
Turbulence transition in pipe flow:

some open questions

Bruno Eckhardt

Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany

Abstract. The transition to turbulence in pipe flow is a long standing problem in

fluid dynamics. In contrast to many other transitions it is not connected with linear

instabilities of the laminar profile and hence follows a different route. Experimental and

numerical studies within the last few years have revealed many unexpected connections

to the nonlinear dynamics of strange saddles and have considerably improved our

understanding of this transition. The text summarizes some of these insights and points

to a few outstanding problems in areas where nonlinear dynamics can be expected to

provide useful insights.

1. Introduction

The equations of fluid flow come naturally with a built in nonlinearity in the form of the

convective derivative and, hence, constitute a prominent playground for applications of

nonlinear dynamical systems theory. This mutually beneficial relationship has figured

prominently in bifurcation theory, the routes to chaos and the development of nonlinear

dynamics and fluid mechanics in general (see e.g. (Chandrasekhar 1961, Drazin &

Reid 1981, Koschmieder 1993). It is therefore appropriate to commemorate the 20th

anniversary of Nonlinearity by highlighting recent developments and open problems

in an area that also has a reason to celebrate an anniversary: 2008 marks the 125th

anniversary of Osborne Reynolds’s papers (Reynolds 1883a, Reynolds 1883b) on the

’Conditions which determine whether the flow of a fluid is sinuous’ in which he describes

his observations on the intermitten transition to turbulence in circular pipes. Despite

its long tradition and obvious practical relevance in many engineering situations there

are many aspects of this transition that have puzzled scientists. For instance, one

might expect that after more than a century the ’critical flow rate’, measured by

the dimensionless Reynolds number Re, for the transition to turbulence in pipe flow

should be firmly established. Instead, one finds in the literature numbers which range

between Re near 1000 (Prandtl & Tietjens 1931) and more than 3000. It turns

out that this wide range is a natural consequence of the intrinsic properties of the

system, and directly linked to the presence of a chaotic saddle. In the following,

I will summarize the work that has led to this observation as well as several other

key developements, and describe a few open questions that have come out of these
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investigations. More background information as well as more details may be found in

recent reviews ((Kerswell 2005, Eckhardt, Schneider, Hof & Westerweel 2007) or the

proceedings (Mullin & (eds) 2004).

The outline is as follows. In section 2 I will summarize a few experimental and

theoretical facts about pipe flow. Section 3 then deals with coherent structures and

section 4 with their connections in state space. Section 5 discusses the issues connected

with the observed transience of turbulence. In section 6 we focus on the edge of chaos

and in section 7 on the minimal perturbations needed to trigger turbulence. The global

dynamics in relation to the localization of the turbulence in puffs is discussed in section

8. In the concluding section 9 we briefly outline connections to other shear flows.

2. Observations and elementary properties

Pressure driven flow down a smooth circular pipe develops a parabolic velocity profile

sufficiently far from the inlet. In the usual dimensionless units one measures length in

units of the diameter and velocities in units of the mean velocity. From these units

and the viscosity of the fluid one can form a dimensionless number, the Reynolds

number Re = UD/ν. Hydrodynamic similarity theory states that all flows with the

same Reynolds number, independent of flow speed or diameter of the pipe behave in

the same manner if the Reynolds numbers agree.

The unusual properties of the transition to turbulence in pipe flow are causally

connected to the fact that the parabolic profile is linearly stable agains infinitesimal

perturbations (Salwen et al. 1980, Brosa 1986, Meseguer & Trefethen 2003).

Experimentally, the laminar flow has been maintained for Reynolds numbers as high

as 100.000 (Pfenniger 1961). The non-normality of the linear operator then shows

that perturbations can temporarily extract energy from the laminar flow and give

rise to transient amplification before the final decay (Boberg & Brosa 1988, Trefethen

et al. 1993, Reddy et al. 1993, Grossmann 2000, Schmid & Henningson 1999, Waleffe

1995, Henningson 1996, Kim & Moehlis 2006, Eckhardt, Dietrich, Jachens & Schumacher

2007). This has led Meseguer and Trefethen (Meseguer & Trefethen 2003) to argue that

for Reynolds numbers in excess of 107 the transient amplification is so strong that

both experimentally and numerically it becomes practically impossible to control the

perturbations and to prevent the transition.

In view of the linear stability, the transition to turbulence requires finite amplitude

perturbations. These can derive from perturbations swept from the reservoir into the

pipe or from perturbations originating in the inflow region. A typical experiment

then shows an intermittent variation between laminar and turbulent domains which

move downstream (for experimental demonstrations on the original apparatus used by

Reynolds, see the movies provided with (Homsy et al. 2004) or (Eckhardt, Schneider, Hof

& Westerweel 2007); for time traces, see (Rotta 1956)). For controlled experiments one

turns to controlled perturbations, such as jets of fluids injected into the pipe (Wygnanski

& Champagne 1973, Wygnanski et al. 1975, Darbyshire & Mullin 1995) or devices such as
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the iris diaphragm (Durst & Ünsal 2006) that temporarily block the flow. For sufficiently

low Reynolds numbers these perturbations decay as they are swept downstream and do

not recover. For Reynolds numbers up to about 2400, the perturbations develop into

localized patches of about 30D lengths which move downstream with a speed close

to but not identical to the mean velocity: this implies that there is a continuous

flux of liquid through the patch. Interestingly, these patches keep their length. For

higher Reynolds number, the upstream and downstream fronts move with different

speeds and the localized patches spread out along the pipe axis. These structures

are called puffs and slugs, respectively, and are discussed extensively in (Wygnanski

& Champagne 1973, Wygnanski et al. 1975). Almost all the discussions here concern

Reynolds numbers below about 3000 and dynamics in puffs.

From a mathematical perspective, the problem is the characterization of an initial

value problem for a nonlinear, nonlocal partial differential equation, the Navier-Stokes

equation. The temporal evolution of a velocity field u(x, t) obeys

∂tu + (u · ∇)u = −∂p + ν∆u (1)

together with the incompressibility condition

∇ · u = 0 (2)

and appropriate boundary conditions. Taking the divergence of the Navier-Stokes

equation (1) gives a Poisson equation for the pressure,

∆u = −∇ · ((u · ∇)u) (3)

which results in a non-local dependence on the velocity gradients. The boundary

conditions are that the fluid velocity vanishes at the walls. In the axial direction very

often periodic boundary conditions are used. A first question, worthy of a million USD

in bounty, concerns the smoothness of solutions starting from smooth initial conditions

for all times (see (Feffermann 2000) for the prize question and (Doering & Gibbon 1995)

for some background information). Should it be possible to arrive at singularities

in finite times, then numerical representations on finite-dimensional spaces of basis

function become dubious. In the absence of any positive evidence for singularities we will

assume that the numerical representations are acceptable (modulo the usual resolution

problems).

3. Lowest Reynolds number for coherent structures

A persistent turbulent dynamics requires the presence of persistent structures in state

space other than the laminar profile. While there are examples of dynamical systems

without periodic orbits, the most likely candidates for such persistent structures are some

form of periodic motions. Perhaps the simples form are travelling waves, where a certain

velocity field flows downstream without changing its form, uTW (x, t) = u0(x − cezt) .

More complicated ones have a non-trivial time-dependence and are periodic in time

or come in the form of helical waves where a translation in time and a translation
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Figure 1. Examples of coherent structures in pipe flow. The profiles are obtained

by averaging along the axis in order to highlight the symmetry. The arrows indicate

the velocity in the cross section and the color code the downstream velocity relative to

the parabolic profile. In the red regions the flow is faster than the parabola with the

same mean flux, in the blue regions it is slower. From (Faisst & Eckhardt 2003).

in downstream or azimuthal direction are coupled (so-called relative periodic states).

The method of choice for converging such states from appropriately identified initial

conditions is the Newton method, combined with various methods for obtaining good

initial conditions (see (Faisst & Eckhardt 2003, Wedin & Kerswell 2004) for pipe flow

and (Waleffe 1998, Waleffe 2001, Waleffe 2003a, Viswanath 2007b) for other flows).

For pipe flow, the structures that have first been identified are families of coherent

structures with symmetric arrangements of vortices (Faisst & Eckhardt 2003, Wedin &

Kerswell 2004) (Fig. 1). More recently, asymmetric states, still of travelling wave type,

have been identified (Pringle & Kerswell 2007). Secondary bifurcations of Hopf type will

then lead to the creation of periodic orbits, as mentioned earlier. The critical Reynolds

numbers at which the first symmetric structures appear is around 1250, that for the

asymmetric states around 770. The questions that derives from this observation is:

Question: Are there any persistent coherent states, of travelling wave or more

complicated types, with Reynolds numbers below 770?

That the lowest coherent states can be more complicated than fixed points can

be seen in studies of low-dimensional dynamical system for shear flows, where the

states that extend to the lowest Reynolds numbers are indeed periodic ones, with fixed

points appearing at much higher Reynolds numbers only (Moehlis et al. 2004, Moehlis

et al. 2005). On the other hand, this may be a resolution effect, since the low-

dimensional model is most closely related to plane Couette flow, and there the lowest

lying states are, as far as we know, again of fixed point type (Nagata 1990, Clever &

Busse 1997, Waleffe 2003b).

We do know from the study of the energy balance that for Reynolds numbers

below about 80, all perturbations decay monotonically in energy (Joseph 1975). This

then provides a lower bound. While it may be difficult to prove the existence of states,

it might be possible to prove the absence of any by establishing an asymptotic decay for

higher Reynolds numbers, following ideas from control theory (Hinrichsen et al. 2004).

The inverse question then is:

Question: What is the maximal Reynolds number below which no coherent states
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can exist?

As a warmup to this problem, it might be useful to address the related question in

low-dimensional models (Eckhardt & Mersmann 1999, Moehlis et al. 2004), where the

problem is one of ordinary differential equations with quadratic nonlinearitis, and where

perhaps methods like Groebner bases can be put to good use.

4. Restructuring state space

Independent of where the first coherent states come into being at a Reynolds number of

770 or lower, it is an intriguing fact that experimental and numerical observations fail

to come up with a somewhat longer lived turbulent dynamics for Reynolds numbers

below about 1700 (Darbyshire & Mullin 1995, Peixinho & Mullin 2006, Mullin &

Peixinho 2006). Thus, while all the prerequisites for turbulence exist, the flow fails

to show turbulence in any substantial manner. This suggests:

Question: What happens in state space between the appearance of the first

coherent structures and the experimental observation of turbulence?

The problem could be a qualitative one, in that the first states that appear

are isolated and do not connect sufficiently to maintain turbulent dynamics, so that

observing turbulence requires a global bifurcation which then links different structures

to form a noticable attractor. The problem could also be simply a quantitative one, in

that the structures form soon after the first bifurcations, and in a localized region in

state space, and then simply grow and spread in until they are sufficiently volume filling

to be noticable. Most likely, the answer to the problems involves a combination of both.

Some progress towards tracking the manifolds is described in (Gibson et al. 2007).

An aspect of the restructuring is the observation that all states found so far are

unstable, which means that they cannot be observed as permanent structures. However,

it is possible to observe these states transiently in the experiment and numerics (Hof

et al. 2004, Schneider, Eckhardt & Vollmer 2007, Kerswell & Tutty 2007, Eckhardt

et al. 2005). The theory of chaotic systems holds that the frequency with which these

states appears is related to their instability (Cvitanovic & Eckhardt 1991, Eckhardt &

Ott 1994).

Question: Can the frequency with which travelling waves appear be related to

their stability?

The studies (Schneider, Eckhardt & Vollmer 2007, Kerswell & Tutty 2007) are a

first step in this direction, but cannot establish the quantitative relations between the

indicator and the stability of the identified objects.

5. Transient turbulence

Very often, turbulent dynamics is associated with the formation of an attractor: then

the dynamics would be persistent, chaotic, with an invariant measure and many other

nice features. Long ago, (Brosa 1989) noticed that all his numerical runs returned to the
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Figure 2. The energy traces in a turbulent section as a function of time show

turbulent dynamics followed by a decay back to the laminar profile. When collected

over many initial conditions, exponential distributions of life times result (middle).

The characteristic lifetimes increase rapidly with Reynolds number (right).

laminar profile when followed long enough, and took the bold step to conclude that this

was not specific to his numerics but an intrinsic property of turbulence: he suggested

that all turbulence in pipe flow was transient (Fig. reffig:lifetimesa).

Interestingly, all numerical and experimental studies so far (Faisst & Eckhardt

2004, Hof et al. 2006, Mullin & Peixinho 2005, Mullin & Peixinho 2006, Peixinho &

Mullin 2006, Peixinho & Mullin 2007, Willis & Kerswell 2007) agree that the lifetimes

of turbulent pipe flow are exponentially distributed, so that the probability to still

be turbulent after a time t is P (t) ∼ exp(t/τ) with a characteristic time τ(Re)

(Fig. reffig:lifetimesb). The similarity sign indicates that this is only true for long

times, and that certain short time transients have to be excluded (Schneider 2007, Hof

et al. 2007). Such a behaviour is consistent with the one expected for a chaotic saddle

(Kadanoff & Tang 1984, Kantz & Grassberger 1985, Tél 1991).

The variation of the characteristic time with Reynolds number is a hotly debated

subject. A transition from a chaotic saddle to a turbulent attractor would require

some form of boundary crisis (Grebogi et al. 1983) at which point τ(Re) diverges.

Some measurements and numerical simulations are in agreement with this expectation

(Faisst & Eckhardt 2004, Mullin & Peixinho 2006, Peixinho & Mullin 2006, Willis &

Kerswell 2007). Other studies (Hof et al. 2006, Schneider 2007) suggest that τ(Re)

increases rapidly and present evidence that τ(Re) increases exponentially (Fig. 2c).

These latter studies are based on several different experimental set ups and are consistent

with numerical studies for long pipes and long observation times (Schneider 2007). The

very fact that there can be a dispute about the variations of lifetimes with Reynolds

number shows that the presence (or absence) of an attractor in pipe flow at sufficiently

high Reynolds numbers cannot be answered as easily as one might have expected.

Question: Is turbulence in pipe flow transient for all Reynolds numbers or is there

a crisis bifurcation to an attractor? If there is no crisis, how rapidly does the lifetime

increase with Reynolds number?

More computer power and additional experimental efforts will most likely reduce

the statistical uncertainty, and provide better data for the Reynolds number dependence

τ(Re) (other dynamical systems show a variety of dependencies on parameters, see
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e.g. (Kaneda 1990, Crutchfield & Kaneko 1988, Lai & Winslow 1995, Braun &

Feudel 1996, Goren et al. 1998, Rempel & Chian 2003)

It would also be helpful to find other indicators in the boundary dynamics, in the

fluctuations or any other quantity directly accessible from the turbulent dynamics that

might point to the existence or absence of a bifurcation. However, a definite answer

to the appearence of an attractor requires constructive criteria for the identification of

the necessary global bifurcation. But even then the turbulence need not be persistent,

as spontaneous, noise-induced transitions between the two coexisting attractors could

cause a relaminarization (Lagha & Manneville 2007, Schoepe 2004).

6. Edge of chaos

In the case of two coexisting attractors, there are basins and boundaries which separate

the basins. If the turbulence is only transient, the turbulent dynamics connects to the

laminar one, and there can be no basin boundary dividing state space into a turbulent

and a laminar region. Hence, the concept of the dividing surface between the two

regions has to be reconsidered and suitably generalized (Skufca et al. 2006, Schneider

& Eckhardt 2006, Schneider, Eckhardt & Yorke 2007, Vollmer et al. 2007)) Starting

from the properties of the saddle state in a saddle-node bifurcation, one could use the

lifetimes of perturbations, i.e. the time it takes to relax to the laminar profile, as an

indicator: approaching the stable manifold from the laminar side of the saddle, the

lifetime increases, reaches infinity and stays there, if the state on the other side is

attracting. If the state on the other side is transient, there will be wild variations in

lifteimes from one initial condition to a nearby one. Therefore, we denoted this point the

edge of chaos. All edge points seem to be connected in state space. A second observation

concerns these connections and the dynamics in the edge of chaos: numerical studies

show an evolution towards a relative attractor (see (Skufca et al. 2006) for a model

study, (Schneider & Eckhardt 2006, Schneider, Eckhardt & Vollmer 2007) for pipe flow

and (Itano & Toh 2000, Toh & Itano 2003, Viswanath 2007a) for other flows). We have

used a two-dimensional map to characterize some of these properties, including possible

bifurcations in the edge state and the appearance of chaos (Vollmer et al. 2007). Most

intriguingly, there is a possibility that this boundary can be fractal or not, depending

on the ratio of two Lyapunov exponents.

Question: What are the properties of the edge of chaos and the invariant state

within the edge? Is the edge of chaos a global relative attractor or are there additional

attractors in the edge of chaos?

The models in (Vollmer et al. 2007) can easily be extended to cover multiple

attractors in the edge, as in the model studied in (Skufca et al. 2006), but it would

be nice to have an example in a realistic flow.
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7. Minimal perturbations

In cases in which the laminar profile is stable, a finite perturbation is require to

trigger turbulence. Experiments and the observations on non-normal amplification of

perturbations show that the flow becomes increasingly sensitive to perturbations as

the Reynolds number increases (Hof et al. 2003). This suggests that the diameter

of the basin of attraction of the laminar profile decreases with increasing Reynolds

number. While there are results that suggest that the boundary contracts like 1/Re

((Hof et al. 2003) and, for low Re, Fig. 3), some experiments and numerics find

steeper decays (Mellibovsky & Meseguer 2005, Mellibovsky & Meseguer 2007, Peixinho

& Mullin 2007, Philip et al. 2007).

Question: How does the amplitude of the minimal perturbation required to trigger

turbulence decay with Reynolds number?

To approach this question, one may look for minimal variations in the laminar

profile which turn it unstable (Gavarini et al. 2004), or for optimal 3-d perturbations

which triggering turbulence: (Ben-Dov & Cohen 2007) find a global minimum in energy

norm for triggering secondary instabilites. It is also possible to study the scaling

of the invariant state in the edge or perhaps of other relevant coherent states with

Reynolds number. This is facilitated by the observation that the states do not become

more complex with Re (Wang et al. 2007, Schneider 2007). In simple models they

can dominate the size of the basins (Eckhardt & Lathrop 2006), but here there is

evidence that they maintain a finite distance from the laminar profile as Re → ∞

(Wang et al. 2007):

Question: Can one characterize the Re → ∞ limit of coherent structures? Do

the solutions approach the laminar profile or do some of them keep a finite distance for

large Re?

If the states keep a finite distance from the laminar profile then the reduction in

the basin of attraction of the laminar profile has to come from a scaling of the stable

manifolds. Such an connection would also fit with the observations of kinks and folds

in the edge (Fig. 3), which are typical for stable manifolds.

8. Turbulent spot dynamics

The coherent structures described earlier provide a conveninent means for describing

the dynamics in a finite section of the pipe with periodic boundary conditions. This,

however, covers only one aspect of the dynamics, in that the experimentally induced

turbulence is usually a localized one, confined to a domain of about 30D length

(Wygnanski & Champagne 1973, Wygnanski et al. 1975) (see Fig. 4). If a shorter

turbulent region is induced, it grows until it reaches this length, if a longer one is

induced it either shrinks or breaks up into two shorter ones which again grow to be 30D

long. Therefore, there is considerable robustness in the turbulent dynamics of spots:
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Figure 3. The boundary between laminar and turbulent (left) for a specific

perturbation and the scaling of the boundary with Reynolds number. The insets on

the right show modulations in the scaling curve connected with the folds on the left.

From (Schneider, Eckhardt & Yorke 2007).

Figure 4. Three snapshots of a turbulent flow in a pipe at Re = 1825, moving from

left to right. The snapshots are separated in time by 20D/ucl with ucl the centerline

velocity. The red and blue regions indicate isosurfaces of downstream velocities

somewhat faster or slower than the parabolic laminar profile. The aspect ratio is

not shown to scale: the pipe is 50 diameters long. From (Eckhardt & Schneider 2008).

Question: For Reynolds numbers below about 2700, the turbulence in a long pipe

comes in localized puffs. How is the dynamics of the puffs, their length selection and

their boundary dynamics connected to the periodic coherent structures?

In the simplest form one can imagine some sort of Ginzburg-Landau type model

for the dynamics of an envelope of the turbulent region (as in (Prigent et al. 2002)), but

this is unsatisfactory unless the equations and their coefficient can be derived from the

underlying Navier-Stokes dynamics. It is interesting to note that a simliar localization

phenomenon can be studied in plane Couette flow (Barkley & Tuckerman 2005).
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9. Final remarks

The discussion in the preceeding section has focussed on pipe flow, but there are

several other related problems. One is plane Couette flow between parallel plates in

relative motion, where the laminar profile is also linearly stable for all Reynolds numbers

(Dauchot & Daviaud 1994, Dauchot & Daviaud 1995, Bottin et al. 1998, Dauchot &

Vioujard 2000). Pressure driven flow between parallel plates, plane Poiseuille flow, has

a parabolic profile and a curious linear instability at Reynolds numbers of about 5772.

However, turbulence is observed at Reynolds numbers of about 1000, and hence can

follow a similar mechanism to the case described here. Finally, there is also a regime in

flow between rotating concentric cylinders, Taylor-Couette flow, where a stable laminar

profile and a turbulent dynamics coexist (Faisst & Eckhardt 2000, Hristova et al. 2002).

At present there seem to be many similiarities and connections between these flows,

suggesting that the transition to turbulence in these flows follows an independent route

with many as yet unexplored dynamical properties.

The ultimate challenge is to understand the full hydrodynamic flow and hence

the properties of the Navier-Stokes equation. But it is good to know that for the

development and test of ideas there are models on all levels of complexity, from ordinary

differential equations with varying numbers of degrees of freedom to simplified partial

differential equations, see e.g. (Waleffe 1995, Eckhardt & Mersmann 1999, Moehlis

et al. 2004, Moehlis et al. 2005, Brosa & Grossmann 1999, Smith et al. 2005, Manneville

& Locher 2000, Lagha & Manneville 2007).

Osborne Reynolds motivated his study not only with the obvious practical relevance

of pipe flow, but also with his interest in the nature of the transition. He could not

have anticipated that while he was among the first to describe a transition in detail,

his example would be among the last among to be explained. But in hindsight it is

clear that any serious explanation of the transition requires quite a bit of nonlinear

dynamics. Fortunately, the transition in pipe flow is not only at the receiving end: the

complexity of the edge state and the intriguing possibilites for the connections between

the different states in the high-dimensional state space can be expected to stimulate

nonlinear dynamics as well.
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