mathematical methods - week 3

Go with the flow

Georgia Tech PHYS-6124

Homework HW #3 due Tuesday, September 8, 2020

== show all your work for maximum credit,

== put labels, title, legends on any graphs

== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the exerWeek3.tex

Exercise 3.1 Rotations in a plane 4 points
Exercise 3.2 Visualizing 2-dimensional linear flows 6 points

Bonus points

Exercise 3.3 Visualizing Duffing flow 3 points
Exercise 3.4 Visualizing Lorenz flow 2 points
Exercise 3.5 A limit cycle with analytic Floquet exponent 6 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 13, 2020
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http://chaosbook.org/~predrag/courses/PHYS-6124-20/exerWeek3.tex
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Week 3 syllabus Tuesday, September 1, 2020

Typical ordinary differential equations course spends most of time teaching you
how to solve linear equations, and for those our spectral decompositions are very in-
structive. Nonlinear differential equations (as well as the differential geometry) are
much harder, but still (as we already discussed in sect. 1.3), linearizations of flows are
a very powerful tool.

This week’s lectures are related to AWH Chapter 7 Ordinary Differential Equations
(click here)

@ Go with the linear flow : full Tue lecture

— Sect. 3.2 Linear flows
— AWH Section 7.2 First-order equations
— Sect. 3.3 Stability of linear flows
) Local stability: Stability matrix (already covered in the above full lecture

@ Go nonlinear : full Thu lecture (includes the next 7 videos, but in BlueJeans
mangled resolution; still the lecture is more than the sum of the 7 clips)

B Lorenz flow

B Strange attractors

@ Strange attractors - Lorenz again
@ Lorenz again (apologies)

@ Roessler flow

@ Computing is like hygiene, personal

@ Dynamical systems : a summary

@ Mixed phase space; Jacques Laskar rant

@ Computing hygiene; the obligatory Gibson rant, take #2

3.1 Other sources

As every week, feel free to ignore extra reading and videos for this week. What I cover
in the online lecture is all that I hope you take home with you.

* Just as you had learned everything about linear ODEs, this tweet comes along :(

@ Dynamical systems
GaTech College of Unprofessional Education insisted on making me a talking
head in a GaTech branded video. I hated it. I fired them. They fired me. I do
not even know who “they” were, but I got to teach the rest of the course on a
blackboard. Until COVID-19 that reduced us all to talking heads.


http://ChaosBook.org/library/ArWeHa13chap7ODEs.pdf
http://YouTube.com/embed/ytDOzuCUkfc 
http://YouTube.com/embed/Lf3-atjcEhs 
http://YouTube.com/embed/MUZaPuhmQD8 
http://YouTube.com/embed/dZUH4xVbKQM 
http://YouTube.com/embed/PcQsSv2hzME 
http://YouTube.com/embed/qi1Lxl-wdBs 
http://YouTube.com/embed/_otr5ypzuK8 
http://YouTube.com/embed/hRZDhQmW-04 
http://YouTube.com/embed/9jfHKYgGrs4 
http://YouTube.com/embed/_OmlEEAP61Q 
http://YouTube.com/embed/TXq1FQfJTuU 
http://YouTube.com/embed/kTz3hRYiMb4 
https://twitter.com/Francis16833887/status/1300940915318681600
http://YouTube.com/embed/CER5Y7w7APQ 
https://chaosbook.blogspot.com/2014/12/nonlinear-dynamics-course-taken-off.html

3.2. LINEAR FLOWS 41

@ Trajectories
© Equilibria

@ Orbits are time-invariant
I’'m so happy. I'm divorced of Unprofessional Education, and free of their mo-
ronic PowerPoints! But if you must,

@ Do the course in the Power Point format

@ Long live Bologna!

@ Join F Gibson solves the Navier-Stokes, take #1

@ Life in extreme dimensions: Fluttering flame front
@ Life in extreme dimensions: Constructing state spaces
@ Life in extreme dimensions: As visualized by dummies
@ What do these equations do?

e MIT 16-90 Computational methods is a typical mathematical methods in engi-
neering course. ODEs are discussed here.

* There are no doubt many online courses vastly better presented than this one -
here is a glimpse into our competition:
MIT 18.085 Computational Science and Engineering I .

* Optional reading: Sect. 3.4 Nonlinear flows
— Optional reading: AWH Section 7.8 Nonlinear differential equations

* Sect. 3.5 Optional listening

3.2 Linear flows

Linear is good, nonlinear is bad.

—Jean Bellissard
(Notes based on ChaosBook Chapter 2 Go with the flow).

A dynamical system is defined by specifying a state space M, and a law of motion,
typically an ordinary differential equation (ODE), first order in time,

z=w(x). 3.1)

The vector field v(z) can be any nonlinear function of x, so it pays to start with a
simple example. Linear dynamical system is the simplest example, described by linear
differential equations which can be solved explicitly, with solutions that are good for all


http://YouTube.com/embed/oPrmtd5U_UM 
http://YouTube.com/embed/cocPbUU8TMs 
http://YouTube.com/embed/g1Qj_eyiaaE 
https://www.edwardtufte.com/tufte/books_pp
http://YouTube.com/embed/zNwKIo_cXnQ
http://YouTube.com/embed/9p2R96zvPtY 
http://YouTube.com/embed/oAK3EBiVwYA 
https://ceps.unh.edu/person/john-gibson
http://YouTube.com/embed/BNR-idcCWAk 
http://YouTube.com/embed/S_l3r2T0wfE 
http://YouTube.com/embed/rlElreRmfeY 
http://YouTube.com/embed/2joYi7jVVl0 
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/numerical-integration-of-ordinary-differential-equations/
http://www.youtube.com/watch?v=0oBJN8F616U
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.2
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times. The state space for linear differential equations is M = R<, and the equations
of motion are written in terms of a state space point « and a constant A as

T=Ax. (3.2)
Solving this equation means finding the state space trajectory

z(t) = (x1(t), 22(t), . .., x4(t))

passing through a given initial point z. If x(¢) is a solution with 2(0) = xo and
y(t) another solution with y(0) = yo, then the linear combination az(t) + by(t) with
a,b € R is also a solution, but now starting at the point azg + byp. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

Solution of (3.2) is given by the exponential of a constant matrix

z(t) = J' g, (3.3)

usually defined by its series expansion (1.10)

=y oA A=t (34)
k=0

Jt — etA

and that is why we started the course by defining functions of matrices, and in par-
ticular the matrix exponential. As we discuss next, that means that depending on the
eigenvalues of the matrix A, solutions of linear ordinary differential equations are ei-
ther growing or shrinking exponentially (over-damped oscillators; cosh’s, sinh’s), or
oscillating (under-damped oscillators; cos’s, sin’s).

3.3 Stability of linear flows

The system of linear equations of variations for the displacement of the infinitesimally
close neighbor = + dx follows from the flow equations (3.2) by Taylor expanding to
linear order 5

v;

3xj

abi+5'ﬂci:vi(x+6a:)%vi(x)+z dx; .
J

The infinitesimal deviation vector dz is thus transported along the trajectory x(xo, t),
with time variation given by

d 81}1'
o) =30 g @)

(5I’j($0,t) . (35)

z=x(xzo,t)

As both the displacement and the trajectory depend on the initial point xo and the
time ¢, we shall often abbreviate the notation to x(zg,t) = x(t) — z, dz;(xo,t) —
0x;(t) — dz in what follows. Taken together, the set of equations

& =vi(x), Ox;= ZAij(ﬂ?)éxj (3.6)
J


http://youtube.com/embed/Lf3-atjcEhs
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governs the dynamics in the tangent bundle (z,dx) € TM obtained by adjoining the
d-dimensional tangent space dx € 7'M, to every point x € M in the d-dimensional
state space M C R?. The stability matrix or velocity gradients matrix

0
describes the instantaneous rate of shearing of the infinitesimal neighborhood of z(t)
by the flow. In case at hand, the linear flow (3.2), with v(z) = A z, the stability matrix

Aij(x) = UZ(SL‘) = Aij (38)

09: j
is a space- and time-independent constant matrix.

Consider an infinitesimal perturbation of the initial state, zq + dz. The perturbation
0x(zg, t) evolves as x(t) itself, so

Sx(t) = J'6z(0). (3.9

The equations are linear, so we can integrate them. In general, the Jacobian matrix J*
is computed by integrating the equations of variations

i =v;(z), Oz = ZA” x)ox; (3.10)

but for linear ODEs everything is known once eigenvalues and eigenvectors of A are
known.

Example 3.1. Linear stability of 2-dimensional flows:  For a 2-dimensional flow
the eigenvalues \1, \> of A are either real, leading to a linear motion along their eigen-
vectors, x;(t) = x;(0) exp(t);), or form a complex conjugate pair \v = p + iw, A2 =
u—iw, leading to a circular or spiral motion in the [z, z2] plane, see example 3.2.

These two possibilities are refined further into sub-cases depending on the signs of

the real part. In the case of real \1 > 0, A2 < 0, z1 grows exponentially with time, and x2
contracts exponentially. This behavior, called a saddle, is sketched in figure 3.1, as are

s
X7

Figure 3.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

&



exercise 3.1
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saddle out node in node
A A A
center out spiral  in spiral
A A
X X
X X

Figure 3.2: Qualitatively distinct types of exponents {A1, A2} of a [2 x 2] Jacobian
matrix.

the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when p. > 0, and in-spiral contracts
into (0,0) when p < 0; whereas, the phase velocity w controls its oscillations.

If eigenvalues \1 = X2 = X\ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.1. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[do x do] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 3.1 and 3.2.

Example 3.2. Complex eigenvalues: in-out spirals. =~ As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?

If X\, \e+1 eigenvalues that lie within a diagonal [2 x 2] sub-block M' C M form
a complex conjugate pair, {\i, \e+1} = {p + iw,u — iw}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e®,e*+1V} —
{Ree™ Tme®}. In this 2-dimensional real representation, M' — A, the block A is
a sum of the rescalingx identity and the generator of rotations in the {Ree¥, Ime™}

plane.
N Y e I 10 0 -1
A_{w M]_M[O 1}“‘]{1 0o |- (.11
Trajectories of x = Ax, given by x(t) = J'x(0), where (omitting e'®,e™, ... eigen-
directions)
Y cos wt —sin wt 3.12)
sin wt  cos wt ’ ’

spiral in/out around (x,y) = (0,0), see figure 3.1, with the rotation period T and the
radial expansion /contraction multiplier along the e'¥) eigen-direction per a turn of the
spiral:

T=2r/w, Avadial = 7" (3.13)
We learn that the typical turnover time scale in the neighborhood of the equilibrium
(z,y) = (0,0) is of order =~ T (and not, let us say, 1000 T, or 10™2T).
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Figure 3.3: (a) The 2-dimensional vector field for the Duffing system (3.14), together
with a short trajectory segment. (b) The flow lines. Each ‘comet’ represents the same
time interval of a trajectory, starting at the tail and ending at the head. The longer the
comet, the faster the flow in that region. (From ChaosBook [1])

3.4 Nonlinear flows

While linear flows are prettily analyzed in terms of defining matrices and their eigen-
modes, understanding nonlinear flows requires many tricks and insights. These days,
we start by integrating them, by any numerical code you feel comfortable with: Matlab,
Python, Mathematica, Julia, c++, whatever.

Duffing flow of example 3.3 is a typical 2-dimensional flow, with a ‘nonlinear os-
cialltor’ limit cycle. Real fun only starts in 3 dimensions, with example 3.4 Lorenz
strange attractor.

For purposes of this course, it would be good if you coded the next two examples,
and just played with their visualizations, without further analysis (that would take us
into altogether different ChaosBook.org/coursel).

Example 3.3. A 2-dimensional vector field v(z). A simple example of a flow is
afforded by the unforced Duffing system

i(t) = y()
gt) = —0.15y(t) + x(t) — =(t) (3.14)

plotted in figure 3.3. The 2-dimensional velocity vectors v(x) = (&,y) are drawn super-
imposed over the configuration coordinates (z,y) of state space M.

Example 3.4. Lorenz strange attractor. Lorenz equation

i oly - o)
t=vx)=|9y | =| pr—y—xz (3.15)
xy — bz

has played a key role in the history of ‘deterministic chaos’ for many reasons that you
can read about elsewhere [1]. All computations that follow will be performed for the
Lorenz parameter choice o = 10,b = 8/3,p = 28. For these parameter values the
long-time dynamics is confined to the strange attractor depicted in figure 3.4.


http://ChaosBook.org/course1
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Figure 3.4: Lorenz “butterfly” strange attractor. % 0 o 10
(From ChaosBook [1]) X

3.5 Optional listening

If you do not know Emmy Noether, one of the great mathematicians of the 20th cen-
tury, the time to make up for that is now. All symmetries we will use in this course
are for kindergartners: flips, slides and turns. Noether, however, found a profound
connections between these and invariants of our world - masses, charges, elementary
particles. Then the powerful plutocrats of Germany made a clown the Chancellor of
German Reich, because they could easily control him. They were wrong, and that’s
why you are not getting this lecture in German. Noether lost interest in physics and
went on to shape much of what is today called pure mathematics.

References

[1] R. Mainieri, P. Cvitanovié, and E. A. Spiegel, “Go with the flow”, in Chaos:
Classical and Quantum, edited by P. Cvitanovié, R. Artuso, R. Mainieri, G.
Tanner, and G. Vattay (Niels Bohr Inst., Copenhagen, 2020).

Exercises

3.1. Rotations in a plane:  In order to understand the role complex eigenvalues in exam-
ple 3.2 play, it is helpful to show by exponentiation J* = exp(tA) = S°7°  t* A* /k!
with pure imaginary A in (3.11), that

0 -1
A=w ( 1 0 ) ,
generates a rotation in the {Ree™, Tm eV} plane,

At 1 0 . 0 -1
e —coswt(o 1)+smwt(1 O)

_ ( coswt —sinwt ) ' (3.16)

sin wt cos wt

Jt

20


https://photos.app.goo.gl/2cWxT6j4kRLytrCQ8
https://www.bbc.co.uk/programmes/m00025bw
https://www.youtube.com/watch?v=A5u6J8WugyU
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
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3.2.

3.3.

3.4.

35.

Visualizing 2-dimensional linear flows.  Either sketch by hand, or use any integration
routine to integrate numerically and plot, or plot the analytic solution of the linear flow
(3.2) for all examples of qualitatively different eigenvalue pairs of figure 3.2. As noted in
(1.29), the eigenvalues

Mg:%nAi% (A)? — ddet A

depend only on tr A and det A, so you can get two examples by choosing any A such
that tr A = 0 (symplectic or Hamiltonian flow), vary det A. For other examples choose
A such that det A = 1, vary tr A. Do your plots capture the qualitative features of the
examples of figure 3.1?

Visualizing Duffing flow. Use any integration routine to integrate numerically the
Duffing flow (3.14). Take a grid of initial points, integrate each for some short time §t.
Does your result look like the vector field of figure 3.3? What does a generic long-time
trajectory look like?

Visualizing Lorenz flow. Use any integration routine to integrate numerically the
Lorenz flow (3.15). Does your result look like the ‘strange attractor’ of figure 3.4?

A limit cycle with analytic Floquet exponent. There are only two examples of
nonlinear flows for which the Floquet multipliers can be evaluated analytically. Both are
cheats. One example is the 2-dimensional flow

¢ = ptall—q¢-p°
p = —q+p(l—q¢—p°).

Determine all periodic solutions of this flow, and determine analytically their Floquet
exponents. Hint: go to polar coordinates (g, p) = (r cos 6, rsin6). G. Bard Ermentrout
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