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Chapter 5:

 Fractals II
Goals:

• To understand why the scaling exhibited by period-doubling
bifurcation sequences of one-dimensional maps is universal, and
to calculate the scaling exponents.

• To examine other natural processes which give rise to fractal
structures.

This chapter continues our study of self-s imi lar structures, or
fractals.  First, we w i l l  pursue our investigation of the period-
doubling bifurcation sequence of the logistic map and get some
understanding of why the scaling exponents α and δ which
characterize it are universal.  We hope that this will give you some
sense of how understanding fractals can give new insight into
natural phenomena.  Then we w i l l  survey a few other systems in
nature in which fractals arise.  Some of these other systems are not
nearly so well understood, so perhaps you will get some idea of the
scope of the question of why fractals are seen in many different
situations.

A.  The universality of the period-doubling bifurcation
sequence.  In the previous chapter and in Required Project I I  we
investigated the scaling behavior of the period-doubling sequence of
the logistic map.  We saw that the sequence of r-values for the
orbits of period 2n  obeys

lim
n→∞

rn−1 − rn− 2

rn − rn−1

= δ ,

where δ = 4.6692016...., and that the sequence of values
yn = f 2n−1

x =1 2( ) satisfies

lim
n→∞

yn−1 − yn− 2

yn − yn−1

= −α  ,

with α = 2.502907875.....  These results mean that the bifurcation

diagram looks the same when it is magnified about the point ( x =
1

2
,
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r=r∞=3.569945669....) by a factor -α in the x-direction and a factor δ
in the r-direction.  This mapping of the bifurcation diagram onto
itself under certain rescaling factors is known as self-s imi lar ity
(because the diagram is similar to itself).  In Required Project II you
show that α and δ are the same for some different choices of the
map function.

In this chapter we address the question of why α and δ have the
values that they do and why they are the same for many different
mapping functions.  We w i l l  write an equation that embodies the
observation of self-similarity, and we will find that this equation
determines the values of the exponents α and δ.  In other words,
knowing that self-simi lar ity exists is enough information to
determine what the magnification factors must be.  This result
explains the observation of universality (different maps having the
same exponents).

We start by plotting a graph of the time series xj  versus for the
logistic map for the parameter value r = r∞, starting from the point

x j = 0 =
1

2
.
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Figure 5.1  Time series of x-values from logistic map at r = r∞,

starting from x j = 0 =
1

2
.

Figures 5.1 and 5.2 are two different graphs of the same time series.
Notice that the axes used for figure 5.2 have different scales than
those used in figure 5.1:  the j-axis is scaled up by a factor of 2 and
the x-axis is scaled down by a factor of roughly 2.5 (centered on
x=0.5).
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Figure 5.2  The same time series as figure 5.1, plotted with
different scales.

Figure 5.2 looks a lot like figure 5.1 turned upside down.  In fact, we
claim (and, in Required Project II, you will check this claim) that a

plot of the time series of the logistic map at r=r∞ near x =
1

2
 has the

following property:  If the j-axis of the plot is scaled by a factor of

two, and if the vertical axis is inverted about x =
1

2
 and then scaled

by the factor α, then al l  the points in the rescaled plot can be
superimposed directly onto those in the original graph.  In other
words, we claim that if we label the points which appear in figure
5.1 by an index k (i.e., ignoring those iterates which are too far from

x =
1

2
 to appear on the graph), so that the plot is of a sequence {xk=0,

xk=1, xk=2, ...},
1 then every xk in the sequence satisfies

                                    
1You should be able to show that k=4j in figure 5.1, and k=8j in figure 5.2.
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−α x2k −
1

2
 
 

 
 = xk −

1

2
. (5.1)

Now we look for a function that generates a time series that has the
self-similarity property embodied in equation (5.1).  We define

zk = xk −
1

2
, the difference between the iterate xk and the maximum at

x =
1

2
, and rewrite the self-similarity equation (5.1) as:

- αz2k =  zk . (5.2)

Equation (5.2) holds for all k.3  In particular, it holds if we replace k
with k+1:

      −αz2k + 2 = zk +1 (5.3)

We are looking for the mapping function g that generates this
sequence via zk +1 = g(zk ).   We re-write (5.3) as:

zk +1 = g zk( ) = −αz2k + 2 = −αg z2 k +1( ) = −αg g z2k( )( )
g zk( ) = −αg g z2k( )( ) (5.4)

Therefore, using (5.2), we have:

g zk( ) = −αg g −
zk

α
 
 

 
 

 
 

 
 , (5.5)

and the function g must satisfy:

g z( ) = −αg g −
z

α
 
 

 
 

 
 

 
 . (5.6)

Equation (5.6) is called a renormalization-group equation.  It says
that a plot of every other point on the graph can be rescaled so that
it looks identical to the original graph of every point.  Our derivation
of equation (5.6) uses the fact that the time series graph looks the
same when it is rescaled, but does not put in any information about
the rescaling factor α other than the fact that it exists.
Nonetheless, equation (5.6) determines both g and α.

                                    
2Strictly speaking, equation (5.1) holds only in the limit as x approaches 1/2.  But in
Required Project II you should find that it works well for x in the range shown in figure
5.1.

3Recall that k is not the kth iterate in the map, but rather the kth iterate to fall within the
limits of our graph.
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We see this by solving equation (5.6).  We do not assume that α i s
known, and solve for it along with g.  We do assume that the function
g(z) has a quadratic maximum (which, as you recall, is true for
“generic” functions) at z=0 (if the maximum is not at zero, we
redefine z to be the distance from the maximum).

One way to solve equation (5.6) is to use a Taylor series expansion.
We expand g(z) in a Taylor series about z = 0 and write:

g(z) = A0 + A2z
2 + A4z

4 + . . . . ,  (5.7)

where the A i  are as-yet-unknown coefficients.4  The form (5.7) i s
then substituted into equation (5.6), yielding

A0 + A2 z2 + A4z
4 + . . . .= −α A0 +

A2

α 2
A0 + A2z

2 + A4z
4 + . . . .( )2 

 

                                           +
A4

α 4
A0 + A2z

2 + A4z
4 + . . . .( )4

+ . . . . 
 
 .

 (5.8)

Now we equate the coefficients of each order in z.  There are an
infinite number of terms in the equation, so in practice one
truncates the expansion at some finite order in z.  Better and better
approximations to g and α are obtained by keeping more and more
terms in the Taylor series.  Here we keep the two lowest-order
terms which are the coefficients of z0 and z2.  Equating the
coefficients of these powers yields

 

  

z(0) :           A0 = −αA0 −αA0
2 A2 −αA0

4A4 +K

z(2) :           A2 = −
2

α
A0 A2

2   .
(5.9)

Now the first equation of (5.9) is a bit unhappy, since it relates the
coefficient A0 to all the coefficients in the Taylor series.  However,
we can be optimistic and assume that the A i decrease rapidly as i
increases, so that it is a good first approximation to keep only A0

and A2.  We ask you improve the approximation and to investigate
whether this assumption is indeed true in a Menu Project.  Once we
make this assumption and ignore all terms except those which have
only A0 and A2 in them, we find that Eq. (5.9) becomes:

                                    
4There is no linear term in the Taylor series because we are expanding about the
maximum of g(z).  In fact, in can be shown that there are no odd terms at all in the
Taylor series; this is plausible because g(y) can be obtained by composition of a function
which is even in z.
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          1 = −α(1+ A0 A2),

          α = −2A0A2   .
(5.10)

Solving Eq. (5.10), we find α=1+√ 3, which is not far from the exact
value α = 2.502907875.....

Menu Project.  Calculating g and α to higher accuracy.
In this project, you will determine α and g to higher accuracy
than is done here in the class notes.   First, please extend the
Taylor-series calculation presented above to higher orders in
z.  How does the value of α and the form of g depend on the
number of terms that are kept in the Taylor series?  Does the
process appear to converge?  Then, we would like you to
compare your results for g to those obtained when you use
Feigenbaum's result that g(z) can be obtained by repeatedly
iterating any function f(z) with a quadratic maximum at z=0
and rescaling appropriately.  Specifically, Feigenbaum
showed that g(x) can be written as the limit:

 g z( ) = lim
n→∞

−α( )n
f 2n z

−α( )n

 
 
  

 
  (5.11)

where the map f is iterated at the parameter value r = r∞ .
(We say a bit about this method in the Appendix.  For more
detailed expositions, see, for example, the book by Hilborn.)
In practice, one plugs in the known value of α (α i s
determined by equation (5.8) because the limit exists only for
that particular value), and then iterates some large but finite
number of times to obtain an approximate result for g.   How
does your result for g depend on the number of iterations you
perform on the map function?  How does it compare to the
results you obtained using the Taylor series method?  

So far we have not mentioned δ.  It is also determined by equation
(5.6), and so therefore also is universal.  Unfortunately, calculating δ
is much more involved than finding α, so we have left it as a project
for the intrepid among you.   
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Menu Project.  Calculating δ.  In this project, you w i l l
calculate δ, which is a measure of how many iterations are
required to determine that the parameter value r is not
exactly equal to r∞ .  We recommend that you consult the
references to see how to do this (Hilborn, section 5.7 has a
heuristic discussion; the rigorous derivations are in M. J.
Feigenbaum, J. Stat. Phys. 19 , 25 (1978); 21 , 669 (1979));
here we say just a few words to give an overview of the
procedure.

To calculate δ you need to how the map function itself
evolves under iteration.  In particular, you need to figure out
which deviations of the map function f(z) from the universal
function g(z) are the ones that cause it to diverge from the
universal function as it is iterated.  Then, you will consider
functions which are close to the fixed function and express
the evolution in terms of equations which are linearized
about the fixed function g(z).  You w i l l  find that the
deviations can be described in terms of an eigenfunction and
an eigenvalue, the latter of which is δ.  Since this
eigenfunction grows by the factor δ each time the map is
iterated, whereas al l  the other deviations shrink under
iteration, it determines the deviations from criticality and
hence the convergence of the sequence of r-values.

To summarize this section, we have seen that the observation of
scaling behavior in the graph of the iterates of the logistic map
turns out to be sufficient knowledge to predict the values of the
magnification factors.  We have shown how one can calculate the
universal quantities α and g.  We have shown that the scaling
behavior of period-doubling bifurcation sequence is the same for any
map function with a quadratic maximum.

B.  Fractals elsewhere in nature.

Fractals are observed many places in nature, in systems as diverse
as bacterial colonies, mountain ranges, and clouds.  One of the great
open questions in physics is why fractals are observed in so many
different systems.  Here we discuss a few other situations in nature
in which fractals appear.
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B.1. The Random Walk.

A random walk is very simple: start at a point (in a 2 dimensional
plane, say) and take a step of size L in a randomly chosen direction.
Randomly chose a new direction and take another step of size L.
Continue this process, and you get a path that is called a random
walk. Random walks (in 1,2, and 3 dimensions) are a very useful
model for many physical processes, such as Brownian motion or
diffusion of a particle.

Figure 5.3  Two random walks.

Problem 5.1 . The random walk.   Write a program which
implements the two-dimensional random walk procedure described
above and which calculates how the average (mean-square) distance
from the starting point varies with i ) the step size L, and i i )  the
number of steps N.  Since the process involves random numbers
(which you can generate with the Math.random method), you should do a
fairly large number of random walks for each L and N, and average
the results.  First, fix L and obtain average distances for, say, ten
values of N (none smaller than about 1000).  You should take data "on
the fly" in the following manner.  Let your particle walk 1000 steps,
calculate and store the distance from the origin, let it walk another
1000 steps, calculate and store the distance from the origin, etc.
The average distance, dav, should vary as dav ∝ Nγ for some exponent γ.
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Now fix N, and try varying L. Again, dav should vary as a power of L,
dav ∝ Lβ.  Can you guess, a priori, what γ and β should be? Does this
computer experiment verify your intuition?  A random walk does not
look exactly the same when it is magnified (since, after all, a
different random number gets picked at every step), but there is a
statistical self-similarity.  How do the values of γ and β reflect this
self-s imi lar ity?

Menu Project.  Diffusion Limited Aggregation (DLA)
This project explores the use of random walks to model an
interesting growth process of dendritic structures made up
of particles that stick together when they come in contact.
The particles are assumed to diffuse slowly through space
until they come in contact with another particle, at which
time they stick.  The computer implementation is simple in
concept: On a lattice (i.e. an array of points) put a particle at
the origin (the "seed").  Then start another particle from far
away, and allow it to execute a random walk (with step size
equal to the lattice spacing).  After a time, it will land on
one of the points adjacent to the particle at the origin.  Stop
the particle there, and begin another one from far away etc.
The structure that develops has a beautiful, tree-like, fractal
shape.  Unfortunately, it grows very slowly.  This is a project
that you will want to run as long as possible.  Compute the
fractal dimension of your clusters, defined by the relation N
∝ Rd, where N is the number of particles in the cluster, R is
the "radius" of the cluster (typically the radius of gyration),
and d is the fractal dimension.  Grow several large
aggregates to get an idea of the accuracy of your estimate
for d.

B.2. River networks.

Figure 5.4 (at http://www.northnet.com.au/barnesr/fractdtm.html)
is an image of the topography in gorge country northeast of
Armindale and 70 km east of Glen Innes in Australia, which includes
the drainage basins of the Mann, Boyd, Nymboida, and Clarence rivers.
The image is a false-color map of the digital elevation data of the
area.
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Figure 5.4  Topography of river drainage basin.

Analysis of pictures like figure 5.4 shows that these systems are
statistically self-similar (e.g., fractal).

Why river basins are fractal is a matter of some debate.  Several
plausible models have been proposed that lead to se lf-s imi lar
drainage networks (some of which are in the book by Ignacio
Rodriguez-Iturbe and Andrea Rinaldo, Fractal River Basins:  Chance
and Self-Organization, Cambridge University Press (1997)).  It is an
open question whether there is a fundamental unifying mechanism
that causes fractals to emerge from many different models.  One
interesting view on this subject is presented by Per Bak in his book
How Nature Works:  The Science of Self-Organized Crit ical ity,
Springer-Verlag, 1996.
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Menu Project.  A river network model.   Chapter 19  of
Gould and Tobochnik (2nd edition) discusses one model of
river networks (from R.L. Leheny, Phys. Rev. E 52 , 5610
(1995)), in which a rectangular lattice of points describes an
eroding terrain with the height of the land, h(x,y), specified
at each point.  The simulation begins with the landscape as a
featureless incline:  h(x,y) = Iy.  Then the following rules are
implemented:
1)  Precipitation lands at a random site on the lattice.
2)  Water flows from this site to one of the four nearest
neighbors with a probability proportional to eE∆h, where ∆h is
the height difference between the site and the neighbor, and E
is a parameter of the model.  If ∆h<0, this probability is set
equal to zero.
3)  Step 2) is repeated until the water reaches the bottom of
the lattice, y=0.
4)  Each point that has been visited by the flowing water has
its height reduced by a constant amount D.  This process
represents erosion.
5)  Any site at which the height difference ∆h with a neighbor
exceeds a threshold M is reduced in height by an amount ∆h/S,
where S is another parameter in the model.

Write a program that implements this model.   You can get an
idea of suitable parameters to use from Leheny's paper.   The
resulting river network is defined as follows:  every lattice
point receives one unit of precipitation which traces a path
of steepest descent, without eroding the terrain, until it
reaches the lattice edge, y=0; the river network is defined as
all points through which at least R units flow.    Analyze the
network that is generated at different times.  Does the river
network appear to be fractal?  How does evolving the model
for longer times affect the network's properties?

Appendix:  Obtaining g(z) via functional
iteration.
In this chapter we solved equation (5.6) for g(z) by expanding g(z) in
a Taylor series about z = 0 and equating coefficients of the different
powers of z.  However, the time series plotted in figures 5.1 and 5.2
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was generated by iterating repeatedly the logistic map (and time
series with identical scaling properties can be generated by
iterating any function with a quadratic maximum).  Therefore, i t
should be (and indeed is) possible to obtain g(z) directly from the
original mapping function f.  We say a bit about this other method of
obtaining g(z) here.

The idea behind this method is to keep track of what happens when
the map is applied repeatedly.   (Applying the function f over and
over is called functional iteration.)  We will implement on the map
function f the procedure that we used above when we rescaled the
axes of the time series graph in figures 5.1 and 5.2.  We again define

zj = x j −
1

2
 and consider the time series generated by iterating the

map f with r = r∞, starting from z0 = 0.5

Now we write a formula for the function that yields the points that
form the time series on our rescaled graph in terms of the original
map function f.  Recall that each rescaling of the time series graph
is by a factor of 2 on the j-axis and a factor of -α on the x-axis.  To
keep track of this rescaling, we define new indices n and m via
j = m2n , where n keeps track of the number of magnifications.  The

fact that after rescaling the time series graphs look the same means
that there is a well-defined n→∞ limit to the sequence:

−α( )n
z

2 n m
= −α( )n

f 2n m z = 0( ) = −α( )n
f 2n

f 2n m −1( ) z = 0( )( ) . (5.12)

Now we define the variable um n( ) via:

um n( ) ≡ −α( )n
f 2n m −1( ) z = 0( ) , (5.13)

so that

−α( )n
z

2 n m
= −α( )n

f 2n um n( )
−α( )n

 
 
  

 
 . (5.14)

Recall that, for large n, f 2n m −1( ) z = 0( ) ≅ −
1

α
f 2n−1 m −1( ) z = 0( )  (This fol lows

from the rescaling pictured in figures 5.1 and 5.2, and embodied in
equation (5.2).)  This means that in the limit n → ∞, um n( ) becomes
independent of n:  um n( ) → um . The left hand side of equation (5.14)

                                    
5The map function f for z is related in a simple fashion to the map function for x, since z
is just x shifted by a constant.
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also has a well-defined n → ∞  limit, so we can define the function g
as:

g um( ) ≡ lim
n→∞

−α( )n
f 2 n um

−α( )n

 
 
  

 
 . (5.15)

Thus the function g z( ) can be written as:

g z( ) = lim
n→∞

−α( )n
f 2n z

−α( )n

 
 
  

 
 . (5.16)


