 6).
These are annihilated when hole 2 is absorbed by hole b.

15.11 “TOPOLOGICALLY EQUIVARIANT” COVERS

In Chapter 6 we studied dynamical systems that were equivariant covers of image dy-
namical systems. The cover and image systems are related by local diffeomorphisms:
there is a |G| → 1 local diffeomorphism relating the cover to its image. The flow in
the neighborhood of any typical point q in the image can be lifted to neighborhoods
of each of the |G| points p that cover q. The flows in each of these |G| neighborhoods
in the cover are identical to a neighborhood in the image. We have seen examples of
RZ(π) and P equivariant covers of the Rössler attractor in Fig. 4.6.

“Topologically equivariant” covers also exist. (Group theoretic)-equivariant cov-
ers form a (small) subset of this latter, larger class of equivariant covers. The basic
idea is the same. A dynamical system bounded by a genus-1 torus can be lifted to a
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Fig. 15.39 The flow is restricted at interior flow tube 2 → 6. This removes the (s, j)
singularity pair, absorbs hole 2 into hole b, producing hole b′ with two fewer singularities. This
hole is zipped away. When hole 2 is absorbed into b, two of the branch lines attached to it (2
and 6) are eliminated.
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Fig. 15.40 (a) Three-branched manifold shows the initial stages of a gateau roulé. (b)
Twisting and layering information as seen as the branch line is approached. (c) Dressed return
map includes torsion and layering information shown in (b).

dynamical system enclosed in a genus-g torus using a (g − 1)→ 1 local diffeomor-
phism. We call the “lifted” dynamical system a topologically equivariant cover.

We illustrate this idea for a branched manifold that lives in a genus-1 bounding
torus. The branched manifold is shown in Fig. 15.40(a). It describes the beginning of
a “gateau roulé”. The three branches have local torsions 0, +1, +2 and are labeled by
these integers. The folding and layering information is suggested in Fig. 15.40(a) and
shown more clearly in Fig. 15.40(b). The return map is shown in Fig. 15.40(c). This
return map is dressed with torsion (0, 1, 2) and layering (α, β, γ) information. Holes
have been drawn between the branches in this representation of the three-branched
manifold simply to aid visualization of the branch organization.

Two covers of this branched manifold are shown in Fig. 15.41. Both of these
covers can be enclosed in the genus-3 bounding torus A2. Below each of these two
branched manifolds is the return map. The branched manifold in Fig. 15.41(a) has
rotation symmetry. This can be deduced from the dressed return map as the three
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branches over branch line 1 and the three branches over branch line 2 are dressed
the same way: (0γ; +1α; +2β). On the other hand, the branched manifold shown in
Fig. 15.41(b) has inversion symmetry. This can be seen from the branched manifold
itself, or from the return map. In this case the dressings over branch lines 1 and
2 are different: (0α; +1α; +2β) and (0γ;−1γ;−2β). There are two other covers
compatible with the bounding torus A2 that have not been shown: they are mirror
images of the two shown. All four branched manifolds have identical bare return
maps: the full return maps differ only in their dressing information.

In the return maps, the torsion information is read vertically and the layering
information is read horizontally. Over each branch line there are three branch labels,
variously (0,+1,+2) or (0,−1,−2). Feeding into each branch line (each row) there
are three layer indices: (α, β, γ). These two pieces of information are redundant
in topologically equivariant covers: either piece can be recovered from the other.
Essentially, the torsion information is obtained by looking in the forward direction
from a branch line, to determine the twist of the outgoing branches. The layering
information is obtained by looking backward at each branch line, to determine how
the branches approaching a branch line are stacked up. In future representations of
return maps in Chapter 16 we will provide mostly the torsion information.

The lesson we take from this example is that the flow, represented by the branches,
can twist either to the right or the left in passing from one branch line to another. In the
cover, there are two choices for the flow emerging from each branch line. When there
are two branch lines there are 2× 2 = 22 choices. When there are g− 1 branch lines
there are 2g−1 possibilities. Two of the four possible covers of the gateau roulé were
shown in Fig. 15.41. As stated above, there are two additional possibilities. These
have flows emerging from branch lines 1 and 2 rotating in the opposite directions from
those shown in the figure. Two of these four are equivalent, related by a rotation.

Covers of a flow in a genus-1 bounding torus, or of a branched manifold in such
a torus, are simply described as follows. A two-panel return map is constructed. An
example of such a return map for the gateau roulé is shown in Fig. 15.42. Part of the
flow emerging from branch line i flows to branch line f(i), determined by the network
part of the transition matrix TStr. The other part flows to branch line i+1, determined
by the cyclic part of the transition matrix TDyn. The return map over every branch
line has the same structure. The only differences are in the directions of the twists that
dress each of the branches: (0,+1,+2) or (0,−1,−2). The layering information is
uniquely determined by the twisting information, and need not be explicitly specified.
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Fig. 15.41 g − 1 equivariant covers of the gateau roulé branched manifold shown in Fig.
15.40. (a) Invariance under rotations is evident in the branched manifold and its return map.
(b) Invariance under inversion is apparent in the branched manifold but less so in the dressing
of the return map. Two other branched manifolds that are compatible with the bounding torus
A2 are mirror images of these two branched manifolds.

i

i+1

f(i)

Fig. 15.42 Return maps for topologically equivariant covers of the gateau roulé branch
manifold. The undressed return map from each of the g − 1 branches is identical before
being dressed with torsion information. The only possible dressings are (0, +1, +2) and
(0,−1,−2). Torsion dressing uniquely determines layering information. Within any specific
genus-g bounding torus there are 2g−1 locally diffeomorphic covers of the underlying branched
manifold in a genus-1 torus. Most of these covers are globally distinct.
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16.1 REVIEW: SOME OF THE COVERS OF THE HORSESHOE

Covers.
This book covers them.
All of them.
As we have progressed through the chapters our understanding and appreciation

of covers has become increasingly complex.
At first, covers were dynamical systems with some symmetry that could be mapped

to a dynamical systems without symmetry in a locally one to one way. Many examples
of such symmetric dynamical systems, and their images, were given in Chapter 3.
Fig. 16.1 shows two symmetric attractors, the Lorenz attractor and the Burke and
Shaw attractor, and their 2 → 1 images, the proto-Lorenz, and the proto–Burke and
Shaw attractors. The original attractors are the covers, the proto attractors are the
images.

As a next step, the cover-image mapping could be inverted. This allows us to
lift an attractor without symmetry, and the dynamical equations that generate that
attractor, to attractors with symmetry, and the equations that generate the symmetric

443
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Fig. 16.1 At the simplest level, a covering attractor is a strange attractor with symmetry that
projects under a local diffeomorphism to an image attractor without symmetry. Left: Lorenz
attractor and its image, the proto-Lorenz attractor. Right: Burke and Shaw attractor covering
its image, the proto–Burke and Shaw attractor.

attractors. At this stage we encountered our first enriching experience. It is possible
to lift an image to many inequivalent covers, each with the same symmetry group.
The topologically inequivalent covers differ from each other by a topological index.
In Fig. 16.2 we show four inequivalent lifts of a Smale horseshoe template. These
differ by the topological index (n0, n1). All exhibit an invariance under the rotation
groupRZ(π), with theZ-axis through the spot in theX-Y plane marked with the×.

There is a topological continuation of each of the fourRZ(π) equivariant covers
shown in Fig. 16.2 to covers withP symmetry. For example, theP-equivariant cover
with index (n0, n1) = (0, 1) differs from that shown in Fig. 16.2(c) by having one
of the branches, for example 1̂l, twist in the opposite direction from that shown and
joining the branch 0̄r from below. This example shows that the branches in a cover
can twist in different directions and still map in a locally one to one way down onto
an image attractor.
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Fig. 16.2 Four inequivalent double covers of the Smale horseshoe branched manifold are
equivariant under the same group RZ(π).

As a third step in our developing understanding of the range of flexibility of covers,
we can construct covers that are not associated with any symmetry group. Two such
covers are shown in Fig. 16.3. The covers of the Smale horseshoe template shown
in Figs. 16.3(a) and (b) are equivariant under the symmetry group C3. They differ
by their topological indices: (n0, n1) = (0, 1) for the cover in Fig. 16.3(a) and
(n0, n1) = (1, 1) for the cover in Fig. 16.3(b). The two covers below these do not
have any symmetry at all. In the cases shown in Figs. 16.3(c) and (d), the branch
1̂c twists in the opposite direction from the twist shown above them in Figs. 16.3(a)
and (b), and joins branch line a from below instead of above. These are clearly
covers, as we know from similar twist changes in the topological continuations of
theRZ(π) equivariant covers of the Smale horseshoe template to theirP equivariant
counterparts.

An image dynamical system can exhibit symmetry. Its cover then exhibits “even
more” symmetry, but the symmetry need not be obvious. Fig. 16.4(a) shows a
genus-5 double cover of a Lorenz-type attractor, where the rotation axis appears in
the central hole. The 2 → 1 image is the standard genus-3 canonical form for the
Lorenz attractor; its 2 → 1 image is the genus-1 proto-Lorenz attractor, which is
topologically equivalent to the Rössler attractor. In general it is possible to create
a complex covering attractor by lifting a simple attractor, for example the Rössler
attractor, with a sequence of symmetry groupsG1,G2,G3, · · · as described in Section
6.7. The final cover may exhibit the explicit symmetry of only the last group used
to create the lift, yet the cover is a |G1| × |G2| × |G3| · · · → 1 lift of the original
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Fig. 16.3 Three-fold covers of the Smale horseshoe withC3 symmetry and topological indices
(a) (n0, n1) = (0, 1) and (b) (n0, n1) = (1, 1). (c), (d) These three-fold covers of the Smale
horseshoe template without any symmetry group are closely related to the covers (a) and (b).

dynamical system. Slight changes in the topology of the cover, as shown in Fig.
16.4(b), creates a cover without any symmetry at all.

As a final step in disassociating the cover-image relation from symmetry, we have
introduced topological covers in Chapter 15. In effect, we can lift the dynamics that
is constrained by a bounding torus of genus g = 1 into any bounding torus of genus
g, g ≥ 3. The properties of topological lifts have been presented for the general case
in Chapter 15. In the present chapter we will focus on lifts of the horseshoe template:
we will describe all possible lifts of this dynamics.
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(a)

(b)

Fig. 16.4 (a) Four-fold cover of the Smale horseshoe branched manifold is a two-fold cover
of a two-fold cover. (b) This closely related four-fold cover has no symmetry group.

16.2 UNIVERSAL: COVERING GROUPS & IMAGE ATTRACTORS

Group theory has been an enormously useful tool for describing, classifying, and then
enumerating covering dynamical systems that are locally, but not globally, diffeomor-
phic with an image dynamical system. Nevertheless, as the examples in the previous
section make clear, many covers cannot be described by equivariance properties.

Although the technical details of group theory cannot be used to classify all covers
of strange attractors, the spirit that animates this theory can be.

16.2.1 Cartan’s Theorem

To illustrate what we have in mind, we make a slight detour into some technical but
beautiful details from the theory of continuous groups.

It has been known for more than a century (contemporary with Poincaré) that a
Lie group can be “linearized.” The operators that result span a linear vector space
and are closed under commutation. They form a Lie algebra. Every Lie group has
a Lie algebra. This algebra is unique, up to a change of basis. This relation is not
one to one [31]. The most familiar example is encountered in quantum theory. The
two Lie groups SO(3) and SU(2) have “the same” (i.e., isomorphic) Lie algebras—
the angular momentum algebra—but the two groups are not isomorphic. They are
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homomorphic, that is,SO(3) is a 2→ 1 image of the covering groupSU(2). The two
groups are locally isomorphic but not globally isomorphic. The two 2× 2 matrices
±I2 ∈ SU(2) map to the single group operation I3 ∈ SO(3). This homomorphism,
which is a 2→ 1 local isomorphism, is analogous to the 2→ 1 local diffeomorphism
mapping the two focal points of the Lorenz attractor down to the image focus in the
proto-Lorenz system.

Example: The matrix Lie groupSU(2) consists of 2×2 complex matricesM that
satisfy M †M = I2, det(M) = +1. It is three-dimensional. Under linearization,
the three independent generators Si satisfy the commutation relations [Si, Sj ] =
−εijkSk. The matrix Lie group SO(3) consists of 3 × 3 matrices O that satisfy
OtO = I3, det(O) = +1. Under linearization, its three independent generators Li

satisfy the commutation relations [Li, Lj ] = −εijkLk. These matrices are

i = 1 i = 2 i = 3

S 1
2

[
0 i
i 0

]

1
2

[
0 1
−1 0

]

1
2

[
i 0
0 −i

]

L





0 0 0
0 0 1
0 −1 0









0 0 −1
0 0 0
1 0 0









0 1 0
−1 0 0
0 0 0





If we exponentiate along the z-axis in the two cases, we find

eθS3 =

[
eiθ/2 0

0 e−iθ/2

]

eθL3 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1





As θ increases from 0 to 2π the real 3×3 matrix moves smoothly from I3 back to the
identity I3, while the complex 2× 2 matrix moves smoothly from +I2 to −I2. The
two matrices ±I2 commute with all matrices in SU(2), they therefore constitute the
maximal discrete invariant subgroup of the simply connected covering groupSU(2).
The nonsimply connected group SO(3) is obtained by modding out the maximal
two-element discrete invariant subgroup: SO(3) = SU(2)/{I2,−I2}. This means
that each pair of group operations +I2×M and−I2×M in SU(2) is identified with
a single element of SO(3).

The local “equality” but global “inequality” is essentially the same for Lie groups
as it is for dynamical systems. This suggests that any theorems about local vs. global
that are valid for Lie groups might have resonances in the theory of dynamical systems.

There is one very beautiful theorem about such a relation. It is due to Elie Cartan.
Theorem (Cartan): Let g be an n-dimensional Lie algebra over the fieldR of real

numbers. Then there is a real simply connected n-dimensional Lie group G whose
Lie algebra is g. Every other Lie groupGi with Lie algebra g is the quotient of G by
some subgroupDi ⊂ G. If Di 6= I , the quotient group is not simply connected.

This theorem is illustrated in Fig. 16.5. This figure shows the one to one corre-
spondence between the Lie algebra g and the simply connected Lie group G. All
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Fig. 16.5 Cartan’s Theorem for Lie groups. There is a one to one correspondence between
Lie algebras g and simply connected universal covering groups G. All other Lie groups with
the same Lie algebra are obtained as quotients of G by one of the discrete invariant subgroups
of G.

other Lie groups with the same Lie algebra are “covered” byG, in the sense that they
are obtained from G by “modding out” (G/Di) by a discrete symmetry group Di.
If Di = I , G/I = G is simply connected; otherwise G/Di is multiply connected.
This gives a complete list of all Lie groups with the same Lie algebra g, as well as
the topological properties of these groups.

Remark: The unique Lie groupG is called the universal covering group.

16.2.2 Groups and Diffeomorphisms

For compact finite-dimensional semisimple Lie algebras g there is a maximal discrete
invariant subgroup D of G. As a result there are only a finite number of subgroups
Di ⊆ D, i = 1, 2, · · · , finite. ThusG covers a finite number of nonsimply connected
compact Lie groups Gi with the same Lie algebra g.

In the case of dynamical systems, we have seen that an image dynamical system
D, or better for the analogy that we propose,D, can have many inequivalent covers.
Those covers that are equivariant under some (finite) groupG are related to the image
dynamical system as shown in Fig. 16.6. Here I1, I2, · · · are topological (Chapter 6)
or algebraic (Chapter 13) indices that distinguish between topologically inequivalent
covers with the same symmetry group.

In some sense, Lie groups and diffeomorphisms are similar. Lie groups and flows
are invertible: therefore they are one to one. Homomorphisms are similar to local
diffeomorphisms: modding out by a discrete invariant subgroup creates local one
to one mappings that are not global one to one mappings. In analogy to universal
covering groups, we speak in the remainder of this chapter of universal image dynam-
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Fig. 16.6 Covering dynamical systems Di,j with symmetry group Gi and topological index
Ij have an image dynamical system D that is obtained by modding out the symmetry: D =
Di,j/Gi. The dynamical system D can be called the “universal image” dynamical system of
the covers Di,j/Gi.

ical systems, or of universal image attractors, or simply universal images, in more
picturesque language.

16.3 ALL THE COVERS OF THE HORSESHOE

The horseshoe mechanism is a simple stretch-and-fold mechanism for creating chaos.
It is responsible for the creation of a strange attractor in Rössler dynamics. A two-
branch manifold that the Rössler attractor (a = 0.398, b = 2.0, c = 4.0) projects
to, under the Birman-Williams projection, is shown in Fig. 16.7(a). The return map
of the branch line back onto itself is shown in Fig. 16.7(b). The dynamics, and the
branched manifold that describes it, occurs in a genus-1 torus.

(a) Branched manifold

0

+1
α

β

(b) First-return map

Fig. 16.7 (a) Branched manifold for the Rössler attractor and (b) its return map. Control
parameter values: (a, b, c) = (0.398, 2.0, 4.0).
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We now ask the question: How many “topologically equivariant” covers has the
horseshoe?

Part of the answer lies in choosing the particular genus-g torus that the dynamics is
lifted to. For any genus, there may be one torus (g < 5) or more than one inequivalent
tori (g ≥ 5). To address this question, we first choose a particular canonical bounding
torus. For this torus many possible inequivalent covers are possible. As has occurred
often before, there are two cases that deserve special discussion. We treat separately
the cases where the covers are structurally unstable or structurally stable.

16.3.1 Structurally Unstable Covers

Two types of structurally unstable return maps are shown in Fig. 16.8(a) and (b).
Bare return maps for all g−1 branches are identical. Dressed return maps differ only
by the torsion assignment to each of the g−1 branches with torsion: ±1. The torsion
assignments uniquely determine the layering assignments. All told, there are 2g−1

possible covers with a single bare return map.
Each of the 2g−1 covers with a return map such as the one shown in Fig. 16.8(a)

or (b) is structurally unstable. As the location of the splitting point changes, the
discontinuity appearing in Fig. 16.8 moves along the branch line, providing return
maps of the type shown in Fig. 16.8(a) or (b). This entails large-scale reorganization
of the structure of the periodic orbits in the covering dynamical system, as described
in Sections 6.3.8 and 6.4.8. We have seen this before, in the structurally unstable
lifts of the Rössler attractor with RZ(π) symmetry. Both parts of branch 0, the one

i

i+1

f(i)

0i+1

1i+1

0f(i)

(a)

i

i+1

f(i) 0

1f(i)

f(i)

i+11

(b)

Fig. 16.8 Return map over branch line i of a branched manifold in a genus-g bounding torus.
The bare return map is the same over every branch line. Each of the g − 1 return maps can be
dressed in two inequivalent ways. (a) Tearing occurs over branch 0. (b) Tearing occurs over
branch 1.
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mapping to branch line f(i) (0f(i)) and the part mapping to the next branch line (0i+1)
have zero torsion. All of the branch with twist (±1) maps to branch line i+ 1. The
three symbols required over branch line i are 0f(i), 0i+1, 1i+1.

As the splitting point moves to the neighborhood of the right hand half of the
branch lines (Fig. 16.8(b)), the discontinuity occurs in the branch that carries torsion.
Once again, dynamics requires three symbols 0f(i), 1f(i), 1i+1 from each branch line.

16.3.2 Structurally Stable Covers

Structurally stable covers are obtained when the splitting points are moved outside
the flow, or equivalently do not intersect the branches of the branched manifold. This
is equivalent to the statement that branch i is mapped entirely onto either branch i+1
or branch f(i). The return maps in these two cases are shown in Fig. 16.9(a) and (b).
In both cases the bare return map is confined to one of the two panels and is identical
to the return map of the image attractor (Fig. 16.7(b)).

The case shown in Fig. 16.9(a) is equivalent to shutting the flow off in all internal
flow tubes. This is illustrated for lifts to the torus 11212 (aaabb) shown in Fig.
16.10. When the flow is restricted in the interior flow tubes, indicated by ×, the
flow circulates through the exterior flow tubes, around the outer boundary of the disk,
passing successively through the five branch lines. Two branches meet with a fold
(independently left- or right-handed) at each branch line. This means that there are
25 locally diffeomorphic, structurally stable covers of this type in this genus-6 torus,
some of which are equivalent under rotations. Since the flow occurs in a genus-1

i

i+1

f(i)

(a)

i

i+1

f(i)

(b)

Fig. 16.9 Return maps for structurally stable covers of the horseshoe. (a) The flow moves
entirely from branch line i to i + 1. This is effected by cutting off the flow through all interior
flow tubes (Fig. 16.10). (b) The flow moves entirely from branch line i to f(i). This is effected
by cutting off the flow through all exterior flow tubes (Fig. 16.11).
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XX
X
X X

Fig. 16.10 Structurally stable cover. Flow through all interior flow tubes is restricted. The
resulting flow follows the exterior boundary, meeting successively the five branch lines, with
a fold at each. The flow is restricted to the interior of a single genus-1 torus with one branch
line at which 26−1 branches meet.

torus, all the branch lines may be consolidated into a single branch line, where 25

branches join.
The other possibility for constructing structurally stable covers is shown in Fig.

16.9(b). This is equivalent to cutting off the flow through all the exterior flow tubes,
as shown in Fig. 16.11. Doing this restricts the flow to each of the m interior holes
without singularities. The flow is decomposed into a fully reducible flow around the
four interior holes without singularities. Three of these carry away one branch line.
Each is equivalent to the original image dynamical system, or its mirror image. The
fourth carries two branch lines. When consolidated into a single branch line, there
are four branches in this component of the fully reducible flow.

These arguments can be applied to any flow,strange attractor, or branched manifold
in a torus (g = 1) and its lifts to any genus-g bounding torus.

16.4 INTRINSIC EMBEDDINGS

We have searched for an analog of Cartan’s theorem for Lie groups in the field
of dynamical systems and we have found an analogous result. We have, in fact,
determined all the covers of the horseshoe. In this analog the image dynamical

X
X

X

X

X
22

Fig. 16.11 Structurally stable cover. Flow through all exterior flow tubes is restricted. The
resulting flow is fully reducible, going around each of the m = 4 interior holes without
singularities. Three of these holes inherit a single branch line each. The flows in these tori,
each of type A1, have two branches each. The fourth interior hole inherits two branch lines.
The branched manifold in this A1 torus has 22 branches.
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system plays a role comparable to the covering group in the theory of Lie groups. We
are tempted to call the horseshoe a “universal image dynamical system” just as we
call a covering group a “universal covering group.”

Here the analogy breaks down. The universal covering group is unique up to repa-
rameterization. Reparameterization of this group simply involves an isomorphism.
The original group and its reparameterized version have identical properties both at
the group level and the topological level. There is no difference between the two.

The same is not true of the “universal image.” This is unique up to global diffeo-
morphism. Under diffeomorphism the flow properties are unchanged but the global
topological properties can differ. They can differ in significant ways. In this sec-
tion we describe intrinsic differences. These depend on how the flow sits inside the
bounding genus-1 torus that contains it. In the following section we consider extrinsic
differences. These depend on how the genus-1 bounding torus that contains the flow
sits inside the ambient space R

3 that contains the dynamics [126,134].
In both sections we treat these differences at two distinct levels. We begin by

describing all the branched manifolds that are globally diffeomorphic with a simple
stretch-and-fold mechanism in the first subsection. In the following subsection we
show explicitly how to embed a time series X(t) from a strange attractor in D2×S1

into a canonical genus-1 bounding torus. In this section the torus is embedded in
a natural way in R

3 (“natural embedding”). In the following section the torus is
embedded in R

3 following the guiding curve of a knot.

16.4.1 Embeddings of Branched Manifolds

Branched manifolds that describe a simple stretch-and-fold mechanism are shown in
Fig. 16.12. We show specifically branched manifolds with global torsion 0, 1, and n,
where n (integer) is the number of twists in the return part of the flow. The branched
manifold with global torsion one is diffeomorphic with the branched manifold with
global torsion zero, but the two are not isotopic. More generally, branched manifolds
with global torsions n and n′ are diffeomorphic but cannot be isotopic unless n = n′.
The two branches of a branched manifold with global torsion n have local torsion 2n
and 2n± 1.

The mirror image of a branched manifold is also a branched manifold. The mirror
image of a branched manifold whose branches have local torsions 2n and 2n + 1
has branches with local torsions −2n and −(2n+ 1). Further, it describes the same
mechanism for generating chaotic behavior as the original. As a result, the mirror
images of this set of branched manifolds are also globally diffeomorphic with the zero
global torsion branched manifold that we usually use to describe the simple stretch-
and-fold mechanism—or also the Rössler system for the usual parameter values.

As a result, embeddings of a branched manifold that describe this mechanism can
differ by global torsion and parity (handedness).
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(a) Zero global torsion (b) Global torsion = +1

twists

full

n

(c) Global torsion = n

Fig. 16.12 Branched manifolds that are globally diffeomorphic. Adjacent branches have
local torsions that differ by ±1. For each branched manifold the box containing the branch
line shows the information that is invariant under the embedding (up to handedness).

16.4.2 Embeddings of Flows

In this subsection we illustrate how it is possible to construct an embedding of exper-
imental data generated by a flow inD2×S1 into R

3 in such a way that the embedded
attractor projects to any of the branched manifolds described in the previous subsec-
tion.

We assume that a time seriesX(t) is available, and that this time series is generated
by a dynamical system that is periodically forced with period T . Further, assume that
in any Poincaré section φ = 2π(t/T mod 1) = cst. the attractor exists inside the
boundary of a circle of radius a: X(t)2 + Y (t)2 < a2. We use as coordinate Y the
time derivative of X : Y (t) = dX(t)/dt, renormalized, if necessary.

The “natural embedding” of a torusD2×S1 into R
3 is obtained as follows. Choose

R > a, map the pair (X(t), Y (t)) into a circle in a plane rotating around the z-axis in
R

3 in a way that is synchronized with the driving period T . The center of the circle is
a distanceR from the z-axis. The coordinates (x(t), y(t), z(t)) of the data embedded
in R

3 are related to the coordinates (X(t), Y (t), t) of the data in D2 × S1 by:

x(t) = (R −X ′(t)) × cos(2πt/T )
y(t) = (R −X ′(t)) × sin(2πt/T )
z(t) = Y ′(t)

(16.1)

In the natural embeddingX ′(t) = X(t) and Y ′(t) = Y (t). (Here a prime ′ does not
signify a time derivative.) A mirror image embedding is obtained by reversing the
sign of either coordinate: (X ′, Y ′) → (+X,−Y ) or (X ′, Y ′) → (−X,+Y ). An
embedding with global torsion n is obtained using the rotation
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[
X ′(t)
Y ′(t)

]

=

[
cos(2πnt/T ) sin(2πnt/T )
− sin(2πnt/T ) cos(2πnt/T )

] [
X(t)
Y (t)

]

(16.2)

This rotation is synchronized with the driving period and generates a global torison
n over and above whatever the intrinsic global torsion of the flow happens to be. If
n = 0 no additional torsion is added to that already possessed by the flow.

Remark: This procedure is well adapted to create embeddings of periodically
driven dynamical systems, such as the van der Pol and the Duffing oscillators described
earlier in Chapter 8. It works as well for their images, the proto-systems. It cannot
be used directly for autonomous dynamical systems, such as the Rössler system.
However, as the Rössler strange attractor lives inside a genus-1 torus for standard
control parameter values, it ought to be possible to carry out such an embedding.
This can be done if there is a one to one transformation t → φ, with φ measured
around the torus containing the strange attractor. If such a diffeomorphism R

1 →
R

1 can be constucted, so that dt/dφ 6= 0, then the equations of motion can be
transformed from dxi/dt = fi(x) (i = 1, 2, 3, autonomous) to dur/dφ = gr(u;φ)
(r = 1, 2, nonautonomous), and the embedding procedure carried out on the two
variables u1(φ), u2(φ).

16.5 EXTRINSIC EMBEDDINGS

From the inside every genus-1 torus looks the same [134]. Each looks like the naturally
embedded genus-1 torus described in the previous subsection.

The tori described in Chapter 15 are all intrinsic—as seen from the inside. We do
not yet know how to classify how these tori can be embedded in R

3, except in the
case of the genus-1 torus.

In this case the embeddings of the genus-1 torus in R
3 are classified by (tame)

knots. Every knot can be used as the centerline for a genus-1 torus. There are as
many inequivalent embeddings of the genus-1 torus into R

3 as there are knots.

16.5.1 Embeddings of Branched Manifolds

In this subsection we classify all branched manifolds that are diffeomorphic with a
simple stretch-and-fold mechanism for generating chaotic behavior.

Start with a zero global torsion right-handed Smale horseshoe branched manifold
enclosed in a torus that is naturally embedded in R

3. Cut open the torus, and the
branched manifold inside, and straighten it out so it looks like a cylinder. Twist the
cylinder n times about its axis, then tie it into a knot before regluing the cylinder (and
the branched manifold inside it) at the two ends that were cut. The new branched
manifold differs from the original by global torsion and knot type. If we made a
mirror image of the cylinder before tying it into a knot, the new and original branched
manifolds would differ by global torsion, parity, and knot type [126].
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16.5.2 Embeddings of Flows

Knotted embeddings are created most easily using harmonic knots [123]. These
are knots parameterized by harmonic functions: sines and cosines. Harmonic knot
parameterizations are given by

ξ(t) =
∑k

j=1 Xc(j) cos(2πjt/T ) +
∑k

j=1 Xs(j) sin(2πjt/T )

η(t) =
∑k

j=1 Yc(j) cos(2πjt/T ) +
∑k

j=1 Ys(j) sin(2πjt/T )

ζ(t) =
∑k

j=1 Zc(j) cos(2πjt/T ) +
∑k

j=1 Zs(j) sin(2πjt/T )

(16.3)

These equations define a space curve Υ(t) = (ξ(t), η(t), ζ(t)) of periodT . This curve
is the core (guiding curve) of the knotted torus. The knotted embedding is obtained
by constructing the three-vector X ′(t)N(t) + Y ′(t)B(t) in the plane perpendicular
to the tangent vector T(t) to the knot, and adding this vector to the position vector
that defines the coordinates along the knot:

x(t) = (x(t), y(t), z(t)) = Υ(t) +X ′(t)N(t) + Y ′(t)B(t) (16.4)
The coordinates (X ′(t), Y ′(t)) have the range of meanings given in the previous
subsection (cf. Eq. (16.2)).

The unit tangent vector T(t) is proportional to the derivative dΥ
dt . The unit normal

N(t) is in the plane spanned by dΥ
dt and d2Υ

dt2 . The unit binormal B(t) is proportional
to the cross product of these two vectors: B(t) ' dΥ

dt ×d2Υ
dt2 The simplest way to

construct N(t) and B(t) is to construct B(t) first by normalizing dΥ
dt ×d2Υ

dt2 , and then
normalizing B(t)× dΥ

dt to construct N(t).
The conditions necessary for an embedding are the standard no-self-intersection

conditions. These have both a local and a global form. Locally, the requirement is
that the curvature of the carrier knot is not too large. Specifically, the radius of the
osculating circle along the curve must be bounded below by the radius ofD2, that is,
greater than a. Globally, it is that the nonzero minima Min|Υ(t)− Υ(t′)| must be
bounded below by the diameter of D2: that is, Min|Υ(t)−Υ(t′)| > 2a.

The framing of the knotted torus is a global torsion. It is computed as follows.
The linking number of the carrier knot and an offset knot is computed. This is an
integer, a global torsion, and the framing of the embedded knotted torus. The offset
knot is obtained by setting (X(t), Y (t)) = (ε, 0) in the embedding described above.

The “natural” embedding uses the harmonic knot Υ(φ) = (R cos(φ), R sin(φ), 0).
For this knot N(φ) always points to the origin. This is the reason for the minus signs
in Eq. (16.1). The natural embedding has a framing index of zero.

Any knot can be used as a carrier knot for embedding a genus-1 torus in R
3. This

includes any periodic orbit encountered in either the Rössler or the Lorenz strange
attractors.

We illustrate this idea using one of our canonical examples: the van der Pol
oscillator with harmonic drive of period T . A strange attractor created under these
conditions is periodic, with period T and angular frequency ω = 2π/T . It also
possesses an order-two symmetry whose generator is (X,Y, t)→ (−X,−Y, t+ 1

2T ).
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We have created two distinct 2→ 1 images of the van der Pol strange attractor by
projecting the flow onto “the” van der Pol plane. There are in fact two van der Pol
planes. They rotate in opposite directions. The projections are

[
u(t)
v(t)

]

=

[
cos(ωt) ± sin(ωt)
∓ sin(ωt) cos(ωt)

] [
X(t)
Y (t)

]

(16.5)

These projections result in two globally inequivalent proto–van der Pol attractors.
They have period T ′ = 1

2T , angular frequency ω′ = 2ω, and no other internal
symmetry. There is a one to one correspondence between periodic orbits in each
of these two proto-attractors but the linking numbers and relative rotation rates of
corresponding periodic orbits differ systematically from one attractor to the other. The
two proto-attractors are locally diffeomorphic with each other and with the original
van der Pol attractor. In fact, the two proto-attractors are globally diffeomorphic but
not isotropic.

Either of the proto–van der Pol attractors can be lifted to 2-fold (or n-fold) covers.
We describe two classes of lifts.

Lifts around a circle: In one class we use a simple circle as the carrier knot for
the bounding torus. The circle is embedded in R

3 as follows:

θ ∈ T 1 → R(cos θ, sin θ, 0) ∈ R
3 (16.6)

It is necessary thatR is greater than the radius of the proto–van der Pol attractor. The
coordinates (u(t), v(t)) of the image attractor are rotated through an angle φ as they
are lifted into the bounding torus according to

[
X(t)
Y (t)

]′
=

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

][
u(t)
v(t)

]

(16.7)

The angle φ is measured with respect to the local coordinate system (N(θ),B(θ))
established in the plane perpendicular to the guiding knot’s unit tangent vector t =
(− sin θ, cos θ, 0). The unit normal vector always points toward the origin (0, 0, 0) ∈
R

3. A double cover is created under the identifications
θ

2π
↔ t

n1T ′ φ = n2θ (16.8)

with n1 = 2, n2 = ±1. If the appropriate sign (∓1 for n2) is chosen the double
cover produced by the embedding is identical to the original van der Pol attractor,
as the rotation matrix in Eq.(16.7) undoes the rotation matrix in Eq.(16.5). If the
sign is “inappropriately” chosen (±1 for n2), the original van der Pol attractor is not
recovered. Rather, a globally diffeomorphic but topologically inequivalent attractor
is generated.

The strange attractor created by this lift has period T = 2T ′ and obeys the sym-
metry (X,Y, t)→ (−X,−Y, t+ 1

2T ).

Remark 1: A whole class of lifts can be created by using the simple circle Eq.
(16.6) as the guiding knot for the bounding torus. This is a doubly discrete set indexed
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by the integer pair (n1, n2) (“quantum numbers for lifts”). In this class n1 (> 0) is
the order of the lift and n2 indexes the torsion around the guiding knot. The lifted
attractor is invariant under (Z, t) → (e2πn2/n1Z, t + T ′), where Z = X + iY .
The integers n1 and n2 are assumed to be relatively prime. If not, the order of
the cover is some appropriate divisor of n1. For n1 = 2 and n2 odd there is an
entire class of double covers with periodicity T = n1T

′ = 2T ′ and symmetry
(X,Y, t) → (−X,−Y, t + 1

2T ), while for n2 even the lifts are one to one with
the proto–van der Pol attractors (1 = n1/g.c.d(n1, n2)). This is reminiscent of the
SU(2) and SO(3) relation, for good reason.

Remark 2: These remarks apply to any knot, not just to the simply embedded
circle defined in Eq.(16.6).

Remark 3: If n1 = 3, a three-fold cover of the proto–van der Pol attractor is
recovered: This can be regarded as a “ 3

2” cover of the van der Pol attractor.

Remark 4: The van der Pol attractor can be projected in a 2 → 1 way onto
many more than two rotating van der Pol planes. They are all obtained by replacing
ωt→ kωt in Eq. (16.5), with k odd.

Lifts around a cabled torus knot: In the second class we use a “cabled torus
knot” as the guiding knot for the bounding torus. This can be regarded as a knot
winding around the simple circle (Eq.(16.6)) as the circle (θ) winds around the z-axis
in R

3. It is embedded in R
3 according to

θ ∈ T 1 →
x(θ) = (R1 + R2 cosψ) cos θ
y(θ) = (R1 + R2 cosψ) sin θ
z(θ) = R2 sinψ

qψ = pθ (16.9)

with R1 > R2. Here R1 is the radius of the simple circle (Eq.(16.6)) about which
the torus knot is cabled (R in Eq.(16.6)),R2 is the radius of rotation of the torus knot
about the simple circle, and p/q is the “winding number” of the torus knot. A simple
double cover (q = 2) is obtained under the identification

θ

2π
↔ t

T ′ ψ = ±1

2
θ φ = ψ (16.10)

With this lift of the proto–van der Pol attractor into R
3, the lifted attractor intersects

the Poincaré section θ = constant with period T ′ but the two intersections are offset
by 2R2. Further, the two intersections exhibit an inversion symmetry. As a result, the
attractor created by this lift possesses exactly the same symmetry as the original van
der Pol attractor: (X,Y, t) → (−X,−Y, t + 1

2T ). However, it is not equivalent to
the original van der Pol attractor. In Fig. 16.13 we show intersections of the attractor
lifted using the cabled torus knot defined in Eq.(16.9) and identification given in
Eq.(16.10). The two choices (ψ = ± 1

2θ) generate inequivalent attractors that “rotate
in opposite directions.”
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Fig. 16.13 A double cover of the proto–van der Pol attractor. This lift uses a cabled torus knot
defined by Eqs.(16.9,16.10). Parameters for the van der Pol oscillator: a = 0.25, b = 0.7, c =
1.0, d = 10.0, ω = π/2, T = 4.0. Parameters for the embedding: R1 = 10.0, R2 = 1.2.
Five equally spaced Poincaré sections are shown. They are half-planes hinged on the z-axis
separated by dihedral angles 2π/5. The sixth Poincaré section is the same as the first.

Remark 1: An entire class of q-fold lifts can be constructed using cabled torus
knots with winding numbers (p/q) and identifications

θ

2π
↔ t

T ′ ψ =
p

q
θ φ = n2ψ (16.11)

Forp and q relatively prime the lifted attractor has q intersections on a Poincaré section.
Successive intersections (∆θ = 2π,∆t = T ′) have centroids rotated through an angle
2πp/q with respect to the circle R1(cos θ, sin θ, 0) and orientations rotated through
2πn2p/q with respect to the centroid, the torus knot.

Remark 2: The lifts around cabled knots just described are classified by three
integers, not two as described for lifts using the simple circle. Two of the three
integers (p and q) describe the knot, and only one (n2) is one of the two integer
degrees of freedom described earlier. Lifts with quantum numbers (n1, n2) can be
constructed for the (p, q) torus knot, as for any other knot. We have not done this
here.

A trefoil knot is a cabled torus knot with p/q = 1/3. A torus embedded in R
3

using the trefoil knot as its guiding curve is shown in Fig. 16.14. The software used
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Fig. 16.14 Trefoil knot is a torus knot with (p, q) = (1, 3). This knot has a rotation symmetry.

to draw this knot actually blows up the knot into the torus. This knot has three-fold
symmetry. In this class of knots the point drawing the torus knot goes around the
torus p times in one direction and q times in the other before closing. If the torus,
with its doubly cyclic boundary conditions, is represented as a plane tessellated by
squares, the torus knot is represented as a straight line segment from the origin (point
(0, 0) in the plane) to the point (p, q) in the plane.

Since torus knots exhibit a symmetry, it is possible to lift a strange attractor from
D2×S1 into a torus knotted using a (p, q) torus carrier knot so that the lifted attractor
is either diffeomorphic with the original,or else is a q-fold cover of the original strange
attractor (p < q), but adjusting the relation between the dynamics (the time t) and
the geometry (the angle θ) of the carrier knot.

We close this subsection with a poetic note. The trefoil knot can be cut open,
duplicated, and the two copies can be joined. Depending on whether an identical
copy or a mirror image is joined with the original, two knots with twice the number of
crossings but different symmetries are obtained. These are the granny knot (rotation
symmetryRZ(π)) and the square knot (inversion symmetryP). These two knots are
shown in Fig. 16.15. Since both knots have two-fold symmetry, a strange attractor can
be lifted fromD2 × S1 into either torus in a straightforward way, or else as a double
cover of the original by renormalizing the time parameter of the driven attractor. The
parameterizations of these two harmonic knots are presented in Table 16.1.

Fig. 16.16 shows an embedding of chaotic data generated by the periodically driven
Duffing oscillator using the granny knot as a carrier knot. Projections on the three
coordinate planes of the strange attractors embedded using the granny and the square
knots are identical.
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(a) Granny knot (b) Square knot

Fig. 16.15 Two knots obtained by cutting and gluing the trefoil knot either to itself or its
mirror image.

Table 16.1 Coefficients in the harmonic parameterizations of the granny knot (top three
lines) and the square knot (bottom three lines) [123]. The symmetries of the knots are reflected
in their coefficients.

Harmonic 1 2 3 4 5
Trig. Fun. cos sin cos sin cos sin cos sin cos sin

x −22 −128 −44 −78
y −10 −27 +38 +46
z +70 −40

x −22 −128 −44 −78
y +11 0 −43 0 +34 −39
z +70 −40 +8 −9

16.6 ONCE A HORSESHOE, ALWAYS A HORSESHOE

Chaotic time series have been generated by a large number of experiments. Typically
a scalar time series is available, and a strange attractor must be generated from the
scalar time series using some embedding procedure. The algorithm of choice is the
time delay embedding [96,121,136] although other embedding methods have been
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Fig. 16.16 Embedding of chaotic data using a nontrivial embedding of S1 into R
3. The

data are generated by the harmonically driven Duffing oscillator and the granny knot is used
as the carrier knot. The projection shown is onto the X-Y plane. The projection of the strange
attractor embedded using the square knot as a carrier knot is identical.

used successfully [33,34]. Embeddings are used as a matter of course to “reconstruct”
the strange attractor. A major challenge has been to determine exactly to what extent
the embedded attractor represents the original, unseen attractor.

The properties of embedded strange attractors have been analyzed using three
distinct mathematical approaches: geometric, dynamical, and topological. Geometric
analyses involve computing various fractal dimensions [41]. Dynamical analyses
involve computation of Lyapunov exponents and the average Lyapunov dimension
[137]. Topological analysis concentrates on the organization of the unstable periodic
orbits embedded in the attractor, and the global topological properties of the attractor
[33,34,87,89,116].

Geometric and dynamical measures are diffeomorphism invariants while topolog-
ical measures are not. So it would seem that geometric and dynamical measures are
more robust tools than topological tools for the analysis of chaotic data. This is one
way to look at a comparison of these three approaches to the analysis of chaotic data.

Another way provides more insight. A single attractor can be embedded in R
3

in a variety of different ways, described for genus-1 attractors in the previous two
sections. Only topological tools are able to distinguish among these embeddings, for
the geometric and dynamical measures are the same,independent of embedding. Only
topological tools are able to provide information about the mechanism that creates
chaotic behavior. Further, although embeddings can differ by parity, global torsion,
and knot type, all diffeomorphic embeddings provide exactly the same information
about the mechanism that generates chaos. This information is contained in the
number of branches that the chaotic flow projects to and how they are organized as
they approach the branch line(s).
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It follows from these statements that if a chaotic time series is generated by some
unseen stretch-and-fold mechanism acting in a genus-1 torus, distinct embeddings of
the data can differ by

• Parity
• Global torsion
• Knot type

but every embedding will reveal the same mechanism (template, cf. Fig. 16.12)
[58, 126]. Only topological analysis tools are capable of revealing the mechanism.
In particular, in the special case that only two symbols are needed to describe the
dynamics, every embedding of these chaotic data will reveal this mechanism is the
Smale horseshoe mechanism.

This result is neatly summarized by the aphorism: “Once a horseshoe, always a
horseshoe!”
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A.1 THREE-DIMENSIONAL SYSTEMS

A.1.1 Lorenz System

In 1963, Edward Lorenz attempted to understand the lack of long-term predictability
in meteorology. For that, he used a severe truncation of the Galerkin decomposition
of the Navier-Stokes equations. He obtained the three-dimensional set of ordinary
differential equations [78]

Ẋ = −σX + σY

Ẏ = RX − Y −XZ
Ż = −bZ +XY

(A.1)

465
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where σ, b, and R are positive parameters. For (R, σ, b) = (28.0, 10.0, 8/3), the
Lorenz system has three fixed points: a saddle, F0, located at the origin of the phase
space, and two saddle-foci, F±. The two latter are located at

∣
∣
∣
∣
∣
∣

X± = ±
√

b(R− 1)

Y± = ±
√

b(R− 1)
Z± = R− 1

The Lorenz system generates a chaotic attractor (Fig. A.1(a)) which is equivariant
under a rotationRZ(π). The associated image is shown in Fig. A.1(b).
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Fig. A.1 Chaotic solution of the Lorenz system (a) and its image (b). Parameter values:
R = 28, σ = 10, and b = 8/3.

An algebraically simpler system characterized by the same branched manifold as
the Lorenz system has been proposed by Shimizu & Morioka [114]. It is:

Ẋ = Y

Ẏ = X − µY −XZ
Ż = −αZ +X2

(A.2)

where the control parameters are (α, µ). This system has one fixed point, F0, located
at the origin of the phase space and two fixed points F± located at (±√α, 0, 1). For a
wide range of parameter values, including those corresponding to a chaotic attractor,
F0 is a saddle and F± are two saddle-foci. The chaotic attractor generated by these
equations for (α, µ) = (0.375, 0.810) is shown in Fig. A.2(a). The associated image
is shown in Fig. A.2(b).

In investigating magneto-convection with an imposed vertical magnetic field and
convection in a fluid layer rotating uniformly about a vertical axis, Rucklidge [111]
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Fig. A.2 Chaotic behavior (a) generated by the Shimizu & Morioka system for (α, µ) =
(0.375, 0.810) and its image system (b). The chaotic attractor (a) has the same topology as
the Lorenz system.

obtained a system with the same algebraic structure as the Shimizu & Morioka equa-
tions (A.2). The Rucklidge system is written in the form

Ẋ = Y

Ẏ = −λX − κY −XZ
Ż = −Z +X2

(A.3)

where κ and λ are scaled linear combinations of the viscous diffusivity and the
magnetic permeability of the fluid. This system is dissipative when κ < 1. The
equivariance property of this system is a manifestation of the invariance of the sense
of the flow. Choosing the parameters in an adequate manner leads to an attractor
similar to the attractor shown in Fig. A.2.

A.1.2 Thermal Convection Loop

Consider a thermal convection loop constructed from a pipe bent into a torus and
standing in the vertical plane as shown in Fig. A.3. Such an experiment was first
carried out by Creveling, Pas, Baladi, and Schoenhal [26]. The diameter of the pipe
is d and the diameter of the torus isD. θ is the angular location of a point on the torus.
The wall temperature of the pipe, Tw(θ, t), which may vary both with the angular
location θ and the time t, is symmetric with respect to the torus axis that is parallel to
the gravity vector. Variations in the wall temperature may cause a spatial temperature
distribution inside the fluid which, under appropriate conditions, may induce fluid
motion in the loop (gravithermal instabilities).
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Fig. A.3 Schematic description of the experimental apparatus.

Within the framework of the Boussinesq approximation and using a one-dimensional
model consisting of mass, momentum and energy balances [11]:

u̇ =
1

π
Raσ

∫

T (θ) cos(θ)dθ − σu (A.4)

and
Ṫ = −u∂T

∂θ
+B

∂2T

∂θ2
+ (Tw(θ, t)− T ) (A.5)

The fluid is incompressible and Newtonian. In these equations, all quantities are
nondimensional; Ra = gβ∆Tτ2

Dσ is the loop’s Rayleigh number; β is the thermal
expansion coefficient; g is the gravitational acceleration; and ∆T is the averaged
wall temperature difference between the loop’s bottom and top. The time scale is
τ =

ρ0Cpd
4h , where ρ0 is the fluid’s average density, Cp is the thermal capacity, and

h is the heat transfer coefficient, here assumed to be constant, between the fluid and
the pipe’s wall. σ = 32ντ

d2 is the loop’s Prandtl number, where ν is the kinematic
viscosity. B =

(
d
D

)2 1
Nu is the Biot number, where Nu is the Nusselt number.

After an expansion of the wall and fluid temperatures in Fourier series in terms of
the angle θ, Wang, Singer, and Bau [133] obtained the set of three ordinary differential
equations:

Ẋ = −σX + σY

Ẏ = −Y −XZ
Ż = −Z +XY −Ra

(A.6)

For (Ra, σ) = (48, 10), this model for a thermal convection loop has three fixed
points: a saddle, F0, located at (X0, Y0, Z0) = (0, 0,−Ra), and two saddle-foci,
F±. The two latter are located at

∣
∣
∣
∣
∣
∣

X± = ±
√

Ra− 1
Y± = ±

√
Ra− 1

Z± = −1
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Fig. A.4 Chaotic behavior (a) generated by the model for a thermal convection loop for
(Ra, σ) = (48, 10) and its image system (b). The chaotic attractor (a) has the same topology
as the Lorenz system.

The attractor generated by the thermal convection loop equations (A.6) is shown in
Fig. A.4(a), as is its image in Fig. A.4(b).

A.1.3 Rikitake System

The paleomagnetic record contains evidence that the Earth’s magnetic dipole has
reversed its polarity many times in an irregular manner, and the paleomagnetic results
indicate that, even while of one sign, its magnitude fluctuates. The reversals have
occurred throughout the history of the Earth, but during the last 70 million years they
have been very frequent, taking place at least three or four times every million years
(cf. Fig. 1.3). As the Earth’s magnetic field is caused by electrical currents generated
within its deep interior, Bullard [19] introduced a single self-excited disc dynamo as
a possible analogy for the nonlinear mechanism responsible for the irregularity of the
reversals. But he found that reversals were not possible for such a system. Later,
Rikitake [107] introduced the case of two identical coupled disc dynamos in which
the current from each disc energizes the coil of the other. In such a case, the current
can reverse its sign.

Rikitake’s model consists of two identical frictionless disc dynamos connected as
shown in Fig. A.5. The dynamos are driven by identical torques,G, to maintain their
motion in the face of ohmic losses in the coils and discs. The discs of the model
may be taken to represent two large eddies in the Earth’s cores. The torques may be
likened to buoyancy forces turning the eddies. The retention of resistive dissipation
and the neglect of frictional forces reflect the probable dominance of ohmic diffusion
over viscous diffusion in the Earth’s core. Although these features of the Rikitake
model replicate the Earth faithfully, the model is crude in the sense of neglecting
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Fig. A.5 Schematic view of Rikitake’s dynamo.

other features such as the diffusive and Alfvénic time delays in the communication
between eddies in the core, as well as the effects of Coriolis forces.

The equations governing the currents I1 and I2 (Fig. A.5) and angular velocities
Ω1 and Ω2 are

Lİ1 +RI1 = MΩ1I2

Lİ2 +RI2 = MΩ2I1

CΩ̇1 = G−MI1I2

CΩ̇2 = G−MI1I2

where L is the self-inductance and R the resistance associated with each dynamo
and its connecting circuitry, and M is the “mutual inductance” between the dynamo
circuits, C is the moment of inertia of a dynamo about its axis, and G is the couple
applied about that axis. If follows from the last two equations that the difference in
angular velocities is constant

Ω1 − Ω2 =

√

GL

CM
A

where A is a constant.
When the equations are put into nondimensional form, they become

Ẋ1 + µX1 = Y X2

Ẋ2 + µX2 = (Y − α)X1

Ẏ = 1−X1X2
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These are conveniently rewritten in the usual form

Ẋ = −µX + Y Z

Ẏ = −µY + (Z − α)X

Ż = 1−XY

where α and µ = CR2

GLM are two control parameters. This system has two fixed points

F± =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X± = ±
√

α+
√

α2 + 4µ2

2µ

Y± = ±
√

2µ

α+
√

α2 + 4µ2

Z =
α+

√

α2 + 4µ2

2

If we set α = µ(K2 − 1
K2 ), these coordinates become

F± =

∣
∣
∣
∣
∣
∣
∣
∣
∣

X± = ±K

Y± = ± 1

K

Z = µK2

This system has been investigated following Lorenz’s approach in 1970 by Cook and
Roberts [24]. It has a chaotic attractor (Fig. A.6(a)) topologically equivalent to the
Lorenz attractor (Fig. A.1(a)) for µ = 1.05 andK = 1.5. The image attractor, shown
in Fig. A.6(b) is topologically equivalent to the proto-Lorenz system (Fig. A.1(b)).

A.1.4 Homopolar Dynamo

Homopolar dynamo models are used for the understanding of spontaneous magnetic
field generation in magnetohydrodynamic flows. In 1979, Moffat [91] proposed a
heuristic model of the disk dynamo of Bullard taking into account the field exclusion
process necessary to satisfy the Alfvén theorem of flux conservation. This self-
consistent model is obtained by a segmentation of the disk, leaving the possilibility of
azimuthal currents to exclude the magnetic field. An analog of such a dynamo in the
electrical engineering science was proposed by Lusseyran and Brancher [81]. It works
exclusively in the nonstationary regime. The copper cylinder is first rotated above
the critical starting velocity, then connected to the main coil through liquid contacts,
and then the kinetic energy of the wheel is transformed to the electric energy.

The generator is formed by a rotating copper ring and tangential coils E with
sliding contacts that can induce a radial magnetic flux B through the side of the rotating
cylinder (Fig. A.7). The corresponding segmented model allows an azimuthal current
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Fig. A.6 Chaotic attractor (a) of the Rikitake’s dynamo model for µ = 1.05 and K = 1.5.
Its image (b) is topologically equivalent to the proto-Lorenz system.
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Fig. A.7 Schematic view of the homopolar dynamo.

J and a main current I . The nonlinear system satisfied by the currents and velocity
is written in nondimensional form as

Ẋ = α [(Z − 1)X + (Z + β)Y ]

Ẏ = α [(1− Z)X − (Z + γ)Y ]

Ż = −XY −X2 + C − νZ
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where the time is adimensionalized by Rt/L. Dynamical variables are related to
physical quantities by

X =
M

R

√
L

4π2I2
I

Y =
L′

R′

√
L

4π2I2
J

Z =
M

R

Ω

2π

where

• L is the self-inductance of the main coil,
• L′ is the self-inductance of the rim,
• R and R′ are the corresponding resistances,
• M is the mutual inductance of the coil and rim,
• I2 is the moment of inertia of the rotating part,
• T is the applied torque,
• ν is the friction coefficient,
• Ω is the angular velocity.

The control parameters are

α =
LL′

LL′ −M2
= 1.01

β =
R′M2

RL′2 = 0.1136

γ =
R′L

RL′ = 11.25

C =
ML

R2

T

4π2I2
= 93.5

ν = 3.0

The system has three fixed points

F± =

∣
∣
∣
∣
∣
∣
∣
∣

±
√
C − ν

0

1

and F0 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0

C

ν

for any value of ν different from zero. When ν = 0, the fixed point F0 is ejected to
infinity. The chaotic attractor generated by this homopolar dynamo model, for the
control parameter values given above, is shown in Fig. A.8(a) and its image is shown
in Fig. A.8(b).
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Fig. A.8 Chaotic attractor (a) of the homopolar dynamo model for ν = 3.0. Its image (b) is
topologically equivalent to the image of the Lorenz system. Other parameter values: α = 1.01,
β = 0.1136, γ = 11.25, and C = 93.5.

A.1.5 Still Another Lorenz-Like Attractor

In order to investigate the transition to chaotic behavior via a cascade involving
bifurcations of stable homoclinic orbits, Arnéodo, Coullet, and Tresser proposed the
set of three ordinary differential equations [4]:

Ẋ = aX − aY
Ẏ = −4aY +XZ + bX3

Ż = −adZ +XY + cZ2

(A.7)

For parameter values (a, b, c, d) = (1.8, 0.02,−0.07, 1.5), this system has a chaotic
attractor (Fig. A.9(a)) which is topologically equivalent to the Lorenz attractor. Its
image is also shown in Fig. A.9(b).

A.1.6 Chen & Ueta System

The Chen and Ueta system [22] reads as:







Ẋ = −σX + σY

Ẏ = (R− σ)X +RY −XZ
Ż = −bZ +XY

(A.8)
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Fig. A.9 Chaotic attractor (a) of the system proposed for investigating bifurcation of stable
homoclinic orbits. Its image (b) is topologically equivalent to the image of the Lorenz system.
Parameter values: (a, b, c, d) = (1.8, 0.02,−0.07, 1.5).

This system has three fixed points. One is located at the origin of the phase space
R

3(X,Y, Z). Two are symmetry-related and are defined by:

F± =

∣
∣
∣
∣
∣
∣
∣
∣

x± = ±
√

b(2R− σ)

y± = ±
√

b(2R− σ)

z = 2R− σ
(A.9)

Although there is no diffeomorphism between the Lorenz system and system (A.8)
[22], it is possible to find an attractor topologically equivalent to the Lorenz attractor.
This is obtained for (R, σ, b) = (22.05, 35, 5) (Fig. A.10(a)). Its image (Fig. A.10(b))
is obviously topologically equivalent to the image of the Lorenz attractor.

A.1.7 Burke & Shaw System

Starting from the Lorenz equations, Burke and Shaw [113] proposed the following
system:

Ẋ = −S(X + Y )

Ẏ = −Y − SXZ

Ż = SXY + V

(A.10)

where the control parameters are (S,V). This system has only two fixed points,

F±, with coordinates
(

±
√

V
S
,∓
√

V
S
,
1

S

)

. Both are saddle-foci. The attractor is

displayed in Fig. A.11(a) with its image in Fig. A.11(b) for (S,V) = (10.0, 4.271).
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Fig. A.10 Chaotic attractor (a) of the Chen and Ueta system for (R, σ, b) = (22.05, 35, 5).
Its image (b) is topologically equivalent to the image of the Lorenz system.
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Fig. A.11 (a) Chaotic attractor for the Burke & Shaw system and (b) its image for (S,V) =
(10.0, 4.271).

In his search for three-dimensional chaotic flows, Sprott [117] found two systems
which generate a chaotic attractor topologically equivalent to the Burke & Shaw
attractor. These are cases B and C in Table 1 of [117]. The simplest one from an
algebraic point of view, case C, is:

Ẋ = −bX + bY

Ẏ = XZ

Ż = a− Y 2
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Fig. A.12 Sprott’s system: case C. The chaotic attractor (a) has the same branched manifold
as the Burke and Shaw system. Its image (b) is also shown. Parameter values: (a, b) =
(0.097480, 0.64).

The corresponding attractor is shown in Fig. A.12(a), along with its image in Fig.
A.12(b), for (a, b) = (0.097480, 0.64).

A.1.8 Leipnik and Newton System

Leipnik and Newton proposed a system with three quadratic interactions arising from
a modified Euler’s rigid body equations by the addition of linear feedback [59]. The
equations are







Ẋ = −aX + Y + 2bY Z

Ẏ = −X − aY + bXZ

Ż = −bXY + cZ

(A.11)

This system has five fixed points. One is located at the origin of the phase space and
the four others are defined as

(X,Y, Z) =

( −λc
b(2λ2 − ac) ,

λ

b
,

−λ2

b(2λ2 − ac)

)

λ = ±
√

c

8a

√

3 + 4a2 ±
√

9 + 8a2

(A.12)

This system hasRZ(π) rotation symmetry. For certain parameter values, four attrac-
tors coexist in the phase space as shown in Fig. A.13(a). The two attractors observed
mainly with positiveZ-values are topologically equivalent to the Burke and Shaw at-
tractor observed before the first attractor merging crisis. Two limit cycles also coexist
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in the phase space for negative Z-values. They are observed by choosing different
initial conditions. These two cycles remain roughly unchanged when the c parameter
is increased to 0.152. Contrary to this, the two disconnected attractors for positive
Z-values merge into a single attractor (Fig. A.13(b)).
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(a) Four disconnected attractors (c =
0.15134)
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Fig. A.13 Disconnected attractors of the Leipnik and Newton system for parameter values
(a, b) = (0.73, 5). (a) Two symmetry-related chaotic attractors and (b) one symmetric chaotic
attractor. In both cases there are two symmetry-related limit cycles.

The two attractors with negative Z-values, different from the first two attractors
with positive Z-values, are obtained because a second symmetry is broken by the
factor 2 in the term 2bY Z in the first equation of system (A.11). The symmetry can
be restored by removing the coefficient 2 from this term. Thus, for slightly different
parameter values, four symmetry-related attractors are obtained as shown in Fig.
A.14. For values of c greater than 0.1428, the attractors merge and two disconnected
attractors remain in the phase space. They are symmetry-related.

A.1.9 Simple Models for Pulsating Stars

In 1966, Moore & Spiegel [92] were interested in describing the irregular pulsations
observed in variable stars like Cepheids, among others. In order to do that, they
investigated the instability of a sphere of fluid. They obtained a third-order differential
equation:

...
x +ẍ+ (T −R+Rx2)ẋ+ Tx = 0

which may be rewritten as three ordinary differential equations

Ẋ = Y

Ẏ = Z

Ż = −Z − (T −R+RX2)Y − TX
(A.13)
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Fig. A.14 Four disconnected chaotic attractors of the modified Leipnik and Newton system
for parameter values (a, b, c) = (0.60, 5, 0.1428).

where X = x. The parameter T is analogous to a Prandtl number multiplied by
the Taylor number and R is analogous to a Rayleigh number. They investigated this
oscillator for T = 6.0 andR = 20.0. For these values, a chaotic attractor is obtained
(Fig. A.15(a)). They used the term “aperiodic behavior,” as Lorenz did in his 1963
paper [78]. This system is equivariant under the inversion P , as are all systems
obtained from a differential embedding.
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Fig. A.15 Chaotic attractor (a) solution of the Moore and Spiegel system and its image (b)
for T = 6.0 and R = 20.0.
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Later Auvergne and Baglin [9] derived another set of equations from a one-zone
model for a pulsating star and obtained the equation

...
x +ẍ+ λ

(
1 + αx2

)
ẋ+ βx = 0

where (x = δr
r̄ ) is the radius relative to the radius at the equilibrium. Coefficients

α, β, and λ are defined by

α =
γ2(1 + γ1)

2

γ1

β =
B

A

1

A2K2

λ =
γ1

A2K2

(A.14)

where γ1 is a function of the adiabatic exponent governing the instability rate and γ2

depends on the number of ionized elements and on η = χ
kT , where χ is the ionization

potential. The term A2K2 quantifies the departure from adiabaticity and B/A is the
energy source term of the star.

System (A.14) may be written as a set of ordinary differential equations:

Ẋ = Y

Ẏ = Z

Ż = −Z − λ
(
1 + αX2

)
Y − βX

(A.15)

where X = x. It thus appears that it is equivalent to the Moore and Spiegel system
(A.13) when α = R

T−R , λ = T − R, and β = T . The Auvergne and Baglin
attractor is shown in Fig. A.16(a) for control parameter values γ1 = −0.3, γ2 = 25.0,
A2K2 = 0.01, and B/A = 0.125. Its image is shown in Fig. A.16(b).

A.1.10 Minimal Jerk System

Several papers have been devoted to the search for the “simplest set” of equations
which can generate a chaotic behavior [118]. Most of the time, a very simple system
may be written in the form of an autonomous third-order differential equation

...
x= f(x, ẋ, ẍ) (A.16)

Such systems are sometimes called jerk equations. Recently, Malasoma [82] proposed
the algebraically simplest example of a dissipative equivariant jerk system. It consists
of three terms, including one quadratic nonlinearity. It reads as:

...
x= −αẍ+ xẋ2 − x (A.17)

This system can be rewritten as a set of three ordinary differential equations

Ẋ = Y

Ẏ = Z

Ż = −αZ +XY 2 −X
(A.18)
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Fig. A.16 Chaotic attractor (a) solution of the Auvergne and Baglin system and its image
(b). Parameter values: γ1 = −0.3, γ2 = 25.0, A2K2 = 0.01 and B/A = 0.125.

where X = x, Y = Ẋ and Z = Ẍ . The system (A.18) has a single fixed point
F0 located at the origin of the phase space. It is a saddle-focus with one negative
real eigenvalue and two complex conjugate eigenvalues with positive real part. Its
image is characterized by a reverse horseshoe branched manifold [72]. This system
is a group continuation of the Burke and Shaw system. The Malasoma attractor is
shown in Fig. A.17(a) for α = 2.027717. The bifurcation diagram of this system
is equivalent to the bifurcation diagram of the Burke and Shaw system. The image
attractor is shown in Fig. A.17(b).
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Fig. A.17 (a) Chaotic attractor generated by the simplest equivariant jerk system just before
the attractor merging crisis (α = 2.027717). (b) Its image is also represented.
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A.1.11 Kremliovsky System

In order to investigate the 22-year solar activity cycle, Kremliovsky realized that a ho-
moclinic orbit to a saddle-focus could be associated with the dynamics underlying the
sunspot number [54]. To accomplish that, a symmetry must be added to obtain 22-year
cycles from the 11-year cycle observed with the sunspot number. Thus, Kremliovsky
modified the Rössler system to obtain an equivariant system. The modified Rössler
system, or Kremliovsky system, is:

Ẋ = −Y − Z
Ẏ = X + aY

Ż = bX + Z
(
X2 − c

)

where (a, b, c) are the control parameters. This system has two fixed points:

F± =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X± = ±
√
c− ab

Y± = ∓
√
c− ab
a

Z± = ±
√
c− ab
a

and a third one,F0, located at the origin of the phase space. This system is equivariant
under an inversion symmetryP . A chaotic attractor is shown in Fig. A.18(a) with its
image in Fig. A.18(b) for (a, b, c) = (0.6, 0.45, 10.0).
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Fig. A.18 Chaotic attractor generated by the Kremliovsky system. Parameter values: a =
0.6, b = 0.45, and c = 10.0.
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A.1.12 An Equivariant Rössler System

In his attempt to list the different types of chaos, Rössler proposed a double screw-
type chaos, which has in fact the symmetry of Khaikin’s “universal” circuit, that is,
there are two symmetric foci related by fast jumps. The equations for this double
screw-type chaos are [110]:

Ẋ = −aX − Y (1−X2)

Ẏ = µ(Y + 0.3X − 2Z)

Ż = µ(X + 2Y − 0.5Z)

(A.19)

This system is invariant under an inversion symmetry. Two plane projections of
the chaotic attractor are shown in Figs A.19(a) and A.19(b). The structure of this
attractor is similar to the Matsumoto-Chua circuit [23] (see Section A.1.14) as shown
by a first-return map to a Poincaré section (Fig. A.19(c)). The corresponding template
therefore has nine branches (not shown).

A.1.13 Duan-Wang-Huang System

A particular kind of chaotic system has been introduced by Duan, Wang, and Huang
[27]. They combined a three-dimensional linear system with attraction/repulsion
functions developed in the context of “swarm” aggregations. Swarming behaviors
have been observed for a long time in certain living systems, such as flocks of birds,
schools of fish, herds of animals, etc. The attraction/repulsion function as introduced
in this model plays the role of a piecewise nonlinearity. The equations are:

Ẋ = −Y − µZ
Ẏ = νX − 0.6Z

Ż = −0.2X − 3Z − ρ
(

1− 20e−5ρ2
)

where ρ = 2X − Y + 0.3Z. This system is invariant under an inversion symmetry.
It has three fixed points

F∗ =

∣
∣
∣
∣
∣
∣

X∗ = 0
Y∗ = 0
Z∗ = 0

and F± =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X± =
±6λ

12 + ν(10µ+ 3)

Y± =
∓10νλ

12 + ν(10µ+ 3)

Z± =
±10νλ

12 + ν(10µ+ 3)

where

λ =
1

5

√

−5ln
1

100

66 + 5ν(33 + 10ν)

12 + ν(10µ+ 3)

From initial conditions (X0 = −0.1, Y0 = 1.5, Z0 = −2), a chaotic attractor can be
obtained. It is shown in Fig. A.20(a) with its image in Fig. A.20(b).
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Fig. A.19 Phase portrait and first-return map associated with a chaotic behavior solution to
system (A.19). Parameter values: a = 0.03 and µ = 0.1 (and not 10 as reported in Rössler’s
paper [110]). Initial conditions: X0 = −1, Y0 = 0.55, and Z0 = 0.12.

A.1.14 Matsumoto-Chua System

A.1.14.1 Piecewise Nonlinearity The system is an electronic circuit whose
block diagram is shown in Fig. A.21. The circuit consists of a nonlinear amplifier
N which transforms the input voltage X(t) into the output αf(X). The parameter
α characterizes the gain of N around X = 0. The nonlinear amplifier has a linear
feedback which contains a series connection to a low pass filter (RC1) and to anLC2

resonance branch. Chua’s equations model the dynamics of such an electronic circuit
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Fig. A.20 Chaotic attractor generated by the Duan-Wang-Huang system. Parameter values:
µ = 1.0 and ν = 20.2.

[23]. It consists of a set of three ordinary differential equations:

Ẋ = α [Y −X − h(X)]

Ẏ = X − Y + Z

Ż = −βY

where the nonlinearity is

h(x) = m1X +
(m0 −m1)

2
[|X + 1| − |X − 1|]
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Fig. A.21 Typical block diagram for a Matsumoto-Chua circuit with a nonlinear function
that is piecewise linear with two breaks.
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The control parameters of the system are fixed to β = 100/7, m0 = −8/7, m1 =
−5/7 while α is a variable control parameter. The vector field defined by these
equations is equivariant under the inversion symmetry P .

After an attractor merging crisis, the connected chaotic attractor generated by this
system is globally invariant under the inversion P . Such an attractor is shown in
Fig. A.22 with its image. Other numerical systems similar to that one as well as
experimental data recorded on such an electronic circuit are investigated taking into
account their symmetry properties in [70].
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Fig. A.22 (a) Matsumoto-Chua chaotic attractor and (b) its image. Parameter values:
(β, m0, m1, α) = (100/7,−8/7,−5/7, 18.9).

A.1.14.2 Smooth Polynomial Nonlinearity As seen in the previous system,
the nonlinearity is often expressed under the form of a piecewise continuous func-
tion. Nevertheless, a real circuit never reproduces such a piecewise nonlinearity, and
a smooth nonlinearity might be preferred. Moreover, a real circuit never ejects a
trajectory to infinity. Such a feature may be produced by a model with a piecewise
smooth nonlinearity. A system with an everywhere differentiable nonlinear function
has been proposed [23,51]:

Ẋ = α [Y − ϕ(X)]

Ẏ = X − Y + Z

Ż = −βY

where the nonlinear function is expressed as a polynomial

ϕ(X) = K0 +K1X +K2X
2 +K3X

3
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Using the control parameters
K0 = 0.0
K1 = −1/6
K2 = 0.0
K3 = 1/16

ensures that the nonlinear functionϕ(X) is odd. This allows to obtain an equivariant
dynamical system under an inversion symmetry P .

The system has three fixed points:

S0 =

∣
∣
∣
∣
∣
∣

X = 0
Y = 0
Z = 0

and S± =

∣
∣
∣
∣
∣
∣

X = ±q
Y = 0
Z = ∓q

where q =
√

8/3 ≈ 1.63 is the positive root of the equation ϕ(X) = 0. Thus,
the location of periodic points does not depend on the control parameters α and β.
Different types of behaviors are shown in Fig. A.23.

A.1.15 Multispiral Attractors

From the Chua’s circuit, it is possible to build the so-called multispiral attractors
using a piecewise-linear characteristic [10, 119]. The dynamical system is thus a
Chua circuit slighlty modified:

Ẋ = α [Y − ϕN (X)]

Ẏ = X − Y + Z

Ż = −βY

where ϕN (X) is the piecewise-linear characteristic. N designates the number of
“spiral attractors” which will be observed. For N = 2, we have

ϕ2(X) =

∣
∣
∣
∣

m0X + sgn(X)ξ0 if |X | < s0
m1X + sgn(X)ξ1 if |X | ≥ s0

where
α = 9.2
β = 100

7
m0 = − 8

7
m1 = − 5

7
s0 = 1
ξ0 = 0
ξ1 = (m0 −m1)s0 + ξ0

This system corresponds to the usual Chua circuit (Fig. A.24(a)). When N = 3, we
obtain

ϕ3(X) =

∣
∣
∣
∣
∣
∣

m0X + sgn(X)ξ0 if |X | < s0
m1X + sgn(X)ξ1 if s0 ≤ |X | < s1
m0X + sgn(X)ξ2 if |X | ≥ s1
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Fig. A.23 Different types of behaviors generated by the smooth Chua system for different
control parameter values α. Fixed points are designated by “•” when they are stable, “◦” when
they are instable and “×” when they are unstable with one positive real eigenvalue. Limit
cycles and strange attractors are also shown. Other parameter value: β = 14.0.
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Fig. A.24 Chaotic attractors generated by the multispiral Chua system. Initial conditions are
(X0 = 0.1, Y0 = 0, Z0 = 0). (a) Two spirals and (b) three spirals. These can be enclosed in
genus-3 and genus-5 bounding tori.

where

α = 11.4
β = 100

7
m0 = − 5

7
m1 = − 8

7
s0 = 1
s1 = 4
ξ0 = 0
ξ1 = (m0 −m1)s0 + ξ0
ξ2 = (m1 −m0)s1 + ξ1

A chaotic attractor with three spirals is shown in Fig. A.24(b). The strange attractors
shown in Fig. A.24 can be enclosed in genus-3 and genus-5 bounding toriA2 andA3.
Those with “N spirals” can be enclosed in genus-(2N − 1) linear bounding toriAN .

A.1.16 Thomas Systems

A.1.16.1 A System with an S6 Symmetry A system with an S6 symmetry
has been proposed by Thomas [122]:

Ẋ = −bX + aY − Y 3

Ẏ = −bY + aZ − Z3

Ż = −bZ + aX −X3

(A.20)
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The control parameter b is fixed to 0.3. In order to have a better representation of the
symmetry properties, we may use the coordinate transformation:

X =

√
3

2
(y − x)

Y = z − x+ y

2

(A.21)

This plane projection will help us to exhibit the nature of the symmetry. This is exem-
plified in the case where there is a single attractor in the phase space (Fig. A.25(a)).
A projection of the image (Fig. A.25(b)) may be obtained using the coordinate trans-
formation:

u = <(X + iY )6 = X6 − 15X4Y 2 + 15X2Y 4 − Y 6

v = =(X + iY )6 = 6X5Y − 20X3Y 3 + 6XY 5 (A.22)

The 6 7→ 1 image attractor is shown in Fig. A.25(c).

A.1.16.2 A System with an Inversion Symmetry Thomas proposed another
system with an inversion symmetry P [122]:

Ẋ = −Y
Ẏ = X + aY − Z
Ż = Y 3 − bZ

(A.23)

It has a single fixed point located at the origin of the phase space. A chaotic attractor
is shown in Fig. A.26(a) with its image in Fig. A.26(b) for (a, b) = (3.3, 4.0).

A.1.17 Liu and Chen System

Liu and Chen proposed a system with V4-symmetry [77]:

Ẋ = aX + Y Z

Ẏ = −bY −XZ
Ż = −cZ −XY

(A.24)

We hold a = 0.5 and b = 12.0 fixed and treat c as a bifurcation parameter. It has
one degenerate fixed point located at the origin of the phase space. Its eigenvalues
are λ1 = a, λ2 = −b, and λ3 = −c. It is a saddle. There are four other fixed points
located at

X± = ±
√
bc

Y± = ±√ac
Z± = ±

√
ab

(A.25)

where the product of these three coordinates is negative. If a, b, or c is negative, the
fixed points are imaginary. If a, b, and c are positive, they are saddle-foci with one
negative real eigenvalue. With c = 4, two attractors coexist in the phase space (Fig.
A.27(a)). Their images are shown in Fig. A.27(b).
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Fig. A.25 Different representations of the chaotic attractor of the Thomas system. Parameter
values: (a, b) = (1.1, 0.3).
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Fig. A.26 (a) Chaotic attractor generated by the Thomas system with an inversion symmetry.
(b) Image attractor. Parameter values: a = 3.3 and b = 4.0.
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Fig. A.27 Chaotic attractors for the Liu-Chen system for two disconnected components (a).
Both have the same image (b). Parameter values: (a, b, c) = (0.5, 12.0, 4.0).
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A.1.18 Lü, Chen, and Cheng System

Chen and co-workers proposed another system with a V4 symmetry (if ν = 0) [80].
The equations are

Ẋ = − ab

a+ b
X − Y Z

Ẏ = aY +XZ + ν

Ż = bZ +XY

(A.26)

This system has five fixed points (for ν = 0). One is located at the origin of the phase
space R

3(X,Y, Z). The four other fixed points are symmetry related and are defined
as:

F1,± =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X± =
√
ab

Y± = ±|b|
√

a

a+ b

Z∓ = ±a
√

b

a+ b

(A.27)

and

F2,± =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X± = −
√
ab

Y± = ±|b|
√

a

a+ b

Z∓ = ∓a
√

b

a+ b

(A.28)

The parameters are a = −10. This system has a V4 symmetry only when ν = 0.
Parameter b can be varied over the interval [−5.604;−2.34]. When b = −2.4170, a
chaotic attractor with four components is observed (Fig. A.28(a)). The disconnected
chaotic attractors are then topologically equivalent to the Burke and Shaw attractor
before the attractor merging crisis [69]. When b is decreased, an attractor merging
crisis occurs and an attractor with two disconnected components remains in phase
space (Fig. A.28(b)). Each connected component of the attractor is topologically
equivalent to the Burke and Shaw attractor characterized by a four-branch return
map.

When parameter b is further decreased, the attractor continues to grow as observed
for the Burke and Shaw system. Note that the trajectory never crosses the plane
defined by Z = 0 (Fig. A.29(a)). This is only permitted when a perturbation is
added. For instance, when ν = 1.0, the trajectory may then cross the plane Z = 0, a
one component attractor is observed (Fig. A.29(b)). Equivalently, such a property of
the system is very fragile and a noise contamination could be sufficient to restore a
one component attractor as shown in Fig. A.29(b). It is sufficient since the trajectory
travels in the neighborhood of the plane Z = 0.
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Fig. A.28 Chaotic attractors for the Lü-Chen-Cheng system for (a) four and (b) two compo-
nents. Parameter values: (a, µ, ν) = (−10, 0, 0).
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Fig. A.29 Chaotic attractors for the Lü-Chen-Cheng system for (a) two components and
(b) one component when the symmetry is broken (ν 6= 0). Parameter values: (a, b, µ) =
(−10,−4.417, 0).
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A.2 HIGHER DIMENSIONAL SYSTEMS

A.2.1 4D Chaotic System

In their search for new chaotic systems, Qi, Du, Chen, Chen, and Yuan [103] found
a four-dimensional chaotic system with a four-group symmetry. The equations are

Ẋ1 = a(X2 −X1) +X2X3X4

Ẋ2 = b(X1 +X2)−X1X3X4

Ẋ3 = −cX3 +X1X2X4

Ẋ4 = −dX4 +X1X2X3

(A.29)

This system has one fixed point at the origin of the phase space and four oth-
ers. This system is equivariant under a four-group symmetry whose generators
are (X1, X2, X3, X4) 7→ (−X1,−X2, X3, X4) and (X1, X2, X3, X4) 7→ (X1, X2,
−X3,−X4). It may produce a chaotic attractor topologically equivalent to the Lorenz
attractor (in spite of its jittery shape) as shown in Fig. A.30.
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Fig. A.30 Chaotic attractors for the Qi-Du-Chen-Chen-Yuan system. Parameter values:
(a, b, c, d) = (30, 8, 100, 10).

A.2.2 5D Laser Model by Zeghlache & Mandel

In 1975, Haken [43] showed that the equations of a laser system derived in the semi-
classical approach are equivalent to the Lorenz equations [78]. The main weakness
of these equations is that chaotic behaviors are predicted for the weak cavity limit
and high intensity in spite of experiments showing that these behaviors occur for low
intensity.
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This laser model is extensively discussed in Section 9.2.1. When the detuning
δ between the normalized steady-state laser frequency and the molecular resonance
frequency (δ ∈ [0; 1]) is taken into account, the amplitude equations become [139]

Ẋ1 = −σ(X1 + δX2 − Y1)

Ẋ2 = −σ(X2 − δX1 − Y2)

Ẏ1 = RX1 − Y1 + δY2 −X1Z

Ẏ2 = RX2 − Y2 − δY1 −X2Z

Ż = −γZ +X1Y1 +X2Y2

(A.30)

where R is the pumping rate, σ is the ratio of the cavity decay rate of the field
to the relaxation constant of the polarization, and γ is the relaxation rate of the
normalized population inversion,Z [139]. (X1, X2) are the real and imaginary parts
of the electric field and (Y1, Y2) are the real and imaginary parts of the polarization
amplitude. These amplitude equations are invariant under the symmetry groupU(1) :
(X = X1 + iX2, Y = Y1 + iY2, Z)→ (Xeiθ, Y eiθ, Z). The system (A.30) has one
fixed point F0 located at the origin and a continuous set of fixed points defined by

Z = R− (1 + δ2) |X | = √γZ Y = (1− iδ)X

This set of fixed point defines a circle which is invariant under continuous rotations.
The case of the continuous rotation symmetry is explicitly discussed in Section 9.2.1.
The chaotic attractor generated by the Zeghlache-Mandel equations is shown in Fig.
A.31(a) for control parameter values δ = 0.002, R = 20.0, γ = 0.25 and σ = 2.0.
Its image is shown in Fig. A.31(b).
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Fig. A.31 Chaotic attractor of the Zeghlache and Mandel equations (a) and its image (b).
The detuning is slighltly different from zero (δ = 0.002) to show the effect of the continuous
rotation on the Lorenz-like attractor. Other parameter values: R = 20.0, γ = 0.25, and
σ = 2.0.
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A.2.3 6D Chaotic Model for Solar Activity

The magnetic activity of a lower main-sequence star depends upon its rotation rate.
As the star ages, it loses angular momentum, owing to magnetic braking, and so
becomes less active. Magnetic cycles are found in middle-aged stars like the Sun,
which are relatively inactive. The cycles of the sunpot numbers have periods around
11 years and are modulated on a longer time scale. This modulation leads to intervals
of reduced activity (grand minima). The Sun’s magnetic history can be traced back
for the last 10,000 years, and the proxy record derived from abundances of cosmo-
genic isotopes such as 14C and 10Be demonstrates that the Maunder minimum of
the seventeenth century—when sunspots were very rarely observed—was preceded
by numerous similar episodes. The last three grand minima—the Spörer minimum
(1415–1535), the Maunder minimum (1645–1715) and the abortive Dalton minimum
(1795–1825)—were separated by intervals of 100-200 years [12] and the 14C record
displays a characteristic time scale of about 200 years; however, the record is aperi-
odic and the intervals between successive grand minima show considerable variation
about this mean value. There is also evidence that up to 30 % of solar-type stars may
be undergoing similar grand minima at any time: indeed, one star (HD3651) seems
to have been caught in the act of entering a grand minimum.

The spatial structure of these magnetic fields can only be determined for the Sun.
Since the end of the Maunder minimum the incidence of sunspots has been sym-
metrical about the equator, with minor statistical fluctuations. Magnetic fields have
only been measured since the beginning of this century and the azimuthally averaged
toroidal field, which emerges in sunspots and active regions, is antisymmetric about
the equator and reverses after each 11-year activity cycle. The correspondingpoloidal
field can be derived from a vector potential that is roughly symmetric about the equa-
tor; thus it has the symmetry of a dipole. It is generally accepted that magnetic cycles
in a star like the Sun are produced by a dynamo located at, or near, the base of its
convection zone. These stellar dynamos differ from the geodynamo (which maintains
the same polarity for times much longer than the ohmic diffusion time for the Earth’s
core) in that their magnetic fields reverse on a much shorter time scale. The measured
modulation of the solar cycle is aperiodic and might have a deterministic cause. The
available record was not long enough to distinguish between these two possibilities
until a global model was obtained from the sunspot numbers.

An appropriate sixth-order system that contains the minimal number of terms
with relevant symmetries was introduced by Knobloch and Landsberg [52,53]. The
interaction of oscillatory dipole and quadrupole modes under the action of instanta-
neous nonlinearities are taken into account. The complex variable z1 represents the
dipole mode while z2 is the quadrupole mode. A fourth-order system consistent with
the symmetries of a rotating star was derived [52]. In addition to the pure dipole
and quadrupole solutions, the system possesses mixed-mode solutions (periodic but
asymmetric dynamos), as well as several different types of quasiperiodic dynamos,
of both pure and mixed parity [53].

The driving of velocity perturbations by the magnetic field (both dipole and
quadrupole modes) are included in the model by decomposing the velocity into com-
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ponents that are symmetric, v, and antisymmetric,w, with respect to the equator. The
sixth-order model is

ż1 = (µ+ σ + iω1)z1 + a|z1|2z1 + a|z2|2z1 + b|z2|2z1 + (εv + δv2)z1 + βwz2
ż2 = (µ+ iω2)z2 + a′|z2|2z2 + a′|z1|2z2 + b′|z1|2z2 + (ε′v + δ′v2)z2 + β′wz1
v̇ = −τ1v + e1(|z1|2 + |z2|2)
ẇ = −τ2w + e2(z1z̄2 + z2z̄1)

where (µ + σ, µ) are the linear growth rates of the dipole and quadrupole modes,
respectively, and (ω1, ω2) are their frequencies. The nonlinear pure modes are con-
trolled by the complex coefficientsa anda′. The complex coefficients b and b′quantify
the nonlinear couplings of the two modes. The decay rates of the symmetric velocity
v and the anti-symmetric velocity w are controlled by the real parameters τ1 and τ2.
The real coefficients e1 and e2 quantify the contribution of the mixed mode solutions,
that is, solutions with both dipole and quadrupole components. The parameters are

µ = 1.9 σ = −0.361 a = 0.5 + i0.5
a′ = 0.38 + i0.38 b = −1.8 b′ = −2.2
ε = 1.1− i1.1 δ = −0.965 + i0.965 δ′ = −1.0 + i
η = 1.39− i1.25 β′ = 0.43 + i0.43 τ1 = 1.0
τ2 = 1.1 e1 = 1.31 e2 = 2.0

and the initial conditions are

z1 = 0.1 + i0.2 v = 1.1
z2 = 0.1 + i0.1 w = 1.1

A chaotic attractor obtained for µ = 1.9 is shown in Fig. A.32(a) and its image is
shown in Fig. A.32(b).
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Fig. A.32 <(z1)− v plane projection of the chaotic attractor for solar activity generated for
µ = 1.9 (a) and its image phase portrait (b).
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A.2.4 9D Model for a Rayleigh-Bénard Convection

The experiments considered by Lorenz [78] concern fluid motion occurring in a
layer of fluid of uniform depth H , when the temperature difference between the
upper and lower surfaces is maintained at a constant value ∆T . In the present case,
the experiments concern a fluid motion occurring in a square cell. Reiterer [105]
demonstrated that, in the case where the horizontal boundaries are free surfaces, the
governing equations may be written as:

∂w
∂t
−∇∧ (v · w) = Pr∇2w + Pr ∇ ∧ (θez)

∂θ

∂t
+ (v · ∇)θ = ∇2θ +

R

π4
w

(A.31)

where w = ∇ ∧ v and v = ∇ ∧ A. Here, A is a vector potential and θ is the
departure of temperature from that occurring in the motionless state. The problem
is three-dimensional and convection cells are organized as displayed in Fig. A.33.
A translation along the x- or y-axis by π/a reverses the convection flow, leaving
invariant the temperature dependence.
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Fig. A.33 Spatial organization of convection cells in the x-y plane. No symmetry is observed
along the z-axis. Two cells are exhibited along x- and y-axis.

The partial differential equations (A.31) may be reduced to a set of ordinary dif-
ferential equations by expanding A and θ in Fourier series in x, y and z. Reiterer



500 A POTPOURRI OF EQUIVARIANT SYSTEMS

retained a set of nine modes Ci such as:

A1 = C1
1+2a2

a sin(2ay) sin(2z) + C2
2
√

2(1+2a2)
a cos(ax) sin(ay) sin(z)

A2 = C3
1+2a2

a sin(2ax) sin(2z) + C4
2
√

2(1+2a2)
a sin(ax) cos(ay) sin(z)

A3 = C5
1+2a2

a2 sin(2ax) sin(2ay)

θ = C6
(1+2a2)3

a2 sin(2z) + C7
(1+2a2)3

a2 cos(2ay) sin(2z)

+ C9

√
2(1+2a2)

3

a2 cos(ax) cos(ay) sin(z) + C8
(1+2a2)

3

a2 cos(2ax) sin(2z)

By inspecting the coefficients of the nine modes, one may observe that the mode
C6 is only related to a z-dependence and, consequently, it is not associated with a
symmetry property. Modes C5 and C9 are associated with x and y variables and,
consequently, are involved in a symmetry. The six remaining modes can be paired as
(C1, C3), (C2, C4), and (C7, C8) according to their coefficients for which x (resp.
y) is replaced by y (resp. x). They are also related to a symmetry. Once again, an
exact relationship between modes cannot be exhibited without a complete derivation
of the set of ordinary differential equations [105]:

Ċ1 = −Pr b1C1 − C2C4 + b4C4
2 + b3C3C5 − Pr b2C7

Ċ2 = −Pr C2 + C1C4 − C2C5 + C4C5 − Pr C9/2

Ċ3 = −Pr b1C3 + C2C4 − b4C2
2 − b3C1C5 + Pr b2C8

Ċ4 = −Pr C4 − C2C3 − C2C5 + C4C5 + Pr C9/2

Ċ5 = −Pr b5C5 + C2
2/2− C4

2/2

Ċ6 = −b6C6 + C2C9 − C4C9

Ċ7 = −b1C7 −RC1 + 2C5C8 − C4C9

Ċ8 = −b1C8 +RC3 − 2C5C7 + C2C9

Ċ9 = −C9 −RC2 +RC4 − 2C2C6 + 2C4C6 + C4C7 − C2C8

(A.32)

where Ċi denotes the derivative ofCi with respect to t. Here Pr is the Prandtl number
and R is the reduced Rayleigh number

R =
Rα

Rc
(A.33)

where Rc is the critical Rayleigh number for the onset of instabilities. The constant
parameters bi measure the geometry of the square cell, and are defined by:

b1 = 4
1 + a2

1 + 2a2
b2 =

1 + 2a2

2 (1 + a2)
b3 = 2

1− a2

1 + a2

b4 =
a2

1 + a2
b5 =

8a2

1 + 2a2
b6 =

4

1 + 2a2

Several attractors are plotted in Fig. A.34 along the line Pr = 0.5, a = 0.25, 14.22 ≤
R ≤ 15.0 in the control parameter space. This sequence shows an “inverse attractor
halving bifurcation,”as a 4-component attractor (R= 14.22) becomes a 2-component
attractor (R = 14.30) and finally a single-component attractor (R = 15.10).
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Fig. A.34 Different coexisting attractors generated by a 9-mode truncation of the Rayleigh-
Bénard convection problem. For these attractors the control parameters are Pr = 0.5, and
a = 0.25. The bifurcation parameter is R.
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A.2.5 10D Model for Wave-Wave Interaction in a Plasma

Another interesting equivariant model comes from plasma physics. In the solar wind
before the bow shock, there are relatively high electric fields which are turbulent. The
source of energy for these fields comes from the reinjection of high energy electron
beams in the solar wind. The “turbulence” so created is nothing else than an attempt of
the plasma to return to thermodynamic equilibrium. These processes are investigated
through a simplified model which corresponds to an interaction between energetic
electrons and electromagnetic waves propagating in a plasma, but without collisions.
A typical configuration is the case of electrons accelerated in the solar coronal zone
which are ejected in the solar wind.

The model consists of five complex amplitude equations [56]

ȧ1 = −ν1a1 + a2a4e
−i∆t

ȧ2 = −ν2a2 − a1a
∗
4e

i∆t + a3a4e
−iδt

ȧ3 = −ν3a3 − a2a
∗
4e

iδt

ȧ4 = −2ν4a4 + 2i(a4 − a5)
ȧ5 = −ν4a4 − a1a

∗
2e

−i∆t − a2a
∗
3e

−iδt

which correspond to a ten-dimensional real dynamical system. This system has a
continuous rotation symmetry. It phase portrait is shown in Fig. A.35(a) with its
image in Fig. A.35(b).
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(b) Image attractor

Fig. A.35 Chaotic attractor generated by the ten-dimensional model for four wave in inter-
action in a plasma. Parameter values: ν1 = 0.050, ν2 = −0.0343, ν3 = 0.03, ν4 = 0.05 and
∆ = δ = 0.0.
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A.3 NONAUTONOMOUS SYSTEMS

A.3.1 van der Pol System

The historic study of forced oscillators dealt exclusively with periodic and almost pe-
riodic solutions. The original impetus which led to the discovery of several coexisting
periodic solutions was an experimental study by van der Pol and van der Mark [130].
The electric circuit which they used is shown in Fig. A.36, where Ne repesents a glow
discharge tube filled with neon gas, E a battery (≈ 200 volts), R a resistor (several
megohms), andE0 (≈ 10 volts) is the amplitude of an applied periodic electric field.
In the absence of the electric field the period of the system increases with increasing
capacitance, C. They discovered the production of 40 or more subharmonics ( ω

n ) of
the applied frequency,ω. These subharmonics were found to be entrained, in the sense
that the frequency of the system remained fixed while the capacitance was varied over
a limited range. As C was further varied, the frequency changed discontinuously to
another subharmonic. They also observed bands of “noise” in the regions of many
transitions of the frequency, which they regarded as “a subsidiary phenomena.” Also
they clearly showed a hysteresis effect, hence a bistability in their experiments, but
they did not provide any comment on that.

E 0 sinωt

C

Ne

R

F−

+

Fig. A.36 Electric circuit investigated by van der Pol & van der Mark in 1927.

For this type of experiment, van der Pol had earlier proposed an equation which
may be written in the form [129]

Ẍ − µ(1−X2)Ẋ +X = 0 (A.34)

forω = 0. In such a case, the asymptotic behavior may be a limit cycle. When ω 6= 0
the equation becomes

Ẍ − µ(1−X2)Ẋ +X = B cosωt (A.35)

These equations may be rewritten as an autonomous system:

Ẋ = Y

Ẏ = µ(1−X2)Y −X + Z

Ż = W

Ẇ = −ω2Z

(A.36)
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A van der Pol attractor is shown in Fig. A.37(a), along with its 2 7→ 1 image in Fig.
A.37(b).
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Fig. A.37 Quasi-periodic regime generated by the van der Pol system. Parameter values:
µ = 0.5, ω = 2.0. Initial conditions: X0 = 0.1, Y0 = 0.1, Z0 = 1.5, and W0 = 0.0.

A.3.2 Duffing System

The Duffing-Ueda equations were first investigated by Duffing [28] and later exten-
sively investigated using analogic and numerical simulations by Ueda [128]. The
corresponding electrical circuit is shown in Fig. A.38. In this circuit, nonlinear os-
cillation takes place due to the saturable-core inductance L(φ) under the impression
of the alternating voltage E0 sinωt. The resistor R is parallel with the capacitor C,
so that the circuit is dissipative.

E 0 sinωt

L

C

R

(φ)

Fig. A.38 Series-resonance circuit with nonlinear inductance.

These equations are nonautonomous, i.e., the time appears explicitly. The Duffing
equations are:

Ẍ + aẊ +X3 = A cos(ωt+ ϕ) (A.37)
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They may be rewritten as:

Ẋ = Y

Ẏ = −aY −X3 +A cos(ωt+ ϕ)
(A.38)

The external sinusoidal driving force A cos(ωt + ϕ) is generated by a second-order
differential equation. The nonautonomous Duffing system may be rewritten as an
autonomous four-variable system:

Ẋ = Y

Ẏ = −aY −X3 + U

U̇ = V

V̇ = −ω2U

(A.39)

An attractor generated by these equations for (a,A, ω) = (0.05, 7.5, 1.0) is shown in
Fig. A.39 (a). The image attractor is shown in Fig. A.39 (b).
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(b) Image attractor

Fig. A.39 Chaotic attractor generated by the Duffing system with its image. Parameter
values: (a,A, w) = (0.05, 7.5, 1).

A.4 OTHER CASES

A.4.1 Three Hamiltonian Flows

Non dissipative flows on classical phase space are divergence-free. Phase space
volume elements are conserved under Hamiltonian flows:

q̇i = +
∂H
∂pi

ṗi = −∂H
∂qi
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whereH is the Hamiltonian function . For two-degrees-of-freedomHamiltonian sys-
tems, the Hamiltonian functionH(p1, p2, q1, q2) depends on the position coordinates
(q1, q2) and the canonical momenta (p1, p2). Three systems with different symmetry
properties are defined by the Hamiltonian functions [49]:

H1 =
1

2

(
p2
1 + p2

2

)
+

1

2

(
q21 + q22

)
− εq21q22

H2 =
1

2

(
p2
1 + p2

2

)
+

1

2

(
q21 + q22

)
− εq1q22

H3 =
1

2

(
p2
1 + p2

2

)
+

1

2

(

q21 + q22 −
2

3
q32

)

− εq21q2

The system will be designated by their Hamiltonian functionsHi. All of them may
be written under the form

Hi(p1, p2, q1, q2) =
1

2

(
p2
1 + p2

2

)
+ Ui(q1, q2)

where Ui(q1, q2) are the potential functions of the systems. Note that, in each case,
the Hamiltonian function is of the form

H = H0 + εH′

withH0 integrable and εH′ a nonintegrable correction. The parameter ε is taken to be
non negative but it is not necessarily assumed to be small. These Hamiltonian systems
are rather different in the sense they have potential functions Ui(q1, q2) possessing
different symmetries. Potential U1 is invariant under eight-element group of the
square. This consists of the four-element group {I, γ4, γ

2
4 , γ

3
4}, reflections in the x-

and y- axis γx and γy, and reflections in the two diagonals. The matrices representing
the action of γ4, γx and γy in the plane are

γ4 =

[
0 1
−1 0

]

γx =

[
1 0
0 −1

]

γy =

[
−1 0
0 1

]

PotentialU2 is invariant under the two-element group of reflections in the x-axis, with
generator γx, and U3 is invariant under reflections in the y-axis, with generator γy,
unless ε = −1. In this case the symmetry group has an additional generator

γ3 =

[
cos 2π

3 sin 2π
3

− sin 2π
3 cos 2π

3

]

of rotations around the Z-axis. The full symmetry group is S6 = R × C3 with two
generators γx, γ3 and relations γ2

x = γ3
3 = I. These symmetries may be easily

recognized from equipotential surfaces shown in Fig. A.40. For ε = −1, U3 reduces
to the Hénon-Heiles potential [46]. Typical trajectories in the position subspace
R

2(X,Y ) are shown in Fig. A.41 for the three potentials U1, U2, and U3.
In 1964, Michel Hénon and Carl Heiles were searching for a third constant of

motion, added to the conservation of energy and angular momentum. Their problem
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(c) U3(x, y) with ε = −1.0

Fig. A.40 Equipotential surfaces of the potentials Ui(X, Y ).
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Original attractor Image attractor
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(b) U2(X, Y ) with ε = 1.0
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(c) U3(X, Y ) with ε = −1.0

Fig. A.41 Chaotic trajectories of the Hamiltonian systems for the three different potentials.
The images are with respect to the three groups C4, σy , and C3.



OTHER CASES 509

was the motions of galaxies. They were thinking that, under specific conditions, one
additional constant of motion might be obtained. In order to simplify their problem,
they investigated a problem with two degrees of freedomX andY associated with the
position. The phase space is therefore the 2×2-dimensional space R

4(X,Y, VX , VY )
where the VX andVY are the components of the velocity. The equations of the system
constructed fromH3 are [46]:

Ẋ = VX

Ẏ = VY

V̇X = −X + 2εXY

V̇Y = −Y + εX2 + Y 2

The energy

E =
1

2

[
(
V 2

X + V 2
Y

)
+

(

X2 + Y 2 − 2εX2Y − 2

3
Y 3

)]

(A.40)

of the system is a constant of the motion. The system is therefore Hamiltonian. In
this system, Kepler’s second law cannot be applied since the potential is not central.
One constant of motion is therefore missing to ensure the integrability of the system.
Hénon and Heiles were thus confrontated to a similar problem they faced in the context
of the galaxy motions: another constant of motion was to be obtained.

A.4.2 1-D Delay Differential Equation

If a dynamical system has a finite dimension, this means that there is a finite set of
dynamical variables which is sufficient to fully describe in a nonambiguous way any
state of the system. When a delay differential equation has the form

ẋ(t) = F (x(t), x(t − τ)) (A.41)

where τ is a time delay, a function of x(t) on the interval [t − τ, t] must be used to
computex(t) at each time t. Thus, such equations have, mathematically speaking, an
infinite dimension. In principle, a phase space with an infinite dimension must be used
to represent the dynamics. Nevertheless, when the dynamical system is dissipative,
a chaotic attractor may be obtained and it may be possible to represent the phase
portrait in a low-dimensional space.

An example of a delay differential equation invariant under an inversion is [79]:

Ẋ = aX − b (|Xτ + 1| − |Xτ − 1|) + c (|Xτ + d| − |Xτ − d|) (A.42)

where Xτ = X(t− τ). Control parameters are given by:






b = 3.8
c = 2.85
d = 4

3
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Parameter a may be considered as the bifurcation parameter. The embedding di-
mension may be estimated by using the false nearest neighbors technique [1]. A
three-dimensional space should be sufficient to describe the dynamics without any
ambiguity for a = −0.001. Since we have a single dynamical variable, the phase
portrait can only be represented using delay coordinates. A two-dimensional plane
projection is shown in Fig. A.42 with its image.

-1,5 -1 -0,5 0 0,5 1 1,5
X

-1,5

-1

-0,5

0

0,5

1

1,5

Y

(a) Original dynamics

-1,5 -1 -0,5 0 0,5 1 1,5
u

-1,5

-1

-0,5

0

0,5

1

1,5

v

(b) Image attractor

Fig. A.42 (a) Chaotic attractor using a delay embedding Y (t) = X(t − τ1) of the delay
differential equation (A.42) with a = −0.001. An inversion symmetry may be identified. (b)
The image is also shown. Parameter values: (a, b, c, d) = (−0.001, 3.8, 2.85, 4/3). For the
delay differential equation, τ = 0.1 s and the delay for the embedding is τ1 = 1.0 s.

A.4.3 3D Discontinuous System

In investigating the possibilities for having a Lorenz-like dynamics with a single
nonlinearity, Elwakil, Özog̃uz, & Kennedy [29] proposed a discontinuous system
with a single parameter σ. In fact, the nonlinearities are replaced with piecewise
linear functions. They proposed the set of equations

Ẋ = −σX + σY

Ẏ = −KZ
Ż = +|X | − 1.0

(A.43)

where
K =

+1 if X ≥ 0
−1 if X < 0

(A.44)

The nonlinearity XY of the third equation of the Lorenz system has been replaced
with the absolute value function |X | and the nonlinearity Y Z of its second equation
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with K, effectively equal to sgn(X). Compared to the Lorenz system, the threshold
effect performed by the term −bZ in the third equation has been replaced by the
absolute value |X |. The threshold induced by the term RX in the second equation
is removed. Hence, the system is controlled via the remaining single parameter σ.
Despite the nonanalytic nature of the two singularities, the equations (A.43) exhibit
anRZ(π) symmetry. This system has two fixed points at

F± =

∣
∣
∣
∣
∣
∣

X± = ±1
Y± = ±1
Z∓ = 0

(A.45)

Written in that form, system (A.43) is invariant under a RZ(π) rotation symmetry.
This is evident in Fig. A.43.
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Fig. A.43 Two coexisting chaotic attractors (a) and one connected attractor (b) for the dis-
continuous system (A.43). Both exhibit RZ(π) symmetry. Parameter value: σ = 0.55.

In fact, this system has a dual system which can be written as

Ẋ = −σX + σY

Ẏ = +KZ

Ż = −|X |+ 1.0

(A.46)

This second system can be denoted S(Y+, Z−) while the system (A.43) is designated
by S(Y−, Z+). The attractor solution of system S(Y+, Z−) is symmetry-related to
the attractor solution of the system S(Y−, Z+) with respect of the plane Z = 0. This
is therefore a mirror symmetry.
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Dynamical patterns in Bénard-Marangoniconvection in a square container, Phys-
ical Review Letters, 70 (2), 3892–3895, 1993.

94. V. I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteris-
tic numbers for dynamical systems, Transactions of the Moscow Mathematical
Society, 19, 197, 1968.

95. E. Ott,Chaos in Dynamical Systems, Cambridge: Cambridge University Press,
1993.

96. N. H. Packard, J. P. Crutchfield, J. D. Farmer & R. S. Shaw,
Geometry from a time series, Physical Review Letters, 45, 712–715, 1980.

97. F. Papoff, A. Fioretti, E. Arimondo, G. B. Mindlin, H. G. So-
lari & R. Gilmore, Structure of chaos in the laser with a saturable absorber,
Physical Review Letters, 68, 1128–1131, 1992.



520 REFERENCES

98. L. M. Pecora & T. L. Carroll, Synchronization in chaotic systems,
Physical Review Letters, 64, 821–824, 1990.

99. J. Plumecoq & M. Lefranc, From template analysis to generating parti-
tions I: Periodic orbits, knots and symbolic encodings, Physica D, 144, 231–258,
2000.
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strange attractor

harmonic drive, 203
symmetric attractors

harmonic drive, 204
Lorenz drive, 199–200, 202
Rössler drive, 197

undriven, 196
Dynamical measures, 224
Dynamical symmetry, 236
Dynamical systems, 261

and Lie groups, 10
C3-equivariant, 312
complex, 229
covering, 65
driven, 169
eauivariant, 44
equivariant, 289
image, 44, 103

invariant, 110, 289
P-equivariant, 311
polynomial, 329
RZ -equivariant, 311
σZ -equivariant, 311
structure, 169
V4-equivariant, 312

Dynamics
stretch-and-fold, 393
symbolic, 31

Dynamic viscosity, 6
Dynamo

asymmetric, 497
quasiperiodic, 497
stellar, 497

Eigenvalues, 334
Eigenvalue spectrum

equivariant fixed points, 342
Eigenvectors, 334

equivariant fixed points, 342
Electric dipole moment, 9
Electric field, 237, 245, 496

amplitude, 9
mode, 230
plane, 241

Electromagnetic field, 8
Electronic circuits, 4
Elementary functions, 17
Elementary polynomial, 46
Embed, 428
Embedding, 31, 100

conditions for, 457
differential, 31, 428, 431–432
extrinsic, 456
fractional derivatives, 428
Hilbert transforms, 428
integro-differential, 31, 428
intrinsic, 454
knotted, 457
natural, 454–455
of branched manifolds, 454
of experimental data, 455
of flows, 455, 457
singular value decomposition, 428
test using self-intersections, 101
time delay, 100, 428

Emergent orbits, 156
Energy

conservation of, 506
conserved, 178

Energy integral, 224
harmonic lifts, 225
subharmonic lifts, 226

Entrained
solutions, 503

Entrainment, 157, 171, 254
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and reducibility, 172
statistic, 256
test, 172

Entropy, 417
topological, 38, 420

Equations
equivariant, 48
image, 48
invariant, 48

Equipotential surfaces, 507
Equivalence Principle, 221
Equivalent

domains, 271
representations, 274

Equivariance
definition, 265
group, 45
under C3, 266
without groups, 390

Equivariant, 8
coordinates, 45, 340
covers

group-theoretical, 439
topological, 439

dynamical systems, 12, 289
properties of, 309
structure of, 311

integrator, 83
polynomials, 297, 302

basis for, 304
how to construct, 304

systems, 44
properties of, 269

Euclidean spaces, 262
Euler characteristic, 393

and dynamics, 393
and topology, 393
of torus, 393

Existence theorem
for ODEs, 20, 262

Exponentiation
of Lie algebra, 448

Extendable
trajectory, 262

Exterior flow tubes, 434
Extrinsic, 392

embedding, 456
Factorial, 380
Faithful representations, 275
False nearest neighbors, 101, 510
Fast oscillations, 232
Feedback, 484
Field

algebraically closed, 362
density, 6
pressure, 6

temperature, 6
velocity, 6

Figure 8
branched manifold, 397–398
knot, 382

Filter
low pass, 99

First-return map, 39
Fixed points, 21, 54, 240, 248, 309, 332, 342

asymmetric, 22
degeneracy of, 270, 309–310
locations, 333
nondegenerate, 310
nonlinear oscillator, 177
number of, 333
stability, 177, 333
symmetric, 22

Fixed point subgroup, 287
Floquet multipliers, 155–156
Flow

asymptotic structure, 400
dynamics, 334
embeddings of, 455, 457
form of, 328
fully reducible, 453
restricted to surface, 394
structure of, 326
tubes, 337

exterior, 434, 452–453
interior, 434, 438, 452–453

Fluid experiments, 3
Fluid velocity field, 6
Flux conservation, 471
Fold bifurcation, 23, 25
Forbidden regions, 369
Forced nonlinear oscillators, 503
Forcing functions, 309, 332
Four-fold covers

horseshoe, 127
reverse horseshoe, 127

Four-group, 139, 268
Four wave mixing, 230
Fractal dimensions, 26, 77, 343

problems with, 26
Framing

index, 457
of an embedding, 457

Fully reducible, 169
dynamical system, 171

Functions
elementary, 17
factorial, 380
gamma, 380
invariant, 17
noninvariant, 17

Function space, 276
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Fundamental domain, 340, 371
and C4, 273
and V4, 273

Fundamental theorem
and symmetry, 21

Galaxies
motions, 506

Gamma function, 380
Gateau roulé, 80, 113–114, 427

covers of, 440, 442
double covers, 442
return map, 441

Gauge transformation, 10
Gauss-Jordan reduction, 299
Gauss linking number, 30
General linear model, 254
Generating function, 139, 235

for C3, 282, 293
for C3v , 282
for D4, 282
for groups, 280
for Hermite polynomials, 280
for invariant polynomials, 293
for O, 283
for P , 293, 303
forRZ , 293, 303
for σZ , 293, 303
for T , 282
reading, 299

Generator
group, 292
in group, 268
of S4, 292
of group, 337

Generators
and relations, 139, 295
of homotopy group, 402

Generic points, 271
Geodynamo, 497
Geometry, 113
Ghost orbits, 157–158, 167
Ginzburg-Landau

potential, 433
transition, 194

Global
bifurcation, 86
diffeomorphism, 44
perturbation, 433
stability of nonlinear oscillators, 178
topology

of van der Pol oscillator, 191
torsion, 13, 454

Goldstone mode, 244
Grand minima

solar, 497
Granny knot, 462

Gravitational acceleration, 7, 468
Gravithermal instability, 7, 467
Gröbner basis, 295
Group, 108, 119, 267

abelian, 268
and diffeomorphisms, 449
C2, 282

for canonical torus, 412
C3, 108,

and Schur’s lemma, 366
and topological index, 446
C.-G. series, 375
character table, 306
generating function, 301–302
integrity basis, 307
integrity basis for, 319
invariant projection, 323
invariant surface, 319
ring basis, 307
syzygy, 319
C4, 269, 337

character table, 307
for canonical torus, 412
integrity basis, 307
ring basis, 307
Cn, 282

and Schur’s lemma, 366
invariant projection, 324
D4, 282
O, 283
P , 268

and Cauchy-Riemann symmetry, 372
and Gröbner basis, 297
and Schur’s lemma, 367
generating function, 301
generating function for, 303
invariant projection, 324
RZ , 268

and Cauchy-Riemann symmetry, 371
and Gröbner basis, 297
generating function, 300
generating function for, 303
integrity basis for, 319
invariant projection, 323
invariant surface, 319
syzygy, 319
S4, 269

Gröbner basis, 295–296
S6 symmetry, 489
T , 282

C.-G. series, 375
V4, 269, 337

and Cauchy-Riemann symmetry, 373
character table, 307
generating function, 302
integrity basis, 307
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invariant projection, 324
ring basis, 307

character table, 375
commutative, 268
continuation, 13, 57, 75, 78–79, 380, 481
definition of, 267
generator, 337
index, 113
label, 113
multiplication, 267
octahedral, 283
reflection, 53
representations of, 274
σZ , 268

and Gröbner basis, 297
generating function for, 303

SO(3), 448
SU(2), 448
tetrahedral, 282
theory, 12

Guiding curve
of torus, 457

Haken H., 495
Half an orbit, 73
Hamiltonian

equations, 178
flows, 505

Handedness, 454
Handlebody

genus-g, 392
Harmonic knots, 457
Harmonic lifts, 225
Harmonic maps, 225
Harmonic oscillator, 176
Heating tape, 7
Heat transfer coefficient, 468
Heiles C., 506
Hénon M., 506
Hénon-Heiles potential, 506
Hermite polynomials, 280
Higher dimensions, 336
Holes

uniflow, 407
Homoclinic connection, 182
Homomorphisms, 447

and local diffelmorphisms, 449
Homopolar dynamo, 471–472, 474
Homotopy group, 401

generators, 402
Hopf bifurcation, 180–182
Horseshoe

covers of, 82
dynamics, 32, 87, 91, 334
inequivalent double covers, 445
lifts of, 82
once and always, 462

reflection symmetry, 55
reverse, 50, 80

Horseshoe branched manifold, 335
perestroika of, 87

Hyperbolic limit, 400
Hysteresis, 503
Identity

in group, 267
representation, 279

and invariant polynomials, 306
Image, 43, 65

attractors, 331
dynamical systems, 103, 332
equations, 45
equations for Rössler attractor, 96
flow, 328
flow under C3, 328
systems, 44

Incompressible fluid, 6
Independence

functional, 17–18, 46, 109, 325
linear, 17–18, 46, 109, 290, 325

Index, 13, 347
algebraic, 449
assignments, 349
as transition matrix, 390
for a cover, 348
forbidden by topology, 349
of isolated singularity, 393
topological, 30, 69–70, 72, 74–77, 80, 82, 158,

161, 166, 443, 449
Wolf, 99–100

Inductance, 504
Infinite dimension, 509
Injection, 313
Integrable, 506
Integrator

equivariant, 63, 82–83
invariant, 63

Integrity basis, 295
construction of, 295

Intensity, 2
Interaction

dipole-dipole, 9
Interior flow tubes, 438
Interior holes, 399–400

round, 400
singular, 404
square, 400

Interleave, 410–411
Intermittency, 155

and saddle-node bifurcations, 156
four-channel, 168
in flows, 158
in maps, 158
multichannel, 158
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single channel, 164
two-channel, 164, 168
type I, 156
type II, 156
type III, 156
types of, 155–156

Intertwine, 266, 364
Intertwining relation, 343, 362
Intrinsic, 392

embedding, 454
Invariant coordinates, 45–46, 52, 65, 109,

121–122, 139, 244, 340
Invariant dynamical systems, 110, 289
Invariant equations

structure of, 322
Invariant function, 18, 302
Invariant manifold, 319–320
Invariant monomials, 17
Invariant polynomials, 12, 47–48, 66, 109, 120,

234, 240, 289, 297
and identity representation, 306
and ring basis, 305
by averaging, 291
complex systems, 234
degree of, 300
generating functions for, 303
of V4, 139

Invariant set, 23
for a flow, 26
for a group, 26

Invariant subspace, 359
Invariants

of diffeomorphisms, 463
Inverse attractor halving bifurcation, 500
Inverse

in group, 267
Inversion

of mapping, 326
Ion-acoustic wave, 230
Irreducible, 169

dynamical system, 171
Irreducible representations, 276, 360

and covariant polynomials, 306
basis functions for, 306
complete set of, 359
group of square, 277
of C3, 277
of Cn, 277
of V4, 277

Island, 407
Isomorphism

global, 447
local, 447

Isotope
10Be, 497
14C, 497

Isotopes
cosmogenic, 497

Jacobian, 67, 109–110, 121–122, 140, 248, 265,
269

composition, 327
for C3, 314–315, 327
for P , 314–315, 328
forRZ , 314–315, 327
for V4, 314–315, 327
for σZ , 314–315
invariance of, 265
of transformation, 314
singularities of, 47

Jerk
attractor, 481
equations, 480
system, 480

Kepler
second law of, 506

Khaikin universal circuit, 483
Kinematic viscosity, 468
Klein bottle, 261
Kneading theory, 32
Knobloch E., 497
Knobloch-Landsberg attractor, 498
Knot

harmonic, 457
type, 13

Knot-holder, 27
Kremliovsky M., 482
Kremliovsky

attractor, 482
equations, 18–19, 51, 53, 482
flow, 27

Label
group, 110

Labeling scheme, 56, 113
symmetry-adapted, 110, 113, 122

Labels
branches, 56
dressed, 59
symbols, 56
symmetry-adapted, 112
symmetry group, 56

Laminar phases, 166
three channels, 166

Landsberg A. S., 497
Larger symmetries, 229
Laser, 2

cavity, 8
equations, 5, 8
models, 237

Laurent expansion, 369
Layering information, 424
Lego, 27
Leipnik and Newton
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attractor, 478
system, 477

modified, 479
Librations, 232
Lie algebras, 447

isomorphic, 447
Lie groups, 10

and diffeomorphisms, 449
and dynamical systems, 10
covering groups, 10
homomorphic images, 10
linearization of, 447

Lift control parameter, 350
Lifts, 11, 13, 65, 69–70, 110, 124

inequivalent, 70
linking numbers of, 127
noncommutativity of, 144
of ghost orbits, 158
of orbits, 128, 132, 135, 353
of periodic orbits, 151
of real orbits, 158
or orbits, 168
rotation-equivariant, 70
rules for, 75
structurally unstable, 452
to covers, 337
topology of, 70

Limit
chaotic, 60
cycle, 182, 503
hyperbolic, 60
laminar, 60

Linearization
of flow, 333

Linear oscillators, 177
Linear transformations

symmetry under, 265
Line integral, 368

in complex plane, 369
Linking numbers, 30–31, 118, 126

and framing index, 457
tables of, 32
with axis, 70

Links
lifts of Rössler orbits, 131

Links of lifts, 119, 126–127, 129, 133, 138
Lipschitz condition, 20, 262, 332, 342

global, 262
Liu-Chen attractor, 492
Liu-Chen system, 490
Local diffeomorphisms, 46, 66, 109, 340, 449
|G| → 1, 314

Local torsion, 56, 80
Locked

modes, 232
Logarithmic transformation, 44

Logistic map, 60, 156
bifurcation diagram, 157

Longitudes, 402
Lorenz

attractor, 5, 49
attractor and image, 444
attractor

double cover, 430
double cover of, 432
induced, 54
induced representation, 395–396
representations of, 394
standard mask, 395–396

covers of, 80–81
drive, 173
dynamics, 32
equations, 3, 11, 17, 57, 318

induced, 18–19, 51
proto, 104

flow, 27
double cover, 401
induced, 27

system, 15, 66, 80, 309, 465–466
system and asymmetric orbits, 160
system and bifurcation diagram, 175
system and fundamental frequency, 174–176
system and image, 161
system and intermittency, 158–160
system and power spectrum, 175–176
system and reinjection channels, 160
system

covers of covers, 149
double covers of, 150
3
2

cover, 132
template, 74

Lü Chen & Cheng attractor, 494
Lü Chen & Cheng system, 493
Lyapunov exponents, 26, 77, 343, 391, 394

local, 78
problems with, 26

Magic ingredients
groups, 151
matrix mutliplication, 151

Magnetic dipole
Earth’s, 469

Magnetic field
and sunspots, 101

Magneto-convection, 466
Main sequence star, 497
Malasoma attractor, 481
Manifold, 261

algebraic, 319
attracting, 321
invariant, 319–320

Map
first-return, 61
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Maple code
for fixed point eigenvalues, 332
for fixed points, 332
for Gröbner basis, 295
for invariant polynomials, 291–292
for projection of polynomials, 291
for syzygies, 298
generating function for C4, 302–303
integrity basis for S4, 296

Matrix
block diagonal, 275
faithful representations, 268
generator for S6, 248
invariants, 148
multiplication, 267
multiplication algorithm for orbits, 152
multiplication and periodic orbits, 151
powers, 148
representations, 108, 274, 338
representations for order-2 groups, 268
representations of V4, 139

Matsumoto-Chua
attractor, 486
circuit, 485
equations, 484

Maunder minimum, 497
Maximum laziness

principle of, 263
Maxwell-Bloch equations, 5, 8
Maxwell’s equations, 8
Measures

dynamical, 26
metric, 26
topological, 27

Medium
optically active, 237

Meridians, 402–403
Mirror image, 454
Mixing boxes, 337
Möbius strip, 261
Mod out

symmetry, 11
Modding out

in a Lie group, 448
Mode, 4

of field, 237
Model

how good?, 172
Modeling, 253
Moment of inertia, 224, 473
Monomials

invariant, 17
noninvariant, 17

Moore and Spiegel system, 479
Moving window

average, 99

Multiple sheets, 316
Multiply connected, 11, 369–370, 401
Multispiral attractors, 487, 489
Mutual entrainment, 255
Mutual inductance, 470, 473
Natural embedding, 454–455, 457
Navier-Stokes equations, 3, 5
Negative resistance, 6
Newton’s equations, 8
Noether E., 295
Noether’s theorem, 295
Nonautonomous systems, 503
Noncommutativity

of lifts, 144
Nonlinear amplifier, 484
Nonlinear characteristic, 180
Nonlinear inductance, 6
Nonlinear oscillator, 177

and dissipation, 178
and symmetry, 180
Duffing, 178
origins, 180
phase portraits, 178–179
Rayleigh, 178
Takens-Bogdanov, 178
undriven, 177
van der Pol, 178

Nonlinear PDEs, 229
Nonpolynomial terms

introduced by diffeomorphisms, 329
Nonsemisimple, 169
Nonsingularity

condition of, 271
Normal modes, 3, 8
Normal vector, 457
Nudge, 254
Null vectors, 231–232, 240
Numerical order, 409
Nusselt number, 468
Obstruction

of flow tube, 437
Octahedral group, 283
Ohmic diffusion, 469
Optically active medium, 237
Orbits

asymmetric pair, 70
extinctions of, 98
generators of, 353
ghost, 157–158, 167
imaginary pairs, 157
in dynamical system, 287
lifts of, 353
periodic, 37
rearrangements of, 98
surrogate, 31
symmetric, 70
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under flow, 287
under group action, 287
under group operation, 271
virtual, 159

Order
U-sequence, 60

Orientation
preserving, 76
reversing, 76

Orthogonal transformation, 360
Osculating circle, 457
Paleomagnetic data, 2
Panels

and return maps, 428
Parity, 13, 454
Peeling bifurcation, 85–86, 98–99, 166, 350
Perestroikas, 86–87, 91, 427

definition, 433
of bounding tori, 434
of branched manifolds, 426, 434
topological, 434

Period-doubling bifurcations, 60
Periodic orbits, 13, 31, 37, 59, 75, 114, 123

and matrix multiplication, 151
emergent, 156
ghost, 156
images, 59
lifts of, 59, 151
organization, 30
perestroikas of, 90, 94–95
symbolics of, 59
Thomas system, 252

Permutation
cyclic structure of, 414
group, 414
matrix, 279, 340, 347, 413

Perturbation, 433
global, 433
most general, 433

Phase angle, 232
Phase constraints, 230
Phase portraits

nonlinear oscillators, 178–179
Phase relations

matrix of, 230
Phase space, 261, 331, 338, 341

bounded, 262
domains, 271
partition of, 271, 338, 343

Phase symmetry
continuous, 231

Phase transformation, 230
Piecewise continuous

functions, 486
Piecewise linear

characteristic, 487

functions, 510
Pitchfork bifurcation, 23, 25, 55, 181–182

symmetry-restricted, 241
Plasma, 502
Poincaré H., 447
Poincaré-Bendixon theorem, 176
Poincaré-Hopf index theorem, 393
Poincaré section, 61, 76–77, 118, 126, 168

algorithm for constructing, 403
global, 403
inverse image of branch lines, 118
lifts of, 118
union of branch lines, 118

Poincaré surface, 39
Polar coordinates, 232

dynamics in, 244
Polar decomposition, 105, 232, 244
Polarization, 237, 245

amplitude, 9, 496
plane of, 241
state, 237

Poloidal field, 497
Polygon partition problem, 407
Polynomial dynamical systems, 329
Polynomials

basis, 307
covariant, 47–48, 109, 120, 339
destruction under diffeomorphism, 329
elementary, 46
equivariant, 297, 302
invariant, 47–48, 66, 109, 120, 289, 297
multiplication of, 295

Population inversion, 9, 239
Potential functions, 506
Potentials

Ginzburg-Landau, 433
Potpourri, 465
Prandtl number, 468, 479
Preimage problem, 316
Pressure field, 6
Prime number, 119
Principle

Equivalence, 221
Probability density

invariant, 157
scaling law, 157

Process
squeezing, 27
stretching, 27

Projected flow, 236
Projection, 322

linear, 323
many to one, 322
of symmetrized polynomial, 292
one to one, 322

Propagating waves, 229
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Proto–Burke and Shaw attractor, 444
Proto–Burke and Shaw equations, 134

covering attractors, 134
covering orbits, 137
covers of, 108, 136–137
four-fold covers, 108
links of lifts, 138
three-fold covers, 108

Proto-Lorenz attractor, 444
Proto-Lorenz equations

covers of, 107
four-fold covers, 107
three-fold covers, 107

Proto-Lorenz system, 131, 471–472
covering orbits, 133–134
covers, 132
links of lifts, 133–135

Pulsating stars, 478–479
Pump frequency, 239
Pump rate, 239, 496
Qi-Du-Chen-Chen-Yuan attractor, 495
Quadratic nonlinearity, 229
Quadrupole mode, 497
Qualitative change, 86
Quantitative change, 86
Quantizing chaos, 221
Quantum numbers, 221

for lifts, 458
for strange attractors, 225

Quasiperiodic dynamo, 497
Quasi-periodic motion

Zeghlache-Mandel system, 241–242
Radicals, 49–50, 52, 325–326

for V4, 325–326
Rank, 315

and syzygies, 299
of phase matrix, 231

Rayleigh-Bénard convection, 499
Rayleigh number, 468, 479, 500
Real representations, 278
Reducible, 169

dynamical system, 170, 172
representation, 275–276

Reduction of dimension
by dynamics, 245
by symmetry, 244

Reflection group, 53
Regular representation, 279

definition, 272
for C3, 272
for V4, 272

Reinjection channel, 159
Relations, 506

group, 268, 292
polynomial, 296

Relative rotation rates, 415

Relaxation rate, 239
Relaxation

to stable orbit, 156
Representations, 338

defining, 279, 339
equivalent, 274
faithful, 275
identity, 279
inequivalent, 276
irreducible, 276, 339
of groups, 274
real, 278, 339
reducible, 275–276
regular, 272, 279, 340

Resistance, 470
nonlinear, 180

Resonances
laser cavity, 9

Return map, 39, 61, 76–77, 118, 126, 236
and layering information, 451
and tearing, 451
and torsion, 451
bare, 424, 427, 451–452
cover and image, 62
covers of gateau roulé, 442
cusp-shaped, 245
dressed, 424, 440
dressing information, 442
first, 39
for bounding tori, 422
layering information, 424, 440, 442
off-diagonal, 61
of gaueau roulé, 440
panels, 427
perestroika of, 90, 94
perestroikas of, 89
pth, 40
representations of, 424
reverse horseshoe covers, 120
Rössler attractor, 450
structurally stable, 452
structurally unstable, 90, 94, 451
three-fold covers, 120
torsion information, 424, 440, 442
two panel, 441

Reverse horseshoe, 50, 111, 119, 124, 135, 481
four-fold cover of, 126
return map of cover, 120
template, 74

Reynold’s operator, 291, 293
Rikitake

dynamo, 470, 472
system, 469

Ring
of covariant polynomials, 139

Ring basis, 304



INDEX 537

and invariant polynomials, 305
for C3, 305
for Cn, 305
for V4, 305
functions, 309, 339

Rössler attractor, 95, 97
covers of, 129
hole in the middle, 95
subharmonic lifts, 228
time series in cover, 145
V4 covers, 145
V4 equivariant orbits, 146

Rössler covers
peeling bifurcation, 163
structurally stable, 98
structurally unstable, 98
structural stability, 97
three-fold, 165

Rössler drive, 173
Rössler equations, 11, 68

centered, 104
covers of, 106, 122
four-fold covers, 106
three-fold covers, 106

Rössler orbits
covers of, 130
perestroika of, 88

Rössler system, 69
bifurcation diagram, 174
covers of orbits, 166, 168
four-fold covers, 166–167
fundamental frequency, 173–174
intermittency, 161
lifts of orbits, 117, 125
n-fold covers, 161
power spectrum, 173–174
three-fold covers, 111
two-fold covers, 77, 162

Rotating plane, 216
Rotating transformations, 221
Rotation

and global torsion, 456
Rotation axis

(111), 250
Rotation groups

and complex numbers, 266
Rotation-invariant systems, 69
Rotations, 232

infinitesiaml generator of, 222
Rotation symmetry, 10
Row vectors, 231, 234, 240
Rucklidge system, 467
Saddle-node bifurcations, 23, 60, 156
Saddle-nodes

and flow structure, 400
real, 400

virtual, 400
Saturable-core, 504
Schur’s lemmas, 359

applications, 365
first, 360–361
how to use, 363
second, 361–362

Schur symmetry, 12, 359
Scroll template, 114
Seafloor spreading, 2
Section

Poincaré, 61
Selection rules

atomic, 428
for return maps, 425
return maps, 426
topological, 349

Self excitations, 177
Self-inductance, 470, 473
Self-oscillatory circuit, 6
Self-similar, 26
Semiflow, 29, 391
Semisimple, 169
Separation

dynamics and kinematics, 314
Sheet, 371

decomposition as nonlocal problem, 316
of covering space, 315

Shimizu-Morioka equations, 466
Shimizu-Morioka system, 467
Shorefront, 407
Similarity transformation, 362

nonlinear, 266
Simple, 169
Simplex, 393
Simply connected, 11, 369, 401, 448
Singularities, 369

branch line, 29
branch lines, 391
cusp, 61
forced by group, 140
isolated, 391
joining, 399, 401
nondegenerate, 391
of mappings, 433
pairs of, 399
splitting, 399, 401
splitting points, 391
surface, 394
tear point, 29
zipping away, 399

Singular set, 67–68, 110, 310, 315
algebraic, 285
of P , 310
ofRZ , 310
of V4, 310
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of dynaamics, 47
of group, 47, 309, 340
of σZ , 310
of transformation, 109, 121, 340
topological, 285, 323
topology of, 327

Smale horseshoe, 49
4-fold cover, 401
mechanism, 13

Solar activity, 497
Solar coronal zone, 502
Solar cycle

22 years, 482
Solutions

asymmetric pair, 21
disjoint, 21
identical, 21
symmetric, 21

Source functions
polynomial, 262

Source terms, 262, 332
Space curve, 457
Spectrum of covers, 349
Sphere, 392
Splitting axis, 98
Spörer minimum, 497
Sprott attractor, 477
Square away information, 2
Square knot, 462
Squeezing, 429
Squeezing regions, 337
Stability

and Hamiltonian limit, 178
Stability properties

symmetric fixed points, 265
State variables, 261
Statistics, 253
Stellar dynamo, 497
Stokes’ theorem, 369
Strange attractors

classification of, 26
connected, 19, 270
disconnected components, 270
hyperbolic, 30
structurally stable, 95
structurally unstable, 95

Stratification, 320
Stream function, 7
Stretch-and-fold, 49

dynamics, 393
mechanism, 415, 450

Stretching and squeezing, 26
Strongly contracting, 30
Structurally stable, 87, 91
Structural stability, 86

of strange attractors, 95

Structure matrix, 413
encoding canonical tori, 414

Structure theory
dynamical systems, 170
groups, 170
representations, 170

Subgroup
fixed point, 310
proper, 284

Subharmonic lifts, 225
Subharmonics, 503
Subsidiary phenomena, 503
Subsystem

driven, 170
Subtemplate, 80
Sun, 497

22-year cycle, 2
Sunspots, 2, 99–100

11-year cycle, 2
and magnetic field, 102
and magnetic fields, 101
covers, 99, 101
data, 2
group of, 99
numbers, 2, 482, 497

Surface of section, 39
Surface singularities, 394
Surrogate orbits, 31
Swarming behavior, 483
Sweep

for bifurcations, 98
Symbolic dynamics, 31, 36, 58, 334, 343

dressed, 58
symmetry-adapted, 58–59

Symbols
coding of, 58
dressed, 70
information in, 58
sequence of, 37
set, 31
symmetry-adapted, 76

Symmetric orbit, 70
Symmetry, 1

-adapted labeling, 122
-adapted labeling scheme, 113
-adapted labels, 59
-adapted symbols, 114
and cover-image relation, 446
and dynamics, 151
and fundamental theorem, 21
breaking, 253
Cauchy-Riemann, 12
Clebsch-Gordan, 13
inversion, 17
modding out, 245, 322

nonlinear oscillator, 213
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reduction, 234
reflection, 19
restoring, 253
-restoring crisis, 236
rotation, 15
Schur, 12
simple, 15
topological, 389
two-fold, 15
without groups, 389

Synchronization, 171–172
and irreducibility, 172
test, 173

Syzygies, 12, 139, 235, 297, 331
algorithm for, 297
and algebraic surfaces, 298
and nonlinear constraints, 298
as coordinates, 321
definition, 296
primary, 299
secondary, 299
simple, 297–298, 319

Takens-Bogdanov bifurcation, 182
Takens-Bogdanov oscillator, 181, 202

bifurcation diagram
harmonic drive, 212
Lorenz drive, 208–211
Rössler drive, 205–206, 208

harmonic drive, 210
limit cycles

harmonic drive, 211, 213
Lorenz drive, 210
Rössler drive, 207

Lorenz drive, 207
motion picture, 212, 215
natural frequency, 206
Rössler drive, 204
sensitivity to initial conditions, 211, 213
strange attractor

harmonic drive, 212, 214
Rössler drive, 209

symmetric attractors
Lorenz drive, 212

Tangent vector, 457
Tearing, 61, 245, 427
Tear point, 29
Temperature field, 6–7
Template, 27

Burke and Shaw, 74
Lorenz, 74
reverse horseshoe, 74

Tensor coupling, 172
Test

χ2, 173, 254
Tetrahedral group, 282
Theorem

Birman-Williams, 29
existence and uniqueness, 20
Wigner-Eckart, 113

Thermal
capacity, 468
conduction, 6
convection loop, 469
expansion coefficient, 468

Third-order ODE, 480
Thomas attractor, 489
P symmetry, 492
S6 symmetry, 491

Thomas R., 489
Thomas’ system, 248
Three-fold covers

return map, 120
Time delay embedding, 100
Time series, 429–432

generic, 429
Topological

continuation, 13, 78, 380, 382, 384, 444
entropy, 38, 60, 99, 142, 336, 347, 420
equivariant covers, 439
index, 69–70, 72, 74–76, 80, 82, 110, 113, 122,

124, 158, 161, 166, 383
index for V4, 141
index

Rössler covers, 77
indices, 30
inequivalent lifts, 144
organization, 382
perestroika, 434
selection rules, 349
symmetry, 389

Tori, 13
Toroidal field, 497
Toroidal representation, 222

autonomous attractor, 227
Rössler attractor, 228

Torque, 473
Torsion

global, 454
local, 56

Torsion integral, 224
harmonic lifts, 225
subharmonic lifts, 226

Torus, 392
canonically dressed, 396
covers and images in, 218
dressed, 404
genus-g, 392
guiding curve, 454
knot, 459–460

Trace out, 158
Trajectory

extension of, 21
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unique, 262
Transformation

contravariant, 264
covariant, 264
logarithmic, 44

Transients, 436–437
Transition, 86
Transition matrices, 31, 37, 58–59, 73–74, 76, 113,

142, 334, 344, 411
and group representations, 346
canonical form, 431
collapse of, 57
connectivity, 422
cyclic part, 422
eigenvalues, 38
for canonical tori, 411
fully reducible, 436
irreducible, 436
perestroika of, 89, 93
reducible, 436
structure part, 422

Transitivity
of group action, 345

Transverse bifurcation, 55
Trapping

and intermittency, 157
channel, 157

Trefoil knot, 460–461
Triangulation, 393
Triode vacuum tube, 180
Two-fold cover

of two-fold cover, 447
Two-frequency torus, 241
Ueda Y., 504
Unfolding, 86, 433
Uniqueness theorem

for ODEs, 20, 262
Unique trajectory, 262
Unit circle, 155
Universal circuit

Khaikin, 483
Universal

covering group, 449, 454
covering groups, 450

Universal image, 224
Universal

image attractors, 450
image dynamical system, 454
image dynamical systems, 450
images, 450
perturbation, 433
unfolding, 433

U-sequence, 60
order, 90, 94

Van der Mark
circuit, 503

Van der Pol
attractor

quasi-periodic, 504
circuit, 503
coordinates, 216
equations, 183, 503

Van der Pol oscillator, 4, 180, 183
bifircation diagrams

Lorenz drive, 191
bifurcation diagram

Lorenz drive, 188–189, 192
Rössler, 184
Rössler drive, 185, 188

chaotic attractor, 194
cover of, 220
covers of, 219
fundamental frequency, 183–184
global topology, 191
harmonic drive, 188
image of, 220
in annular torus, 191
limit cycles, 186, 190

Lorenz drive, 193
limit cycle solution, 183
Lorenz drive, 186
motion picture, 190, 195
power spectrum, 183
Rössler driven, 184
sensitivity to initial conditions, 193
symmetric attractors, 192, 194

Van der Pol
plane, 216, 458

Vanishing curl conditions, 370
Vector potential, 499
Velocity field, 7
Vibrations

self-sustained, 180
Viergruppe, 139, 268
Virtual orbits, 159
Viscosity, 6
Viscous diffusion, 469
Viscous diffusivity, 467
Wandering point, 158
Waterfront, 407
Wave-wave interaction, 502
Wigner-Eckart

decomposition, 231
theorem, 113

Window
period-three, 157

Wolf index, 99–100
Young partitions, 404–405, 407, 412

and canonical tori, 406
and degeneracies, 410

Zakharov equations, 230
Zeghlache-Mandel attractor, 242, 495–496
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detuning, 247
differential embedding, 247
phase portraits, 246
Poincaré sections, 243

return map, 246
Zeghlache-Mandel equations

bifurcation diagram, 241
Zeghlache-Mandel model, 239
Zip, 399


