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Overview
The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.

— Sidney Coleman

I am leaving the course notes here, not so much for the notes themselves –they
cannot be understood on their own, without the (unrecorded) live lectures– but for the
hyperlinks to various source texts you might find useful later on in your research.

We change the topics covered year to year, in hope that they reflect better what a
graduate student needs to know. This year’s experiment is taking the course online.
Let’s work together to make it work for everyone in the course.

Course outline : An ode in 15 stanzas

Course policy

My teaching philosophy : Bologna

How does one pronounce ‘Euler’? ‘Cvitanovic’?

After a while you might notice a pattern: Every week we start with something
obvious that you already know, let mathematics lead us on, and then suddenly end up
someplace surprising and highly non-intuitive.

http://YouTube.com/embed/L03DMzUXDaU 
http://YouTube.com/embed/rKhGR82aqxQ 
http://YouTube.com/embed/9p2R96zvPtY 
http://YouTube.com/embed/0Qc1Gq2aagA 
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mathematical methods - week 1

Linear algebra

Georgia Tech PHYS-6124
Homework HW #1 due Tuesday, August 25, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 1.1 Trace-log of a matrix 4 points
Exercise 1.2 Stability, diagonal case 2 points
Exercise 1.3 The matrix square root 4 points
Exercise 1.4 Exponential of a matrix of Jordan form 4 bonus points

Total of 10 points = 100 % score. Bonus points accumulate, can help you later if you
miss a few problems.

edited September 13, 2020
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http://chaosbook.org/~predrag/courses/PHYS-6124-20/exerWeek1.tex


8 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

Week 1 syllabus Tuesday, August 18, 2020

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Anything prefixed by AWH, like “Kronecker product AWH eq. (2.55)” refers to
Arfken, Weber & Harris [1] Mathematical Methods for Physicists: A Comprehensive
Guide (get it in GaTech Library). Light blue text in this PDF is a live hyperlink. When
you encounter a web login: All copyright-protected references are on a password
protected site. What password? Have your ears up in the class; the password will be
posted on the Canvas for a week or so, so remember to write it down.

This week’s lectures are related to AWH Chapter 2 Determinants and matrices
(click here) and Chapter 6 Eigenvalue problems (click here)

• Sect. 1.2 Matrix-valued functions, AWH p. 113 Functions of Matrices

AWH Section 2.2 Matrices

Matrices : 2 kinds

Derivative of a matrix function

Exponential, logarithm of a matrix

AWH Example 2.2.6 Exponential of a diagonal matrix

Determinant is a volume

log det = tr log (updated Aug 18, 2020)

Multi-matrix functions (optional, for QM inclined)

• Sect. 1.3 A linear diversion
There are two representations of exponential of constant matrix, the Taylor se-
ries and the compound interest (Euler product) formulas (1.10). If the matrix
(for example, the Hamiltonian) changes with time, the exponential has to be
time-ordered. The Taylor series generalizes to the nested integrals formula (??),
and the Euler product to time-ordered product (1.11). The first is used in for-
mal quantum-mechanical calculations, the second in practical, numerical calcu-
lations.

Linear differential equations

Nonlinear differential equations

• Sect. 1.4 Eigenvalues and eigenvectors
Hamilton-Cayley equation, projection operators (1.21), any matrix function is
evaluated by spectral decomposition (1.24). Work through example 1.3.

AWH Section 6.1 Eigenvalue Equations

Eigenvalues and eigenvectors

What’s the deal with Hamilton-Cayley?

https://www.prairiehome.org/story/2003/11/29/guy-noir.html
http://chaosbook.org/library/ArWeHa13chap2.pdf#section*.29
https://www.sciencedirect.com/book/9780123846549/mathematical-methods-for-physicists
http://chaosbook.org/figs/cat.hammock.gif
http://chaosbook.org/library/
http://ChaosBook.org/library/ArWeHa13chap2.pdf
http://ChaosBook.org/library/ArWeHa13chap6EigenvalueProbs.pdf
http://chaosbook.org/library/ArWeHa13chap2.pdf#section*.30
http://YouTube.com/embed/8r9sJVlkAR4 
http://YouTube.com/embed/H0xnPhU6Sg4 
http://YouTube.com/embed/Lj1VzVylpdk 
http://YouTube.com/embed/-lds_86m3SA 
http://YouTube.com/embed/V6azICX_GP4 
http://YouTube.com/embed/RNxNuIvq_Jo 
http://YouTube.com/embed/09BZPDuANRo 
http://YouTube.com/embed/bnY9ogJjoJo 
http://YouTube.com/embed/8gm2dbIDk4M 
http://YouTube.com/embed/pBnpRxWl05A 
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Spectral decomposition

Spectral decomposition and completeness

Right, left eigenvectors

A projection operators workout

Jordan form AWH p. 324 Defective matrices (optional, for QM inclined)

Are there Jordan form matrices in physics? (optional, for QM inclined)

1.1 Other sources
The subject of linear algebra is a vast and very alive research area, generates innumer-
able tomes of its own, and is way beyond what we can exhaustively cover here. A few
resources that you might find helpful going forward:

Linear operators and matrices reading (optional reading for week 1, not required
for this course):

Stone and Goldbart [12], Mathematics for Physics: A Guided Tour for Graduate
Students, Appendix A. This is an advanced summary where you will find almost
everything one needs to know.

In sect. 1.2 I make matrix functions appear easier than they really are. For an in-
exercise 1.3

depth discussion, consult Golub and Van Loan [6] Matrix Computations, chap. 9
Functions of Matrices (click here).

Much more than you ever wanted to know about linear algebra: Axler [2] Down
with determinants! (click here).

Karan Shah: I like Grant Sanderson’s 3Blue1Brown geometrical explanations
of linear algebra eigenstuff (click here).

Question 1.1. Henriette Roux finds course notes confusing
Q Couldn’t you use one single, definitive text for methods taught in the course?
A It’s a grad school, so it is research focused - I myself am (re)learning the topics that we are
going through the course, using various sources. My emphasis in this course is on understanding
and meaning, not on getting all signs and 2π’s right, and I find reading about the topic from
several perspectives helpful. But if you really find one book more comfortable, nearly all topics
are covered in Arfken, Weber & Harris [1].

1.2 Matrix-valued functions
What is a matrix?

—Werner Heisenberg (1925)
What is the matrix?

—-Keanu Reeves (1999)

http://YouTube.com/embed/0p9l7-HdFB0 
http://YouTube.com/embed/-jMGivWDSrQ 
http://YouTube.com/embed/QcjUUhR1nRg 
http://YouTube.com/embed/bDS34rQQ3b0 
http://YouTube.com/embed/ewpqI_4-CPI 
http://YouTube.com/embed/yGWS0ypljGg
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/StGoAppA.pdf
http://ChaosBook.org/library/GoVanLo96.pdf
https://www.maa.org/sites/default/files/pdf/awards/Axler-Ford-1996.pdf
http://YouTube.com//playlist?PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.3blue1brown.com/
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


10 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

(optional, for QM inclined)
Why should a working physicist care about linear algebra? Physicists were blissfully
ignorant of group theory until 1920’s, but with Heisenberg’s sojourn in Helgoland,
everything changed. Quantum Mechanics was formulated as

|φ(t)〉 = Û t|φ(0)〉 , Û t = e−
i
~ tĤ , (1.1)

where |φ(t)〉 is the quantum wave function at time t, Û t is the unitary quantum evo-
lution operator, and Ĥ is the Hamiltonian operator. Fine, but what does this equation
mean? In the first lecture we deconstruct it, make Û t computationally explicit as a the
time-ordered product (1.12).

It would not be fair to students to expect a prior exposure to Heisenberg’s matrix
quantum mechanics (1.1), so if you do not ‘get’ the QM comments of this section, it’s
OK. It is not needed for what follows, and I’ll do it in the class only if you request me
to do it.

The matrices that have to be evaluated are very high-dimensional, in principle in-
finite dimensional, and the numerical challenges can quickly get out of hand. What
made it possible to solve these equations analytically in 1920’s for a few iconic prob-
lems, such as the hydrogen atom, are the symmetries, or in other words group theory,
a subject of another course, our group theory course.

Whenever you are confused about an “operator”, think “matrix”. Here we recapit-
ulate a few matrix algebra concepts that we found essential. The punch line is (1.27):
Hamilton-Cayley equation

∏
(M− λi1) = 0 associates with each distinct root λi of a

matrix M a projection onto ith vector subspace

Pi =
∏
j 6=i

M− λj1
λi − λj

.

What follows - for this week - is a jumble of Predrag’s notes. If you understand the
examples, we are on the roll. If not, ask :)

How are we to think of the quantum operator (1.1)

Ĥ = T̂ + V̂ , T̂ = p̂2/2m, V̂ = V (q̂) , (1.2)

corresponding to a classical Hamiltonian H = T + V , where T is kinetic energy, and
V is the potential?

Expressed in terms of basis functions, the quantum evolution operator is an infinite-
dimensional matrix; if we happen to know the eigenbasis of the Hamiltonian, the prob-
lem is solved already. In real life we have to guess that some complete basis set is
good starting point for solving the problem, and go from there. In practice we truncate
such operator representations to finite-dimensional matrices, so it pays to recapitulate
a few relevant facts about matrix algebra and some of the properties of functions of
finite-dimensional matrices.

1.3 A linear diversion

(Notes based of ChaosBook.org/chapters/stability.pdf)

http://birdtracks.eu/courses/PHYS-7143-19/schedule.html
http://ChaosBook.org/chapters/stability.pdf
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Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are good for all times. The state
space for linear differential equations is M = Rd, and the equations of motion are
written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (1.3)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

How do we solve the linear differential equation (1.3)? If instead of a matrix equa-
tion we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order to solve
the d-dimensional matrix case, it is helpful to rederive this solution by studying what
happens for a short time step δt. If time t = 0 coincides with position x(0), then

x(δt)− x(0)

δt
= λx(0) , (1.4)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1 +
t

m
λ

)m
x(0) ≈ etλx(0) . (1.5)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (1.4):

x(δt)− x(0)

δt
= Ax(0) . (1.6)

A representative point x is now a vector in Rd acted on by the matrix A, as in (1.3).
Denoting by 1 the identity matrix, and repeating the steps (1.4) and (1.5) we obtain
Euler’s formula

x(t) = J tx(0) , J t = etA = lim
m→∞

(
1 +

t

m
A

)m
. (1.7)

We will find this definition for the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavior of a linear flow, we are
ready to return to the nonlinear case. Consider an infinitesimal perturbation of the
initial state, x0 + δx(x0, 0). How do we compute the exponential (1.7) that describes
linearized perturbation δx(x0, t)?

x(t) = f t(x0) , δx(x0, t) = J t(x0) δx(x0, 0) . (1.8)
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The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integration step by step. The Jacobian matrix is
computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (1.9)

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit (1.7):

etA =
∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t

m
A

)m
. (1.10)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to J t is therefore given by a
generalization of the Euler product (1.10):

J t = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.11)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,

where δt = (t− t0)/m, and xn = x(t0 +nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→∞ limit of this procedure is the formal integral

J tij(x0) =
[
Te

∫ t
0
dτA(x(τ))

]
ij
, (1.12)

where T stands for time-ordered integration, defined as the continuum limit of the suc-
cessive multiplications (1.11). This integral formula for J t is the finite time companion
of the differential definition

J̇(t) = A(t)J(t), (1.13)

with the initial condition J(0) = 1. The definition makes evident important properties
of Jacobian matrices, such as their being multiplicative along the flow,

J t+t
′
(x) = J t

′
(x′) J t(x), where x′ = f t(x0) , (1.14)

which is an immediate consequence of the time-ordered product structure of (1.11).
However, in practice J is evaluated by integrating differential equation (1.13) along
with the ODEs (3.6) that define a particular flow.
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1.4 Eigenvalues and eigenvectors
10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.15)

Given a nonsingular matrix M, detM 6= 0, with all λi 6= 0, acting on d-dimensional
vectors x, we would like to determine eigenvectors e(i) of M on which M acts by
scalar multiplication by eigenvalue λi

Me(i) = λie
(i) . (1.16)

If λi 6= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values, which we assume have been computed by some method, and ordered by their
real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.17)

From (1.16) it follows that

(M− λi1) e(j) = (λj − λi) e(j) ,

matrix (M−λj1) annihilates e(j), the product of all such factors annihilates any vector,
and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.18)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.17) onto the corresponding
eigenspace: ∏

j 6=i

(M− λj1)x =
∏
j 6=i

(λi − λj)xie(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j 6=i

M− λj1
λi − λj

, (1.19)
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which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑
i=1

Pi = 1 , (1.20)

with the dimension of the ith subspace given by di = trPi . For each distinct eigenvalue
λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.21)

the colums/rows of Pi are the right/left eigenvectors e(k), e(k) of M which (provided
M is not of Jordan type, see example 1.1) span the corresponding linearized subspace.

The main take-home is that once the distinct non-zero eigenvalues {λi} are com-
puted, projection operators are polynomials in M which need no further diagonaliza-
tions or orthogonalizations. It follows from the characteristic equation (1.21) that λi is
the eigenvalue of M on Pi subspace:

MPi = λiPi (no sum on i) . (1.22)

Using M = M1 and completeness relation (1.20) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.23)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition (see AWH
Exercise 3.5.34)

remark 1.1
f(M) =

∑
i

f(λi)Pi . (1.24)

This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (1.21) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.20), they are mutually orthogonal,

e(i) · e(j) = c δji . (1.25)

The non-zero constant c is convention dependent and not worth fixing, unless you feel
nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is convenient
to collect all left and right eigenvectors into a single matrix.

Example 1.1. Degenerate eigenvalues. While for a matrix with generic real
elements all eigenvalues are distinct with probability 1, that is not true in presence of
symmetries, or spacial parameter values (bifurcation points). What can one say about
situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (1.18) now takes form

r∏
α=1

(M− λα1)dα = 0 ,
∑
α

dα = d . (1.26)

We distinguish two cases:
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M can be brought to diagonal form. The characteristic equation (1.26) can be re-
placed by the minimal polynomial,

r∏
α=1

(M− λα1) = 0 , (1.27)

where the product includes each distinct eigenvalue only once. Matrix M acts multi-
plicatively

Me(α,k) = λie
(α,k) , (1.28)

on a dα-dimensional subspace spanned by a linearly independent set of basis eigen-
vectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case. Luckily, if the degeneracy is
due to a finite or compact symmetry group, relevant M matrices can always be brought
to such Hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy case,
so we only illustrate the key idea in example 1.2. (optional, for QM inclined)

Example 1.2. Decomposition of 2-dimensional vector spaces: Enumeration of ev-
ery possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest
case, a general [2×2] non-singular matrix

M =

[
M11 M12

M21 M22

]
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1

2
trM± 1

2

√
(trM)2 − 4 detM (1.29)

are the roots of the characteristic (secular) equation (1.15):

det (M− λ1) = (λ1 − λ)(λ2 − λ)

= λ2 − trMλ+ detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M− λ21

λ1 − λ2
, P2 =

M− λ11

λ2 − λ1
, λ1 6= λ2 . (1.30)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case. (b) M can be brought to Jordan form,
with zeros everywhere except for the diagonal, and some 1’s directly above it; for a [2×2]
matrix the Jordan form is (optional, for QM inclined)

M =

[
λ 1
0 λ

]
, e(1) =

[
1
0

]
, v(2) =

[
0
1

]
.



16 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector,
as Mv(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one
eigenvector per block. Noting that

Mm =

[
λm mλm−1

0 λm

]
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u

v

)
= etλ

(
u+ tv

v

)
(1.31)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent).

Example 1.3. Projection operator decomposition in 2 dimensions: Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix

M =

[
4 1
3 2

]
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (1.29):

det (M− λ1) = λ2 − 6λ+ 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:[

4 1
3 2

]2

− 6

[
4 1
3 2

]
+ 5

[
1 0
0 1

]
=

[
0 0
0 0

]
.

Associated with each root λi is the projection operator (1.30)

P1 =
1

4
(M− 1) =

1

4

[
3 1
3 1

]
(1.32)

P2 =
1

4
(M− 5 · 1) =

1

4

[
1 −1
−3 3

]
. (1.33)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = trPi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation MPi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

[
58591 19531
58593 19529

]
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
[
1
1

]
,

[
1
−3

]
}

{e(1), e(2)} = {
[
3
1

]
,

[
1
−1

]
} ,
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with overall scale arbitrary. The matrix is not symmetric, so {e(j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e(j) · e(k), however, are orthogonal
as in (1.25), by inspection. (Continued in example ??.)

Example 1.4. Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp


λ1t

λ2t

. . .
λdt

 =


eλ1t

eλ2t

. . .
eλdt

 .

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor se-
ries for ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

[
λ 0
0 µ

]
, B =

[
λ 1
0 λ

]
, B =

[
µ −ω
ω µ

]
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

[
eλt 0
0 eµt

]
, eBt = eλt

[
1 t
0 1

]
, eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to
one of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

Example 1.5. Determinants and traces.
The usual textbook expression for a determinant is the sum of products of all per-

mutations
detM =

∑
{π}

(−1)πM1,π1M2,π2 · · ·Mm,πm (1.34)

where M is a [m×m] matrix, {π} denotes the set of permutations of m symbols, πk
is the permutation π applied to k, and (−1)π = ±1 is the parity of permutation π. For
example, for a [2×2] matrix, the permutations are {πm} = {(1)(2), (12)} , so

detM = M11M22 −M12M21 , (1.35)
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for a [3×3] matrix

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33


there are 6 = 3! permutations,

detM = M11M22M33 −M11M23M32 −M12M21M33 +M12M23M31

+M13M21M32 −M13M22M31 , (1.36)

and so on. Not very illuminating.
But if M = T − λ1, evaluation of the [2×2] case,

det (T − λ1) = (T11 − λ)(T22 − λ)−M12M21 = λ2 + (trT )λ+ detT , (1.37)

used in (1.29), offers a hint of better things to come. This way of computing determinants
is generalized to any [m×m] matrix in ref. [5], sect. 6.4 Determinants (click here).

The ln detM = tr lnM relation, valid for any square matrix M (even the infinite
dimensional ‘trace class’ operators M , as long as all |trMk| are bounded) offers a
powerful alternative, universally used, for evaluating determinants.

First, observe that both the determinant and the trace are invariant under similarity
transformations M̂ = S−1M S , detS 6= 0:

det M̂ = det (S−1M S) = (detS−1) (detM) (detS) = detM

tr M̂k = trS−1M S · · ·S−1M S = trM S · · ·S−1M S S−1 = trMk , (1.38)

so any quantity, in particular the eigenvalues of M , expressed in terms of its traces and
its determinant is also invariant under all linear coordinate changes.

Next, consider the characteristic polynomial (1.15) of [m×m] matrix T , and change
the variable to z = 1/λ in det (T − λ1). The zeros zj = 1/λj of

det (1− zT ) = 0 (1.39)

now yield the non-zero eigenvalues λj of T . That λj = 0 eigenvalues are gone is
a blessing; nobody liked them anyway. By the determinant–trace relation ln det M =

exercise 1.1 tr lnM , the determinant of M = 1− zT is always expressible as

det (1− zT ) = exp (tr ln(1− zT )) = e−
∑
n=1

zn

n
trTn . (1.40)

We evaluate such formulas in two steps. First, expand exp(f(z)) as Taylor series in f(z)

det (1− zT ) =

∞∑
k=0

1

k!

(
−
∑
n=1

zn

n
trTn

)k
Then expand (· · · )k as series in zn and combine terms of order zn. The result is central
to much statistical physics and field theory, where it is known as the cumulant expansion:

det (1− zT ) = 1− z trT − z2

2

(
(trT )2 − trT 2)

−z
3

3!

(
(trT )3 − 3 (trT ) trT 2 + 2 trT 3) (1.41)

−z
4

4!

(
(trT )4 − 3 (2 (trT )2 − trT 2) trT 2 + 8 trT trT 3 − 6 trT 4)− . . .

http://birdtracks.eu/version9.0/GroupTheory.pdf#section.6.4
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If T is an [m×m] matrix, the characteristic polynomial is at most of order m, so the
infinity of coefficients of zn must vanish exactly for n > m! For example, for a [2×2]
matrix, the z2 coefficient in (1.41) is a traces expansion for the determinant (1.35),

det (T ) =
1

2

(
(trT )2 − trT 2) , (1.42)

and for a [3×3] matrix, the z3 coefficient in (1.41) is a traces expansion for the determi-
nant (1.36)

det (T ) =
1

3!

(
(trT )3 − 3 (trT ) trT 2 + 2 trT 3)

= M11M22M33 −M11M23M32 −M12M21M33 +M12M23M31

+M13M21M32 −M13M22M31 , (1.43)

as you can verify by hand, if you do not believe me (you should never believe anything
anyone over 30 says). If you still do not believe me, verify that the z4 coefficient vanishes

0 =
1

4!

(
−6(trT )2trT 2 + 8(trT )trT 3 + 3(trT 2)2 − 6trT 4 + (trT )4)

for m = 1, 2, 3, but is a traces expansion for the determinant of a [4×4] matrix. If you
need to know more, these relations were noted by Albert Girard (1629), so they are
called Newton’s (1666) identities.

Note also that derivative of (1.40) relates the determinant to the resolvent,

−z d
dz

ln det (1− zT ) = −tr
(
z
d

dz
ln(1− zT )

)
= tr

zT

1− zT =

∞∑
k=1

zntr (Tn) , (1.44)

a simple but very useful relation expressing a determinant in terms of traces.
What are all these relationships? Have a fresh look at the Hamilton-Cayley theorem

(1.18) that states that the matrix M satisfies its characteristic equation, and to be spe-
cific, look at the m = 3 case. The Hamilton-Cayley characteristic equation expanded in
terms of traces is

0 = T 3 − (trT )T 2 +
1

2

(
(trT )2 − trT 2)T − (detT )1 . (1.45)

This is the first 3 terms of the cumulant expansion (1.41), with λ restored by z → 1/λ,
i.e., the characteristic equation for A [3× 3] matrix, and the λ replaced by T . The
Hamilton-Cayley formula says that whenever you see [m×m] matrix Tm you can express
it in terms of Tm−1, Tm−1, · · · , T .

To be very specific and pedestrian, consider the [3×3] matrix

T =

 2 2 2
2 6 2
2 2 2

 , T 2 =

 12 20 12
20 44 20
12 20 12


trT = 10 , trT 2 = 68 . (1.46)

https://en.wikipedia.org/wiki/Newton%27s_identities
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From the shape of T clearly detT = 0, so the characteristic equation is

0 =

(
T 2 − (trT )T +

1

2

(
(trT )2 − trT 2)1)T .

=

(
T 2 − 10T +

1

2
(100− 68)1

)
T

=
(
T 2 − 10T + 161

)
T = (T − 81)(T − 21)T , (1.47)

with eigenvalues {λ1, λ2, λ3} = {8, 2, 0}.
For the associated projection operators, see (2.30).

Commentary
Remark 1.1. Projection operators. The construction of projection operators given in
sect. 1.4 is taken from refs. [3, 4]. Sylvester [13] wrote down the spectral decomposition (1.24)
in 1883 in the form we use, but lineage certainly goes all the way back to 1795 Lagrange poly-
nomials [11], and Euler 1783. Often projection operators get drowned in sea of algebraic details.
Halmos [7] is a good early reference - but we like Harter’s exposition [8–10] best, for its multi-
tude of specific examples and physical illustrations. In particular, by the time we get to (1.21) we
have tacitly assumed full diagonalizability of matrix M. That is the case for the compact groups
we will study here (they are all subgroups of U(n)) but not necessarily in other applications. A
bit of what happens then (nilpotent blocks) is touched upon in example 1.2. Harter in his lecture
Harter’s lecture 5 (starts about min. 31 into the lecture) explains this in great detail - its well
worth your time.
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Exercises
1.1. Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary finite dimensional square matrix M , detM 6= 0. (If you are not getting
it, see AWH(3.171).)

1.2. Stability, diagonal case. Verify that for a diagonalizable matrix A the exponential is
also diagonalizable

Jt = etA = U−1etADU , AD = UAU−1 . (1.48)

1.3. The matrix square root. Consider matrix

A =

[
4 10
0 9

]
.

Generalize the square root function f(x) = x1/2 to a square root f(A) = A1/2 of a
matrix A.
a) Which one(s) of these are the square root of A[

2 2
0 3

]
,

[
−2 10
0 3

]
,

[
−2 −2
0 −3

]
,

[
2 −10
0 −3

]
?

b) Assume that the eigenvalues of a [d× d] matrix are all distinct. How many square root
matrices does such matrix have?
c) Given a [2×2] matrix A with a distinct pair of eigenvalues {λ1, λ2}, write down a
formula that generates all square root matrices A1/2. Hint: one can do this using the 2
projection operators associates with the matrix A. 2 points
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1.4. Exponential of a matrix of Jordan form. A matrix B with all eigenvalues degenerate
that cannot be diagonalized can always be brought to upper triangular Jordan form B =
λ1 + E, where E is its strictly upper bidiagonal part. As an example, consider [4×4]
matrix B, with

E =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (1.49)

a) Write down E, E2, E2, E3, . . .

b) Write down explicitly the exponential [4×4] matrix function exp(tE).

c) Bonus points, some assembly required: Work out the kth term in the Taylor expan-
sion of a [d× d] matrix function f(B), B = λ1 + E a [d× d] matrix,

f(B) =

∞∑
k=0

f (k)(x0)

k!
(B − x01)k . (1.50)

.

A side remark to the masters of QM: E is a ‘raising operator’.
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