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Abstract 

The validity of a recently developed procedure to construct a symbolic dynamics for the standard map is accurately 
investigated. The implications of all the stages, that involve the determination of homoclinic tangencies and the identification 
of appropriate symmetry lines, are discussed. Moreover, an extension of the method from the strongly to the weakly chaotic 
regime is presented: As a result, the general validity of the approach is strengthened, although many intermediate steps still 
have no rigorous justification. 

1. Introduct ion 

The development of  general methods to construct 
generating partitions (GPs) is of  primary importance 

to reach a detailed understanding of  the evolution of  

dynamical systems. The task appears to be particu- 

larly difficult in conservative systems since both the 
chaotic and the quasiperiodic motion must be simul- 

taneously accounted for. A very promising approach 
has been recently proposed in [1] with reference to 
the standard map in a highly chaotic regime, It com- 

bines the concept of  homoclinic tangencies (HTs) - a 

key ingredient for the encoding of  chaotic motion in 
dissipative systems [2] - with the notion of  symmetry 
lines ] which allow the description of  quasiperiodic 

motion. Although any kind of  symmetry can be ex- 
ploited in the construction of  a GP, it is worth stress- 
ing here that it is the invariance under time reversal 

* Corresponding author. 
1 See Section 2 for a definition of symmetry line. 

that plays the prominent role in the whole process, so 

that we may safely state that the method has a broad 
range of  applicability (no peculiar feature of  the stan- 

dard map has been, indeed, used in [1]). However, 

the success of  the implementation depends on several 
conditions and conjectures that are neither rigorously 

proved nor widely numerically tested. For instance, it 

has not been proved that the procedure to construct 
a GP can be pushed to an arbitrary degree of  accu- 

racy. Moreover, the concept of  primary homoclinic 

tangency (PHT), so important in the identification of  a 
GP, has not been formalized yet and, in numerical ap- 

plications, one is unable to ascertain whether a given 
point is a homoclinic tangency at all. 

An important open question is also why HTs and 
symmetry lines can be coherently combined within 
a single consistent approach: it is, for instance, un- 
explained why the symmetry lines pass through the 
"bifurcation" points where two lines of HTs collapse 
together, thus allowing the construction of  a continu- 
ous partition border. 
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Another point requiring a deeper understand- 

ing concerns  the connection between chaotic and 
quasiperiodic regions. It is well known that within any 

stability island exists an infinite hierarchy of  higher- 

order islands. Accordingly, an infinite hierarchy of  
increasingly thinner chaotic layers is present as well, 

which must be properly encoded. Again, we can only 

state that the "experimental" procedure fulfills all the 

properties that are a priori required down to the accu- 

racy that has been possible to reach. Although there 

are no explanations of  the above-mentioned points, 
the observations made for different parameter values 

induce us to conjecture the general validity of  the 

underlying ideas. 
Insofar as the main justification for the whole 

method comes from the "experimental" evidence of  

its functioning, it is of  a particular relevance to test its 

validity in various models and for various parameters. 

For this reason, in Section 2, we furnish a critical 

exposition of  the method, with reference to the stan- 
dard map, but in a sufficiently general language so 

as to clarify the role of  all the relevant intermediate 

steps. We hope that this presentation, together with 

a new effective algorithm recently proposed for the 
identification of  HTs [3], wilt contribute to facilitate 

future investigations. Anyway, we can already register 

that a first confirmation of  the goodness of  those ideas 

has already come from their application in the context 

of  the analysis of hydrogen in a magnetic field [4]. 

In Section 3 we investigate again the standard map, 

but in a very different regime, the weakly chaotic be- 

havior occurring at small nonlinearities. In fact. this 

problem is not obviously related to the previous one. 
The quasiperiodic motion is the main component to 

start the construction of  a GP. Nevertheless, we shall 

find unexpected similarities that reinforce the feeling 

that the validity of  this encoding technique follows 

from very general arguments. 

2. Highly  chaotic regime 

The standard map is a general prototype for the 
study of  low-dimensional Hamiltonian chaos which 

arises in several contexts. We adopt the following rep- 
resentation for the equations of  motion: 
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Fig. 1. Generating partition in the standard map for ce : 6. The 
borderline of the partition is made of primary HTs bridged by 
symmetry lines. The two arrows point to a pair of  conjugated 
avoided crossings. 

Xn+l = Yn (1) 
Yn+~ ~ - x , z  + 2yn - ot cos(yn) rood 2zr, 

since it offers a more natural description of  the un- 

derlying folding process. We shall sometime use the 

shorthand notation Xn+l = F(Xn).  There are two 

relevant symmetries in the dynamics of  map (1): (i) 

the invariance under time reversal expressed by the 
equality T o F o T = F 1. where T is the involution 

T ( x ,  y )  = ( y ,  x ) ;  (ii) the invariance under the trans- 
formation S ( x ,  y )  = (re x .  7r - y )  mod 2zr. i.e., 
F = S o F o S .  

The discussion on the construction of  the GP starts 
from the observation that the phase-space, being a 

toms. has no natural boundaries, so that one must in- 

clude the task of  tiling the plane with equivalent ele- 
mentary cells. In [5], it has been shown that one of  the 
lines around which the phase-space is folded (plus its 
backward iterate) is perfectly suited for this aim (see 
Fig. 1 where the line of  interest is L2).  Accordingly, 
the problem of constructing a GP is reduced to that 
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of identifying such "folding" lines. The sine function 

entering the definition of  the standard map implies 

the presence of  two distinct folding lines. Since they 

are related by the S-symmetry, one is obtained from 

the other by applying the transformation S. Therefore, 

from now on we restrict our analysis to just one of  
them. 

A folding line is a curve separating two regions 

of  the phase-space that, since they are eventually 

squeezed against each other, must be encoded with 

different symbols. In the highly chaotic regime, a 

folding line is approximately given b y  the set of  
points where the first iterate of  a vertical line is bent, 
i.e., the vertical line x = s in- t  ( - 2 / ~ ) .  In Fig. 1, one 

can notice that for a = 6, this line is indeed very 

close to the curve L 1 eventually obtained through the 

more rigorous procedure discussed below. The start- 

ing point consists in recognizing that a folding point 

is nothing but a homoclinic tangency, since the cur- 
vature of  the unstable manifold around the forward 

iterates of  each HT diverges asymptotically. More- 
over, since any (either forward or backward) iterate 

of  a HT is a tangency itself, HTs can be thought 

of  as arranged in distinct doubly infinite sequences 
of  points. It is obvious that only a single tangency 

within each sequence is truly needed to discriminate 

among trajectories lying on opposite sides of  the 

folding line. This leads to the problem of singling out 
the most suitable point, the primary tangency, within 

each sequence of  HTs. Although this step has not yet 

been rigorously formalized, in general, the idea of 
considering the tangencies which lie approximately 

in the folding regions turns out to represent a good 
starting point. The main problems that one has to 
face arise whenever a piece of  a HT line is mapped 

onto another such piece, since lines of  homoclinic 

tangencies always give rise to avoided crossings. This 
phenomenon is precisely a consequence of  the fact 
that a folding region is mapped again along the fold- 
ing line after a finite number of  iterates, leading to 
an exchange between stable and unstable directions. 
One such example is the zone indicated by the up- 
per arrow in Fig. 1, which is mapped in two iterates 
in the region indicated by the lower arrow. A closer 
look at the alignment of  HTs can be given in Fig. 2, 
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Fig. 2. Enlargement of the region indicated by the upper arrow 
in Fig. 1. The solid lines refer to the sequences of homoelinic 
tangencies which, first approach and then move away from one 
another, giving rise to a typical avoided crossing. The dashed 
curve indicates the symmetry lines used to bridge the gap. 

where a magnification of the region of  interest is 
reported. 

The presence of avoided crossings imply that other 

concepts should be invoked to enable a connection of 
the disjoint branches of  tangencies into a continuous 

line. A convincing solution to this problem has been 

proposed in [1], where it was suggested to use sym- 

metry lines. Let us here present a two-step general 
argument supporting such a conjecture. The first step 

starts from the observation that we could have pro- 

ceeded equally well in the construction of  the GP by 

looking for the folding points along the stable, rather 
along the unstable manifold. Because of  the invariance 

of  the dynamics under time reversal, we would have 
obtained just T(L1). Now, since a HT is a HT inde- 
pendently of  whether we look at forward or backward 

iterates, the line T(L1)  should differ from L1 only for 
it being some forward or backward iterate of  it. This 
is indeed the case for the standard map, where it is 

found that 

L1 : F (T(L1) ) .  (2) 

While the above equality is automatically satisfied by 
the HTs, it plays the role of  a constraint for the lines 
that could be used to connect the HTs with a single 
continuous line. 
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However, Eq. (2) alone is not enough to identify 

such lines. It is no more than a symmetry condition, 
expressing how different sections of  L 1 are mutually 
related. This problem is solved with the second step 

of  our argument, which starts from the observation 

that avoided crossings (the places where the additional 
lines are to be placed) occur in pairs, 2 since they arise 

whena  given section Ro of  L1 is mapped onto another 

section Rn of  L1 after n iterates, i.e. Rn = Fn(RO) .  

The two observations can now be put together to 

find a unique solution, by noticing that the elements 

of  a given pair (R0, Rn) are also connected by the 
above-mentioned time-reversal symmetry, so that we 

can write down the relation 

F n ( x ,  y )  = F e T ( x ,  y ) .  (3) 

Therefore, the curves are parts of  the set of  fixed points 

for the mapping 

q5 n (x,  y )  = T o F n-1  (x ,  y ) ,  (4) 

which turns out to be an involution, since 

4~n o qbn = T o F n-1  o T o F n - 1  

: T o T o F l - n  o F n-1  

= id, 

d~bn (x, y) 
det = - 1. (5) 

d(x, y) 

The set of  fixed points is called a sYmmetry line ~n 
[6]. The symmetry line bridging the gap in Fig. 2 is 

~b2, x = y - (or/2) cos y rood 7c (see the dashed curve). 
Accordingly, the partition border can be constructed 

by connecting the branch of  HTs denoted with H1 in 
the figure first with q52 and then with H2. This con- 
struction is perfectly self-consistent since the HTs in 

that do not contribute to the partition border are in- 
deed (second) preimages of primary tangencies used 
to define the borderline in the region indicated by the 
lower arrow in Fig. 1 [1]. 

The existence of  the further symmetry S implies the 
existence of  gaps which are connected by this trans- 
formation. They can be treated in a similar way by in- 
voking the corresponding set of  symmetry lines. Two 

important observations are in order. First, the length 

of  the segments of  symmetry lines needed to bridge 
the various gaps decrease very rapidly to zero for n --+ 
cx~, so that the line L1 eventually obtained, though 

nowhere differentiable, does not appear to be too wild. 

Second, the symmetry lines turn out to intercept the 

sequence of  HTs precisely in the "bifurcation" points 

where a PHT collapses wi tha  secondary tangency [ 1]. 

This is an important coincidence that allows passing 

from one (HTs) to another (symmetry lines) ingredient 

precisely where the first one can no longer be used. 
The last problem in the construction of a GP in 

the strongly chaotic regime concerns stability islands, 
that are typically present also in this case. A general, 

though non-universal, solution can again be obtained 

with the aid of  symmetry lines. Let  us first observe 

that the quasiperiodic motion occurring within a sta- 

bility island can be properly encoded by monitoring 
the rotation angle around the center O of  the island, if 

the frequency varies with the distance from O. 3 The 
rotation can. in principle, be quantified by splitting 

the island into two complementary sectors through the 

introduction of  suitable semi-axes departing from the 
center O. The symbol sequence is then obtained by 

associating a different symbol to each sector. 
Now, from the very definition (4) of  symmetry, line. 

it can be straightforwardly verified that an orbit of  pe- 

riod N which is invariant under time reversal, lies at 

least along two such curves ~bn for - N  > n < N. Ac- 
cordingly, the two lines match the above-mentioned 

properties for a meaningful encoding of  the quasiperi- 

odic motion. However. while, on the one hand. there 
are infinitely many symmetry lines passing through O, 

on the other hand. there is, a priori, no guarantee that 
any such line leads to a meaningful representation not 
only of  the motion within the primary island but also 

inside the secondary and higher-order islands. 
It is an "experimental" observation that there always 

exists (at least) a symmetry line passing through the 

centers of  all the secondary islands, which can thus 
be successfully used to encode not only the rotation 
around O but also the rotation occurring around the 

2 The only exceptions are when a given region is mapped hack 3 The degeneracy occurring in the harmonic oscillator is truly 
onto itself. This case is not, however, conceptually different, exceptional. 
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secondary centers. Although such a line does not suf- 

fice to encode tertiary islands as well, a preliminary 

analysis reveals that higher-order symmetry lines can 

be effectively used to further refine the partition bor- 

der. It is therefore reasonable to conjecture that the 

whole procedure can be iterated all the way down to 
infinitesimal scales. 

A further problem concerns the thin chaotic layers 

separating the various islands. A detailed numerical 

analysis of  this question is very difficult because of  the 
extremely weak and slow folding process. We shall 

see in Section 3 that they can be consistently included 

into the global procedure. 

The last comment regards the nature of  the islands. 
They have been so far assumed to be invariant under 

time reversal. Whenever this is not true, the whole con- 
struction does not apply: evidently, symmetry lines do 

not pass through asymmetric solutions. In this case, 

we can only say that other types of  arguments should 
be introduced. We consider this as the only truly open 

problem. However, in favor of  the procedure so far 
described, we can say that this difficulty does not af- 

fect the validity of  all the other steps and, moreover, 

it implies only the lack of  a well-defined criterion to 

choose the borderline of  the partition. Experimentally, 
though, we have observed that the secondary centers 

of asymmetric islands do line up along smooth curves 
and we can thus hope that they can be treated in a 

similar way to symmetric islands. Furthermore, we 

have observed, upon varying c~, that asymmetric is- 

lands play a very marginal role in that they exist only 
in very tiny intervals compared to those of  the sym- 
metric ones. 

3. Weakly chaotic regime 

In this section, we study the standard map for small 
values of  the nonlinearity, when most of the phase 
space is filled with quasiperiodic orbits. Therefore, it 
does not make much sense to start the construction of  
the partition border from the identification of  the fold- 
ing regions. This is clearly confirmed by the first iterate 
of a generic vertical line which is not bended anywhere 
(i.e. the equation sin x = -2/c~ has no solution). 
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Fig. 3. Partition for ct = 0. The various lines split the square 
into three regions encoded with the symbols A, B, and C, 
respectively. 

It is, instead, instructive to consider first the limit 
case c~ = 0 in which the phase-space is foliated by 

the invariant tori y - x = /~ with /3 ~ (-zr ,  re). In 

this case, it is obviously impossible to construct a rig- 
orously "generating" partition, since for any rational 

/3, there is a continuum of periodic orbits all charac- 

terized by the same rotation angle. On the one hand, 
this difficulty can be safely disregarded, as i t  occurs 

only in a perfectly integrable dynamical system, such 
as the standard map for c~ = 0. On the other hand, we 

expect that a meaningful partition should nevertheless 
be able to discriminate among orbits corresponding 
to different rotation angles, because this is a feature 
that will survive after switching on the nonlinearity. 

The simplest way to encode the rotations is achieved 

by defining the elementary cell as a square with the 
lower-left corner in the point (Y, ~), for an arbitrary 
Y. A symbolic dynamics can then be constructed by 

adding the bisectrix y = x which splits the elementary 
square cell into two triangular sectors. I f  we associate 
the symbol b = 0 to the upper triangle and b = 1 to 
the lower one, it is immediately realized that the mo- 

tion along the line Yn = xn +/3 is encoded in the same 
way as free rotation in the circle map. 
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An alternative partition, which has the advantage of  

not requiring new ingredients besides the borders of  
the elementary cell, is obtained by replacing the bi- 

sectfix with the image of  a vertical edge of  the square. 
As a result, the phase-space is split in three rather than 

two regions (see Fig. 3 for the assignment of  the sym- 

bols s ---- A, B, and C). The new representation can 

be obtained from the previous one, by the following 

rules: sn = B whenever the pair b n - l b n  is either 00 or 

11; sn = A (sn = C)  if b n - l b n  ----- 10 (bn- lbn  = 01). 
Conversely, sn ----- A, C implies bn = 0, 1, while C is 

translated into either 0 or 1, depending on the value 
of  the last non-C observed in the past: an A implies 

that bn ~- 0, while a B implies that bn = 1. 

Although the latter partition is clearly redundant, 

w e  prefer to stick to it, since it is closer, in spirit, to 

the partition introduced in Section 2 and thus it allows 

a more direct comparison of  the symbolic dynamics 

in the two limits. 

l e t  us now discuss the new features that arise when 
the nonlinearity is switched on. First of  all, it is an 

"experimental" observation that all the primary sta- 

bility islands are aligned along the vertical line V2, 
x ---- 3zr/2. This is still true for c~ = 0.9, as it can be 

seen in Fig. 4 where all periodic orbits up to length 10 
have been reported together with the largest chaotic 

component (some of  the periodic orbits along V2 are 
unstable since they have already undergone a period 

doubling bifurcation); As a consequence, V2 is the line 

to be used as the right border of  the elementary cell 

(apart from higher-order adjustments), since it allows 

encoding the motion inside the islands. This is a very 
important feature, as it removes the ambiguity about 

the value of  ~. 
Before proceeding further on, let us summarize that, 

at this stage, the partition involves V2 (and the same 
line shifted by 27r) and its forward and backward im- 
ages as seen in Fig. 3. Accordingly, this is very much 

in the spirit of  the strongly chaotic case, where L2 was 
playing the role of  V2. The main qualitative difference 
between the two cases is that, here, we have no line 
such as L1 to further split the phase space. Symme- 
try considerations provide a convincing explanation of  
this difference: while L1 = S ( L 2 ) ,  V2 = S(V2), so 
that the two lines perfectly overlap in the present case! 
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Fig. 4. The largest chaotic component and all periodic orbits 
up to period 10 for a ----- 0.9. Diamonds denote stable orbits, 
while crosses refer to unstable ones. 

It is instructive to notice that V2 is invariant also 

under time reversal, i.e. V2 = F ( T ( V 2 ) ) .  This latter 

symmetry, shared also by L2, is very important as it 
ensures the invariance of  the symbolic dynamics under 
time reversal. 

As in the strongly chaotic regime, the main task will 

now be the refinement of  V2 although, now we have to 

proceed in the opposite way, starting from symmetries 

and inserting HTs afterwards. First of  all, the line V2 

should be refined every time it crosses a primary is- 

land (and the associated hierarchy of sub-islands). We 
illustrate the procedure with reference to the main is- 
land (centered around the fixed point (3Jr/2, 3Jr/2)). 

From the data reported in Fig. 5, one can see that it is 
the line y = 37r - x that should be used to refine the 
partition inside the island, since it passes through the 

stable sub-chains as well. This is perfectly consistent 

with the previous investigation which suggested us to 
use the fixed points of  the involution F n -1  (x ,  y) = 
T S ( x ,  y)  to refine the partition inside an S-symmetric 
island of  period-n. In the specific case of  the period- 1 
island, f 0  = T S  gives the above-mentioned line. In- 
cidentally, let us also notice that this is the same line 
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Fig. 5. Periodic orbits inside the main stability island for 
et -- 0.9. Diamonds and crosses refer to stable and trustable 
orbits, respectively. The dashed curve corresponds to the line 
x = 3zr/2, while the solid curve corresponds to y = 3~r - x. 
Notice that the latter one passes through stable orbits only. 

used for the period-2 island present for a = 6. This 

is a nice correspondence, since the period-2 island is 

the result of period doubling of this fixed point and, 

therefore, it represents a further indication of the gen- 

erality of the whole procedure. 

The use of symmetry lines does not exhaust the con- 

struction of a continuous partition line: in the vicinity 

of each resonance, we need to connect the line x = 

37r/2, which acts as a border out of the island, with the 

symmetry line used inside the island. We conjecture 

that this connection should consist of HTs. In Fig: 6, 

we have plotted part of the main island and of the cor- 

responding chaotic layer together with a set of HTs 

determined with the technique introduced in [3]. HTs 

appear to lie precisely in the region where they can ef- 

fectively be used to bridge the gap between different 

symmetry lines. A more accurate construction of this 

partition border would require the approximate iden- 

tification of the folding line to be used as a reference 

for defining the primary tangencies as it was done in 

the strongly chaotic case. However, the weakness of 
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Fig. 6. Some of the primary homoclinic tangencies inside the 
large chaotic component sttrrounding the main stability island 
for e~ = 0.9. It is clearly seen that they are almost aligned along 
a virtual curve connecting the solid line, which acts as a partition 
border inside the island, wida the dashed line, representing the 
border in the external quasiperiodic region. 
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Fig. 7. 112 (solid line) and V! (dashed line) after the refinement 
to account for all stability islands up to period 5. Notice that 
y and x are here exchanged to prepare a picture with a more 
convenient aspect ratio. 

the chaotic process requires a very delicate numerical 

investigation that goes beyond the scope of the present 

paper. We leave to a future work, as well as the in- 

clusion of the islands existing inside the chaotic sea. 

Here, we limit ourselves to observe that, coherently 

with the analysis developed in Section 2, the line of 

HTs points towards the bigger islands. 

The partition can be refined in a similar way inside 

all the other primary islands. The corrections arising 

from handling period 2-5 orbits are reported in Fig. 7, 

where rather strong transversal oscillations can be ob- 

served. They suggest that V2 might eventually become 

a fractal curve with an infinite length; we leave this 
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point to a future investigation. Moreover, let us men- 6 

tion that besides stability islands, there are, obviously, y 
KAM tori (as long as they survive). For their encoding, 

it is still true what has been stressed at the very be- 4 
ginning of  this section: any vertical line works equally 

well. For consistency reasons with the rest of  the is- 

lands, we have decided to choose x = 3zr/2 also in 
this case. 2 

The partition could be obtained by adding to the re- 
fined V2 both its forward and backward image. How- 

ever, again symmetry considerations reveal a weak 0 
point of  the resulting encoding. While all the adjust- 

ments introduced along V2 automatically maintain its 
invariance under the S-transformation, the same is not 

true for the FT-symmetry,  which is violated. In fact, - 2  \ ~, ,#  

after the refinement, F(T(½)) ¢ v2. Accordingly, , , , 
the symbolic encoding does not preserve the time- - 2  0 

reversal symmetry of  the original model. A simple 
way to restore the symmetry is by adding the line 

V1 = F(T(V2))  as a further partition border. Both V1 
and V2 are reported in Fig. 7, where it can be seen 
that they differ only inside each stability island where 

two symmetric triangular blobs are opened (all islands 

up to period 5 are considered). If  we then use V1 in 
the same way as L1 was considered in Section 2, we 

finally obtain the partition that is reported in Fig. 8. 
Since V2 represents the border line of  the elementary 

cell. every time V1 lies to the left, a blob originates in 

the right part of  the cell (see the black regions in the 

figure), while the opposite occurs whenever Vi is to 
the right of  1/2. Although the various blobs seem to be 

disconnected from one another, we must keep in mind 
that an infinitely accurate refinement would lead to in- 

finitely many blobs with point-like connections. We 
conjecture that they can be attributed the same symbol 
and this is confirmed by  a direct numerical implemen- 
tation of  the partition. Through the following below 

of what happens to the GP at the period doubling bi- 

furcation of  a stable orbit, we shall see that this idea 
is less bizarre than it could appear. 

To underscore the connection between the con- 
struction of  the GPs for the two different regimes, we 
want to give a flavor of  how the GP changes when ol 
is increased. We limit ourselves to illustrate the pro- 
cess with reference to the main stability island, all the 
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Fig. 8. The resulting partition at ~ = 0.9. The regions colored 
in black denote the set delimited by V1 and V2, which requires 
an additional symbol with respect to the limit case ot = 0. 

others giving rise to a similar picture. Inside the island, 

the two partition lines V2 and V1 are given (in a first 
approximation) by the straight line x + y = yr, and its 

symmetric F(T(V2)),independently of ~ (as long as 
the fixed point remains an elliptic one). This can, for 
instance, be noticed in Fig. 9(a), where the structure of  

the island with the two symmetry lines is reported for 

ot ---- 3.7. The partition borders can still be constructed 

in a similar way to the above discussed case ot = 0.9. 

Upon changing or, V1 turns clockwise until it becomes 
tangential to V2 at the fixed point for ot = 4. This is 
the moment whenper iod  doubling occurs, giving rise 

to the period-2 islands that are  still present at ot = 6. 
After period doubling; the two border lines of the 
partition are constructed in a different way, since the 

fixed point is now hyperbolic and there is no need for 
a border line t o  pass through it. It becomes, instead, 

necessary to include those segments that pass through 
the period-2 orbit. As a result, the two partition lines 
turn out to pass through the two points of  the same 
period-2 orbit, respectively. Accordingly, they do 
not cross each other anymore (see Fig. 9(b) for the 
new construction) and, as a consequence, a curious 
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Fig. 9. A picture of the main island around its period-doubling. (a) c~ = 3.7, when the fixed point is still elliptic; the solid curve 
denotes the symmetry line y = 3zr - x, while the dashed curve is its F .  T image. Both serve as partition borders. (b) ~e = 4.3, when 
a stable period-2 orbit is generated. The partition borders are now represented by the two solid lines which are completely separated 
from one another. 

exchange of  symmetry occurs: instead of  having 

two lines such as 1/1 and V2 which are separately 

S-symmetric  but non-invariant under time reversal, 

we find two lines like L1 and L2 which are sepa- 

rately invariant under time reversal, but no longer 

S-symmetric.  

4. Conclusions 

In this paper ,  we have shown that the procedure 

developed in [1] for the construction of  a GP in the 

strongly chaotic regime of  the standard map can be 

successfully extended to the weakly chaotic case. Al-  

though many steps still deserve a detailed analysis 

and a rigorous justification, the method appears to 

work and, moreover, interesting similarities have been 

detected between the two opposite limits. A careful 

scrutiny of  these relationships is certainly necessary 

in order to shed further light on the whole procedure, 

but this represents the subject of  a future research 

project. In particular, we want to stress that whether 

the partition introduced in this paper can be simplified 

is an open question. More precisely, we expect that it 

should be possible to eliminate some redundancy (let 

us, for instance, recall the partition involving only two 

symbols that is able to account for the dynamics in 

the l imit  case ~ = 0). It is not, however, clear whether 

this can be accomplished without destroying the sim- 

ilarity with the strongly chaotic regime. 
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