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14.1 

CHAPTER 14 

FOURIER SERIES 

GENERAL PROPERTIES 

Periodic phenomena involving waves, rotating machines (harmonic motion), or other repet­
itive driving forces are described by periodic functions. Fourier series are a basic tool for 
solving ordinary differential equations (ODEs) and paitial differential equations (PDEs) 
with periodic boundary conditions. Fourier integrals for nonperiodic phenomena are de­
veloped in Chapter 15. The common name for the field is Fourier analysis. 

A Fourier series is defined as an expansion of a function or representation of a function 
in a series of sines and cosines, such as 

00 00 

f(x) = a; + Lan cosnx + Lhn sinnx. 
n=l n=l 

(14.1) 

The coefficients ao, an, and bn are related to the periodic function f (x) by definite inte­
grals: 

1 12rr an= - f(x)cosnxdx, 
Jr 0 

(14.2) 

bn = _!_ f 2
1r f(x)sinnxdx, 

n lo n =0, 1, 2, ... , (14.3) 

which are subject to the requirement that the integrals exist. Notice that ao is singled out 
for special treatment by the inclusion of the factor½- This is done so that Eq. (14.2) will 
apply to all an, n = 0 as well as n > 0. 

The conditions imposed on f(x) to make Eq. (14.1) valid are that f(x) have only a 
finite number of finite discontinuities and only a finite number of extreme values, maxima, 
and minima in the interval [0, 2n].1 Functions satisfying these conditions may be called 

1 These conditions are sufficient but not necessary. 
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882 Chapter 14 Fourier Series 

piecewise regular. The conditions themselves are known as the Dirichlet conditions. Al­
though there are some functions that do not obey these Dirichlet conditions, they may well 
be labeled pathological for purposes of Fourier expansions. In the vast majority of physi­
cal problems involving a Fourier series these conditions will be satisfied. In most physical 
problems we shall be interested in functions that are square integrable (in the Hilbert space 
L2 of Section 10.4). In this space the sines and cosines form a complete orthogonal set. 
And this in tum means that Eq. (14.1) is valid, in the sense of convergence in the mean. 

Expressing cosnx and sinnx in exponential form, we may rewrite Eq. (14.1) as 

00 

f (x) = L Cneinx' (14.4) 
n=-oo 

in which 

n >0, (14.5a) 

and 

(14.5b) 

Complex Variables-Abel's Theorem 

Consider a function f (z) represented by a convergent power series 

00 00 

f(z) = LCnzn = LCnrnein0_ (14.6) 
n=O n=O 

This is our Fourier exponential series, Eq. (14.4). Separating real and imaginary parts we 
get 

00 00 

u(r, 0) = L Cnrn cosn0, v(r, 0) = L Cnrn sinn0, (14.7a) 
n=O n=I 

the Fourier cosine and sine series. Abel's theorem asserts that if u(l, 0) and v(l, 0) are 
convergent for a given 0, then 

u(l, 0) + iv(l, 0) = lim f(rei 0). 
r➔ I 

(14.7b) 

An application of this appears as Exercise 14.1.9 and in Example 14.1.1. 

Example 14. 1.1 SUMMATION OF A FOURIER SERIES 

Usually in this chapter we shall be concerned with finding the coefficients of the Fourier 
expansion of a known function. Occasionally, we may wish to reverse this process and 
determine the function represented by a given Fourier series. 
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Consider the series I:~ 1 ( 1 / n) cos nx, x E (0, 2n). Since this series is only condition­
ally convergent (and diverges at x = 0), we take 

00 00 
~ cosnx _ . ~ rn cosnx 
~ -- - hm ~ ---, 

n r➔ l n 
n=l n=l 

(14.8) 

absolutely convergent for lrl < 1. Our procedure is to try forming power series by trans­
forming the trigonometric functions into exponential form: 

(14.9) 

Now, these power series may be identified as Maclaurin expansions of - ln(l - z), z = 
reix, re-ix (Eq. (5.95)), and 

00 rn cosnx 1 . . I:--= --[ln(l - re'x) + ln(l - re-•x)] 
n 2 

n=l 

= - In[(l + r2) - 2r cosx ]112 . 

Letting r = 1 and using Abel's theorem, we see that 

00 
~ cosnx 1 2 
~ -- = -ln(2 - 2cosx) I 

n 
n=l 

= - In ( 2 sin ~), 

Both sides of this expression diverge as x ~ 0 and 2n. 

Completeness 

XE (0, 2n).2 

(14.10) 

(14.11) 

■ 

The problem of establishing completeness may be approached in a number of different 
ways. One way is to transform the trigonometric Fourier series into exponential form and 
to compare it with a Laurent series. Ifwe expand /(z) in a Laurent series3 (assuming /(z) 
is analytic), 

n=-oo 

On the unit circle z = e;e and 

00 

/(z) = f (ei0) = L dnein0. 
n=-oo 

2The limits may be shifted to [-rr, rr] (and x =f. 0) using lxl on the right-hand side. 
3Section 6.5. 

(14.12) 

(14.13) 
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7t 

FIGURE 14.1 Fourier 
representation of sawtooth 

wave. 

The Laurent expansion on the unit circle (Eq. (14.13)) has the same form as the complex 
Fourier series (Eq. (14.12)), which shows the equivalence between the two expansions. 
Since the Laurent series as a power series has the property of completeness, we see that the 
Fourier functions einx form a complete set. There is a significant limitation here. Laurent 
series and complex power series cannot handle discontinuities such as a square wave or the 
sawtooth wave of Fig. 14.1, except on the circle of convergence. 

The theory of vector spaces provides a second approach to the completeness of the sines 
and cosines. Here completeness is established by the Weierstrass theorem for two variables. 

The Fourier expansion and the completeness property may be expected, for the functions 
sinnx, cosnx, einx are all eigenfunctions of a self-adjoint linear ODE, 

,, 2 0 y +n y= . (14.14) 

We obtain orthogonal eigenfunctions for different values of the eigenvalue n for the interval 
[0, 2rr] that satisfy the boundary conditions in the Sturm-Liouville theory (Chapter 10). 
Different eigenfunctions for the same eigenvalue n are orthogonal. We have 

fo2
1r sinmx sinnx dx = { ~.«5mn, 

m;f0, 
m=0, 

(14.15) 

{ 2:,r {rr8 
Jo cosmxcosnxdx = 2rr~n, 

m ;f O, 
m =n =0, 

(14.16) 

fo2
1r sinmx cosnx dx = 0 for all integral m and n. (14.17) 

Note that any interval xo S x S xo + 2rr will be equally satisfactory. Frequently, we shall 
use xo = -rr to obtain the interval -rr S x S rr. For the complex eigenfunctions e±inx or­
thogonality is usually defined in terms of the complex conjugate of one of the two factors, 

foZ:,r (eimx)* einx dx = 2rr8mn• (14.18) 

This agrees with the treatment of the spherical harmonics (Section 12.6). 
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Sturm-Liouville Theory 

The Sturm-Liouville theory guarantees the validity of Eq. (14.1) (for functions satis­
fying the Dirichlet conditions) and, by use of the orthogonality relations, Eqs. (14.15), 
(14.16), and (14.17), allows us to compute the expansion coefficients an, bn, as shown in 
Eqs. (14.2), and (14.3). Substituting Eqs. (14.2) and (14.3) into Eq. (14.1), we write our 
Fourier expansion as 

1 i2n: f (x) = - f (t) dt 
2:n: 0 

1 oo ( {2n: {2n: ) +; L cosnx lo f(t)cosntdt+sinnx lo f(t)sinntdt 
n=l O 0 

1 i2n: 1 00 i2n: = - f(t)dt + - L f(t)cosn(t -x)dt, 
2:n: o n O 

n=l 

(14.19) 

the first (constant) term being the average value of /(x) over the interval [O, 2:n:]. Equa­
tion (14.19) offers one approach to the development of the Fourier integral and Fourier 
transforms, Section 15.1. 

Another way of describing what we are doing here is to say that /(x) is part of an 
infinite-dimensional Hilbert space, with the orthogonal cos nx and sin nx as the basis. 
(They can always be renormalized to unity if desired.) The statement that cosnx and 
sinnx (n = 0, 1, 2, ... ) span this Hilbert space is equivalent to saying that they form a 
complete set. Finally, the expansion coefficients an and bn correspond to the projections of 
/(x), with the integral inner products (Eqs. (14.2) and (14.3)) playing the role of the dot 
product of Section 1.3. These points are outlined in Section 10.4. 

Example 14.1.2 SAWTOOTH WAVE 

An idea of the convergence of a Fourier series and the error in using only a finite number 
of terms in the series may be obtained by considering the expansion of 

f(x) = { :•_ 2:n:, 
O.::::x <n, 
77: <X .::::2:n:. 

(14.20) 

This is a sawtooth wave, and for convenience we shall shift our interval from [O, 2:n:] to 
[-n, n]. In this interval we have /(x) = x. Using Eqs. (14.2) and (14.3), we show the 
expansion to be 

[ . sin2x sin3x n+l sinnx ] 
f(x)=x=2 smx--2-+-3--•··+(-1) -n-+··· · (14.21) 

Figure 14.1 shows f (x) for O .::: x < n for the sum of 4, 6, and 10 terms of the series. Three 
features deserve comment. 

1. There is a steady increase in the accuracy of the representation as the number of terms 
included is increased. 
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2. All the curves pass through the midpoint, f (x) = 0, at x = n. 
3. In the vicinity of x = n there is an overshoot that persists and shows no sign of dimin­

ishing. 

As a matter of incidental interest, setting x = n /2 in Eq. (14.21) provides an alternate 
derivation of Leibniz' formula, Exercise 5.7.6. ■ 

Behavior of Discontinuities 

The behavior of the sawtooth wave f(x) at x = n is an example of a general rule that at 
a finite discontinuity the series converges to the arithmetic mean. For a discontinuity at 

x = xo the series yields 

f (xo) = ½[J (xo + 0) + f (xo - 0) ], (14.22) 

the arithmetic mean of the right and left approaches to x = xo. A general proof using 
partial sums, as in Section 14.5, is given by Jeffreys and Jeffreys and by Carslaw (see the 
Additional Readings). The proof may be simplified by the use of Dirac delta functions­
Exercise 14.5.1. 

The overshoot of the sawtooth wave just before x = n in Fig. 14.1 is an example of the 
Gibbs phenomenon, discussed in Section 14.5. 

Exercises 

14.1.1 A function f (x) ( quadratically integrable) is to be represented by a finite Fourier series. 
A convenient measure of the accuracy of the series is given by the integrated square of 
the deviation, 

14.1.2 

f21r [ a P ] 2 
l::i.p = Jo f(x) - ; - L(an cosnx + bn sinnx) dx. 

O n=I 

Show that the requirement that l:i. P be minimized, that is, 

for all n, leads to choosing an and bn as given in Eqs. (14.2) and (14.3). 
Note. Your coefficients an and bn are independent of p. This independence is a con­
sequence of orthogonality and would not hold for powers of x, fitting a curve with 
polynomials. 

In the analysis of a complex waveform (ocean tides, earthquakes, musical tones, etc.) it 
might be more convenient to have the Fourier series written as 

00 

ao '°' f(x) = 2 + L,_..an cos(nx - 0n). 

n=I 
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14.1.4 

14.1.5 
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Show that this is equivalent to Eq. (14.1) with 

bn = an sin0n, 

Note. The coefficients a~ as a function of n define what is called the power spectrum. 
The importance of a~ lies in their invariance under a shift in the phase 0n. 

A function f (x) is expanded in an exponential Fourier series 

00 

f (x) = L Cneinx. 

n=-oo 

If/ (x) is real, f (x) = J*(x), what restriction is imposed on the coefficients en? 

Assuming that f~:n: [f (x) ]2 dx is finite, show that 

lim am =0, 
m➔OO 

lim bm =0. 
m➔OO 

Hint. Integrate [f(x) - sn(x)] 2 , where sn(x) is the nth partial sum, and use Bessel's 
inequality, Section 10.4. For our finite interval the assumption that f (x) is square inte­
grable Cf~:rr l/(x)l2 dx is finite) implies that Drr 1/(x)I dx is also finite. The converse 
does not hold. 

Apply the summation technique of this section to show that 

(Fig. 14.2). 

f(x) 

7t 
2 

-n; :S X < 0 

f(x) = L, ¼ sin nx 

n=I 

FIGURE 14.2 Reverse sawtooth wave. 
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14.1.6 

14.1.7 

Sum the trigonometric series 

and show that it equals x /2. 

Sum the trigonometric series 

and show that it equals 

00 • '°' n+I smnx ~(-1) --
n 

n=l 

f sin(2n + l)x 
2n+ 1 

n=O 

{ n/4, 
-n:/4, 

0<x<n: 
-Jr< X < 0. 

14.1.8 Calculate the sum of the finite Fourier sine series for the sawtooth wave, f(x) = 
x, (-n:, n:), Eq. (14.21). Use 4-, 6-, 8-, and 10-term series and x/n: = 0.00(0.02)1.00. 
If a plotting routine is available, plot your results and compare with Fig. 14.1. 

14.1.9 Let f (z) = ln(l + z) = I:~1 (-l)n+t zn /n. (This series converges to ln(l + z) for 
lzl :S 1, except at the point z = -1.) 

(a) From the real parts show that 

( 0) ~ 1 cosn0 In 2cos 2 = ~(-It+ -n-, 
n=I 

-n: <0 <Jr. 

(b) Using a change of variable, transform part (a) into 

( 0) 00 cosn0 
-In 2sin 2 = I:-n-, 

n=I 

14.2 ADVANTAGES, USES OF FOURIER SERIES 

Discontinuous Functions 

One of the advantages of a Fourier representation over some other representation, such as a 
Taylor series, is that it can represent a discontinuous function. An example is the sawtooth 
wave in the preceding section. Other examples are considered in Section 14.3 and in the 
exercises. 

Periodic Functions 

Related to this advantage is the usefulness of a Fourier series in representing a periodic 
function. If f (x) has a period of 2n, perhaps it is only natural that we expand it in a series 
of functions with period 2n, 2n: /2, 2n: /3, .... This guarantees that if our periodic f (x) is 
represented over one interval [0, 2n] or [ -n:, n:], the representation holds for all finite x. 
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At this point we may conveniently consider the properties of symmetry. Using the in­
terval [-n:, n:], sinx is odd and cosx is an even function of x. Hence, by Eqs. (14.2) and 
(14.3),4 if f (x) is odd, all an = 0 and if f (x) is even, all bn = 0. In other words, 

00 

ao '°' f(x) = 2 + L.,an cosnx, f(x) even, 
n=I 

00 

f(x) = Lbn sinnx, f(x) odd, 
n=I 

Frequently these properties are helpful in expanding a given function. 

(14.23) 

(14.24) 

We have noted that the Fourier series is periodic. This is important in considering 
whether Eq. (14.1) holds outside the initial interval. Suppose we are given only that 

f(x) =X, 0:Sx<n: (14.25) 

and are asked to represent f (x) by a series expansion. Let us take three of the infinite 
number of possible expansions. 

1. If we assume a Taylor expansion, we have 

f(x) =x, (14.26) 

a one-term series. This ( one-term) series is defined for all finite x. 
2. Using the Fourier cosine series (Eq. (14.23)), thereby assuming the function is repre­

sented faithfully in the interval [0, n:) and extended to neighboring intervals using the 
known symmetry properties, we predict that 

f(x) = -x, 
f(x) = 2n: - x, 

-n; < X :'.S 0, 
77: < X < 2n:. 

3. Finally, from the Fourier sine series (Eq. (14.24)), we have 

f(x) =x, 
f(x) =x - 2n:, 

-n; < X :'.S 0, 
77: < X < 2n:. 

(14.27) 

(14.28) 

These three possibilities - Taylor series, Fourier cosine series, and Fourier sine series -
are each perfectly valid in the original interval, [O, n:]. Outside, however, their behavior is 
strikingly different (compare Fig. 14.3). Which of the three, then, is correct? This question 
has no answer, unless we are given more information about f (x). It may be any of the 
three or none of them. Our Fourier expansions are valid over the basic interval. Unless the 
function f (x) is known to be periodic with a period equal to our basic interval or to (1/n)th 
of our basic interval, there is no assurance whatever that the representation (Eq. ( 14.1)) will 
have any meaning outside the basic interval. 

In addition to the advantages of representing discontinuous and periodic functions, there 
is a third very real advantage in using a Fourier series. Suppose that we are solving the 
equation of motion of an oscillating particle subject to a periodic driving force. The Fourier 

4With the range of integration -rr _:s x _:s rr. 
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j(x) 

Taylor series 

Fourier cosine series 

Fourier sine series 

FIGURE 14.3 Comparison of Fourier cosine series, Fourier sine series, 
and Taylor series. 

expansion of the driving force then gives us the fundamental term and a series of harmon­
ics. The (linear) ODE may be solved for each of these harmonics individually, a process 
that may be much easier than dealing with the original driving force. Then, as long as the 
ODE is linear, all the solutions may be added together to obtain the final solution.5 This is 
more than just a clever mathematical trick. 

• It corresponds to finding the response of the system to the fundamental frequency and 
to each of the harmonic frequencies. 

One question that is sometimes raised is: "Were the harmonics there all along, or were they 
created by our Fourier analysis?" One answer compares the functional resolution into har­
monics with the resolution of a vector into rectangular components. The components may 
have been present, in the sense that they may be isolated and observed, but the resolution 
is certainly not unique. Hence many authors prefer to say that the harmonics were created 
by our choice of expansion. Other expansions in other sets of orthogonal functions would 
give different results. For further discussion we refer to a series of notes and letters in the 
American Journal of Physics. 6 

Change of Interval 

So far attention has been restricted to an interval of length 2n:. This restriction may easily 
be relaxed. If f(x) is periodic with a period 2L, we may write 

5One of the nastier features of nonlinear differential equations is that this principle of superposition is not valid. 
6B. L. Robinson, Concerning frequencies resulting from distortion. Am. J. Phys. 21: 391 (1953); F. W. Van Name, Jr., Concerning 
frequencies resulting from distortion. ibid. 22: 94 ( 1954 ). 
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00 [ ] 
ao nnx . nnx 

f(x) = 2 + L an cos L + bn sm L , 
n=I 

(14.29) 

with 

1 JL nnt an= - f(t)cos -dt, 
L -L L 

n=0,1,2,3, ... , (14.30) 

1 JL . nnt bn = - f(t)sm-dt, 
L -L L 

n=l,2,3, ... , (14.31) 

replacing x in Eq. (14.1) with nx/L and tin Eqs. (14.2) and (14.3) with nt/L. (For 
convenience the interval in Eqs. (14.2) and (14.3) is shifted to -rr ::: t.::: rr .) The choice of 
the symmetric interval ( - L, L) is not essential. For f (x) periodic with a period of 2L, any 
interval (xo, xo + 2L) will do. The choice is a matter of convenience or literally personal 
preference. 

Exercises 

14.2.1 The boundary conditions (such as 1/1(0) = v,(l) = 0) may suggest solutions of the form 
sin(nrr x / I) and eliminate the corresponding cosines. 

14.2.2 

(a) Verify that the boundary conditions used in the Sturm-Liouville theory are satis­
fied for the interval (0, /). Note that this is only half the usual Fourier interval. 

(b) Show that the set of functions <{Jn(x) = sin(nnx/ I), n = 1, 2, 3, ... , satisfies an 
orthogonality relation 

( <{Jm(X)<{Jn(x)dx = {Omn, n > 0. 
lo 2 

(a) Expand f (x) = x in the interval (0, 2L). Sketch the series you have found (right­
hand side of Ans.) over (-2L, 2L). 

2L 00 1 (nrrx) ANS. x = L - - L - sin -- . 
n n L 

n=I 

(b) Expand f (x) = x as a sine series in the half interval (0, L). Sketch the series you 
have found (right-hand side of Ans.) over (-2L, 2L). 

4L~ 1 . ((2n+l)rrx) ANS. x = - ~ --sm ---- . 
rr 2n+l L 

n=O 

14.2.3 In some problems it is convenient to approximate sinrrx over the interval [0, 1] by a 
parabola ax ( 1 - x), where a is a constant. To get a feeling for the accuracy of this 
approximation, expand 4x ( 1 - x) in a Fourier sine series ( -1 ::: x .::: 1): 

f(x) = { 4x(l - x), 
4x(l +x), 

0<x<l} 00 
• 

_ 1 ;x ; 0 = ?;bnsmnnx. 
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f(x) 

FIGURE 14.4 Parabolic sine wave. 

ANS. 

(Fig. 14.4.) 

14.3 APPLICATIONS OF FOURIER SERIES 

Example 14.3.1 SQUARE WAVE- HIGH FREQUENCIES 

32 1 
bn=3·3• rr n 
bn =0, 

nodd 

n even. 

One application of Fourier series, the analysis of a "square" wave (Fig. 14.5) in terms of its 
Fourier components, occurs in electronic circuits designed to handle sharply rising pulses. 
Suppose that our wave is defined by 

f(x) = 0, 

f(x) = h, 

From Eqs. (14.2) and (14.3) we find 

-JT <X < 0, 

0<X<JT. 

1 i:rr ao = - hdt =h, 
]T 0 

1 i:rr an= - hcosntdt = 0, 
]T 0 

n=l,2,3, ... , 

1 i:rr h bn = - hsinntdt = -(1-cosnrr); 
rr o nrr 

2h 
bn = -, n odd, 

nrr 

bn = 0, n even. 

The resulting series is 

h 2h (sinx sin3x sin5x ) 
f(x)=-+- -+--+--+··· . 

2 rr 1 3 5 

(14.32) 

(14.33) 

(14.34) 

(14.35) 

(14.36) 

(14.37) 

(14.38) 
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fix) 

h----~ 

--------~------t------~-~~---•x 
27t 37t -37t -27t -7t 7t 

FIGURE 14.5 Square wave. 

Except for the first term, which represents an average of f (x) over the interval [-n, n], 
all the cosine terms have vanished. Since /(x) - h/2 is odd, we have a Fourier sine series. 
Although only the odd terms in the sine series occur, they fall only as n- 1• This conditional 
convergence is like that of the alternating harmonic series. Physically this means that our 
square wave contains a lot of high-frequency components. If the electronic apparatus will 
not pass these components, our square-wave input will emerge more or less rounded off, 
perhaps as an amorphous blob. ■ 

Example 14.3.2 FULL-WAVE RECTIFIER 

As a second example, let us ask how well the output of a full-wave rectifier approaches 
pure direct current (Fig. 14.6). Our rectifier may be thought of as having passed the positive 
peaks of an incoming sine wave and inverting the negative peaks. This yields 

f(t) = sinwt, 

f(t) = - sin wt, 

0 <wt< n, 

-n <wt< 0. 
(14.39) 

Since f (t) defined here is even, no terms of the form sinnwt will appear. Again, from 
Eqs. (14.2) and (14.3), we have 

11° 1111: ao = -- sinwtd(wt) + - sinwtd(wt) 
n -:n: n o 

2111: 4 = - sin wt d(wt) = -, 
n o n 

2111: an = - sin wt cos nwt d (wt) 
n o 

=0, 

2 2 
n n2 -1' 

n odd. 

n even, 

(14.40) 

(14.41) 
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j(t) 

FIGURE 14.6 Full-wave rectifier. 

Note that [0, n:] is not an orthogonality interval for both sines and cosines together and we 
do not get zero for even n. The resulting series is 

2 4 00 cosnwt 
f(t)=--- " --

n: n: ~ n2 - 1 · 
n=2,4,6, ... 

(14.42) 

The original frequency, w, has been eliminated. The lowest-frequency oscillation is 2w. 
The high-frequency components fall off as n-2 , showing that the full-wave rectifier does 
a fairly good job of approximating direct current. Whether this good approximation is 
adequate depends on the particular application. If the remaining ac components are objec­
tionable, they may be further suppressed by appropriate filter circuits. These two examples 
bring out two features characteristic of Fourier expansions.7 

• If f (x) has discontinuities (as in the square wave in Example 14.3.1), we can expect 
the nth coefficient to be decreasing as O(1/n). Convergence is conditional only. 

• If f (x) is continuous (although possibly with discontinuous derivatives, as in the full­
wave rectifier of Example 14.3.2), we can expect the nth coefficient to be decreasing 
as 1/n2, that is, absolute convergence. ■ 

Example 14.3.3 INFINITE SERIES, RIEMANN ZETA FUNCTION 

As a final example, we consider the problem of expanding x2 . Let 

f(x) =x2 , -n; <X <n:. (14.43) 

Since f (x) is even, all bn = 0. For the an we have 

ao = - x 2 dx = --, 
1 lrr 2n:2 

n: -rr 3 
(14.44) 

7 G. Raisbeek, Order of magnitude of Fourier coefficients. Am. Math. Mon. 62: 149-155 (1955). 
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21rr an= - x 2 cosnx dx 
Jr 0 

= ~. (-lt2n 
n n2 

n 4 = (-1) 2· 
n 

(14.45) 

From this we obtain 
2 00 

2 n L ncosnx 
X =-+4 (-1) --. 

3 n2 
n=I 

(14.46) 

As it stands, Eq. (14.46) is of no particular importance. But if we set x = n, 

cosnn = (-It (14.47) 

and Eq. (14.46) becomes8 

(14.48) 

or 

71:2 00 1 
-= I: 2={(2), 
6 n 

n=I 

(14.49) 

thus yielding the Riemann zeta function, {(2), in closed form (in agreement with the 
Bernoulli number result of Section 5.9). From our expansion of x 2 and expansions of other 
powers of x, numerous other infinite series can be evaluated. A few are included in this list 
of exercises: 

Fourier series 

I. 
-rr =::x < 0 

O=::x<rr 
oo { I '°"' I . - 2 (rr +x), 
L...-smnx = 1 
n=ln 2 (rr-x), 

2. -7r < X < 7r 

00 I I 
I:c-1in+1;; sinnx = 2x, 
n=I 

3. 
-7r < X < Q 

O<x<rr 
~ I . (2 I) 1-rr /4, L....--sm n+ x= 14 2n + I +rr , 
n=O 

4. ~ cosnx [ . (lxl)] L...-- =-In 2sm - , 
n=I n 2 

-7r < X < 7r 

5. ~(-It~ cosnx = -1n[2cosG) l -7r < X < 7r 

6. '°"' -- cos(2n + l)x = - In cot - , 
00 I I [ lxl] 
~2n+l 2 2 

-7r < X < 7r 

8Note that the point x = rr is not a point of discontinuity. 

Reference 

Exercise 14.1.5 
Exercise 14.3.3 

Exercise 14. 1.6 
Exercise 14.3.2 

Exercise 14.1.7 
Eq. (14.38) 

Eq. (14.11) 
Exercise 14.l.9(b) 

Exercise 14.l.9(a) 
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The square-wave Fourier series from Eq. (14.38) and item (3) in the table, 

~ sin(2n + l)x m 7r 
g(x) = ~ 2n + 1 = (-l) 4' 

n=O 

mrr < x < (m + l)rr, (14.50) 

can be used to derive Riemann's functional equation for the zeta function. Its defining 
Dirichlet series can be written in various forms: 

00 00 00 

n=I n=I n=I 

00 

= Ts{(s) + L(2n + 1)-s 

n=O 

implying that the function .11.(s) defined in Section 5.9 (along with ri(s)) satisfies 

00 

.11.(s) = L(2n + 1)-s = (1 - i-s){(s). (14.51) 
n=O 

Here s is a complex variable. Both Dirichlet series converge for a = ffis > 1. Alternatively, 
using Eq. (14.51), we have 

00 00 00 

(14.52) 
n=I n=O n=l 

which converges already for ffis > 0 using the Leibniz convergence criterion (see Sec­
tion 5.3). 

Another approach to Dirichlet series starts from Euler's integral for the gamma function, 

fooo ys-le-ny dy = n-s fooo e-yys-1 dy = n-sr(s), 

which may be summed using the geometric series 

00 -y 1 
~ e-ny = e = --
~ 1-e-Y eY-1 
n=I 

to yield the integral representation for the zeta function: 

loo s-1 
l'._____l dy = {(s)r(s). 

0 eY-

If we combine the alternative forms of Eq. (14.53), 

fooo ys-le-iny dy = n-sr(s)e-irrs/2, 

fooo ys-leiny dy = n-sr(s)eirrs/2, 

(14.53) 

(14.54) 
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we obtain 

f'::,o ys-l sin(ny) dy = n-sr(s) sin Jrs. (14.55) 
lo 2 

Dividing both sides of Eq. ( 14.55) by n and summing over all odd n yields, for a = ffi (s) > 
0, 

g(y)ys-l dy = (1- rs-l){(s + l)r(s) sin-, 100 JT:S 

o 2 
(14.56) 

using Eqs. (14.50) and (14.51). Here, the interchange of summation and integration is jus­
tified by uniform convergence. This relation is at the heart of the functional equation. If we 
divide the integration range into intervals mn < y < (m + l)n and substitute Eq. (14.50) 
into Eq. (14.56) we find 

100 Jr oo l(m+l)rr 
g(y)ys-1 dy = - I:c-1r ys-1 dy 

0 4 m=O mrr 

(14.57) 

using Eq. (14.52). The series in Eq. (14.57) converges for ffis < 1 to an analytic func­
tion. Comparing Eqs. (14.56) and (14.57) for the common area of convergence to analytic 
functions, 0 < a = ffis < 1, we get the functional equation 

71:s+I ns 
--(1 - 2s+ 1){(-s) = (1 - rs-l){(s + l)r(s) sin-, 

2s 2 

which can be rewritten as 
71:S 

{(l - s) = 2(2n)-s {(s)r(s) cos 2 . (14.58) 

This functional equation provides an analytic continuation of { (s) into the negative half­
plane of s. Fors ~ 1 the pole of { (s) and the zero of cos(n s /2) cancel in Eq. (14.58), so 
{(0) = -1/2 results. Since cos(n s /2) = 0 for s = 2m + 1 = odd integer, Eq. (14.58) gives 
{ (-2m) = 0, the trivial zeros of the zeta function form = 1, 2, .... All other zeros must lie 
in the "critical strip" 0 < a = ffis < 1. They are closely related to the distribution of prime 
numbers because the prime number product for {(s) (see Section 5.9) can be converted 
into a Dirichlet series over prime powers for {1 / { = d ln { (s) / ds. From here on we sketch 
ideas only, without proofs. Using the inverse Mellin transform (see Section 16.2) yields the 
relation 

1 1u+ioo s'(s) s L lnp=--. --x ds 
m . 2m u-ioo {(s)s 

p <x,p=pnme 

(14.59) 

m=l,2, ... 

for a> 1, which is a cornerstone of analytic number theory. Since zeros of {(s) become 
simple poles of {1 / {, the asymptotic distribution of prime numbers is directly related by 
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Eq. (14.59) to the zeros of the Riemann zeta function. Riemann conjectured that all zeros 
lie on the line a = 1 /2, that is, have the form 1 /2 + it with real t. If so, one could shift the 
line of integration to the left to a = 1 /2 + e, the simple pole of { (s) at s = 1 giving rise to 
the residue x, while the integral along the line a= 1/2 + e is of order O(x1f 2+e). Hence, 
the remarkably small remainder in the asymptotic estimate 

L In p ~ x + O(x 1f2+e), X-+ 00 

p<x 

would result for arbitrarily small e. This is equivalent to the estimate for the number of 
primes below x, 

n(x) = L 1 = r (Int)-! dt + O(x 1f 2+e), x-+ 00. 

p<x J2 
In fact, numerical studies have shown that the first 300 x 109 zeros are simple and lie 
all on the critical line a = 1/2. For more details the reader is referred to the classic text 
by E. C. Titchmarsh and D.R. Heath-Brown, The Theory of the Riemann Zeta Function, 
Oxford, UK: Clarendon Press (1986); H. M. Edwards, Riemann's Zeta Function, New 
York: Academic Press (1974) and Dover (2003); J. Van de Lune, H.J. J. Te Riele, and 
D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV. Math. 
Comput. 47: 667 (1986). Popular accounts can be found in M. du Sautoy, The Music of the 
Primes: Searching to Solve the Greatest Mystery in Mathematics, New York: HarperCollins 
(2003); J. Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved 
Problem in Mathematics. Washington, DC: Joseph Henry Press (2003); K. Sabbagh, The 
Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics, New York: Farrar, 
Straus and Giroux (2003). 

More recently the statistics of the zeros p of the Riemann zeta function on the critical 
line played a prominent role in the development of theories of chaos (see Chapter 18 for 
an introduction). Assuming that there is a quantum mechanical system whose energies 
are the imaginary parts of the p, then primes determine the primitive periodic orbits of 
the associated classically chaotic system. For this case Gutzwiller's trace formula, which 
relates quantum energy levels and classical periodic orbits, plays a central role and can be 
better understood using properties of the zeta function and primes. For more details see 
Sections 12.6 and 12.7 by J. Keating, in The Nature of Chaos (T. Mullin, ed.), Oxford, UK: 
Clarendon Press (1993), and references therein. ■ 

Exercises 

14.3.1 Develop the Fourier series representation of 

f (t) = { ~inwt, 
-n::: wt::: 0, 
0::: wt::: n. 

This is the output of a simple half-wave rectifier. It is also an approximation of the solar 
thermal effect that produces "tides" in the atmosphere. 

1 1 . 2 00 cosnwt 
ANS. f (t) =; + 2 smwt - ; L nZ _ 1 . 

n=2,4,6, ... 
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f(x) 

-4Jt -37t -27t -Jt 7t 27t 37t 47t 

FIGURE 14.7 Triangular wave. 

A sawtooth wave is given by 

Show that 

f(x) =x, -n < X < 7T. 

oo (- l)n+l 
f(x) = 2 I:---sinnx. 

n 
n=I 

14.3.3 A different sawtooth wave is described by 

1-½(n +x), 
f(x) = I 

+2 (n -x), 

Show that f (x) = L~I (sinnx/n). 

-]T .sx <0 

0 < X :'.S 7T. 

14.3.4 A triangular wave (Fig. 14.7) is represented by 

14.3.5 

Ix, 
f(x) = -x, 

Represent f(x) by a Fourier series. 

Expand 

11, 
f(x) = 

0, 

in the interval [-n, n]. 

0<X<7T 

-n < X < 0. 

n 4 L cosnx 
ANS. f(x) = -2 - :-,, -;;z-· 

X2 <X2 
0 

X2 >X2 
0 

n=l,3,5, ... 

Note. This variable-width square wave is of some importance in electronic music. 
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14.3.6 

14.3.7 

14.3.8 

14.3.9 

FIGURE 14.8 Cross section 
of split tube. 

A metal cylindrical tube of radius a is split lengthwise into two nontouching halves. The 
top half is maintained at a potential + V, the bottom half at a potential -V (Fig. 14.8). 
Separate the variables in Laplace's equation and solve for the electrostatic potential for 
rs a. Observe the resemblance between your solution for r = a and the Fourier series 
for a square wave. 

A metal cylinder is placed in a (previously) uniform electric field, Eo, with the axis of 
the cylinder perpendicular to that of the original field. 

(a) Find the perturbed electrostatic potential. 
(b) Find the induced surface charge on the cylinder as a function of angular position. 

Transform the Fourier expansion of a square wave, Eq. (14.38), into a power series. 
Show that the coefficients of x I form a divergent series. Repeat for the coefficients 
of x 3 . 

A power series cannot handle a discontinuity. These infinite coefficients are the result 
of attempting to beat this basic limitation on power series. 

(a) Show that the Fourier expansion of cos ax is 

cos ax= 2a sina:rr {-1- _ cosx + cos2x _ ... }, 
:rr 2a 2 a2 - l2 a2 - 22 

n 2a sina:rr 
an = (-1) 2 2 . 

:rr(a -n ) 

(b) From the preceding result show that 

00 

a:rr cota:rr = 1 - 2 L {(2p)a 2P. 

p=I 

This provides an alternate derivation of the relation between the Riemann zeta function 
and the Bernoulli numbers, Eq. (5.152). 
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14.3.10 Derive the Fourier series expansion of the Dirac delta function 8 (x) in the interval -rr < 
X < TC. 

(a) What significance can be attached to the constant term? 
(b) In what region is this representation valid? 
(c) With the identity 

;... sin(Nx/2) [( l)x] ~cosnx = ----cos N +- - , 
sin(x/2) 2 2 

n=I 

show that your Fourier representation of 8(x) is consistent with Eq. (1.190). 

14.3.11 Expand 8(x - t) in a Fourier series. Compare your result with the bilinear form of 
Eq. (l.190). 

1 1 00 

ANS. 8(x - t) = - + - L(cosnx cosnt + sinnx sinnt) 
2rr rr 

n=I 

1 1 00 

= - + - Lcosn(x -t). 
2rr rr 

n=I 

14.3.12 Verify that 

1 00 

8(<p1 - <p2) = 2rr L /m(rp1-<pz) 

m=-oo 

is a Dirac delta function by showing that it satisfies the definition of a Dirac delta func­
tion: 

Hint. Represent f (<pi) by an exponential Fourier series. 
Note. The continuum analog of this expression is developed in Section 15.2. The most 
important application of this expression is in the determination of Green's functions, 
Section 9.7. 

14.3.13 (a) Using 

f(x) =x2, -TC <X <TC, 

show that 

oo (-l)n+l TC2 L 2 = - = 11c2). 
n 12 

n=I 

(b) Using the Fourier series for a triangular wave developed in Exercise 14.3.4, show 
that 

00 1 1{2 

L (2n - 1)2 = 8 =A(2). 
n=I 
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(c) Using 

show that 

(d) Using 

derive 

f(x) =x4. -Jr <X <Jr, 

00 1 71:4 
I: n4 = 90 = s(4), 

00 (-l)n+l 771:4 
I: n4 = no = 17(4). 

n=I n=I 

f(x) = { x(n - x), 
x(n +x), 

O<x <n, 
71: <X <0, 

8 00 sinnx 
f(x)=- '°' -n ~ n3 

n=l,3,5, ... 

and show that 
00 

(n-1)/2 1 1 1 1 71:3 I: 
n=l,3,5, ... 

(-1) -=l--+---+•··=-=/3(3). 
n3 33 53 73 32 

(e) Using the Fourier series for a square wave, show that 

00 '°' (-l)<n-1)/2!=1-!+!_!+···=~=/3(1). 
~ n 3 5 7 4 

n=l,3,5, ... 

This is Leibniz' formula for n, obtained by a different technique in Exercise 5.7.6. 
Note. The 17(2), 17(4), )..(2), {3(1), and {3(3) functions are defined by the indicated 
series. General definitions appear in Section 5.9. 

14.3.14 (a) Find the Fourier series representation of 

f(x) = {0• 
X, 

(b) From the Fourier expansion show that 

-Jr< XS 0 
0 sx < 71:. 

n 2 1 1 
8 = 1 + 32 + 52 + .... 

14.3.15 A symmetric triangular pulse of adjustable height and width is described by 

f (x) = { a(l - x/b), 
0, 

(a) Show that the Fourier coefficients are 

Os lxl sb 
bs lxl sn. 

2ab ab 
ao=-, 

Jr 
an= ---2 (1-cosnb). 

n(nb) 

Sum the finite Fourier series through n = 10 and through n = 100 for x/n = 
0(1/9) 1. Take a= 1 and b = n /2. 
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(b) Call a Fourier analysis subroutine (if available) to calculate the Fourier coefficients 
off (x), ao through aw. 

14.3.16 (a) Using a Fourier analysis subroutine, calculate the Fourier cosine coefficients ao 

through a 10 of 

XE [-7r, 7r]. 

(b) Spot-check by calculating some of the preceding coefficients by direct numerical 
quadrature. 

Check values. ao = 0.785, a2 = 0.284. 

14.3.17 Using a Fourier analysis subroutine, calculate the Fourier coefficients through aw and 
b10 for 

14.4 

(a) a full-wave rectifier, Example 14.3.2, 
(b) a half-wave rectifier, Exercise 14.3.1. Check your results against the analytic forms 

given (Eq. (14.41) and Exercise 14.3.1). 

PROPERTIES OF FOURIER SERIES 

Convergence 

It might be noted, first, that our Fourier series should not be expected to be uniformly con­
vergent if it represents a discontinuous function. A uniformly convergent series of continu­
ous functions (sinnx, cosnx) always yields a continuous function (compare Section 5.5). 
If, however, 

(a) f (x) is continuous, -rr :s x S 1r, 

(b) f(-rr) = f(+rr), and 
(c) f'(x) is sectionally continuous, 

the Fourier series for f (x) will converge uniformly. These restrictions do not demand that 
f(x) be periodic, but they will be satisfied by continuous, differentiable, periodic functions 
(period of 2rr). For a proof of uniform convergence we refer to the literature.9 With or 
without a discontinuity in f (x), the Fourier series will yield convergence in the mean, 
Section 10.4. 

9See, for instance, R. V. Churchill, Fourier Series and Boundary Value Problems, 5th ed., New York: McGraw-Hill (1993), 
Section 38. 
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Integration 

Term-by-term integration of the series 

ao ~ ~ . 
f(x)= 2 + ~ancosnx+ ~bnsmnx 

n=I n=I 
(14.60) 

yields 

1x aox Ix 00 an Ix 00 bn Ix f(x)dx = - + I:- sinnx - I:-cosnx . 
xo 2 xo n=I n xo n=I n xo 

(14.61) 

Clearly, the effect of integration is to place an additional power of n in the denominator 
of each coefficient. This results in more rapid convergence than before. Consequently, a 
convergent Fourier series may always be integrated term by term, the resulting series con­
verging uniformly to the integral of the original function. Indeed, term-by-term integration 
may be valid even if the original series (Eq. (14.60)) is not itself convergent. The func­
tion f(x) need only be integrable. A discussion will be found in Jeffreys and Jeffreys, 
Section 14.06 (see the Additional Readings). 

Strictly speaking, Eq. (14.61) may not be a Fourier series; that is, if ao -1- 0, there will be 
a term ½aox. However, 

1x 1 
f(x)dx - -aox 

xo 2 
(14.62) 

will still be a Fourier series. 

Differentiation 

The situation regarding differentiation is quite different from that of integration. Here the 
word is caution. Consider the series for 

f(x) =X, -n <X <7r. 

We readily find (compare Exercise 14.3.2) that the Fourier series is 

00 • '°' n+I smnx x=2~(-1) --, 
n 

n=I 

Differentiating term by term, we obtain 

00 

-n <x <n. 

1 = 2 I:<-l)n+l cosnx, 
n=I 

which is not convergent. Warning: Check your derivative for convergence. 

(14.63) 

(14.64) 

(14.65) 

For a triangular wave (Exercise 14.3.4), in which the convergence is more rapid (and 
uniform), 

f n 4 ~ cosnx 
(x)=--- ~ -2-· 

2 7r n=l,odd n 
(14.66) 
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Differentiating term by term we get 

00 

J'(x) = ~ L sinnx 
JT n 

n=l,odd 

(14.67) 

which is the Fourier expansion of a square wave, 

J'(x) = { :1, 0 < X < JT, 

-Jr< X < 0. 
(14.68) 

Inspection of Fig. 14.7 verifies that this is indeed the derivative of our triangular wave. 

• As the inverse of integration, the operation of differentiation has placed an additional 
factor n in the numerator of each term. This reduces the rate of convergence and may, 
as in the first case mentioned, render the differentiated series divergent. 

• In general, term-by-term differentiation is permissible under the same conditions listed 
for uniform convergence. 

Exercises 

14.4.1 Show that integration of the Fourier expansion off (x) = x, -rr < x < rr, leads to 

JT2 oo (-l)n+l 1 1 1 
12 = I: n2 = 1 - 4 + 9 - 16 + · · · · 

n=I 

14.4.2 Parseval's identity. 

(a) Assuming that the Fourier expansion off (x) is uniformly convergent, show that 

1 17r 2 00 - [f (x) ] 2 dx = ao + L(a; + b;). 
Jr -tr 2 n=l 

This is Parseval' s identity. It is actually a special case of the completeness relation, 
Eq. (10.73). 

(b) Given 

2 rr 2 Loo (-ltcosnx 
X =-+4 3 n2 , 

n=I 

-Jr :5 X :5 Jr, 

apply Parseval's identity to obtain l;'(4) in closed form. 
( c) The condition of uniform convergence is not necessary. Show this by applying the 

Parseval identity to the square wave 

{ -1, 
f(x) = 1, 

-Jr< X < 0 
O<X<JT 

= ~ f sin(2n - l)x. 
rr 2n - 1 

n=I 



906 Chapter 14 Fourier Series 

14.4.3 

14.4.4 

14.4.5 

14.4.6 

14.4.7 

n 

--------t--------<i-------------- X 

-:rr: 1 
2n 

:rr: 

FIGURE 14.9 Rectangular pulse. 

Show that integrating the Fourier expansion of the Dirac delta function (Exer­
cise 14.3.10) leads to the Fourier representation of the square wave, Eq. (14.38), with 
h = 1. 
Note. Integrating the constant term (l/21l') leads to a term x/21l'. What are you going 
to do with this? 

Integrate the Fourier expansion of the unit step function 

f(x) = {0• 
X, 

-Jl' < X < 0 
0 < X < Jl'. 

Show that your integrated series agrees with Exercise 14.3.14. 

In the interval ( -Jl', 1l'), 

In, 
On(X) = 

0, 

(Fig. 14.9). 

(a) Expand 8n (x) as a Fourier cosine series. 

for lxl < 2~, 

for lxl > 2~ 

(b) Show that your Fourier series agrees with a Fourier expansion of 8(x) in the limit 
as n ~ oo. 

Confirm the delta function nature of your Fourier series of Exercise 14.4.4 by showing 
that for any f (x) that is finite in the interval [ -Jl', 1l'] and continuous at x = 0, i: j(x)[Fourier expansion of 800 (x)] dx = f (0). 

(a) Show that the Dirac delta function 8(x - a), expanded in a Fourier sine series in 
the half-interval (0, L)(O <a< L), is given by 

2 00 (n:ll'a) . (n:ll'x) 8(x -a)= L Lsin L sm L . 
n=I 

Note that this series actually describes 

-8(x +a) +8(x -a) in the interval (-L,L). 
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14.4.9 
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(b) By integrating both sides of the preceding equation from Oto x, show that the 
cosine expansion of the square wave 

f(x) = { O, 
1, 

lS 

0sx<a 
a< x < L, 

2 00 1 (nna) 2 00 1 (nna) (nnx) f (x) = - L - sin -- - - L - sin -- cos -- , 
n n L n n L L 

n=I n=I 

forO S x < L. 
( c) Verify that the term 

is (f (x)). 

Verify the Fourier cosine expansion of the square wave, Exercise 14.4.7(b), by direct 
calculation of the Fourier coefficients. 

(a) A string is clamped at both ends x = 0 and x = L. Assuming small-amplitude 
vibrations, we find that the amplitude y(x, t) satisfies the wave equation 

a2y 1 a2y 
ax2 v2 at 2 . 

Here vis the wave velocity. The string is set in vibration by a sharp blow at x = a. 
Hence we have 

y(x, 0) = 0, 
ay(x, t) 
_a_t_ = Lv08(x - a) at t = 0. 

The constant L is included to compensate for the dimensions (inverse length) of 
8(x - a). With 8(x - a) given by Exercise 14.4.7(a), solve the wave equation 
subject to these initial conditions. 

2voL 00 1 nna nnx nnvt 
ANS. y(x, t) = --L - sin -- sin -- sin--. 

nv n L L L 
n=I 

(b) Show that the transverse velocity of the string ay(x, t) / at is given by 

(X) 

ay(x, t) L . nna . nnx nnvt --- = 2vo sm -- sm -- cos --. 
at L L L 

n=I 

14.4.10 A string, clamped at x = 0 and at x = 1, is vibrating freely. Its motion is described by 
the wave equation 

a2u(x, t) 2 a2u(x, t) 
-a-t~2- = V _a_x_2 __ 



908 Chapter 14 Fourier Series 

Assume a Fourier expansion of the form 

00 '°' . nnx u(x, t) = L,bn(t) sm-1-
n=l 

and determine the coefficients bn (t). The initial conditions are 

u(x, 0) = f(x) and 
a 
-u(x, 0) = g(x). at 

Note. This is only half the conventional Fourier orthogonality integral interval. However, 
as long as only the sines are included here, the Sturm-Liouville boundary conditions are 
still satisfied and the functions are orthogonal. 

nnvt . nnvt 
ANS. bn(t) = Ancos-1- + Bn sm-1-, 

2 ii nnx 2 ii nnx An= -1 f(x)sin-1-dx, Bn = - g(x)sin-dx. 
o nnv o l 

14.4.11 (a) Let us continue the vibrating string problem, Exercise 14.4.10. The presence of a 
resisting medium will damp the vibrations according to the equation 

o2u(x, t) _ v2 o2u(x, t) _ k ou(x, t) 
ot2 - ox2 ot . 

Assume a Fourier expansion 

00 '°' . nnx u(x,t)= L,bn(t)sm-1-
n=l 

and again determine the coefficients bn(t). Take the initial and boundary condi­
tions to be the same as in Exercise 14.4.10. Assume the damping to be small. 

(b) Repeat, but assume the damping to be large. 

ANS. (a) bn(t) = e-kt/2{An COSWnt + Bn sinwnt}, 

2 ii nnx An= - f(x) sin--dx, 
l o l 

2 ii . nnx k 
Bn = - g(x)sm--dx + -An, 

Wnl o l 2wn 

( nnv) (k)2 
w~ = -l- - 2 > O. 
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(b) bn(t) = e-ktf2{An coshant + Bn sinhant}, 

211 nrrx An = - f (x) sin --dx, 
l o l 

2 1 1 nrrx k Bn = - g(x) sin --dx + -An, 
O"nl o l 2an 

a;= (~r-(n;vr > 0. 

14.4.12 Find the charge distribution over the interior surfaces of the semicircles of Exer­
cise 14.3.6. 
Note. You obtain a divergent series and this Fourier approach fails. Using conformal 
mapping techniques, we may show the charge density to be proportional to csc 0. Does 
csc 0 have a Fourier expansion? 

14.4.13 Given 

~ sinnx 1-½(rr +x), 
'Pl (x) = ~-- = 

n=I n 1(rr - x), 

-1{ _'.':: X < 0, 

show by integrating that 

oo 11 ( + )2 rr
2 L cos nx 4 rr x - TI, 

<p2(x) = -- = 
n2 I 2 rr2 

n=I 4(1C - x) - TI• 

-1{ sx s 0 

14.4.14 Given 
00 • 

'"""smnx 
1/lzs(X) = ~ _2_s_' 

n 

00 
'"""cosnx 

V'2s+I (x) = ~ n2s+I ' 
n=I n=I 

develop the following recurrence relations: 

(a) 1/12s(X)= fox 1/12s-1(x)dx 

(b) V'2s+i(X)={(2s+l)- fox 1/12s(x)dx. 

Note. The functions 1/ls(x) and the 'Ps(x) of the preceding two exercises are known as 
Clausen functions. In theory they may be used to improve the rate of convergence of a 
Fourier series. As with the series of Chapter 5, there is always the question of how much 
analytical work we do and how much arithmetic work we demand that the computer do. 
As computers become steadily more powerful, the balance progressively shifts so that 
we are doing less and demanding that they do more. 

14.4.15 Show that 
00 

'"""cosnx 
f(x) = ~ n + 1 

n=I 



910 Chapter 14 Fourier Series 

14.5 

may be written as 

00 
~ cosnx 

f(x) = VII (x) - <112(x) + L.,, nZ(n + l). 
n=I 

Note. VII (x) and <pz(x) are defined in the preceding exercises. 

GIBBS PHENOMENON 

The Gibbs phenomenon is an overshoot, a peculiarity of the Fourier series and other eigen­
function series at a simple discontinuity. An example is seen in Fig. 14.1. 

Summation of Series 

In Section 14.1 the sum of the first several terms of the Fourier series for a sawtooth wave 
was plotted (Fig. 14.10). Now we develop analytic methods of summing the first r terms 
of our Fourier series. 

From Eq. (14.19), 

1 frr ancosnx +bn sinnx = - f(t)cosn(t-x)dt. 
T( -rr 

Then the rth partial sum becomes10 

r 

sr(x) =a;+ L(an cosnx + bn sinnx) 
n=I 

1 frr [ 1 r ] = !R- f(t) - + Le-i(t-x)n dt. 
T( -rr 2 n=l 

Summing the finite series of exponentials (geometric progression), 11 we obtain 

I f rr sin[(r + ½)(t - x)] 
Sr(X) = -2 f(t) . 1 dt. 

H -rr sm 2(t-x) 

This is convergent at all points, including t = x. The factor 

sin[(r + ½)(t - x)] 

2H sin ½<t - x) 

is the Dirichlet kernel mentioned in Section 1.15 as a Dirac delta distribution. 

(14.69) 

(14.70) 

(14.71) 

10It is of some interest to note that this series also occurs in the analysis of the diffraction grating (r slits). 
11 Compare Exercise 6.1.7 with initial value n = I. 
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Square Wave 

For convenience of numerical calculation we consider the behavior of the Fourier series 
that represents the periodic square wave 

I h 
2' 

f(x) = _!! 
2' 

0 <X <Jr, 

-71: <X <0. 
(14.72) 

This is essentially the square wave used in Section 14.3, and we immediately see that the 
solution is 

2h (sinx sin3x sin5x ) 
j(x)=- -+--+--+•·· . 

1r 1 3 5 
(14.73) 

Applying Eq. (14.71) to our square wave (Eq. (14.72)), we have the sum of the first r terms 
(plus ½ao, which is zero here): 

h lorr sin[(r + ½)(t - x)] h fo sin[(r + ½)(t - x)] 
s (x) = - --~-=----dt - - --~-=----dt 

r 411: o sin ½<t - x) 411: -rr sin ½(t - x) 

h !arr sin[(r + ½)(t - x)] h !arr sin[(r + ½)(t + x)] = - --~-=----dt - - ----=----dt. (14.74) 
411: o sin½(t-x) 411: o sin½(t+x) 

This last result follows from the transformation 

➔ 

t-t 

in the second integral. Replacing t - x in the first term with s and t + x in the second term 
with s, we obtain 

_ h f rr-x sin(r + ½)s h 1rr+x sin(r + ½)s 
Sr(X)-- 1 ds-- 1 ds. 

411: -x Sin zS 411: x sin zS 
(14.75) 

The intervals of integration are shown in Fig. 14.lO(top). Because the integrands have 
the same mathematical form, the integrals from x to 11: - x cancel, leaving the integral 
ranges shown in the bottom portion of Fig. 14.10: 

_ h f x sin(r + ½)s h 1rr+x sin(r + ½)s 
Sr(X)- - . 1 ds - - . 1 ds. 

411: -x Stn 2s 411: rr-x Stn 2s 
(14.76) 

Consider the partial sum in the vicinity of the discontinuity at x = 0. As x ➔ 0, the sec­
ond integral becomes negligible, and we associate the first integral with the discontinuity 
at x = 0. Using r + ½ = p and ps = g we obtain 

h lopx sing dg 
Sr(X) = - . . 

211: o sm(g/2p) p 
(14.77) 
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-x X 

1t-X 1t+X 

FIGURE 14.10 Intervals ofintegration-Eq. (14.75). 

Calculation of Overshoot 

Our partial sum sr(x) starts at zero when x = 0 (in agreement with Eq. (14.22)) and in­
creases until ~ = ps = n, at which point the numerator, sin~, goes negative. For large r, 
and therefore for large p, our denominator remains positive. We get the maximum value of 
the partial sum by taking the upper limit px = n. Right here we see that x, the location of 
the overshoot maximum, is inversely proportional to the number of terms taken: 

T[ T[ 

x=-~-. 
p r 

The maximum value of the paitial sum is then 

h 1 r sin~d~ h 2 r sin~ 
Sr(X)max = 2 · ""ii lo sin(~/2p)p ~ 2 · ""ii lo -~-d~. 

In terms of the sine integral, si(x) of Section 8.5, 

lo
rr sin~ n 
-d~ = - + si(n). 

o ~ 2 

The integral is clearly greater than n /2, since it can be written as 

(1
00 13rr 15rr ) sin~ -lorr sin~ - - -··· -d~- -d~. 

0 rr 3rr ~ 0 ~ 

(14.78) 

(14.79) 

(14.80) 

We saw in Example 7 .1.4 that the integral from Oto oo is n /2. From this integral we are 
subtracting a series of negative terms. A Gaussian quadrature or a power-series expansion 
and term-by-term integration yields 

21rr sin~ - -d~ = 1.1789797 ... , 
T[ 0 ~ 

(14.81) 

which means that the Fourier series tends to overshoot the positive comer by some 18 per­
cent and to undershoot the negative comer by the same amount, as suggested in Fig. 14.11. 
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1.2 

~terms 
80 60 40 20 terms 

l.O 
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0.6 

0.4 

0.2 

O.l 
0.02 0.04 0.06 0.08 0.10 -x 

FIGURE 14.11 Square wave - Gibbs phenomenon. 

The inclusion of more terms (increasing r) does nothing to remove this overshoot but 
merely moves it closer to the point of discontinuity. The overshoot is the Gibbs phenom­
enon, and because of it the Fourier series representation may be highly unreliable for pre­
cise numerical work, especially in the vicinity of a discontinuity. 

The Gibbs phenomenon is not limited to the Fourier series. It occurs with other eigen­
function expansions. Exercise 12.3.27 is an example of the Gibbs phenomenon for a Legen­
dre series. For more details, see W. J. Thompson, Fourier series and the Gibbs phenomenon, 
Am. J. Phys. 60: 425 (1992). 

Exercises 

14.5.1 With the partial sum summation techniques of this section, show that at a discontinuity 
in f (x) the Fourier series for f (x) takes on the arithmetic mean of the right- and left­
hand limits: 

14.5.2 

14.5.3 

1 
f (xo) = 2[! (xo + 0) + f (xo - 0)]. 

In evaluating limr---+oo Sr (xo) you may find it convenient to identify part of the integrand 
as a Dirac delta function. 

Determine the partial sum, Sn, of the series in Eq. (14.73) by using 

sinmx lox 
(a) -- = cosmydy, 

m o 

~ sin2ny 
(b) L..,cos(2p - l)y = -.-. 

2smy 
p=l 

Do you agree with the result given in Eq. (14.79)? 

Evaluate the finite step function series, Eq. (14.73), h = 2, using 100, 200, 300, 400, 
and 500 terms for x = 0.0000(0.0005)0.0200. Sketch your results (five curves) or, if a 
plotting routine is available, plot your results. 
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14.5.4 (a) Calculate the value of the Gibbs phenomenon integral 

21rr sint I=- -dt 
T[ 0 t 

by numerical quadrature accurate to 12 significant figures. 
(b) Check your result by (1) expanding the integrand as a series, (2) integrating term 

by term, and (3) evaluating the integrated series. This calls for double precision 
calculation. 

ANS. I = 1.178979744472. 

14.6 DISCRETE FOURIER TRANSFORM 

For many physicists the Fourier transform is automatically the continuous Fourier trans­
form of Chapter 15. The use of digital computers, however, necessarily replaces a contin­
uum of values by a discrete set; an integration is replaced by a summation. The continuous 
Fourier transform becomes the discrete Fourier transform and an appropriate topic for this 
chapter. 

Orthogonality over Discrete Points 

The orthogonality of the trigonometric functions and the imaginary exponentials is ex­
pressed in Eqs. (14.15) to (14.18). This is the usual orthogonality for functions: integration 
of a product of functions over the orthogonality interval. The sines, cosines, and imaginary 
exponentials have the remarkable property that they are also orthogonal over a series of 
discrete, equally spaced points over the period (the orthogonality interval). 

Consider a set of 2N time values 

T 2T (2N - l)T 
fk = O, 2N' 2N' ... ' 2N 

for the time interval (0, T). Then 

kT 
fk = 2N' k = 0, 1, 2, ... , 2N - 1. 

(14.82) 

(14.83) 

We shall prove that the exponential functions exp(2niptkf T) and exp(2niqtkf T) satisfy 
an orthogonality relation over the discrete points tk: 

2
~

1 
[ (2niptk )]* (2niqtk) ~ exp -T- exp -T-- =2N8p,q±2nN• 

k=O 
(14.84) 

Here n, p, and q are all integers. 
Replacing q - p bys, we find that the left-hand side ofEq. (14.84) becomes 

2
~

1 (2nistk) 2
~

1 (2nisk) ~exp -- =~exp -- . 
k=O T k=O 2N 
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This right-hand side is obtained by using Eq. (14.83) to replace T. This is a finite geometric 
series with an initial term 1 and a ratio 

( rris) r =exp N . 

From Eq. (5.3), 

2N-I (2rristk) 11-r2N =0, L exp -T- = 1 - r 
k=O 2N, 

(14.85) 
r = 1, 

establishing Eq. (14.84), our basic orthogonality relation. The upper value, zero, is a con­
sequence of 

r2N = exp(2rris) = 1 

for s an integer. The lower value, 2N, for r = 1 corresponds to p = q. The orthogonality 
of the corresponding trigonometric functions is left as Exercise 14.6.1. 

Discrete Fourier Transform 

To simplify the notation and to make more direct contact with physics, we introduce the 
(reciprocal) w-space, or angular frequency, with 

2rrp 
Wp = r· p = o, 1, 2, ... , 2N - 1. (14.86) 

We make p range over the same integers as k. The exponential exp(±2rriptk/ T) of 
Eq. (14.84) becomes exp(±iwptk). The choice of whether to use the + or the - sign is 
a matter of convenience or convention. In quantum mechanics the negative sign is selected 
when expressing the time dependence. 

Consider a function of time defined (measured) at the discrete time values tk. Then we 
construct 

2N-I 

F(wp) = 2~ L f(tk)efo)ptk. 
k=O 

Employing the orthogonality relation, we obtain 

l 2N-l . . 
_ " (elWptm)* elWptk = O 2N L.,, mk, 

p=O 

and then replacing the subscript m by k, we find that the amplitudes f (tk) become 

2N-I 

f (tk) = L F(wp)e-iwptk. 

p=O 

(14.87) 

(14.88) 

(14.89) 

The time function f(tk), k = 0, 1, 2, ... , 2N - 1, and the frequency function F(wp), p = 
0, 1, 2, ... , 2N - 1, are discrete Fourier transforms of each other.12 Compare Eqs. ( 14.87) 

12The two transform equations may be symmetrized with a resulting (ZN)-112 in each equation if desired. 
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and (14.89) with the corresponding continuous Fourier transforms, Eqs. (15.22) and 
(15.23) of Chapter 15. 

Limitations 

Taken as a pair of mathematical relations, the discrete Fourier transforms are exact. We 
can say that the 2N 2N-component vectors exp(-iwptk), k = 0, 1, 2, ... , 2N - 1, form 
a complete set13 spanning the tk-space. Then f (tk) in Eq. (14.89) is simply a particular 
linear combination of these vectors. Alternatively, we may take the 2N measured compo­
nents f(tk) as defining a 2N-component vector in tk-space. Then, Eq. (14.87) yields the 
2N-component vector F(wp) in the reciprocal we-space. Equations (14.87) and (14.89) 
become matrix equations, with exp(iwptk)/(2N) 112 the elements of a unitary matrix. 

The limitations of the discrete Fourier transform arise when we apply Eqs. (14.87) and 
(14.89) to physical systems and attempt physical interpretation and the limit F(wp) ➔ 
F(w). Example 14.6.1 illustrates the problems that can occur. The most important precau­
tion to be taken to avoid trouble is to take N sufficiently large so that there is no angular 
frequency component of a higher angular frequency than WN = 2n N / T. For details on 
errors and limitations in the use of the discrete Fourier transform we refer to Hamming in 
the Additional Readings. 

Example 14. 6.1 DISCRETE FOURIER TRANSFORM -ALIASING 

Consider the simple case of T = 2n, N = 2, and f (tk) = cos tk. From 

k=0, 1,2,3, 

f (tk) = cos(tk) is represented by the four-component vector 

f(tk) = (1, 0, -1, 0). 

The frequencies, wp, are given by Eq. (14.86): 

2np 
Wp=T=p. 

Clearly, cos tk implies a p = 1 component and no other frequency components. 
The transformation matrix 

exp(iwptk) exp(ipkn /2) 

2N 2N 

becomes 

! (: 
1 1 ~;) -1 

4 1 -1 1 -1 . 

1 -i -1 i 

13By Eq. (14.85) these vectors are orthogonal and are therefore linearly independent. 

(14.90) 

(14.91) 

(14.92) 

(14.93) 
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Note that the 2N x 2N matrix has only 2N independent components. It is the repetition 
of values that makes the fast Fourier transform technique possible. 

Operating on column vector f (tk), we find that this matrix yields a column vector 

F(wp) = (0, 1• 0, ½). (14.94) 

Apparently, there is a p = 3 frequency component present. We reconstruct f (tk) by 
Eq. (14.89), obtaining 

(14.95) 

Taking real parts, we can rewrite the equation as 

(14.96) 

Obviously, this result, Eq. (14.96), is not identical with our original f(tk)costk. But 
cos tk = ½ cos tk + ½ cos 3tk at tk = 0, n /2, n; and 3n /2. The cos tk and cos 3tk mimic 
each other because of the limited number of data points (and the particular choice of data 
points). This error of one frequency mimicking another is known as aliasing. The problem 
can be minimized by taking more data points. ■ 

Fast Fourier Transform 

The fast Fourier transform is a particular way of factoring and rearranging the terms in 
the sums of the discrete Fourier transform. Brought to the attention of the scientific com­
munity by Cooley and Tukey, 14 its importance lies in the drastic reduction in the number 
of numerical operations required. Because of the tremendous increase in speed achieved 
(and reduction in cost), the fast Fourier transform has been hailed as one of the few really 
significant advances in numerical analysis in the past few decades. 

For N time values (measurements), a direct calculation of a discrete Fourier transform 
would mean about N 2 multiplications. For N a power of 2, the fast Fourier transform tech­
nique of Cooley and Tukey cuts the number of multiplications required to (N /2) log2 N. 
If N = 1024 (= 210), the fast Fourier transform achieves a computational reduction by a 
factor of over 200. This is why the fast Fourier transform is called fast and why it has rev­
olutionized the digital processing of waveforms. Details on the internal operation will be 
found in the paper by Cooley and Tukey and in the paper by Bergland.15 

14J. W. Cooley and J. W. Tukey, Math. Comput. 19: 297 (1965). 
15 G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum, July, pp. 41-52 (1969); see also, W. H. Press, 
B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed., Cambridge, UK: Cambridge University Press 
(1996), Section 12.3. 
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Exercises 

14.6.1 

14.6.2 

14.6.3 

Derive the trigonometric forms of discrete orthogonality corresponding to Eq. (14.84): 

2
~

1 (2:rcptk) . (2:rcqtk) O L.., cos -- sm -- = 
k=0 T T 

2
~

1 (2:rcptk) (2:rcqtk) { ON, L.., cos -- cos -- = ' 
k=0 T T 2N, 

2LN-1 . (2:rcptk) . (2:rcqtk) { ON, sm--sm--= 
T T ' 

k=0 0, 

Hint. Trigonometric identities such as 

p=faq 
p =q =l-0, N 
p=q=O,N 

p=faq 
p =q =l-0, N 
p=q =O,N. 

sin A cos B = ½[ sin(A + B) + sin(A - B)] 

are useful. 

Equation (14.84) exhibits orthogonality summing over time points. Show that we have 
the same orthogonality summing over frequency points 

2N-1 

_1_ L (eiwptm)* eiwptk =8mk• 
2N p=0 

Show in detail how to go from 

to 
2N-1 

f (tk) = L F(wp)e-iwptk. 
p=0 

14.6.4 The functions f(tk) and F(wp) are discrete Fourier transforms of each other. Derive the 
following symmetry relations: 

(a) If/ (tk) is real, F(wp) is Hermitian symmetric; that is, 

*(4:rcN ) F(wp) = F T - Wp . 

(b) If/ (tk) is pure imaginary, 

*(4:rcN ) F(wp)=-F T-wp. 

Note. The symmetry of part (a) is an illustration of aliasing. The frequency 4:rc N / T -
wp masquerades as the frequency wp. 
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14.6.5 Given N = 2, T = 2n, and f(tk) = sintk, 

(a) find F(wp), p = 0, 1, 2, 3, and 
(b) reconstruct f (tk) from F(wp) and exhibit the aliasing of w, = 1 and w3 = 3. 

ANS. (a) F(wp) = (0, i/2, 0, -i/2) 

(b) f(tk) = ½ sintk - ½ sin3tk. 

14.6.6 Show that the Chebyshev polynomials Tm (x) satisfy a discrete orthogonality relation 

m =/-n 
m=n=/-0 
m =n =0. 

Here, Xs = cos 05 , where the (N + 1)0s are equally spaced along the 0-axis: 

sn 
0s=Ji· s = 0, 1, 2, ... , N. 

14. 7 FOURIER EXPANSIONS OF MATHIEU FUNCTIONS 

As a realistic application of Fourier series we now derive first integral equations satisfied 
by Mathieu functions, from which subsequently their Fourier series are obtained. 

Integral Equations and Fourier Series for Mathieu 
Functions 

Our first goal is to establish Whittaker's integral equations that Mathieu functions satisfy, 
from which we then obtain their Fourier series representations. 

We start from an integral representation 

V(r) = 1_: f(z + ixcos0 + iysin0, 0)d0 (14.97) 

of a solution V of Laplace's equation with a twice differentiable function f (v, 0). Apply­
ing V 2 to V we verify that it obeys Laplace's PDE. Separating variables in Laplace's PDE 
suggests choosing the product form f (v, 0) = ekv<p (0). Substituting the elliptical variables 
ofEq. (13.163) we rewrite Vas 

R(n<IJ(17)ekz = 1_: ¢(0)ek(z+iccosh~COS'7COs0+icsinh~sin,,sin0) d0 (14.98) 

with normalization R(0) = 1. Since~ and 7/ are independent variables we may set~ = 0, 
which leads to Whittaker's integral representation 

<IJ(71) = 1_: <p(0)exp(ickcos0cos17)d0, (14.99) 
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where ck= 2,Jq from Eq. (13.180). Clearly, <t> is even in the variable T/ and periodic with 
period TL In order to prove that q, ~ <t> we check how q,(0) is constrained when <t>(ri) is 
taken to obey the angular Mathieu ODE 

d2<t> 
dri2 + ().. - 2q cos 2ri)<t>(ri) 

= 1_: q,(0)exp(ickcos0cosri) 

• [A - 2q cos 2ri + (ick cos 0 sin ri)2 - ick cos 0 cos T/ ]d0. 

Here we integrate the last term on the right-hand side by parts, obtaining 

d2<t> 
dri2 + ().. - 2q cos 2ri)<t>(ri) 

= q, (0)(-ick cos T/ sin0) exp(ick cos0 cos TJ) 1:=-1r 

+ 1_: q,(0) exp (ickcos0 cos ri)[A - 2q cos 2TJ - ickcos0 cos TJ] d0 

(14.100) 

+ 1_: [-<t,' (0)(-ick cos T/ sin0) + q, (0)ick cos T/ cos 0] exp (ick cos 0 cos ri) d0 

= 1_: expick cos 0 cos ri[<t,(0)().. - 2q cos 2ri) + q,' (0)ick cos TJ sin0] d0, (14.101) 

where the integrated term vanishes if q,(-n) = q,(n), which we assume to be the case. 
Integrating once more by parts yields 

d2<t> In 
- 2 + ().. - 2qcos2ri)<t>(ri) = -<t,'(0)expickcos0cosri 
dri 0=-n 

+ 1_: exp (ick cos 0 cos TJ) [<t,(0) ().. - 2q cos 2ri) + q," (0)] d0, (14.102) 

where the integrated term vanishes if q,' is periodic with period n, which we assume is 
the case. Therefore, if q,(0) obeys the angular Mathieu ODE, so does the integral <t>(ri), in 
Eq. (14.99). As a consequence, q,(0) ~ <t>(0), where the constant may be a function of the 
parameter q. 

Thus, we have the main result that a solution <t>(ri) of Mathieu's ODE that is even in the 
variable T/ satisfies the integral equation 

<t>(ri) = An(q) 1_: e2i.jqcos0cos11q,(0)d0. (14.103) 

When these Mathieu functions are expanded in a Fourier cosine series and normalized so 
that the leading term is cos nri, they are denoted by cen (TJ, q ). 
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Similarly, solutions of Mathieu's ODE that are odd in r, with leading term sinnr, in a 
Fourier series are denoted by sen ( r,, q), and they can similarly be shown to obey the integral 
equation 

sen (r,, q) = Sn (q) 1_: sin(2i.Jq sin r, sin0)sen (0, q) d0. (14.104) 

We now come to the Fourier expansion for the angular Mathieu functions and start 
with 

00 00 

se1(r,,q) = sinr, + Lf:Jv(q)sin(2v + l)r,, /:Jv(q) = Lf:J;;')qµ (14.105) 
v=I 

as a paradigm for the systematic construction of Mathieu functions of odd parity. Notice 
the key point that the coefficient f:Jv of sin(2v + l)r, in the Fourier series depends on the 
parameter q and is expanded in a power series. Moreover, se1 is normalized so that the 
coefficient of the leading term, sin r,, is unity, that is, independent of q. This feature will 
become important when se1 is substituted into the angular Mathieu ODE to determine the 
eigenvalue A(q). 

The fact that the f:Jv power series in q starts with exponent v can be proved by a simpler 
but similar series for se1 (r,, q): 

00 00 

se1(r,,q) = LYv(q)sin2v+I r,, Yv(q) = L yJvlqlL, (14.106) 
v=O µ=0 

which is useful for this demonstration alone. However, since we need to expand 

V 

sin2v+l r, = L Bvm sin(2m + l)r, (14.107) 
m=O 

with Fourier coefficients 

Bvm = - sm2v+l r,sin(2m + l)r,dr, = - 2-
111r. (-lr(2v+l) 
rr -n 2 v v - m 

(14.108) 

that we can look up in a table of integrals (see Gradshteyn and Ryzhik in the Additional 
Readings of Chapter 13), this proof gives us an opportunity to introduce the Bvm that are 
nonzero only if m :::: v and are important ingredients of the recursion relations for the lead­
ing terms of se1 (and all other Mathieu functions of odd parity). Substituting Eq. (14.107) 
into Eq. (14.106) we obtain 

00 V 

se1 (r,, q) =LL BvmYv(q) sin(2m + l)r,. (14.109) 
v=Om=O 

Comparing this expression for se1 with Eq. (14.105) we find 

00 

f:Jv(q) = L BmvYm(q). (14.110) 
m=v 

Here, the sum starts with m = v because Bmv = 0 form < v. 
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Next we substitute Eq. (14.106) into the integral Eq. (14.104) for n = 1, where we insert 
the power series for sin(2i -Jq sin 77 sin0). This yields 

se1(77,q) 1 frr . (2" r;;. . 0) (0 )d0 --- = - sm 1 -v q sm 77 sm se1 , q 
2:,r SJ (q) 2:ir -rr 

1 00 

= --- LYm(q)sin2m+l 17 
2:irs1(q) m=O 

oo 22m+ I 1 lrr = iJq L qmyv(q)sinzm+l 17------ sin2v+2m+20d0, 
(2m + 1)! 2:ir -rr m,v=O 

(14.111) 

from which we obtain the recursion relations 

22m+l oo lrr 
Ym(q) = ---qmiv'qs1(q) LYv(q) sin2v+Zm+20d0, 

(2m + 1)! v=O -rr (14.112) 

upon comparing coefficients of sin2m+177. This shows that the power series for Ym(q) starts 
with qm. Using Eq. (14.110) proves that the power series for fJm (q) also starts with qm, 
and this confirms Eq. (14.105). The integral in Eq. (14.112) can be evaluated analytically 
and expressed via the beta function (Chapter 8) in terms of ratios of factorials, but we do 
not need this formula here. 

Our next goal is to establish a recursion relation for the leading term fJ~v) of se1, in 
Eq. (14.105). We substitute Eq. (14.105) into the integral Eq. (14.104) for n = 1, where we 
insert the power series for sin(2i-Jq sin 77 sin 0) again, along with the expansion 

(14.113) 

Here, the extra factor, i-Jq, cancels the corresponding factor from the sine in the integral 
equation. This yields 

oo 22v+ I 1 lrr 
LfJP.)qµ+v sin2v+l 77---- sin2v+2J..+20d0 
v=O µ (2v + 1)! 2:,r -rr 

00 

= L amqm+µpt) sin(2v + 1)77. (14.114) 
m,µ=0 

Here, we replace sin2v+l 77 by sin(2m + 1)77 using Eq. (14.107). Upon comparing the co­
efficients of qN sin(2v + 1)77 for N = µ, + v we obtain the recursion relation 

N N-v (A) 22v B B - N-n (n) LL fJN-v (2v + 1)! vn VA - L amfJN-m· 
v=~o m~ 

(14.115) 
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Now we substitute Eq. (14.108) to obtain the main recursion relation for the leading 
coefficients f3~v) of se1: 

N N-v R(A) ( 2 + l) (2 + l) N-n 1-'N-v V V (n) 

~ L 22V(2v + 1)! v - n v - ).. = L amf3N-m· 
v-~o m~ 

(14.116) 

Example 14. 7.1 LEADING COEFFICIENTS OF se1 

We evaluate Eq. (14.116) starting with N = 0, n = 0. For this case we find f36°) = aof360), 

or ao = 1 because the coefficient of sin ri in se1, f36°) = 1, by normalization. For N = 1, 
n = 0 Eq. (14.116) yields 

aof3f> + a1f36°) = /3i0) + 4 \! G) [/36°) G) + f3t (~) l (14.117) 

where f3t = 0 and f3f > drops out, a general feature. Of course, 13f > = 0 because sin ri in 
se1 has coefficient unity. This yields a1 = 3/8. 

The case N = 1, n = 1 yields 

2 (3) R(O) (3) = a R(I) 
4 · 3! 0 1-'Q 1 Ol-'J ' 

(14.118) 

or /3i1) = -1/8. The leading term is obtained from the general case n = N, 

(-l)N (2N + 1) R(O) (2N + 1) = a R(N) 

22N(2N + l)! 0 1-'0 N o,-,N ' 
(14.119) 

as 

(N) (-l)N (2N+l) 
f3N = 22N(2N + 1)! N ' 

(14.120) 

which was first derived by Mathieu. For N = 1 this formula reproduces our earlier result, 

/3il) = -1/8. ■ 

In order to determine the first nonleading term 13<:]_1 of se1, Eq. (14.105), and the 
eigenvalue )q (q) we substitute se1 into the angular Mathieu ODE, Eq. (13.181), using 
the trigonometric identities 

2cos2risin(2v + l)ri = sin(2v + 3)ri + sin(2v - l)ri 

and 

d 2 sin(2v + l)ri 2 
--d-.,,~2 -- = -(2v + 1) sin(2v + l)ry. 
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This yields 

d2se1 2 2 . . . 
0= dr,2 +()..1- qcos r,)se1=q(smr,-sm3r,)+)..1smr,-sinr, 

oo [ (-l?qv ] + '°'[AI - (2v + 1)2] 2 + f3v(v+) 1qv+l + · · · sin(2v + l)r, 
~ 2 vv!(v + 1)! 
v=I 

-q~[ 2 (-q)v +f3v(v+)lqv+l+···](sin(2v+3)r,+sin(2v-l)r,) 
~ 2 vv!(v + 1)! 
v=I 

= ()..1 -1 +q-q[- 2;,2! +/Jil)q2+-·•])sinr, 

+ sin3r,[-q - q (24~~3! + !3?)q3) + ()..1 - 32) (- 2i2! + /3il)q2)] 

+sin(2v+l)r,[)..1-(2v+1)2J( 2 (-q? +f3~11qv+l) 
2 vv!(v + 1)! 

· 2 1 -q (v+I) v+2 ( 
( )v+l ) 

- q sm( v + )1'/ 22(v+ll(v + l)!(v + 2)! + f3v+2 q 

( 
( )v-1 ) • -q (v-]) V 

- q sm(2v + l)r, 2( I) + f3v q + · · · · 2 v- (v - l)!v! 
(14.121) 

In this series the coefficient of each power of q within different sine terms must vanish; 
that of sin 1'/ being zero yields the eigenvalue 

l 2 OJ 3 )..1(q)=l-q- 8q +/32 q +···, (14.122) 

with fJfl = 1/26 coming from the vanishing coefficient of q2 in sin3r,. Setting the coeffi­
cient of ( -q) v in sin(2 v + 1) 1'/ equal to zero yields the identity 

[ l - (2v + 1)2] l + l = 0 (14 123) 
22vv!(v + l)! 22(v-ll(v - l)!v! ' · 

which verifies the correct determination of the leading terms {J~v) in Eq. (14.120). The 
vanishing coefficient of qv+l in sin(2v + l)r, yields 

c w+1 
- + [l - (2v + 1)2]/J(v) - /J(v-l) = 0 (14.124) 

22vv!(v + l)! v+l v , 

which implies the main recursion relation for nonleading coefficients, 

4 ( 1)/J(v) /J(v-1) (-l)v+l 
vv+ v+1=-v +22vv!(v+l)!' (14.125) 

for the first nonleading terms. We verify that 

(v) (-l)v+lv 

f3v+I = 22v+2(v + 1)!2 (14.126) 
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satisfies this recursion relation. Higher nonleading terms may be obtained by setting to 
zero the coefficient of qv+z, etc. Altogether we have derived the Fourier series for 

oo [ (-q)v (-q)v+I V ] 
se1 (17, q) = sin 17 + '°' 2 + 2 +z 2 + · · · · sin(2v + 1)17. ~ 2 vv!(v + 1)! 2 v (v + 1)! 

v=I 

(14.127) 

A similar treatment yields the Fourier series for se2n+ 1 ( 17, q) and se2n ( 17, q). An invariance 
of Mathieu's ODE leads to the symmetry relation 

ce2n+I (17, q) = (-l?se2n+l (17 + n /2, -q), (14.128) 

which allows us to determine the ce2n+l of period 2n from se2n+I • Similarly, 
ce2n(17 + n/2, -q) = se2n(17, q) relates these Mathieu functions of period n to each other. 

Finally, we briefly outline a derivation of the Fourier series for 

00 00 

ceo(17, q) = 1 + Lt3n(q)cos2n17, tJn(q) = L tJt)qm' (14.129) 
n=I m=n 

as a paradigm for the Mathieu functions of period n. Note that this normalization agrees 
with Whittaker and Watson and with Hochstadt in the Additional Readings of Chapter 13, 
whereas in AMS-55 (for the full reference see footnote 4 in Chapter 5) ceo differs by a 
factor of 1/ ,./2. The symmetry relation from the Mathieu ODE, 

ceo( ~-17, -q) = ceo(17, q), (14.130) 

implies 

tJn(-q) = (-lltJn(q); (14.131) 

that is, t32n contains only even powers of q and t32n+ 1 only odd powers. 
The fact that the power series for t3n(q) in Eq. (14.129) starts with qn can be proved by 

the similar expansion 

00 00 

ceo(17, q) = LYn(q)cos2n 17, Yn(q) = L yjnlqi\ (14.132) 
n=0 µ,=0 

as for se1 in Eqs. (14.105) to (14.112). Substituting Eq. (14.132) into the integral equation 

ceo(17, q) = co(q) 1_: e2i.jijcos0 cos11ce(0, q) d0, (14.133) 

inserting the power series for the exponential function (odd powers cos2m+l 0 drop out) 
and equating the coefficients of cos2m 17 yields 

22m oo lrr 
Ym(q) = CJ (q)(-q)m __ L Yµ,(q) cos2m+Zµ, 0 d0. 

(2m)! -rr µ,=0 

(14.134) 
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This recursion relation shows that the power series for Ym (q) starts with qm. We expand 

with Fourier coefficients 

n 

cos2n T/ = L Anm cos2mr, 
m=O 

Anm = ~ {rr/2 cos2n r,cos2mr,dr, = 2~_ 1 ( 
2n ), 

n: f-rr/2 2 n -m 

(14.135) 

(14.136) 

which are nonzero only when m s n. Using this result to replace the cosine powers in 
Eq. (14.132) by cos2mr, we obtain 

00 

f3n(q) = L AmnYm(q), (14.137) 
m=n 

confirming Eq. (14.129). 
Proceeding as for se1 in Eqs. (14.113) to (14.120) we substitute Eq. (14.129) into the 

integral Eq. (14.133) and obtain 

oo 22m m 
'°' (- l)m --qµ,+m '°' Amv cos(2vr,) Am,. 
~ (2m)! ~ 

m,µ,, v,).=0 v=O 

00 

L amf3t)qm+µ,cos(2vr,), (14.138) 
m,µ,,v=O 

with 

1 00 

2n:ci (q) = I; <Xmqm. (14.139) 

Upon comparing the coefficient of qN cos(2vr,) with N = m + µ, we extract the recursion 
relation for leading coefficients f3~n) of ceo 

N 2m m N 
'°'(-l)m-2 -A '°'f3().) A -'°'a f3(v) 
~ (2m)! mv ~ N-m m). - ~ m N-m' 
m=v ).=0 m=O 

(14.140) 

with Anm in Eq. (14.136). 

Example 14.7.2 LEADING COEFFICIENTS FOR ceo 

The case N = 0, v = 0 of Eq. (14.140) yields 

A5of36°) = aof36°), (14.141) 

with Aoo = 1 and f360J = 1 from normalizing the leading term of ceo to unity so that ao = 1 
results. 

The case N = 1, v = 0 yields 

Aoof3}0l Aoo - 2A10[f36°l Aw+ /361) All]= aof3}0l + a1f36°l, (14.142) 
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with /361) = 0 by Eq. (14.129). This simplifies to 

i 0> - !lo) - a1l0l + l 0l (14.143) I 20 - 0 I• 

where f3}0> drops out. We know already that fJfl = 0 from the leading term unity of ceo. 
Therefore, a, = -1 /2. 

For the case N = 1, v = 1 we obtain 

-2A11fJ6°) A10 = aofJ}l), (14.144) 

with Arn= 1/2 = A11, from which /J~l) = -1/2 follows. For the case N = 2, v = 2 we 
find 

24 (0) (2) 
4!23 /Jo A20 = aof32 ' (14.145) 

with A20 = 3/8, from which tJ?) = 2-4 follows. The general case N, v = N yields 

22N 
(-l)N (2N)! ANNf360) ANo = aofJ't'l, (14.146) 

with ANN= 2-2N+I, ANo = 22L, f:), from which the leading term 

(N) (-l)N (2N) (-l)N 
fJN = 22N-I (2N)! N = 22N-I N!2 (14.147) 

follows. ■ 

The nonleading terms fJ't')..1 of ceo are best determined from the angular Mathieu ODE 
by substitution ofEq. (14.129), in analogy with se,, Eqs. (14.121) to (14.127). Using the 
identities 

2cos(2n77) cos 277 = cos(2n + 2)77 + cos(2n - 2)77, 

d2 
- 2 cos(2n77) = -(2n)2cos(2n77), 
d17 

we obtain 

d 2ceo 
- 2- + (,,o(q) - 2q cos277)ceo = 0 

d17 

= ),.o(q) -q(-~ + ;1q3) + ... 

(14.148) 

~( 4 2) 2 [ (-q)n R(n) n+2] + ~ AO - n cos( n17) 22n-ln!2 + 1-'n+2q 
n=I 

~[ (-qt R(n) n+2] 
- q ~ 22n-ln!2 + 1-'n+2q 

x [ cos(2n + 2)77 + cos(2n - 2)77]. (14.149) 
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Setting the coefficient of cos(2n17) for n = 0 to zero yields the eigenvalue 

1 2 7 4 
Ao= --q + -q + .... 

2 27 

The coefficient of cos(2n17)qn yields an identity, 

-1 n+l 4n2 (-lt -0 
( ) 22n-ln!2 + 22n-3(n -1)!2 - ' 

(14.150) 

(14.151) 

which shows that the leading term in Eq. (14.147) was correctly determined. The coeffi­
cient of qn+2 cos(2n71) yields the recursion relation 

_ 4n2 (n) _ (n-1) (-l)n+l (-It -0 
f\+2 f3n+I + 22nn!2 + 22n+l(n + 1)!2 - · 

It is straightforward to check that 

(n) n+l n(3n + 4) 
f3n+2 = (-l) 22n+3(n + 1)!2 

satisfies this recursion relation. Altogether we have derived the formula 

ceo ( 11, q) = 1 + cos 271 [ - ~q2 + ; 1 q 3 + • • • ] 

+cos411[q
2 

+ · · ·] +cos611[-~ + · · ·] 25 2132 

(14.152) 

(14.153) 

- oo [ (-qr (-l)n+ln(3n +4)qn+2 ] 
- 1 + '°' cos(2n71) 2 1 2 + 2 +3 2 + · · · · LJ 2 n- n! 2 n (n + 1)! 

n=I 

(14.154) 

Similarly one can derive 

(14.155) 

whose eigenvalue is given by the power series 

1 2 1 3 
AJ (q) = 1 + q - -q - -q + · · · . 

8 26 
(14.156) 



14.7 Additional Readings 

ce0(ri; q) ce,(ri; q) 
cea(l'I; q) 

1.5 ..... 
.. 
'• . 

0.5. . . . . . t . · .. 

-1 
30 30 

q 
0 

q 
0 0 1112 • ,. 

" 
se,('1; q) se2(11;q) se3('1; q) 

1.5 

: . 

0.5 .. .. . . , . ; 

-1 
30 30 

q O 0 

FIGURE 14.12 Angular Mathieu functions. (From Gutierrez-Vega et al., 
Am J. Phys. 71: 233 (2003).) 
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Exercises 

14.7.1 

14.7.2 

14.7.3 

Determine the nonleading coefficients P!12 for se1. Derive a suitable recursion relation. 

Determine the nonleading coefficients P!14 for ceo. Derive the corresponding recursion 
relation. 

Derive the formula for ce1, Eq. (14.155), and its eigenvalue, Eq. (14.156). 

Additional Readings 

Carslaw, H. S., Introduction to the Theory of Fourier's Series and Integrals, 2nd ed. London: Macmillan (1921); 
3rd ed., paperback, New York: Dover (1952). This is a detailed and classic work; includes a considerable 
discussion of Gibbs phenomenon in Chapter IX. 

Hamming, R. W., Numerical Methods for Scientists and Engineers, 2nd ed. New York: McGraw-Hill (1973), 
reprinted Dover (1987). Chapter 33 provides an excellent description of the fast Fourier transform. 

Jeffreys, H., and B. S. Jeffreys, Methods of Mathematical Physics, 3rd ed. Cambridge, UK: Cambridge University 
Press (1972). 

Kufner, A., and J. Kadlec, Fourier Series. London: Iliffe (1971). This book is a clear account of Fourier series in 
the context of Hilbert space. 
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Lanczos, C., Applied Analysis, Englewood Cliffs, NJ: Prentice-Hall (1956), reprinted Dover (1988). The book 
gives a well-written presentation of the Lanczos convergence technique (which suppresses the Gibbs phenom­
enon oscillations). This and several other topics are presented from the point of view of a mathematician who 
wants useful numerical results and not just abstract existence theorems. 

Oberhettinger, F., Fourier Expansions, A Collection of Formulas. New York, Academic Press (1973). 

Zygmund, A., Trigonometric Series. Cambridge, UK: Cambridge University Press (1988). The volume contains 
an extremely complete exposition, including relatively recent results in the realm of pure mathematics. 




