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Abstract 

Implicit-explicit (IMEX) linear multistep time-discretization schemes for partial differential equations have 
proved useful in many applications. However, they tend to have undesirable time-step restrictions when applied 
to convection-diffusion problems, unless diffusion strongly dominates and an appropriate BDF-based scheme is 
selected (Ascher et al., 1995). 

In this paper, we develop Runge-Kutta-based IMEX schemes that have better stability regions than the best 
known IMEX multistep schemes over a wide parameter range. © 1997 Elsevier Science B.V. 

I. Introduction 

When a time-dependent partial differential equation (PDE) involves terms of different types, it is a 
natural idea to employ different discretizations for them. Implicit-explicit (IMEX) time-discretization 
schemes are an example of such a strategy. Linear multistep IMEX schemes have been used by many 
researchers, especially in conjunction with spectral methods [3,10]. Some schemes of this type were 
proposed and analyzed as far back as the late 1970s [5,15]. Instances of these methods have been 
successfully applied to the incompressible Navier-Stokes equations [9] and in environmental modeling 
studies [16]. A systematic, comparative study for PDEs of convection-diffusion type was carried out 
in [2], and a corresponding study for reaction--diffusion problems arising in morphology is reported 
in [11]. 
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In this work, we consider problems of convection-diffusion type (or hyperbolic-parabolic equations), 
e.g., 

ut = uuz  + uAu, u > O. (1.1) 

Discretization of the spatial derivatives (e.g., by finite-difference, finite-element, finite-volume, or 
spectral methods) yields a very large ODE system in time, 

iz = f ( u )  + g(u) ,  (1.2) 

where f corresponds to the convection (hyperbolic) term, UUx, and g corresponds to the diffusion 
(parabolic) term, uAu. An IMEX scheme consists of applying an implicit discretization for 9 and an 
explicit one for f .  This is natural because the system (1.2) with f -- 0 is generally stiff and linear, 
whereas with 9 -= 0 the system is not too stiff and it is often nonlinear. Moreover, if one insists 
on using an implicit discretization for the latter case, the construction of iterative solvers is made 
challenging by the properties of the matrix to be inverted. 

In [2] we have analyzed and experimented with linear multistep schemes for (1.2). For diffusion- 
dominated problems, schemes utilizing Backward Differentiation Formulae (BDF) for 9 have optimal 
damping properties. The corresponding IMEX scheme is a semi-explicit BDF (SBDF) [5,9,15]. How- 
ever, when diffusion is not dominant, the choice of method is less obvious. Ideally, one would like 
a dissipative scheme for the hyperbolic term, so that the resulting IMEX scheme would have good 
stability and smoothing properties, independent of 9(u) .  Yet, it is well known that this necessitates 
looking for schemes of order (or more accurately, backward steps) at least 3 (cf. [2]). The main dif- 
ficulty plaguing multistep IMEX schemes is the possibility that relatively small time steps become 
necessary due to stability restrictions (e.g., [14]). Such restrictions become worse when working with 
higher-order multistep schemes, as demonstrated in [2]. On the other hand, the stability region of 
explicit Runge-Kutta schemes actually increases slightly when three- and four-stage schemes are con- 
templated. Thus, we are led to investigate the development and performance of IMEX Runge-Kutta 
schemes. 

When the system (1.2) arises from a PDE in more than one spatial variable, the simplicity and 
efficiency of solving the algebraic equations corresponding to the implicit part of the discretization at 
each time step is of paramount importance. In [2], we show that, under appropriate circumstances and 
for certain IMEX schemes, not much more than one multigrid W-cycle per time step is needed. Here, 
we aim at such a performance per Runge-Kutta stage. Hence, we concentrate on diagonally-implicit 
Runge-Kutta (DIRK) schemes for 9(u) ,  paying particular attention to their attenuation properties. We 
construct a number of IMEX schemes of this sort, and investigate their properties. Since the effective 
order of DIRK schemes drops to 1 for very stiff ODEs [8], we do not expect the Runge-Kutta schemes 
to be competitive with SBDF in the limit where 9(u)  is heavily dominant and very stiff. However, 
our Runge-Kutta schemes are shown to have excellent properties for other parameter ranges. 

It is well known that, despite its recent rise in popularity, the use of Runge-Kutta schemes for 
the integration of time-dependent PDEs is not without drawbacks. One problem is a loss of accuracy 
order when time-dependent inflow boundary conditions are prescribed [4]. A remedy is proposed in 
[1]. Note also that, in the (usual) case where the accuracy of the solution at the end of the step is 
higher than at internal stages, the accuracy to which these internal stages must be calculated (say by 
an iterative method, as in Section 5) cannot be lowered. 
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The system (1.2) can be cast as a partitioned system, 

+ = f (v ,  w), (1.3a) 

~b = ~(v, w), (l.3b) 

with u = v + w, f = f ( v  + w) and ~ = 9(v + w). The IMEX Runge-Kutta schemes devised below 
are then partitioned Runge-Kutta schemes. Their orders are discussed in [7, Section II.15]. They can 
also be seen as a particular class of splitting methods. We note that for (1.2), v and w need not be 
known individually (indeed we may not have initial conditions for them). All we need to have is their 
smooth, local existence. 

In Section 2, we develop a number of IMEX Runge-Kutta schemes of up to four stages, which are 
up to third-order accurate. The schemes divide naturally into two classes--those whose last internal 
stage is identified with the solution at the next time instance (i.e., at the end of the time step), and 
those where an additional quadrature is used at the end of the step. The first class is particularly good 
for highly-stiff problems, but it is the second class which seems to yield some of the more promising 
variants for a wide range of parameters, particularly the scheme identified as (3,4,3) (3 internal stages 
for the implicit formula, 4 stages for the explicit and a combined accuracy of order 3). 

In Section 3, we investigate the performance of the various schemes for a simple test equation, 
which arises from a v o n  Neumann analysis of an advection-diffusion equation. Stability regions are 
plotted in Figs. 1 and 2. Results of test runs for a linear advection-diffusion equation are reported in 
Section 4.1 and the Burgers equation is experimented with in Section 4.2. In Section 5, we investi- 
gate the performance of our various schemes in conjunction with employing a multigrid method for 
resolving the implicitness at each stage. 

2. IMEX Runge-Kutta schemes 

We now develop some IMEX Runge-Kutta schemes. For 9, we consider an implicit s-stage DIRK 
scheme [8] with coefficients A E N sxs, c, b E IR s, in the usual Butcher notation. Let a = s + 1. 
For f ,  we consider an (s + 1)-stage explicit scheme with the abscissae ~" = (0) and coefficients 

E R~X~,b E R ~. To cast the DIRK scheme as an (s + 1)-stage scheme as well, we can pad the 
s-stage scheme with zeroes, obtaining the tableau 

0 0 0 . . .  0 

0 all 0 . . .  0 

0 a21 a22 "'" 0 

: : : " . .  : 

0 a s l  as2 " ' "  ass 

0 

C1 

c2 

cs 

0 bl b2 " -  bs 

Referring to the coefficients of this padded tableau as J~ E IR ~'x~, b E R ~, ~ E IR ~, we see that 
= ~'. This property simplifies significantly the form of the order conditions on the method's coeffi- 

cients due to coupling between the individual schemes. 
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One step from tn-1 to tn = tn-1 + k of the IMEX scheme is given as follows: 
Set 

K1 = f (un-1) .  

F o r i = l , . . . , s d o :  
• Solve for Ki: 

= g ( u d ,  

where 
i i 

Ui ~ t n - l + l g E a i , j K j q - k E  A A = ai+l,jlT(j. 
j=l j=l 

• Evaluate 

(2.1a) 

(2.1b) 

(2.1 c) 

0 

c1 

c2 

Cs- 1 

0 0 0 .-- 0 

321 0 0 " ' "  0 

331 332 0 " ' '  0 

: : : ".. : 

a s l  as2 as3 " ' "  0 

Ki+l = f ( u i ) .  (2.1d) 

Finally, evaluate 

U n : U n _ l  "OF k bjKj  --~- k E * ~ ) j 2  j . (2.1e) 
j = l  j = l  

We consider two special cases, which lead to two sub-families of methods: those which satisfy (2.2) 
and those which satisfy (2.3)-(2.4): 

(1) In the case that b = b (and in particular bl = 0), we have in place of (2.1e) 

?.tn=Un_ 1 ~- lg ~-~ b j ( K j  -}- Kj+I ) .  (2.2) 
j=l 

(2) In the case that bs+l = 0, 2 ,+1  need not be evaluated. Furthermore, if 

bj = as,j, bj = as+l,j, j = 1 , . . . , s  (2.3) 

(implying that the implicit scheme is stiffly accurate and cs = 1), then substituting (2.1e) into 
the expression for u,,  we see that 

un = us. (2.4) 

This is useful for very stiff problems. We note also that the explicit scheme can now be generated 
from a general explicit s-stage scheme based on the abscissae e l , . . . ,  cs-1, 
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In (2.1b), there are s nonlinear systems to solve involving 9 alone, and the operators to be inverted 
are 

I -- kaiigu. 

Assuming that the Jacobian gu is evaluated only once (at tn-1) ,  this operator is the same for each i if 
aii is independent of i, i.e., for SDIRK schemes. However, if an iterative method like 1-cycle multigrid 
is used for the implicit scheme, then perhaps it is less critical for the overall efficiency to insist on 
SDIRK, and a more general DIRK scheme can be contemplated. See [8, Section IV.6], for stiffly- 
accurate SDIRK schemes. In our search for particularly accurate and stable schemes, we have allowed 
the diagonal elements of A to differ from one another. Despite this, the schemes we recommend are 
all SDIRK, since there were sufficient excess degrees of freedom in the solution process to allow for 
this computationally-efficient choice. 

Example 1. Consider the case of (1.2) where 

(q) u =  , f =  , g =  . 
P f2 0 

Thus, we apply the implicit scheme to advance q and the explicit one to advance p. Observe that if 
f2 is influenced by a control function, for instance, then at each stage i, this influence is propagated 

to Ki f rom/ f i .  This does not happen when using a "normal" explicit scheme (cf. [13]). Moreover, if 
f l  is independent of q then 

, 

and the scheme becomes explicit! 
In particular, for Hamiltonian systems we can set u = (q,p)T,  f = ( 0 , - H q )  T, g = (Hp, O) T. If 

H~ is independent of q, then we obtain an explicit scheme which still retains some advantages of the 
implicit one. 

We now proceed to construct some instances of our IMEX RK family of schemes. We will use the 
triplet (s, or, p) to identify a scheme (2.1), where s is the number of stages of the implicit scheme, a 
is the number of explicit scheme stages (so cr = s + 1 for case (1), i.e., (2.2), and o- = s for case (2), 
i.e., (2.3)-(2.4) above), and p is the combined order of the scheme. 

2.1. F o r w a r d - b a c k w a r d E u l e r  (1, 1, 1) 

The pair of backward and forward Euler schemes 

1 1 0 ~  

1 

can be padded to read 
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0 0  0 0 0  0 

1 0  1 1 1  0 

0 1 1 0 

This yields the linear one-step IMEX (cf. [2]): 

un = Un-1 + k ( f (u~_l )  + g(Un)). 

Note that this scheme satisfies (2.3). 

2.2. Forward-backward Euler (1,2, 1) 

A 

The above form of Euler's method does not satisfy b = b. The variant that does is 

i.e., un 

0 0 0 

0 1 1 

0 1 

= Un--1 + k(g(ul 

0 0 

1 0 

0 1 

+ f (u l ) ) ,  where Ul = un-1 + kg(ul) + kf(un-1) .  This scheme involves 
an additional evaluation of f per step, compared to the previous one. 

2.3. Implicit-explicit midpoint (1,2, 2) 

The Euler pairs are first-order accurate and the (1,1,1) scheme has well-known disadvantages when 
9 = 0 (cf. Section 3 and [2]). The following pair of implicit-explicit schemes: 

i !  0 0 0  0 

1 1 ~ 1 0 

1 0 1 

correspond to applying explicit midpoint for f and implicit midpoint for g. It is second-order accurate 
because the two schemes from which it is composed are each second-order accurate and ~ = ~" [7]. 
This scheme performs usually comparably to the unreasonably popular CNAB considered in [2], and 
has better symmetry properties. 

Example  2. Applying the scheme (1,2, 2) to the separable Hamiltonian system 

0 = HAp),  = -Hq(q)  

and defining 

u z  , = , g =  , 

we obtain (%. l>) (o>) 
K l  = , K 1  = - H q ( q l  ' 
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pl kPn-1] \Pn--l/  2 \ --Hq(ql) ] 

' Pn \Pn-1/  \Pn-1./ \ -Hq(q l )J"  

We note that this scheme is explicit, and it can also be shown to be symplectic. It is identical to the 
leap-frog/Verlet scheme [12] 

Pn =Vn-,  - kHq(qn-1 + k/2Hp(Pn-1)), 

qn=qn-I  + k H P ( P n + P n - 1 )  " 2  

2.4. A third-order combination (2, 3, 3) 

The two-stage, third-order DIRK scheme with the best damping properties turns out to be the DIRK 
scheme [7, p. 207] 

7 7 7 0 
1 - 1 - 2 7  3' 

1 1 

with 3' = (3 + v/3)/6. For the test equation ~t = c~u, if we let z = c~k, then as z ~ - ~ ,  R(cxD) = 
1 - v ~  ~ -0.7321.  This is a marked improvement over the midpoint scheme (1,2,2) which has no 
attenuation at the stiffness limit c¢. 

The corresponding third-order explicit Runge-Kutta scheme (ERK) is 

0 

3' 

1 - 3 '  

0 0 0 

3' 0 0 

3 ' - 1  2 ( 1 - ' 7 )  0 

1 1 0 ~ 

The resulting IMEX combination is third-order accurate, has some dissipation near the imaginary axis 
(like all three-stage third-order ERK methods) and has some attenuation of the stability function at oc. 

2.5. L-stable, two-stage, second-order DIRK (2, 3, 2) 

One may be concemed that the attenuation that the above scheme has may not be sufficient for 
some problems. A two-stage, second-order DIRK scheme which is stiffly accurate is [8, p. 106] 

° 

1 - , , /  7 

1 - ~  3' 
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where 7 = (2 - x/2)/2. The corresponding three-stage second-order ERK is 

0 0  0 0 

7 7  0 0 

1 5  1 - 5  0 

0 1 -  7 7 

Varying 5 to get a dissipative stability region, we match the terms of the exponential in the stability 
function up to third order. This yields the stability region of a three-stage, third-order explicit RK 
scheme, with 5 = -2x /2 /3 .  The resulting IMEX combination is second-order accurate. 

2.6. L-stable, two-stage, second-order DIRK (2, 2, 2) 

We use the same form (with the same 7 but with 5 not yet specified) as in the previous IMEX 
scheme, except for requiring that (2.3) hold instead of (2.2), i.e., bl = 5, b2 = 1 - 5, b3 = 0. This 
gives a second-order scheme 

7 7 

1 1 - 7  

1 - 7  

0 

7 

7 

O 0  

7 7  

1 5 

5 

0 0 

0 0 

1 - 5  0 

1 - 5  0 

with 5 = 1 -  1/(27). 

2.7. L-stable, three-stage, third-order DIRK (3, 4, 3) 

We would now like to exploit the larger dissipativity region, which four-stage, fourth-order ERK 
schemes have near the imaginary axis. A three-stage, third-order DIRK scheme which is stiffly accurate 
is [8, p. 106] 

7 
(1 + 7 )  

7 0 0 

(1 - 7 )  
2 7 0 

bl(7) b2(~) 7 

b1(7) b2(7) 7 

where 7 is the middle root of 6x 3 - 18x 2 + 9x - 1 = 0, 

5 b1(7)=-372 + 4 7 - ¼  and b2(7)= 372-57-[- g. 
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Numerically, this evaluates to 

0.4358665215 

0.7179332608 

1 

0.4358665215 0 0 

0.2820667392 0.4358665215 0 

1.208496649 -0.644363171 0.4358665215 

1.208496649 -0.644363171 0.4358665215 

The corresponding four-stage, third-order ERK, constructed such that it has the same (desirable) 
stability region as all four-stage, fourth-order ERK schemes, is 

0 

"7 
(1 4-7) 

2 
1 

0 0 0 0 

7 0 0 0 

~31 (')') ~32 (7) 0 0 

a41 (7) ~42 q43 0 

0 b1(7) b2 ('y) 7 

The third-order conditions indicate that this is a two-parameter family of schemes. Taking our degrees 
of freedom to be a42, ~43, the remaining expressions are 

~31 = (1 - 9,,/4- 3'~2)~42 4- ( ~  - ~ 7  4- ~-72)~43 - 7 4- 1 3 7 -  972, 

~32 = (--1 4- 9 7 -- 372)~42 4- ( - - ~  4- ~ 7  -- ~72)a43 4- 4 -- ~ 7  4- 972, 

~41 ~--- 1 -- ~42 -- a~43. 

Selecting particular values for a42 (7) and ~43 (7) so as to match the terms of the exponential in the 
stability function up to fourth order, we obtain the scheme 

0 

0.4358665215 

0.7179332608 

1 

0 0 0 0 

0.4358665215 0 0 0 

0.3212788860 0.3966543747 0 0 

-0.105858296 0.5529291479 0.5529291479 0 

0 1.208496649 -0.644363171 0.4358665215 

The resulting IMEX combination is third-order accurate. 

2.8. A four-stage, third-order combination (4, 4, 3) 

No pair consisting of a three-stage, L-stable DIRK and a four-stage ERK satisfying (2.3) with a 
combined third-order accuracy could be found. In order to obtain a third-order formula satisfying 
(2.3), we need to go to a four-stage, third-order, L-stable DIRK, coupled with a four-stage ERK in 
the manner indicated in case (2) of Section 2. After having satisfied the order conditions and imposed 
L-stability, we are left with a few families of schemes. 
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Experimenting with the test equation of  Section 3, 
coefficients which are not too large, and a diagonal 

f o u r t h - o r d e r ,  L-stable DIRK. In particular, we have 

C3 = 1, b4 = 1, a n d  a43 = 1. T h e  resulting s c h e m e  is 

1 

2 1 
3 6 

1 1 
2 2 

3 1 

3 

0 0 0 

1 0 0 

1 1 0 

3 1 1 
2 2 

3 1 1 
2 2 2 

0 0 

1 

2 11 
3 18 

1 5 
2 6 

1 1 

1 

we have selected a scheme which has rational 
entry which is close to that of  the four-stage, 
chosen Cl = 1, accompanied by the choices 

0 0 0 0 

0 0 0 0 

1__ 0 0 0 
18 

5 1 0 0 
6 2 

7 3 7 0 
4 4 

7 3 7 0 
4 4 

3. Test equation for convection-diffusion 

As is shown in [2], using a centered discretization scheme for the spatial derivatives of  advect ion-  
diffusion PDEs, a v o n  Neumann analysis yields that a simple yet appropriate test equation is the scalar 
ODE (1.2) with 

f = i/3u, g = c~u, 

where c~, /3 are real constants, usually ~ ~< 0, /3 > 0, and i = v/Z-] -. 4 
For a given time step k, we can define 

x = kc~, y = k/3, z = x + iy ,  

and write an IMEX step (2.1)-(2.2) as 

?l n = ~Zn_ 1 -~- z ~-~ b j u j  ~ / ~ ( Z ) ~ n _ l ,  (3 .1)  

j = l  

where 
i - I  

(1 + i y 3 i + l , 1 ) U n - ~  + ~-~ j=l (xa i j  q- i y 3 i + l , j + l ) U j  
u ~ =  , i =  1 , . . . , s .  (3.2) 

1 -- xa i i  

For schemes where o- = s, i.e., where (2.3) holds, an expression like (3.1) need not be used because 

Let us consider the two Euler schemes first. For the usual pair (1,1,1), Eq. (3.2) implies 

1 + i y  
Un - -  - -  Un-- 1 - 

1 - - X  

4 W. Hunsdorfer (Workshop on Innovative Time Integrators, CWI, Amsterdam, 1996) has indicated that a more general test 
equation where c~ and/3 are allowed to be complex is useful, but we stay with the simpler test equations and lend further 
support to the analysis with more general numerical experiments in the following sections. 
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kB 

10 
Time-Step Restrictions 

0 I 

- 1 0  ~ -10 a 

I I 

(1,1,1) - -  
(2,2,2) • 
(4,4,3) - -  

_ 1 0  o _ 1 0  -1 _10-~ 

Fig. 1. Time step stability restrict ions for various values of c~ and/3 ,  for I M E X  schemes satisfying (2.3). Note  that all these 
schemes perform well in the high-at tenuat ion limit. 

On the imaginary axis, ]u~ I ~< (1 + y2)lUn_ll, and the scheme is unconditionally unstable for any 
y ¢ 0 (cf. [2]). As x ---, - o c  and with y bounded, however, the scheme is unconditionally stable 
and un ---, 0 ,  i . e . ,  attenuation compatible with that of  the exact solution is realized. For the other pair, 
(1,2,1), we get from (3.1)-(3.2) 

1 + i y ' ~  
u,~= I+Z~_x)Un_I. 

Setting x = 0 initially, we obtain that, along the imaginary axis, 

lunl 2 (1 - y2  + y4)lu,~_l]2 ' 

so stability is achieved provided that 

lyl 1. 

This corresponds to the CFL condition. On the other hand, letting x + - o c ,  we also obtain the 
restriction [Y] ~< 1 in the high-attenuation limit. Thus, we see that the variant (1,2,1) has stability 
characteristics which are preferable over the usual backward-forward Euler scheme in the hyperbolic 
limit and worse in the parabolic limit. 

Now, we can ask, given a fixed ratio z/y = c~//3, what is the maximum y > 0 for which the scheme 
is stable, i.e., ]R(z)l < 1? This gives the stability restriction on the step size for a given problem. In 
Fig. 1, we plot the resulting curves for the IMEX scheme presented earlier of  the second type, i.e., 
those satisfying (2.3). Corresponding curves for the schemes satisfying (2.2) are plotted in Fig. 2. 

Common to all the schemes in Fig. 2 is that, as c~ + - o c ,  there is a time step restriction involving 
/3, typically k/3 < 1. In contrast, no such restriction occurs for schemes satisfying (2.3), and hence 
(2.4), in Fig. 1. The behavior of  these latter schemes is qualitatively similar in the high-attenuation 
limit to that of  the SBDF schemes [2]. On the other hand, the scheme (3, 4, 3) in Fig. 2 suggests a 
potential advantage, in terms of  allowable time steps, over a large range of  parameter values. 
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12 

10 

8 

kZ 6 

4 

2 

0 

Time-Step Restrictions 
l } I 

(1,2,1) - -  
x (1,2,2) 
" k  (2,3,3) 

(2,3,2) 
3) 

I I I 

[0 2 -101  - 1 0  0 - 1 0  -1 -1 ,  
~/~ 

- 2  

Fig. 2. Time step stability restrictions for various values of a and /3, for IMEX schemes satisfying (2.2). Note that some 
of these schemes, especially (3, 4, 3), perform well when - a  is not too large in magnitude, but they all have time step 
restrictions in the high-attenuation limit. 

4. Finite-difference approximations in 1D 

4.1. A linear problem 

Consider the one-dimensional variable-coefficient problem 

ut + sin(27rx)uz = vuxx, (4.1) 

subject to periodic boundary conditions on the interval [0,1] and initial condition 

u(x, 0) = sin(ZTrx). 

We use centered, second-order differences for the spatial derivatives. Note that the solution is smooth 
for all v ~> 0. 

4.1.1. Large-viscosity examples 
To examine the behavior of IMEX RK schemes for large viscosities, 5 the model problem (4.1) 

was approximated using the time step k = 1.8h0, h0 = ~3" For the spatial discretization, we chose a 
grid spacing of h = ho, ho/2, ho/4 or ho/8. Utilizing several schemes, computations to time t = 2 
were performed for viscosities, u, in the range 0.01 ~< u ~< 0.1. For h = h0, these values correspond 
to mesh Reynolds numbers, R, in the range 1.59 ~> R ~> 0.159. For smaller h, R is correspondingly 
smaller. 

The relative errors measured in the maximum norm are plotted against u in Fig. 3. In Fig. 3(a), the 
errors for the three- and four-stage schemes are omitted since they are always within a factor of 2 of 
the two-stage, second-order scheme (2, 3, 2). As expected from the theory of the previous section, the 

s By large viscosity, we mean that the mesh Reynolds number is small (< 2; see, e.g., [2]). An estimate for the mesh 
Reynolds number is given by R --= ah/u  where u represents viscosity, a represents characteristic speed, and h represents 
grid spacing. 
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three-stage DIRK (3, 4, 3) and the schemes satisfying property (2.3) allow for the largest stable time 
steps when v is large. 

When we decrease h, keeping k fixed, the methods (1,2,  2), (2, 3, 3) and (2, 3, 2) become unstable 
over the entire depicted range of  v. Among the stable methods, the higher order of  (3,4,  3) and (4, 4, 3) 
becomes more apparent as the spatial error ceases to dominate the temporal error. For h = ho/8, only 
the methods satisfying (2.3) remain stable. No effective error reduction is detected for these values of  
h and k. 
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Doubling the time step while keeping h = h0 also causes the two-stage methods (2, 3, 2) and 
(2, 3, 3) to become unstable for almost the entire r-interval depicted. Nonetheless, the three- and 
four-stage methods remain stable over the entire interval and the scheme (2, 2, 2) is stable over most 
of the interval. Even upon tripling the time step (see Fig. 4), the three- and four-stage schemes are 
appropriate for approximating strongly-damped flows. Indeed, a comparison with the results of [2] 
indicates that the three-stage method (3, 4, 3) is more accurate and stable in this example than the 
popular CNAB scheme with one-third the step size, even for this relatively coarse step size k. 

4.1.2. Small-viscosity examples 
To examine the behavior of IMEX RK methods for large mesh Reynolds numbers, example (4.1) was 

approximated using discretization step sizes h -- ~ in space and k = 1.8h in time. Using several IMEX 
schemes, computations to time t = 2 are performed for viscosities, u, in the range 0.001 ~< u ~< 0.01. 
These values correspond to mesh Reynolds numbers, R, in the range 12.3 /> R ~> 1.23. 

The relative errors in maximum norm for these computations are plotted against u in Fig. 5. Here, we 
find that the errors for the third-order schemes and the two-stage, second-order DIRK (2, 3, 2) nearly 
coincide since they arise predominantly from the spatial discretization. It is especially noteworthy that 
the errors for these four schemes are always smaller than those arising for the two-step IMEX schemes 
considered in [2] even though twice the time step is applied. 

4.2. Burgers equation 

Qualitatively similar results to those obtained above for the linear problem (4.1) are obtained for 
the Burgers equation 

ut + uux = UUxx, (4.2) 
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with which we have experimented, subject to homogeneous Dirichlet boundary conditions and the 
initial conditions 

u (z ,0 )=s in (Trz ) ,  0 < z < l .  

For small u, a boundary layer develops near z = 1. This necessitates the use of upwinding. Note 
that upwinding can be viewed as an addition of a discrete O(h) diffusion term (where h is the spatial 
step-size) to a centered-difference approximation of uuz. 

5. Time-dependent multigrid in 2D 

We consider the two-dimensional convection-diffusion problem, 

ut  + ( u .  V ) u  = uAu, (5.1) 

where u - (u, v). We carry out our computations on the square ~ _=[0,1] × [0,1] and consider periodic 
boundary conditions and the initial conditions 

u(x, y, 0)---- sin[27r(x + y)] + 0.005 cos [27r(64x + 63y)], 

v(x,y,O) = sin[27r(x + y)] + 0.005 cos[ZTr(64x + 63y)]. 

For the spatial discretization, we use standard second-order centered differences. Time stepping is 
carded out using a variety of IMEX RK schemes (the convection term, (u .  V)u ,  is handled explicitly 
and the diffusion term, uAu, is handled implicitly). This treatment yields a positive-definite, symmetric, 
sparse, linear system to be solved at each stage. Such systems are solved efficiently using a multigrid 
algorithm, the components of which are outlined in [2]. 

The model problem (5.1) was approximated using a mesh size h = ~ and a residual tolerance 
of TOL ---- 0.003 at each stage. The time step was selected to be k = 0.00625 to achieve stable 
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Table 1 

Viscosity, u 

Scheme 0.01 0 .02  0 .03  0 .04  0.05 

Forward-backward Euler (1,1,1) 1.94 1.90 1.71 1.29 1.19 

Forward-backward Euler (1,2,1) 1.97 1 .94 1 .48 1.19 1.19 

Implicit-explicit midpoint (1,2,2) 2.23 2 .87  3 .13 3 .29  3.68 

Third-order combination (2,3,3) 4.32 4 .42  3 .68  3.71 3.81 

Griepentrog's scheme 4.58 5 .23  5 .39  5.61 5.90 

L-stable, 2-stage, 2nd-order DIRK (2, 3, 2) 3.81 3 .35  2 .74  2 .58  2.61 

L-stable, 2-stage, 2nd-order DIRK (2, 2, 2) 3.90 3 .35 2.81 2 .58  2.58 

L-stable, 3-stage, DIRK (3, 4, 3) 5.87 5 .35  3.81 3.61 3.58 

L-stable, 4-stage, 3rd-order scheme (4, 4, 3) 7 .84  7 .35 5 .16  4.81 4.77 

results. For several IMEX RK schemes, the average number of fine-grid iterations at each time step 
was computed. The results for V(1, 1)-cycles are provided in Table 1. In addition to the schemes 
developed in Section 2, we include results for Griepentrog's scheme [6,7], which is not of the form 
(2.1). 

From the table, we see that the strongly-damping L-stable schemes require the fewest fine-grid 
iterations per stage for large-viscosity problems. Weakly-damping schemes require far more effort to 
solve the implicit equations accurately, because lingering high-frequency modes necessitate more work 
on the finest grid. This is especially evident for the implicit-explicit midpoint scheme (1,2, 2) since 
more than three iterations were required per stage when u ~> 0.03. Griepentrog's scheme also requires 
extra fine-grid iterations, presumably to damp out the high-frequency components which arise during 
the initial stage. 
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