The problem I have is about the derivation of the fact that the escape rate is the leading eigenvalue of the Perron-Frobenius-Operator. In order to calculate the escape rate, one has to examine the asymptotic behaviour of the quantity

\[\Gamma_n = \frac{1}{|M|} \int_M dx \int_M dy \delta(y - f^n(x)). \]

(1)

Of course the \(dx \)-integral is nothing but the Perron-Frobenius-Operator \(L^n \) acting on an uniform initial density \(i(x) = 1 \forall x \in \mathcal{M} \):

\[\Gamma_n = \frac{1}{|M|} \int_M dy (L^n i)(y). \]

(2)

If I understood it correctly, you argue in the following way: the initial density \(i(x) \) can be expanded in terms of eigenfunctions of \(L \),

\[i(x) = \sum \alpha c_\alpha \varphi_\alpha(x), \]

(3)

and therefore, for large \(n \), \(\Gamma_n \) is dominated by \(\lambda_0 \), the leading eigenvalue of \(L \): \(\Gamma_n \sim \lambda_0^n \) as \(n \to \infty \).

My first and most important question is the following: is the decomposition (3) really possible in an open system?

If trajectories can escape and the invariant set \(\Lambda \) is only a subset of \(\mathcal{M} \) of zero Lebesgue measure, I think the eigenfunctions \(\varphi_\alpha \) must be zero almost everywhere. Why? The eigenvalue condition

\[(L^n \varphi_\alpha)(y) = \int_M dx \delta(y - f^n(x)) \varphi_\alpha(x) = \lambda_\alpha^n \varphi_\alpha(y) \]

(4)

yields that \(\varphi_\alpha \) can have nonzero values only on the set \(\bigcap_{k=0}^n f^k(\mathcal{M}) \). This set becomes arbitrary small for large \(n \), and (4) holds for every \(n \), if \(f \) is invertible, it holds even for negative \(n \). Then, all the \(\varphi_\alpha \) must be concentrated on the invariant set \(\Lambda \), or at least on the set \(\Lambda^\infty_+ := \bigcap_{k=0}^\infty f^k(\mathcal{M}) \), and it is impossible to expand \(i(x) = 1 \forall x \in \mathcal{M} \) in terms of the eigenfunctions \(\varphi_\alpha \).

So how does it work? Do I have to think of the \(\varphi_\alpha \) as functions that are a little bit smoothed around \(\Lambda^\infty_+ \)? For large \(n \), only points close to \(\Lambda^\infty_+ \) contribute to the \(dy \)-integral in (1). Or am I dead wrong?

If this problem is solved, there are two questions remaining. Is \(\{ \varphi_\alpha \} \) a basis for a (properly chosen) function space? And can I be sure that the coefficient \(c_0 \) in (3) isn’t zero? Otherwise \(\lambda_0 \) would not be dominating.

Thank you very much for looking at this.