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while if d > 1 the corresponding first-order perturbed eigenvalues are tl
eigenvalues of the d x d matrix A whose elements are given by

Ay = eobyy + (6], H'¢%), (6.1

nl =12, ..,d In both cases there 1s a first-order effect only f T'j ®
contains I'y (that 1s, when n®, # 0) When this is so the Wigner-Eckar
Theorem shows that

@af =3 (7 1" ") eHbe 63
a=1

so that the matrix elements depend on the Clebsch-Gordan coefficients an

nb, reduced matrix clements

For a further analysis of the case d > 1, see, for example, Chapter
Section 3, of Cornwell (1984).

(‘hapter 7

( ‘rystallographic Space
(:roups

|  'T'he Bravais lattices

.. mhnite three-dimensional lattice may be defined 1n terms of three linearly
. I pendent real “basic lattice vectors” ay, ag and az The set of all lattice
ras of the lattice 18 then given by

tn = niay + nzap + nzay,

o = (ny,ng,na), and ny, ng and ng are integers that take all posathle
M, positive, negative and zero. Points in R? having lattice vectors as tlen
. wm vectors are called “lattice ponts” and a pure translation through a
“utn vector tn, {1]tn}, is called a “primitive” translation
'wppose that 1 a crystalline solid there are S nucler per lattice pomt, and
vt 1w equilibrium positions of the nucler associated with the lattice point
1) have position vectors Ty, T2, ., Ts. Then the equilibrium positions
t e whole set of nucler are given by

r‘ﬁﬂf =ty T (7 1)

newe y = 1,2, ., S and ty, 1s any lattice vector In the special case when
(, 7, may be taken to be 0 and the index v may be omitted, so that
' L

' I set of all primitive translations of a lattice form a group which will
todenoted by T, 7% s Abelan but of infinite order In Section 2 the
lars «yelie boundary conditions wall be introduced They have the effect of
v e g Uhis infinite group by a similar group of large but fimte order, so

thoal ull the theorems on finite groups of the previous chapters apply
I “nximal point group” GF*°® of a crystal lattice may be defined as
Ha ol of 0l pue rotations {R(T)|0} such that, for every lattice vector ta,

I
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Figure 71 Basic lattice vectors of the simple cubic lattice, T..

the quantity R(7)t, is also a lattice vector. Clearly R(T") € G§*** if and only
if R(T)a, is a lattice vector for 3 =1,2,3

There arc essentially 14 different types of crystal lattice. They are known
as the “Bravais lattices”. These will be described briefly, but no attempt will
be made to give a logical derivation or to show that there are no others (In
this context two types of lattice are regarded as being different i»f they have
different maximnal point groups, even though one type 1s a special case of the
other For example, as may be seen from Table 7.1, the simple cubic lattice ',
15 a special case of the simple tetragonal lattice T'y with @ = b, but Gi*** = Oy
for T, whereas G['*® = Dy, for T'y )

Lattices with the same maximal point group are said to belong to the
same “symmetry system”, there being only seven different symmetry systems.
Complete details are given m Table 7 1, in which the notation for point groups
1s that of Schonfliess (1923) (A full speafication of these and the other
crystallographic point groups may be found in Appendix C)

The cubic system 18 probably the most significant, the body-centred and
face-centred lattices occurring for a large number of important sohds The
basic lattice vectors of the cubic lattices are shown wn Figures 71, 72 and
7.3 The lattice points of the simple cubic lattice I', merely form a repeated
cubic array, and the basic lattice vectors lie along three edges of a cube For
the body-centred cubic lattice 'Y the basic lattice vectors join a pomnt at the
centre of a cube to three of the vertices of the cube, so that the lattice points
form a repeated cubic array with lattice points also occurring at every cube
centre. For the face-centred lattice I'{ the lattice points again form a repeated
cubic array with additional points also occurring at the midpoints of every
cube face, the basic lattice vectors then joinmg a eube vertex 1o the mudpoints
of the Lthree adjacent cube fnees.

o = vl SeRblE ey
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Figure 72 Basic lattice vectors of the body-centred cubic lattice, T'Y

A symmetry system o may be regarded as being “subordinate” to a sym-
metry system [ if G7*°" for « 18 a subgroup of GF*** for § and at least one
lattice of 3 15 a special case of a lattice of @. The complete subordination
scheme is then

triclinic < monochnic < orthorhombic < tetragonal < cubie,
monoclinic < rhombohedral, orthorhombie < hexagonal,
(Here & < § indicates that « 15 subordinate to 3 )

For a perfect crystalline solid the group of the Schrodinger equation is a
crystallographic space group, which contains rotations as well as pure prim-
itwve translations. The crystallographic space groups will be investigated in
tletail in Section 8 However, 1t is very enlightening, as a first stage in their
study, to hmit attention to the subgroup T of pure primutive translations of
the relevant lattice. Only the translational symmetry is then being taken into
account

In particular, the energy eigenfunctions must transform according to the
ureducible representations of this subgroup, which is equivalent to saying that
they satisfy Bloch's Theorem, as will be demonstrated 1n Section 3. Bloch's
‘I'hecrem has now become so much an essential part of the theory of solids that
1t 15 sometimes forgotten that it 1s basically a group theoretical resuit. The
clementary energy band theory based upon Bloch's Theorem itself requues
no knowledge of group theory and so is presented 1n most textbooks on soi:d
slate theory. However, the neglect of rotational symmetries in this elementary
theory does mean that some phenomena are overlooked, and, in particular,
it cannot predict the extra degeneracies which can occur in electromuc energy
levels Moreover, 1t 1s only by taking mto account the rotational symmetnes
that it is possible to reduce the numerical work in energy band calculations
to n manageable amount and still produce accurate results

—
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max

(1) Trichne symmetry system (Gg°° = C\)
(1) ssmple tnichinic lattice, I'y  a;, a2 and az arbitrary.
(2) Monoclinic symmetry system (Gg**® = Can)'
(1) simple monochnic lattice, I'sn
a3 perpendicular to both a; and ag;
(1t) base-centred monoclinic lattice, I't,
a; = (a,b,0), az = {a,—b,0), a3 = {¢,0,d).

(3) Orthorhombic symmetry system {G§"** = Dax}):
(1) simple orthorhombic lattice, I's
a, = (2,0,0), az = (0,5,0}, az = (0,0,¢),
(1) base-centred orthorhombic lattice, rt
a; = {a,b,0), az = (a,—b,0), as =(0,0,¢),
(ni} body-centred orthorhombne lattice, I';
a; = (a,b,¢), az = (a,b,—c), az = (a, —b, —c),
(v) face-centred orthorhombic lattice, I'f
a; = (a,b,0}, az = (0,b,¢), a3 = {¢,0,c)

{4) Tetragonal symmetry system (Gg**™ = D).
(1) sumple tetragonal lattice, [y
a; = (a,0,0}, az = (0,a,0), as = (0,0,b);
(1) body-centred tetragonal lattice, I'y-
a; = (a,q,b), az = {¢,a,—b}, a3 = (a, —q,b)
(5) Cubic symmetry system (G5 = On)'
(i) simple cubn . lattice, e
a; = {a,0,0;, az = (0,4,0), az = (0,0, a};
{31) body-centred cubic lattice, I'y.
a; = 3a(1,1,1), az = $a(1,1,-1), a3 = ja(l,-1,-1),
(i) face-centred cubic Jattice, I'f.
ar = 2a(1,1,0), az = £a(0,1,1), a3 = 30(1,0,1)

{6) Rhombohedral {or trigonal) symmetry system (G§**® = Dga)
(1) sumple thombohedral lattice, T'rp:
ay = (,0,b), az = (av3, ~1a,b), a3 = (w—%a\/i —1a,b)

(7) Hexagonal symmetry system (G7**® = Dg)
(1) sumple hexagonal lattice, n*
ar = (0,0,¢), az = (,0,0), a3 = (~}e,-3av/3,0)

Table 71+ The Bravais lattices (The real parameters a,b, ¢ and d are arbi-
trary )

;
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Figure 7.3' Basic lattice vectors of the face-centred cubic lattice, I'f.

A proof of Bloch’s Theorem that involves only an elementary apphcation
i Lhe ideas of the previous chapters 15 given is Section 3. Sections 4 and 5
me then devoted to a brief account of the elementary electronic energy band
theory that 1s based on this theorem Section 8 then describes, for the case
ul symmorphic space groups, how this theory is modified when the full space
rioup is mtroduced 1n place of its translational subgroup T It will be seen
thete that the concepts introduced 1n Sections 4 and 5 still play a fundamental

2  The cyclic boundary conditions

Miictly speaking, a real crystalline solid cannot possess any translational sym-
metry because it is necessarily finite in extent Consequently any translation
will shift some electron or nucleus from just mside some surface to the outside
uf the body, that 1s, to a completely different environment

On the other hand, for a normal sample the nter-nuclear spacing 1s so
mtch smaller than the dimensions of the sample and the interactions that di-
rectly affect each electron or nucleus are of such short range, that for electrons
und nuclei well inside the body the situation is almost exactly as if the solid
were infimite in extent. Moreover, the evidence of X-ray crystaliography is that
(he nucler within a solid can be ordered as if they were based on an mfimte
lattice, except near the surfaces As most of the properties of a solid depend
anly on the behaviour of the vast majority of electrons or nucler that lie
the interion, 1t i a very reasonable approximation to idealize the situation by
working with models based on infinite lattices The translational symmetry
pussessed by such models then permits a considerable sinplification of the
analysis
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However, the symmetry groups based on infinite lattices are necessarily of
mfinite order, and 1t is easier to work with groups of fimite order This can be
achieved by imposing “cyclic” boundary conditions on the infimte lattice

For the electrons it may be assumed that for every energy eigenfunction

B(r)
#(r) = ¢(r + N1a;) = ¢(r 4+ Noag) = ¢(r + Nzaz), (72)

where V), Nz and N3 are very large positive integers and a;,as and a3 are
the basic lattice vectors of the lattice This umplies that the infinite crystal
15 considered to consist of a set of basic blocks in the form of parallelepipeds
having edges Nqay, Noag and Naag, and that the physical situation is identical
in corresponding points of different blocks. These boundary conditions cannot
affect the behaviour of electrons well inside each basic block to any significant
extent, so the bulk properties are again unchanged The integers Ny, Nz and
N: may be taken to be as large as desired.

The integration involved in the mner product (¢,) defined 1n Equation

(1 19) must now be taken as being over just one basic block of the crystal, B. §

For any pure primitive translation T the operators P(T') retain the unitary
property of Equation {1 20), provided all functions mvolved satisfy Equation
(7 2). This follows because (P(T}¢, P(T)4) is equal to

//L¢(P—t(T))*¢(Tﬁt(T)}dmdydz=]/]Bt &(r)*¥(r) dedydz,

where B’ 15 obtained from B by a translation —t{T). As every part of B’ can
be mapped into a part of B by an appropnate combination of translations
through N;a;, Naay and Nzaz, by Equations (7 2) the last integral becomes

(¢,70).

The conditions m Equations (7 2) are often referred to as the “Born cyclic
boundary conditions”, as they are the analogues for electronic states of the vi-
brational boundary conditions first proposed by Born and von Karman (1912).
They unply that

P{{1|N;a,}) = P({1]0}) (7.3)

for every function of interest and for y = 1,2, 3. (Of course P({1]0}) 13 merely
the 1dentity operator ) Consequently

P({llﬁn + L Niay + o Nqas + 13N33.3}) = P({l!tn})

for any lattice vector t, and any set of integers Iy, I; and {3, so that only
N = NyNyN; of these operators are distinet The set of distinet operators

may be taken to be P({1|n1a; + noag + ngaz}) with
0<n, <N, 721,23 (7.4)
Moreover, as P({1|N,a,}) = P({1]a, })"s, it follows from Fquntion (7 3} thal

P({t|a, )% — P({t[0}), 0 1,200 (1.5)

BT R SR R 1 e gk
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Thus this set of distinct operators forms a finate group 7 of order N =
N N N;. Henceforth this group 7 will be used in place of the mfinite group
of pure prumitive translations T°°.

Incidentally, as it remains true that

P({1]ta}) P({1ltn'}) = P({1}ta}{1ltn'})

for any two lattice vectors t, and ty of a lattice, the mapping ¢{{1[ta}) =
P({1}tn}) is & homomorphic mapping of 7% onto 7 The kernel X of
this mapping is the infimte set of pure primitive translations of the form
{1jiN1a; + I3 Npag + [3N3a3), where Iy, {» and I3 are any set of integers.

3 Irreducible representations of the group 7
of pure primitive translations and Bloch’s
Theorem

As ‘the group 7 is a fimte Abehan group of order N = N, N, Na, 1t possesses
VN inequivalent 1rreducible representations, all of which are one-dimensional
(nce Chapter 5, Section 6). These are easily found, for 7 1s isomorphic to the
ilirect product of three eyclic groups.

Consider a particular one-dimensional irreducible representation T of 7
aud suppose that I'({1]a,}) = [¢;], for 7 = 1,2,3 Then, from Equation {75),
it follows that
e, =1, {76)
o that

¢, = exp(—2mp, /N;), 2 =1,2,3.

whete p, is an integer As exp(—2mi(p, + N;)/N,) = exp(-2mip, /N, ), there
me only N, different values of ¢, allowed by Equation (7 6) and each of these,
Iy convention, may be taken to correspond to a 7, having one of the values
01,2, ..,N, =1 Then

I{{1|n,a,}) = [exP(—QMPJnJ/NJ)}

aanel hence
F{{1tn) = fexp(—2ni{(pini/N1) + (para/Na) + (pans/N3)})l,  (77)
wline ty = njay + ngay + ngag. There are N = N{N;N; sets of integers

(1, pa) allowed by the above convention which can be used to label the N
hilerend irreducible representations of 7.

liquation (7 7) can be simplified and given a simple geometric interpreta-
hon hy jutioducing the following notation Define the “basic lattice vectors
vl the reetpocal lattice” by, by and bg by

"f'l”\ :?‘ﬂ-ﬁjkl J:k:1|2;3| (78)
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s0 that, explicitly,
by =2rag A a3/{a1 (32 A 3.3)}, (79)

with simular expressions for by and bz, Then define the so-called “allowed
k-vectors” by
k = kiby + kobg + k3bs, (710)

where k;, = p, /N, Thus
k tn = 2mi{(pini/N1) + (pana/Nz) + (pana/Na)},
so that Equation {7.7) becomes
T({1]ta}) = fexp(—ik.tn)], (7.11)

where the IV irreducible representations are now labelled by the allowed k-
vectors

Suppose that ¢¥(r) 1s a basis function transforming as the first (and only)
row of I'¥. Then, by Equations (1 26) and (7 11},

P{{1|taHé¥(r) = T*({1tu})dF (r) = exp(—tk.tn)d () (7 12)

However, by Equation (1.17},

P({11taD#Y(r) = ¢K({11ta} ') = $5(r — ta),

80 that
qbg{(r —tg) = exp(—»zk.tn)qblf(r).

Thus
¥ (r) = exp(ik.r)ug(r), (7.13)

whete ug(r) 15 a function that has the periodicity of the lattice, that is, uy (r—
tn) = uk{r) for any lattice vector tn.

Equation (7.13) 1s the statement of the theorem of Bloch (1928) in ita
usual form, for electronic energy eigenfunctions must be basis functions of thy
irreducible representations T¥ of 7 A function of the form in Equation (7 13)
is therefore called a “Bloch function”. The corresponding energy eigenvalue
may be dencted by e(k), so that

H{r)g¥(r) = e(k)gf () (7.14)

The notation for basis functions here follows the standard practice in which
the rreducible representation 15 specified by a superscript (or set of super
scripts) and the rows by a subscript {or set of subscripts). In particular, the
wave vector k appears as a superseript with this convention However, It
ghould be pointed out that in most of the solid state literature k is wuitten
as a subscript, so that ¢k (r) would be written as ¢y (r) and Fauation (8.20)
would become H(r)gw(r) = e(k)¢r(r)
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Figure 74 The basic parallelepiped of k-space.

I Brillouin zones
Ihe set of lattice vectors of the reciprocal lattice is defined by
K = miby + mabg 4 m3bs, (7.15)

white m = (m;, mg, m3), my, my and m; are integers, and by, b, and by are
the husic lattice vectors of the reciprocal lattice defined by Equation (7.8).
I'wy have the property that

exp(iKp.ty) = 1 (7.16)

b nhy Koy and ty,. It is useful to note that

. N, ifk=Kmy,
Eexp(zk tn) = { 0 ;fk ¥ K: (7.17)
tn H B

lvae the sum is over all the lattice vectors of one basic block of Section 2,
shisenult being a consequence of the fact that the lefi-hand side is a product
t three simple geometric series  Similarly,

] N, ift, =0,
§:exp(-zk.tn)={ 0 ;f oy 20
k H H

the num being over all allowed k-vectors.

In Seetion 3, NV irreducible representations of 7 were found and described
b, the nllowed k-vectors (Equation {7.10)) These k-vectors can be imagined
wn being, plotted in the so-called “k-space” or “reciprocal space” defined by
theveeiproceal lattice vectors. The allowed k-vectors hie on a very fine lattice
o thied by Equation (7.10)) within and upon three faces of the parallelepiped
Loy, adges by, by and by that is shown in Figure 7.4,
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S 0

Figure 7.5: Construction of a Brillouin zone boundary

it is, however, more convenient to replot the allowed k-vectors into a
more symmetrical region of k-space surroundmg the pomnt k = 0 To do this

consider the equation ,
k' =k +Km, (7.18)

where K, is a reciprocal lattice vector. Two vectors k and k' satisfying Equa-
tion (7.18) are said to be “equivalent”, because exp(—1k’.ty) = exp(—ik.tn)
by Equation (7.16}, and hence

rkl({litn}) = rk({lltn})

for every {1|tn} of 7. Thus the irreducible representation described by k
could equally be described by k’. The more symmetrical region of k-space la
called the “Brilloyn zone” (or sometimes the “first Brillouin zone”), and it i
defined to consist of all those points of k-space that lie closer to k = 0 than
to any other reciprocal lattice points Its boundaries are therefore the planon
that are the perpendicular bisectors of the lines joining the point k = 0 to
the nearer reciprocal lattice points, the plane bisecting the hine from k == 0 to
k = K, having the equation

1
kK, = -2-|Km{2.

as is clear from Figure 7.5. For some lattices, such as the body-centred cubie
lattice %, only nearest nexghbour reciprocal lattice points are involved in the
construction of the Brillowin zone, but for others, such as the face-centrm)
cubic lattice T'{, nezt-nearest neighbours are mvolved as well The irreduclhle
representations of 7 then correspond to a very fine lattice of points inside the
Brillouin zone and on one half of its surface

The mappmg of the parallelepiped of Figure 7.4 mto the Briilouin zone

- - VBt indl, o

i

v

can be quite complicated because different regions of the parallelepipmd |

are mapped using different reciprocal lattice vectornt  The dollowing twoe
dimensional example shown in Figure 7.6 of a sgpume ld e e demonstraton
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Figure 7 6: Construction of a two-dimensional Brilloumn zone

tns clearly In this example the analogue of the three-dimensional paral-
lelepiped of Figure 7.5 1s the square with sides b; and by, which consists of
lome regioms 1, 2, 3 and 4, and the analogue of the Brillown zone is the square

hwing k = O at its centre, which consists of the four regions 1’, 2/, 3’ and .

1" The region 1 is mapped into 1’ by K00 = 0, 2 is mapped into 2’ by
W, 100 = b1, 3 is mapped into 3’ by K(p _1) = —bs, and 4 is mapped
into 4/ by K(—l,_l,D) = —by ~ by

By construction, the volume of the Brillouin zone is the same as that of the
pnatlelepiped from which 1t 1s formed, namely by (bz A bz). It follows from
I'qnation (7.9) that this is equal to (2m)?/{a;.(as A a3}}, where a; (az A as)
v1 the volume of the parallelepiped whose sides are a;, ap and ag

For the simple cubic lattice ', the basic lattice vectors of the reciprocal
litie obtamed from Table 7.1 and Equation (7 9) are

by = (27/a)(1,0,0), by = (21/a)(0,1,0), bs = (2/a)(0,0, 1)

the Brillown zone 15 given in Figure 7.7. The position vectors of the “sym-
metry points” are as follows: for I, k = (0,0,0), for X, k = (n/a)(0,0, 1), for
U, k= (r/a)(0,1,1), and for R, k = (n/a){1,1,1). The significance of the
fen Ysymmetry point” will be explained in Section 7. The notation is that
« Houckaert et al (1936).

similarly, for the body-centred cubic lattice T'Y the basic lattice vectors of
il reciprocal lattice are

by = (27/a)(1,0,1), by = (2r/e)(0,1,-1), by = (27/a)(1,~-1,0),

thee Biillonin zone being shown m Figure 7.8. The position vectors of the
vinnetty pomts e as follows for T, k = (0,0,0); for H, k = (n/a)(0, 0, 2);
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Figure 7.8: Brilloumn zone corresponding to the body-centred cubic lattice '
v,

._Eu
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lgure 7 9. Brillomn zone corresponding to the face-centred cubic lattice T'Y.

for N, k = (n/a}(0,1,1); and for P, k = (w/a)(1,1,1), the notation being
ihat of Bouckaert et al. (1936}

Finally, for the face-centred cubic lattice I'f the basic lattice vectors of the
1eciproeal lattice are

by = (2n/a)(1,1, 1), by = (2n/a}(—1,1,1), by = (2n/a)(1,~1,1).

'The Brillouin zone is given in Figure 7.9, the position vectors of the points
indicated (in the notation of Bouckaert ef al. (1936)} being: for I, k =
(0,0,0); for K, k = (n/a)(0,3,2); for L, k = (n/e}(1,1,1); for U, k =
(x/a)(3,1,2); for W, k = (n/a)(0,1,2), and for X, k = (7/a)(0,0,2).

The Brillouin zones corresponding to the other eleven Bravais lattices may
be found in the review article by Koster {1957).

5 Electronic energy bands

The set of energy eigenvalues corresponding to an allowed k-vector may be
denoted by € (k), €a(k), .. ., with the convention that

en(k) £ €ntr(k) (7.19)




