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Simulations of oblique transition in the spatial domain are presented, covering the complete 
transition process into the turbulent regime. It is conjectured that the three stages identified here and 
elsewhere are universal for oblique transition in all shear flows: first a nonlinear generation of a 
streamwise vortex by the oblique waves, second a transient growth of streaks from the vortex by the 
lift-up effect, and third a breakdown of the streaks due to secondary instability. 

We will present an investigation of bypass transition, 
i.e., transition emanating from , linear growth mechanisms 
other than exponential instabilities. This definition is in line 
with the original idea of Morkovin,’ but is formulated in 
view of results of nonmodal transient growth.2-6 In these 
investigations it was shown that significant growth of the 
disturbance energy is possible for certain two- (2-D) and 
three-dimensional (3-D) disturbances in shear flows at sub- 
critical Reynolds numbers, where the largest growth was ob- 
tained for the 3-D perturbations. Physically, the growth is 
due to the Orr and lift-up mechanisms.7Vs Mathematically, it 
can be explained by the fact that the linearized Navier- 
Stokes operator has nonorthogonal eigenfunctions, a neces- 
sary condition for subcritical transition to occur.’ 

In the investigation of Henningson et a1.l’ the lift-up 
mechanism was found to play an important role in the 
growth of both infinitesimal and finite amplitude localized 
disturbances. In the study by Schmid and Henningson” tem- 
poral simulations starting from a pair of oblique finite ampli- 
tude waves were performed. It was found that nonlinearity 
rapidly excited components with zero streamwise wave num- 
ber, i.e., streamwise vortices. By the lift-up effect the vorti- 
ces generated large amplitude low- and high-speed streaks. 
The breakdown to turbulence, which has recently been found 
to result from a secondary instability of the streaks,” occurs 
more rapidly than traditional transition initiated by the 
growth of 2-D waves. 

Oblique transition has also been studied in boundary lay- 
ers on a flat plate.13’14 It was found that the “streamwise 
vortex mode” played an important role and that the initial 
amplitude necessary to trigger transition was lower than for 
comparable secondary instability scenarios. This scenario 
has also been found in a study of a compressible confined 
shear layer,15 where the oblique waves appeared naturally 
from noise introduced at the inflow boundary. 

In the present study the oblique transition scenario has 
been simulated spatially for a zero-pressure gradient incom- 
pressible boundary layer. We will use a numerical simulation 
program solving the full 3-D incompressible Navier-Stokes 
equations.16 The program uses Fourier-Chebyshev spectral 
methods, and has recently been modified to handle spatial 
development of disturbances in boundary-layer flows. In a 
fringe region a forcing term was added to the Navier-Stokes 
equations. It was implemented such that the disturbances 

flowing out of the box were eliminated and the flow returned 
to its laminar state. In the fringe region wave disturbances 
can also be generated, simulating a vibrating ribbon. This 
technique is similar to that of Bertolotti et aZ.17 

The inflow conditions for the present simulation consists 
of the Blasius mean flow plus a pair of oblique waves, each 
with an amplitude ‘4 (based on the maximum RMS of the 
streamwise velocity) of 0.01. They are taken as the least- 
damped Orr-Sommerfeld mode for o,,=O.OS (F,= oO/ 
R =200X10V6) and &=0.192, excluding the associated nor- 
mal vorticity. Here o, and ?“pO are the angular frequency 
and spanwise wave numbers of the generated waves. The 
Reynolds number at the inflow (R = U~L$/v) is 400, based 
on the inflow displacement thickness ($) and free-stream 
velocity (Urn), which in the following are used to nondimen- 
sionalize all quantities. The inflow position will in the fol- 
lowing be denoted xn . 

Two calculations of the same scenario were performed. 
The first used 480X97X80 modes in the streamwise, normal, 
and spanwise directions, respectively, and the second used 
720X 121X120 modes. (Note that spanwise symmetry was 
assumed and that dealiasing, using the 312 rule, was also 
applied in the horizontal directions.) As a test of the conver- 
gence, four maxima in the streamwise shear in the outer part 
of the boundary layer were compared [x -x0 
=200,250,300,350, y = 5 in Fig. 2(b)]. The differences in the 
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FIG. 1. Coefficient of friction c,=ZrJpUi (solid curve), 7, is the aver- 
aged wall shear stress. R,=xU,/v where x is the distance from the leading 
edge. Lower dashed line shows the value for a laminar Blasius boundary 
layer (0.664 R;"') and fhe upper curve is the turbulent friction 
0.370(10gR,)-~~~ by Shultz-Grunow. 
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FIG. 2. Instantaneous velocity fields. la) Streamwise velocity at y =2.93. Values range from red at 0.34 to blue at 1.08. Lb) Streamwise shear at z=O. Values 
range from blue at -0.18 to red at 1.9. Note the fringe region starting at x-x,=408, at the right part of the computational box. 

values were below 1% in the four maxima, although the 
position of the last maximum has changed slightly. The 
higher resolution corresponds to a grid step of 14 wall units 
in the streamwise direction, 6 for the spanwise, and 4 for the 
largest step in the wall normal direction, based on the wall 
friction in the turbulent region. 

Figure 1 shows the development of the coefficient of 
friction ic,= 2 rJpU2 , rW is the time- and spanwise- 
averaged wall shear stress) for the simulation. It is evident 
that the simulation captures the complete transition process, 
all the way into the turbulent regime. 

Figure 2 shows the breakdown to turbulence to the two 
oblique waves generated at the inflow boundary. In Fig. 2(a), 
which shows the streamwise velocity in a wall-parallel plane, 
the appearance of streamwise streaks is observed at about 
x---x0 =50. The streaks subsequently grow to a large ampli- 
tude and become unstable to nonstationary disturbances, re- 
sulting in a breakdown to turbulence at about x-x0=350. 
Figure 2(b) shows the streamwise shear in a side view of the 
boundary layer. Shear layers are seen to intensify and be- 
come unstable prior to the breakdown. 

Figure 3 shows the energy in some of the excited Fourier 
components during the transition process. At the inflow only 
the (1,-t- 1) components are excited. They show a rapid initial 
growth similar to that in the simulations by Schmid and 
Henningson,” who also set the initial normal vorticity to 
zero. The (O,O), (0,?2), iZ,O), and (2,+2) components sub- 
sequently increase due to nonlinear effects, since they are 
directly generated by the 11,+‘1) modes through the quadratic 
nonlinearity. The (O,t2) components grow more rapidly than 
the other modes and continues to grow until about 
x--x”= 100. The latter part of this growth was found by 
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Schmid and Henningson” to be due to a linear forcing of the 
streak (U component) from the vortex (V,W components) for 
the same wave number. A second phase of rapid growth 
starts for modes with nonzero w, eventually completing the 
transition process. This growth can best be described as a 
secondary instability on the base flow with a spanwise varia- 
tion given by the (0,+2) streaks. A similar rapid growth of 
oblique modes from a state of streamwise streaks was found 
for transition in plane Couette flow by Kreiss et al.‘2 

In order to put the present simulation in perspective, data 
from a number of recent spatial simulations have been com- 
piled in Table I. The transition process in the present simu- 
lations occupies about the same streamwise domain as in the 
simulations of secondary-instability-induced breakdown by 
JSloker and Fasel,r’ in spite of the exponential growth of the 
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FIG. 3. Energy in Fourier components with frequency and spanwise wave 
number t.w/~,,fi/&) as shown. The curves are normalized such that the 
energy of the (l,lj mode at inflow is set to unity. 
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TABLE I. Comparison of recent spatial simulations of instability and transition. The last column indicates 
whether the simulation included the complete transition region; x0 is the position of the disturbance generator 
and xE is the end of the simulated region. 

Investigator R R x0 R XE ‘%-D A 3-D ‘uo PO Transition 

Present 
JSP 
JSP 
I@ 
SY’9 

400 
733 
900 
079 

1260 

54 000 220 000 - 0.01 0.080 0.192 yes 
182 000 447 000 0.0048 0.000 014 5 0.091 0.242 no 
238 000 489 000 - 0.01 0.0774 0.2 no 
155 000 304 000 0.03 0.002 0.075 0.29 yes 
532 000 1390 000 0.01 noise 0.095 - no 

2-D mode and higher input amplitude in the latter case. This 
is accentuated by the results of Spalart and Yang” who simu- 
lated an even larger domain by following a streamwise peri- 
odic box, accounting for the growth of the boundary layer in 
an approximate manner. In spite of covering a larger Rey- 
nolds number range their simulations did not reach the tur- 
bulent state. 

In the present investigation the wave amplitude at the 
inflow is low, resulting in a long growth region before break- 
down. This initial amplitude represents the lowest amplitude 
disturbance of the chosen form, giving transition in this com- 
putational box. In a simulation with A = 0.0086 the second- 
ary instability was not strong enough, and thus no transition 
occurred. For the same initial amplitude Joslin et aLI5 did 
not find that the growth was sufficiently rapid to cause tran- 
sition within their computational box, although the domain 
was longer and the inflow at a higher Reynolds number than 
the present study. The reason may be their use of complete 
eigenmodes as inflow condition (i.e., including the normal 
vorticity part of the eigenmode), which implies that they do 
not have the rapid transient growth of the oblique (1,+-l) 
modes seen in the present case. 

The oblique transition scenario in the boundary layer is 
quite similar to that seen in channel flow,” and the streaks 
seem to break down due to the same secondary instability 
mechanism.12 In light of these findings, and those of other 
investigations discussed here, we conjecture that the follow- 
ing three stages occurs during oblique transition in shear 
flows: 

(i) Initial nonlinear generation of a streamwise vortex by 
the two oblique waves. 

(ii) Generation of streaks from the interaction of the 
streamwise vortex with the mean shear by the lift-up effect. 

(iii) Breakdown of the flow due to a secondary instabil- 
ity of the streaks, when these exceed a threshold amplitude. 

Note that if the amplitude of the inflow disturbance is 
large enough the breakdown may be so rapid that the second 
and the third stage overlap. 
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