
Chapter 34

Relaxation for cyclists

I cannot pass quietly over the relations between the theory
of solutions of the second kind [i.e. of arbitrarily long
period] and the Principle of Least Action; and it is even
because of these relations that I have written chapter 29.

— H. Poincaré, Vol. 3, chap. 31, artl. 371 of Les
méthodes nouvelles de la méchanique céleste

Cycles, i.e., solutions of the periodic orbit condition (16.1)

f t+T (x) = f t(x) , T > 0 (34.1)

are prerequisite to chapters 21 and 22 evaluation of spectra of classical evolu-
tion operators.Chapter 16 offered an introductory, hands-on guide to extraction of
periodic orbits by means of the Newton-Raphson method. Here we take a very dif-
ferent tack, drawing inspiration from variational principles of classical mechanics,
and path integrals of quantum mechanics.

In sect. 7.1.1 we converted orbits unstable forward in time into orbits stable
backwards in time. Indeed, all methods for finding unstable cycles are based on
the idea of constructing a new dynamical system such that (i) the position of the
cycle is the same for the original system and the transformed one, (ii) the unstable
cycle in the original system is a stable cycle of the transformed system.

The Newton-Raphson method for determining a fixed point x∗ for a map x′ =

f (x) is an example. The method replaces iteration of f (x) by iteration of the
Newton-Raphson map (7.4)

x′i = gi(x) = xi −

(
1

M(x) − 1

)
i j

( f (x) − x) j . (34.2)

A fixed point x∗ for a map f (x) is also a fixed point of g(x), indeed a superstable
fixed point since ∂gi(x∗)/∂x j = 0. This makes the convergence to the fixed point
super-exponential.
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CHAPTER 34. RELAXATION FOR CYCLISTS 655

We also learned in chapter 16 that methods that start with initial guesses for
a number of points along a cycle are considerably more robust and safer than
searches based on direct solution of the fixed-point condition (34.1). The relax-
ation (or variational) methods that we shall now describe take this multipoint ap-
proach to its logical extreme, and start by a guess of not a few points along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desired periodic orbit
looks like globally, and then use variational methods to drive the initial guess
toward the exact solution. Sacrificing computer memory for robustness of the
method, we replace a guess that a point is on the periodic orbit by a guess of
the entire orbit. And, sacrificing speed for safety, in sect. 34.1 we replace the
Newton-Raphson iteration by a fictitious time flow that minimizes a cost function
computed as deviation of the approximate flow from the true flow along a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic dy-
namics, or have already found a set of short cycles, you might be able to con-
struct an initial approximation to a longer cycle p as a sequence of N points
(x̃(0)

1 , x̃(0)
2 , · · · , x̃(0)

N ) with the periodic boundary condition x̃N+1 = x̃1. Suppose
you have an iterative method for improving your guess; after k iterations the cost
function

F2(x̃(k)) =

N∑
i

(
x̃(k)

i+1 − f (x̃(k)
i )

)2
(34.3)

or some other more cleverly constructed function (for classical mechanics - action)
is a measure of the deviation of the kth approximate cycle from the true cycle. This
observation motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, and one for bil-
liards. In sect. 34.1 we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing a differential flow for which
the desired fixed point is an attracting equilibrium point. Solving differential equa-
tions can be time intensive, so in sect. 34.2 we replace such flows by discrete iter-
ations. In sect. 34.3 we show that for 2D-dimensional billiard flows variation of D
coordinates (where D is the number of Hamiltonian degrees of freedom) suffices
to determine cycles in the full 2D-dimensional phase space.

34.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles is based on the observa-
tion that a trajectory of a map such as the Hénon map (3.18),

xi+1 = 1 − ax2
i + byi

yi+1 = xi , (34.4)

relax - 29mar2004 ChaosBook.org edition16.0, Feb 13 2018



CHAPTER 34. RELAXATION FOR CYCLISTS 656

Figure 34.1: “Potential” Vi(x) (34.7) for a typical
point along an initial guess trajectory. For σi = +1
the flow is toward the local maximum of Vi(x), and for
σi = −1 toward the local minimum. A large devia-
tion of xi’s is needed to destabilize a trajectory passing
through such local extremum of Vi(x), hence the basin
of attraction is expected to be large.

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dτ
= vi, i = 1, . . . , n (34.5)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ is a “ficti-
tious time" variable, unrelated to the dynamical time (in this example, the discrete
time of map iteration). As the simplest example, take vi to be the deviation of an
approximate trajectory from the exact 2-step recurrence form of the Hénon map
(3.19)

vi = xi+1 − 1 + ax2
i − bxi−1. (34.6)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These solutions
are the two extremal points of a local “potential” function (no sum on i)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a
3

x3
i . (34.7)

Assuming that the two extremal points are real, one is a local minimum of Vi(x)
and the other is a local maximum. Now here is the idea; replace (34.5) by

dxi

dτ
= σivi, i = 1, . . . , n, (34.8)

where σi = ±1.

The modified flow will be in the direction of the extremal point given by the
local maximum of Vi(x) if σi = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we take σi = −1. This is not quite what happens
in solving (34.8) - all xi and Vi(x) change at each integration step - but this is the
observation that motivates the method. The differential equations (34.8) then drive
an approximate initial guess toward the exact trajectory. A sketch of the landscape
in which xi converges towards the proper fixed point is given in figure 34.1. As
the “potential” function (34.7) is not bounded for a large |xi|, the flow diverges for
initial guesses which are too distant from the true trajectory. However, the basin
of attraction of initial guesses that converge to a given cycle is nevertheless very
large, with the spread in acceptable initial guesses for figure 34.1 of order 1, in
contrast to the exponential precision required of initial guesses by the Newton-
Raphson method.

example 34.1

p. 667
exercise 34.3
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CHAPTER 34. RELAXATION FOR CYCLISTS 657

Figure 34.2: The repeller for the Hénon map at a =

1.8, b = 0.3 .
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Figure 34.3: Typical trajectories of the vector field
(34.9) for the stabilization of a hyperbolic fixed
point of the Ikeda map (34.16) located at (x, y) ≈
(0.53275, 0.24689). The circle indicates the position
of the fixed point. Note that the basin of attraction of
this fixed point is large, larger than the entire Ikeda at-
tractor.
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The idea of the relaxation algorithm illustrated by the above Hénon map ex-
ample is that instead of searching for an unstable periodic orbit of a map, one
searches for a stable attractor of a vector field. More generally, consider a d-
dimensional map x′ = f (x) with a hyperbolic fixed point x∗. Any fixed point x∗ is
by construction an equilibrium point of the fictitious time flow

dx
dτ

= f (x) − x. (34.9)

If all eigenvalues of the Jacobian matrix J(x∗) = D f (x∗) have real parts smaller
than unity, then x∗ is a stable equilibrium point of the flow, see figure 34.3.

If some of the eigenvalues have real parts larger than unity, then one needs to
modify the vector field so that the corresponding directions of the flow are turned
into stable directions in a neighborhood of the fixed point. In the spirit of (34.8),
modify the flow by

dx
dτ

= C ( f (x) − x) , (34.10)

where C is a [d×d] invertible matrix. The aim is to turn x∗ into a stable equilib-
rium point of the flow by an appropriate choice of C. It can be shown that a set
of permutation / reflection matrices with one and only one non-vanishing entry
±1 per row or column (for d-dimensional systems, there are d!2d such matrices)
suffices to stabilize any fixed point. In practice, one chooses a particular matrix
C, and the flow is integrated. For each choice of C, one or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow, see figure 34.4.

relax - 29mar2004 ChaosBook.org edition16.0, Feb 13 2018
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Figure 34.4: Typical trajectories of the vector
field (34.10) for a hyperbolic fixed point (x, y) ≈
(−0.13529,−0.37559) of f 3, where f is the Ikeda
map (34.16). The circle indicates the position of
the fixed point. For the vector field corresponding
to (a) C = 1, x∗ is a hyperbolic equilibrium point
of the flow, while for (b) C =

(
1
0

0
−1

)
, x∗ is an at-

tracting equilibrium point.
(a) (b) −0.2 −0.1
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example 34.2

p. 667

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cycle x = (x1, x2, . . . , xn) of a
d-dimensional map x′ = f (x), we modify the multipoint shooting method of
sect. 16.2, and consider the nd-dimensional vector field

dx
dτ

= C ( f (x) − x) , (34.11)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), and C is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2n diagonal matrices
with eigenvalues ±1. Risking a bit of confusion, we denote by x, f (x) both the
d-dimensional vectors in (34.10), and nd-dimensional vectors in (34.11), as the
structure of the equations is the same.

34.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (34.2) is that it requires very
precise initial guesses. For example, the nth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of all
cycles of length n requires that the initial guess for each one of them has to be
accurate to roughly 2−n. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie in a d-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (34.8) of manually
turning instability into stability by a sign change, we now (i) abandon the Newton-
Raphson method altogether, (ii) abandon the continuous fictitious time flow (34.9)
with its time-consuming integration, replacing it by a map g with a larger basin
of attraction (not restricted to a linear neighborhood of the fixed point). The idea
is to construct a very simple map g, a linear transformation of the original f , for
which the fixed point is stable. We replace the Jacobian matrix prefactor in (34.2)
(whose inversion can be time-consuming) by a constant matrix prefactor

x′ = g(x) = x + ∆τC( f (x) − x), (34.12)
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CHAPTER 34. RELAXATION FOR CYCLISTS 659

where ∆τ is a positive real number, and C is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry ±1 per row or column. A fixed
point of f is also a fixed point of g. Since C is invertible, the inverse is also true.

This construction is motivated by the observation that for small ∆τ → dτ the
map (34.12) is the Euler method for integrating the modified flow (34.10), with
the integration step ∆τ.

The argument why a suitable choice of matrix C can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the construction
of the modified vector field in sect. 34.1. Indeed, the flow (34.8) is the simplest
example of this method, with the infinitesimal fictitious time increment ∆τ→ dτ,
the infinitesimal coordinate correction (x − x′) → dxi, and the [n×n] diagonal
matrix C→ σi = ±1.

For a given fixed point of f (x) we again chose a C such that the flow in the
expanding directions of M(x∗) is turned into a contracting flow. The aim is to
stabilize x∗ by a suitable choice of C. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing the matrix C (in general
different for each unstable fixed point) and varying initial conditions for the map
g. For example, for 2-dimensional dissipative maps it can be shown that the 3

remark 34.2
matrices

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}
suffice to stabilize all kinds of possible hyperbolic fixed points.

If ∆τ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed point x∗ in the transformed system are smaller than one, and one has a stable
fixed point. However, ∆τ should not be chosen too small: Since the convergence
is geometrical with a ratio 1 − α∆τ (where the value of constant α depends on
the stability of the fixed point in the original system), small ∆τ can slow down
the speed of convergence. The critical value of ∆τ, which just suffices to make
the fixed point stable, can be read off from the quadratic equations relating the
stability coefficients of the original system and those of the transformed system. In
practice, one can find the optimal ∆τ by iterating the dynamical system stabilized
with a given C and ∆τ. In general, all starting points converge on the attractor
provided ∆τ is small enough. If this is not the case, the trajectory either diverges
(if ∆τ is far too large) or it oscillates in a small section of the state space (if ∆τ is
close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point cho-
sen in the global neighborhood of the fixed point iterated with the transformed
dynamical system g converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a stabilized fixed point is a
rather extended connected area, by no means confined to a linear neighborhood.
At times the basin of attraction encompasses the complete state space of the attrac-
tor, so one can be sure to be within the attracting basin of a fixed point regardless
of where on the on the attractor on picks the initial condition.
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CHAPTER 34. RELAXATION FOR CYCLISTS 660

The step size |g(x)−x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points with a high precision,
one therefore needs a large number of iterations for the trajectory which is already
in the linear neighborhood of the fixed point. To speed up the convergence of the
final part of the approach to a fixed point we recommend a combination of the
above approach with the Newton-Raphson method (34.2).

The fixed points of the nth iterate f n are periodic points of a cycle of period
n. If we consider the map

x′ = g(x) = x + ∆τC( f n(x) − x) , (34.13)

the iterates of g converge to a fixed point provided that ∆τ is sufficiently small
and C is a [d×d] constant matrix chosen such that it stabilizes the flow. As n
grows, ∆τ has to be chosen smaller and smaller. In the case of the Ikeda map
example 34.2 the method works well for n ≤ 20. As in (34.11), the multipoint
shooting method is the method of preference for determining longer cycles. Con-
sider x = (x1, x2, . . . , xn) and the nd-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with period n for the d-dimensional f is equivalent to deter-
mining fixed points of the multipoint dn-dimensional f . The idea is to construct a
matrix C such that the fixed point of f becomes stable for the map:

x′ = x + ∆τC( f (x) − x),

where C is now a [nd×nd] permutation/reflection matrix with only one non-zero
matrix element ±1 per row or column. For any given matrix C, a certain fraction
of the cycles becomes stable and can be found by iterating the transformed map
which is now a nd dimensional map.

From a practical point of view, the main advantage of this method compared to
the Newton-Raphson method is twofold: (i) the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, simplifying considerably
the implementation, and (ii) empirical basins of attractions for individual C are
much larger than for the Newton-Raphson method. The price is a reduction in the
speed of convergence.

34.3 Least action method

(P. Dahlqvist)

The methods of sects. 34.1 and 34.2 are somewhat ad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in choosing
the cost function, such as (34.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis least
action principle. You yawn your way through it in every mechanics course–but as
we shall now see, it is a very hands-on numerical method for finding cycles.
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Table 34.1: All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary, its
expanding eigenvalue Λp, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles 001011 and 001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676
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Indeed, the simplest and numerically most robust method for determining cy-
cles of planar billiards is given by the principle of least action, or equivalently,
by extremizing the length of an approximate orbit that visits a given sequence of
disks. In contrast to the multipoint shooting method of sect. 16.2 which requires
variation of 2n phase-space points, extremization of a cycle length requires varia-
tion of only n bounce positions si.

The problem is to find the extremum values of cycle length L(s) where s =

(s1, . . . , sn), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δs j + . . .

and use Mi j(s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
exercise 34.1

scheme of sect. 7.1.2

si 7→ si −
∑

j

(
1

M(s)

)
i j
∂ jL(s) (34.14)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that the
final extremal length orbit does not penetrate a billiard wall.

exercise 34.2
exercise 16.11

As an example, the short periods and stabilities of 3-disk cycles computed this
way are listed table 34.1.

Résumé

Unlike the Newton-Raphson method, variational methods are very robust. As each
step around a cycle is short, they do not suffer from exponential instabilities, and
with rather coarse initial guesses one can determine cycles of arbitrary length.

Commentary

Remark 34.1. Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problems [24]. The method described above was introduced
by Biham and Wenzel [2], who have also generalized it (in the case of the Hénon map)
to determination of all 2n cycles of period n, real or complex [3]. The applicability and
reliability of the method is discussed in detail by Grassberger, Kantz and Moening [12],
who give examples of the ways in which the method fails: (a) it might reach a limit
cycle rather than a equilibrium saddle point (that can be remedied by the complex Biham-
Wenzel algorithm [3]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). Furthermore, Hansen (ref. [13]
and chapter 4. of ref. [14]) has pointed out that the method cannot find certain cycles
for specific values of the Hénon map parameters. In practice, the relaxation method for
determining periodic orbits of maps appears to be effective almost always, but not always.
It is much slower than the multipoint shooting method of sect. 16.2, but also much quicker
to program, as it does not require evaluation of stability matrices and their inversion. If the
complete set of cycles is required, the method has to be supplemented by other methods.

relax - 29mar2004 ChaosBook.org edition16.0, Feb 13 2018



CHAPTER 34. RELAXATION FOR CYCLISTS 663

Remark 34.2. Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect. 34.2 was introduced by Schmelcher et al [9, 21]. The method was extended
to flows by means of the Poincaré section technique in ref. [20]. It is also possible to
combine the Newton-Raphson method and (34.12) in the construction of a transformed
map [6]. In this approach, each step of the iteration scheme is a linear superposition of
a step of the stability transformed system and a step of the Newton-Raphson algorithm.
Far from the linear neighborhood the weight is dominantly on the globally acting stability
transformation algorithm. Close to the fixed point, the steps of the iteration are dominated
by the Newton-Raphson procedure.

Remark 34.3. Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repeller (a sufficiently large), such as the one given in figure 34.2, the
signs σi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamics si ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (34.15)

For arbitrary parameter values with a finite subshift symbolic dynamics or with arbitrarily
complicated pruning, the relation of sign sequences {σ1, σ2, · · · , σn } to the itineraries
{s1, s2, · · · , sn } can be much subtler; this is discussed in ref. [12].

Remark 34.4. Ikeda map. Ikeda map (34.16) was introduced in ref. [15] is a model
which exhibits complex dynamics observed in nonlinear optical ring cavities.

Remark 34.5. Relaxation for continuous time flows. For a d-dimensional flow ẋ =

v(x), the method described above can be extended by considering a Poincaré sectionṪhe
Poincaré section yields a map f with dimension d-1, and the above discrete iterative maps
procedures can be carried out. A method that keeps the trial orbit continuous throughout
the calculation is the Newton descent, a variational method for finding periodic orbits of
continuous time flows, is described in refs. [4, 17].

Remark 34.6. Stability ordering. The parameter ∆τ in (34.12) is a key quantity
here. It is related to the stability of the desired cycle in the transformed system: The
more unstable a fixed point is, the smaller ∆τ has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobian matrix increases and therefore ∆τ

has to be reduced to achieve stabilization of all fixed points. In many cases the least
unstable cycles of a given period n are of physically most important [9]. In this context

section 23.7
∆τ operates as a stability filter. It allows the selective stabilization of only those cycles
which posses Lyapunov exponents smaller than a cut-off value. If one starts the search
for cycles within a given period n with a value ∆τ ≈ O(10−1), and gradually lowers ∆τ

one obtains the sequence of all unstable orbits of order n sorted with increasing values
of their Lyapunov exponents. For the specific choice of C the relation between ∆τ and
the stability coefficients of the fixed points of the original system is strictly monotonous.
Transformed dynamical systems with other C’s do not obey such a strict behavior but
show a rough ordering of the sequence of Floquet multipliers of the fixed points stabilized
in the course of decreasing values for ∆τ. As explained in sect. 23.7, stability ordered
cycles are needed to order cycle expansions of dynamical quantities of chaotic systems
for which a symbolic dynamics is not known. For such systems, an ordering of cycles
with respect to their stability has been proposed [5, 7, 8], and shown to yield good results
in practical applications.
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Remark 34.7. Action extremization method. The action extremization (sect. 34.3)
as a numerical method for finding cycles has been introduced independently by many
people. We have learned it from G. Russberg, and from M. Sieber’s and F. Steiner’s
hyperbola billiard computations [22, 23]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CPU seconds with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-preserving
twist maps (known in the condensed matter literature as the Frenkel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dynamical systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubry-Mather theorem [19] on
existence of quasi-periodic solutions are variational. It was quickly realized that the vari-
ational methods can also yield reliable, high precision computations of long periodic or-
bits of twist map models in 2 or more dimensions, needed for K.A.M. renormalization
studies [16].

A fictitious time gradient flow similar to the one discussed here in sect. 34.1 was
introduced by Anegent [1] for twist maps, and used by Gole [11] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M. tori
are notoriously restrictive compared to the numerical indications, and de la Llave, Fal-
colini and Tompaidis [10, 25] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. stability, as well as proving the
Aubry-Mather theorem for extended systems (for a pedagogical introduction, see the lat-
tice dynamics section of ref. [18]).

All of the twist-maps work is based on extremizing the discrete dynamics version of
the action S (in this context sometimes called a “generating function”). However, in their
investigations in the complex plane, Falcolini and de la Llave [10] do find it useful to
minimize instead S S̄ , analogous to our cost function (34.3).
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Example 34.1. Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (34.4), in principle at most 2n orbits. We start
by choosing an initial guess trajectory (x1, x2, · · · , xn ) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such as
the table 18.1. The real issue for all searches for periodic orbits, this one included, is
how large is the basin of attraction of the desired periodic orbit? There is no easy answer
to this question, but empirically it turns out that for the Hénon map such initial guess
almost always converges to the desired trajectory as long as the initial |x| is not too large
compared to 1/

√
a. Figure 34.1 gives some indication of a typical basin of attraction of

the method (see also figure 34.3).

The calculation is carried out by solving the set of n ordinary differential equations
(34.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1) until
|v| becomes smaller than a given value ε (in a typical calculation ε ∼ 10−7). Empirically,
in the case that an orbit corresponding to the desired itinerary does not exist, the initial
guess escapes to infinity since the “potential” Vi(x) grows without bound.

exercise 34.3

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3, the
method has yielded all periodic orbits to periods as long as n = 28, as well as selected
orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon map, a = 1.4
and b = 0.3, are listed in table 34.2. The number of unstable periodic orbits for periods
n ≤ 28 is given in table 34.3. Comparing this with the list of all possible 2-symbol
alphabet prime cycles, table 18.1, we see that the pruning is quite extensive, with the
number of periodic points of period n growing as e0.4645·n = (1.592)n rather than as 2n .

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 34.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.7, we note the existence of gaps in the set, cut out by
the preimages of the escaping regions.

remark 34.1

In practice, the relaxation flow (34.8) finds (almost) all periodic orbits which exist
and indicates which ones do not. For the Hénon map the method enables us to calculate
almost all unstable cycles of essentially any desired length and accuracy.
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Example 34.2. Ikeda map: We illustrate the method of (34.10) with the determination
of the periodic orbits of the Ikeda map:

x′ = 1 + a(x cos w − y sin w)
y′ = a(x sin w + y cos w) (34.16)

where w = b −
c

1 + x2 + y2 ,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow is
already stabilized with C = 1. Figure 34.3 depicts the flow of the vector field around the
fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (34.9) forward in time
(the convergence is exponential in time), using a fourth order Runge-Kutta or any other
integration routine.
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Table 34.2: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period np, the itinerary (defined in remark 34.3), a periodic point
(yp, xp), and the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles have
λp ≈ 0.5, several significantly do not. The 0 periodic point is very unstable, isolated and
transient fixed point, with no other cycles returning close to it. At period 13 one finds a
pair of cycles with exceptionally low Lyapunov exponents. The cycles are close for most
of the trajectory, differing only in the one symbol corresponding to two periodic points
straddle the (partition) fold of the attractor. As the system is not hyperbolic, there is no
known lower bound on cycle Lyapunov exponents, and the Hénon’s strange “attractor”
might some day turn out to be nothing but a transient on the way to a periodic attractor of
some long period.

n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 34.3: The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn is the total
number of periodic points of period n (including repeats of shorter prime cycles).

n Mn Nn
11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn
17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn
23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520
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In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial C
matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of the third iterate f 3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 34.4 (a), indicates a hyperbolic equilibrium point, while for
C =

(
1
0

0
−1

)
the flow of the vector field, figure 34.4 (b) indicates that x∗ is an attracting

equilibrium point, reached at exponential speed by integration forward in time.
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Exercises

34.1. Evaluation of billiard cycles by minimization∗.
Given a symbol sequence, you can construct a guess tra-
jectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines.
If this were a rubber band wrapped through 3 rings, it
would shrink into the physical trajectory, which mini-
mizes the action (in this case, the length) of the trajec-
tory.
Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to ex-
tremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, table 34.1.
(One such method is given in sect. 34.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
| f Tp (x) − x|?

34.2. Tracking cycles adiabatically∗. Once a cycle has been

found, orbits for different system parameters values may
be obtained by varying slowly (adiabatically) the param-
eters, and using the old orbit points as starting guesses
in the Newton method. Try this method out on the 3-
disk system. It works well for R : a sufficiently large.
For smaller values, some orbits change rather quickly
and require very small step sizes. In addition, for ratios
below R : a = 2.04821419 . . . families of cycles are
pruned, i.e. some of the minimal length trajectories are
blocked by intervening disks.

34.3. Cycles of the Hénon map. Apply the method of
sect. 34.1 to the Hénon map at the Hénon’s parameters
choice a = 1.4, b = 0.3, and compute all prime cycles
for at least n ≤ 6. Estimate the topological entropy,
either from the definition (18.1), or as the zero of a trun-
cated topological zeta function (18.17). Do your cycles
agree with the cycles listed in table 34.2?

exerRelax - 9aug2003 ChaosBook.org edition16.0, Feb 13 2018


	I Geometry of chaos
	II Chaos rules
	III Chaos: what to do about it?
	IV The rest is noise
	Relaxation for cyclists
	Fictitious time relaxation
	Discrete iteration relaxation method
	Least action method
	References


	V Quantum chaos
	VI Web appendices

