
Appendix A45

Semiclassical quantization, with
corrections

In fact I’m Vattay Gábor, just these Indo-Europeans mix
up the right order.

(G. Vattay)

The Gutzwiller trace formula is only a good approximation to the quantum
mechanics when ~ is small. Can we improve the trace formula by adding
quantum corrections to the semiclassical terms? A similar question can

be posed when the classical deterministic dynamics is disturbed by some way
Gaussian white noise with strength D. The deterministic dynamics then can be
considered as the weak noise limit D → 0. The effect of the noise can be taken
into account by adding noise corrections to the classical trace formula. A formal
analogy exists between the noise and the quantum problem. This analogy allows
us to treat the noise and quantum corrections together.

A45.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more con-
venient to visualize the results there. Where it is necessary we will discuss the
difference between noise and quantum cases.

First, we introduce periodic orbits from an unusual point of view, which can
convince you, that chaotic and integrable systems are in fact not as different from
each other, than we might think. If we start orbits in the neighborhood of a pe-
riodic orbit and look at the picture on the Poincaré section we can see a regular
picture. For stable periodic orbits the points form small ellipses around the center
and for unstable orbits they form hyperbolas (see figure A45.1).
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Figure A45.1: Poincaré section close to a stable and an unstable periodic orbit.

The motion close to a periodic orbit is regular in both cases. This is due to the
fact, that we can linearize the Hamiltonian close to an orbit, and linear systems
are always integrable. The linearized Hamilton’s equations close to the periodic
orbit (qp(t) + q, pp(t) + p) are of the form

q̇ = + ∂2
pqH(qp(t), pp(t)) q + ∂2

ppH(qp(t), pp(t)) p

ṗ = − ∂2
qqH(qp(t), pp(t)) q − ∂2

qpH(qp(t), pp(t)) p ,

where the new coordinates q and p are relative to a periodic orbit. This linearized
equation can be regarded as a D dof oscillator with time periodic frequencies
(where ‘dof’ stands for the Hamiltonian ‘degree of freedom’). These equations
are representing the equation of motion in a redundant way since more than one
combination of q, p and t determines the same point of the phase space. This can
be cured by an extra restriction on the variables, a constraint the variables should
fulfill. This constraint can be derived from the time independence or stationarity
of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (A45.1)

Using the linearized form of this constraint we can eliminate one of the linearized
equations. It is very useful, although technically difficult, to do one more transfor-
mation and to introduce a coordinate, which is parallel with the Hamiltonian flow
(x‖) and others which are orthogonal. In the orthogonal directions we again get
linear equations. These equations with x‖ dependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillators in the new coordinates
with constant frequencies. This result has first been derived by Poincaré for equi-
librium points and later it was extended for periodic orbits by V.I. Arnol’d and
co-workers. In the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2

p2
‖

+ U(x‖) +

D−1∑
n=1

1
2

(p2
n ± ω

2
nx2

n) , (A45.2)

which is the general form of the Hamiltonian in the neighborhood of a periodic
orbit. The ± sign denotes, that for stable modes the oscillator potential is posi-
tive while for an unstable mode it is negative. For the unstable modes, ω is the
Lyapunov exponent of the orbit

ωn = ln Λp,n/Tp, (A45.3)

where Λp,n is the expanding eigenvalue of the Jacobi matrix. For the stable direc-
tions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp . (A45.4)

The Hamiltonian close to the periodic orbit is integrable and can be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld quantization for
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the oscillators gives the energy spectra

En = ~ωn

(
jn +

1
2

)
for stable modes

En = −i~ωn

(
jn +

1
2

)
for unstable modes , (A45.5)

where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable and
sn = −i for unstable directions. The parallel mode can be quantized implicitly
trough the classical action function of the mode:

1
2π

∮
p‖dx‖ =

1
2π

S ‖(Em) = ~
(
m +

mpπ

2

)
, (A45.6)

where mp is the topological index of the motion in the parallel direction. The latter
condition can be rewritten by a very useful trick into the equivalent form (39.18)

1 − eiS ‖(Em)/~−impπ/2 = 0 . (A45.7)

The eigenenergies of a semiclassically quantized periodic orbit are all the possible
energies

E = Em +

D−1∑
n=1

En. (A45.8)

This relation allows us to change in (A45.7) Em with the full energy minus the
oscillator energies Em = E −

∑
n En. All the possible eigenenergies of the periodic

orbit then are the zeroes of the expression

∆p(E) =
∏

j1,..., jD−1

(1 − eiS ‖(E−
∑

n ~snωn( jn+1/2))/~−impπ/2). (A45.9)

If we Taylor expand the action around E to first order

S ‖(E + ε) ≈ S ‖(E) + T (E)ε, (A45.10)

where T (E) is the period of the orbit, and use the relations ofω and the eigenvalues
of the Jacobi matrix, we get the expression of the Selberg product

∆p(E) =
∏

j1,..., jD−1

1 − eiS p(E)/~−impπ/2∏
n Λ

(1/2+ jn)
p,n

 . (A45.11)

If we use the right convention for the square root we get exactly the D dof expres-
sion of the Selberg product formula we derived from the Gutzwiller trace formula
in (39.19). Just here we derived it in a different way! The function ∆p(E) is the
semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a function
which is zero, whenever the energy coincides with the Bohr-Sommerfeld quan-
tized energy of one of the periodic orbits, we have to take the product of these
determinants:

∆(E) =
∏

p

∆p(E). (A45.12)
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The miracle of the semiclassical zeta function is, that if we take infinitely many
periodic orbits, the infinite product will have zeroes not at these energies, but close
to the eigenenergies of the whole system!

So we have learned that both stable and unstable orbits are integrable systems,
and can be individually quantized semiclassically by the old Bohr-Sommerfeld
rules. We have thus almost completed the program of Sommerfeld to quantize
general systems with the method of Bohr. A remark: In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximation (A45.10). Sommerfeld
would never do this! At that point we loose some important precision compared
to the Bohr-Sommerfeld rules and we get somewhat worse results than a semi-
classical formula is able to do. We will come back to this point in sect. A45.4,
when we discuss the quantum corrections. To complete the program of full scale
Bohr-Sommerfeld quantization of chaotic systems we have to go beyond the linear
approximation around the periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel and normal coordi-
nates can be written as the ‘harmonic’ plus ‘anaharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (A45.13)

where the anaharmonic part can be written as a sum of homogeneous polynomials
of xn and pn with x‖ dependent coefficients,

remark A45.1

HA(x‖, xn, pn) =
∑
k=3

Hk(x‖, xn, pn)

Hk(x‖, xn, pn) =
∑

∑
`n+mn=k

Hk
`n,mn

(x‖)x`n
n pmn

n . (A45.14)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view, since it is
non integrable. However, Birkhoff in 1927 introduced the concept of normal form,
which gives successive integrable approximations to a non-integrable problem. 3

A45.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium point of
a Hamiltonian. Equilibrium point is where the potential has a minimum ∇U = 0
and small perturbations lead to oscillatory motion. We can linearize the problem
and by introducing normal coordinates xn and conjugate momenta pn the quadratic
part of the Hamiltonian will be a set of oscillators

H0(xn, pn) =

D∑
n=1

1
2

(p2
n + ω2

nx2
n). (A45.15)

3 It is a pity that in 1926 Schrödinger introduced wave mechanics, thus blocking the development
of Sommerfeld’s concept.
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The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (A45.16)

where HA is the anaharmonic part of the potential in the new coordinates. The
anaharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =

∞∑
j=3

H j(xn, pn)

H j(xn, pn) =
∑
|`|+|m|= j

h j
`mx`pm,

where h j
`m are real constants and we used the multi-indices ` := (`1, ..., `D) with

definitions

|`| =
∑

`n, x` := x`1
1 x`2

2 ...x
`D
D .

Birkhoff showed, that that by successive canonical transformations one can intro-
duce new momenta and coordinates such, that in the new coordinates the anahar-
monic part of the Hamiltonian up to any given n polynomial will depend only on
the variable combination

τn =
1
2

(p2
n + ω2

nx2
n), (A45.17)

where xn and pn are the new coordinates and momenta, but ωn is the original
frequency. This is called the Birkhoff normal form of degree N:

H(xn, pn) =

N∑
j=2

H j(τ1, ..., τD), (A45.18)

where H j are homogeneous degree j polynomials of τ’s. This is an integrable
Hamiltonian, the non-integrability is pushed into the remainder, which consists of
polynomials of degree higher than N. We run into trouble only when the oscillator
frequencies are commensurate, i.e., when it is possible to find a set of integers mn

such that the linear combination

D∑
n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in 1966 and we
call the object Birkhoff-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized and can be carried out up to
high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to degree
N. For a non-integrable system the high order terms behave quite wildly and the
series is not convergent. Therefore we have to use this tool carefully. Now, we
learned how to approximate a non-integrable system with a sequence of integrable
systems and we can go back and carry out the Bohr-Sommerfeld quantization.
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A45.3 Bohr-Sommerfeld quantization of periodic orbits

There is some difference between equilibrium points and periodic orbits. The
Hamiltonian (A45.2) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an oscillator Hamiltonian, but this
would make the problem extremely difficult. Therefore, we carry out the canonical
transformations dictated by the Birkhoff procedure only in the orthogonal direc-
tions. The x‖ coordinate plays the role of a parameter. After the transformation up
to order N the Hamiltonian (A45.14) is

H(x‖, p‖, τ1, ...τD−1) = H0(x‖, p‖, τ1, ..., τD−1)+
N∑

j=2

U j(x‖, τ1, ..., τD−1), (A45.19)

where U j is a jth order homogeneous polynomial of τ’s with x‖ dependent coeffi-
cients. The orthogonal part can be Bohr-Sommerfeld quantized by quantizing the
individual oscillators, replacing τ’s as we did in (A45.5). This leads to a 1-dimen-
sional effective potential indexed by j1, ..., jD−1

H(x‖, p‖, j1, ..., jD−1) =
1
2

p2
‖

+ U(x‖) +

D−1∑
n=1

~snωn( jn + 1/2)

+

N∑
k=2

Uk(x‖, ~s1ω1( j1 + 1/2), ~s2ω2( j2 + 1/2), ..., ~sD−1ωD−1( jD−1 + 1/2)) ,(A45.20)

where jn can be any non-negative integer. The term with index k is proportional
with ~k due to the homogeneity of the polynomials.

The parallel mode now can be Bohr-Sommerfeld quantized for any given set
of j’s

S p(E, j1, ..., jD−1) =

∮
dx‖ p‖

=

∮
dx‖

√√√
E −

D−1∑
n=1

~snωn( jn + 1/2) − U(x‖, j1, ..., jD−1)

= 2π~(m + mp/2) ,

where U contains all the x‖ dependent terms of the Hamiltonian. The spectral
determinant becomes

∆p(E) =
∏

j1,..., jD−1

(1 − eiS p(E, j1,..., jD−1)/~−mpπ/2) .

This expression completes the Sommerfeld method and tells us how to quantize
chaotic or general Hamiltonian systems. Unfortunately, Schrödinger’s wave me-
chanics postponed this nice formula until our book.

qmnoise - 19jun2003 ChaosBook.org edition16.0, Feb 13 2018



APPENDIX A45. SEMICLASSICAL QUANTIZATION, WITH CORRECTIONS984

The formula has been derived with the help of the semiclassical Bohr-Sommer-
feld quantization rule and the classical normal form theory. Indeed, if we expand
S p in the exponent in the powers of ~

S p =

N∑
k=0

~kS k,

we get more than just a constant and a linear term. This formula already gives
us corrections to the semiclassical zeta function in all powers of ~. There is a
very attractive feature of this semiclassical expansion. ~ in S p shows up only
in the combination ~snωn( jn + 1/2). A term proportional with ~k can only be a
homogeneous expression of the oscillator energies snωn( jn + 1/2). For example
in two dimensions there is only one possibility of the functional form of the order
k term

S k = ck(E) · ωk
n( j + 1/2)k,

where ck(E) is the only function to be determined.

The corrections derived sofar are doubly semiclassical, since they give semi-
classical corrections to the semiclassical approximation. What can quantum me-
chanics add to this? As we have stressed in the previous section, the exact quan-
tum mechanics is not invariant under canonical transformations. In other context,
this phenomenon is called the operator ordering problem. Since the operators x̂
and p̂ do not commute, we run into problems, when we would like to write down
operators for classical quantities like x2 p2. On the classical level the four possible
orderings xpxp, ppxx, pxpx and xxpp are equivalent, but they are different in
the quantum case. The expression for the energy (A45.20) is not exact. We have
to go back to the level of the Schrödinger equation in order to obtain the exact
expression.

A45.4 Quantum calculation of ~ corrections

The Gutzwiller trace formula has originally been derived from the saddle point
approximation of the Feynman path integral form of the propagator. The exact
trace is a path-sum for all closed paths of the system

tr G(x, x′, t) =

∫
dx G(x, x, t) =

∫
Dx eiS (x,t)/~, (A45.21)

where
∫
Dx denotes the discretization and summation for all paths of time length

t in the limit of the infinite refinement and S (x, t) is the classical action calculated
along the path. The trace in the saddle point calculation is a sum for classical
periodic orbits and zero length orbits, since these are the extrema of the action
δS (x, t) = 0 for closed paths:

tr G(x, x′, t) = g0(t) +
∑

p∈PO

∫
Dξp eiS (ξp+xp(t),t)/~, (A45.22)
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where g0(t) is the zero length orbit contribution. We introduced the new coordi-
nate ξp with respect to the periodic orbit xp(t), x = ξp + xp(t). Now, each path
sum

∫
Dξp is computed in the vicinity of periodic orbits. Since the saddle points

are taken in the configuration space, only spatially distinct periodic orbits, the so
called prime periodic orbits, appear in the summation. Sofar nothing new has
been invented. If we continue the standard textbook calculation scheme, we have
to Taylor expand the action in ξp and keep the quadratic term in the exponent whi-
le treating the higher order terms as corrections. Then we can compute the path
integrals with the help of Gaussian integrals. The key point here is that we do not
compute the path sum directly. We use the correspondence between path integrals
and partial differential equations. This idea comes from Maslov, and a good sum-
mary is given in ref. [2]. We search for that Schrödinger equation, which leads to
the path sum∫

Dξp eiS (ξp+xp(t),t)/~, (A45.23)

where the action around the periodic orbit is in a multi-dimensional Taylor ex-
panded form:

S (x, t) =

∞∑
n

sn(t)(x − xp(t))n/n! (A45.24)

The symbol n = (n1, n2, ..., nD) denotes the multi index for D dofs, n! =
∏D

i=1 ni!
the multi factorial and (x − xp(t))n =

∏D
i=1(xi − xp,i(t))ni , respectively. The ex-

pansion coefficients of the action can be determined from the Hamilton-Jacobi
equation

∂tS +
1
2

(∇S )2 + U = 0 , (A45.25)

in which the potential is expanded in a multidimensional Taylor series around the
orbit

U(x) =
∑

n
un(t)(x − xp(t))n/n!. (A45.26)

The Schrödinger equation

i~∂tψ = Ĥψ = −
~2

2
∆ψ + Uψ, (A45.27)

with this potential also can be expanded around the periodic orbit. Using the WKB
ansatz

ψ = ϕeiS/~, (A45.28)

we can construct a Schrödinger equation corresponding to a given order of the
Taylor expansion of the classical action. The Schrödinger equation induces the
Hamilton-Jacobi equation (A45.25) for the phase and the transport equation of
Maslov and Fjedoriuk [15] for the amplitude:

∂tϕ + ∇ϕ∇S +
1
2
ϕ∆S −

i~
2

∆ϕ = 0. (A45.29)
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This partial differential equation, solved in the neighborhood of a periodic orbit
with the expanded action (A45.24), belongs to the local path-sum (A45.23).

If we know the Green’s function Gp(ξ, ξ′, t) corresponding to the local equa-
tion (A45.29), then the local path sum can be converted back into a trace:∫

Dξp ei/~
∑

n S n(xp(t),t)ξn
p/n! = tr Gp(ξ, ξ′, t). (A45.30)

The saddle point expansion of the trace in terms of local traces then becomes

tr G(x, x′, t) = tr GW(x, x′, t) +
∑

p

tr Gp(ξ, ξ′, t), (A45.31)

where GW(x, x′, t) denotes formally the Green’s function expanded around zero
length orbits, known as the Weyl term [3–5]. Each Green’s function can be
Fourier-Laplace transformed independently and by definition we get in the energy
domain

tr G(x, x′, E) = g0(E) +
∑

p

tr Gp(ξ, ξ′, E). (A45.32)

Note that we do not need here to take further saddle points in time, since we are
dealing with exact time and energy domain Green’s functions.

The spectral determinant is a function which has zeroes at the eigenenergies
En of the Hamilton operator Ĥ. Formally it is

∆(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the energy
domain Green’s function:

tr G(x, x′, E) =
∑

n

1
E − En

=
d

dE
log ∆(E). (A45.33)

We can define the spectral determinant ∆p(E) also for the local operators, writing

tr Gp(ξ, ξ′, E) =
d

dE
log ∆p(E). (A45.34)

Using (A45.32) we can express the full spectral determinant as a product for the
sub-determinants

∆(E) = eW(E)
∏

p

∆p(E),

where W(E) =
∫ E

g0(E′) dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done easily. We
have to consider the stationary eigenvalue problem of the local Schrödinger prob-
lem and keep in mind, that we are in a coordinate system moving together with
the periodic orbit. If the classical energy of the periodic orbit coincides with an
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eigenenergy E of the local Schrödinger equation around the periodic orbit, then
the corresponding stationary eigenfunction fulfills

ψp(ξ, t + Tp) =

∫
dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~ ψp(ξ, t), (A45.35)

where Tp is the period of the prime orbit p. If the classical energy of the periodic
orbit is not an eigenenergy of the local Schrödinger equation, the non-stationary
eigenfunctions fulfill

ψ`p(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ′, t+Tp)ψp(ξ′, t) = e−iETp/~λ`p(E)ψ`p(t) , (A45.36)

where ` = (`1, `2, ...) is a multi-index of the possible quantum numbers of the local
Schrödinger equation. If the eigenvalues λ`p(E) are known the local functional
determinant can be written as

∆p(E) =
∏
`

(1 − λ`p(E)), (A45.37)

since ∆p(E) is zero at the eigenenergies of the local Schrödinger problem. We can
insert the ansatz (A45.28) and reformulate (A45.36) as

e
i
~S (t+Tp)ϕ`p(t + Tp) = e−iETp/~λ`p(E)e

i
~S (t)ϕ`p(t) . (A45.38)

The phase change is given by the action integral for one period S (t + Tp)− S (t) =∫ Tp

0 L(t) dt. Using this and the identity for the action S p(E) of the periodic orbit

S p(E) =

∮
p dq =

∫ Tp

0
L(t) dt + ETp, (A45.39)

we get

e
i
~S p(E)ϕ`p(t + Tp) = λ`p(E)ϕ`p(t). (A45.40)

Introducing the eigenequation for the amplitude

ϕ`p(t + Tp) = R`,p(E)ϕ`p(t) , (A45.41)

the local spectral determinant can be expressed as a product for the quantum num-
bers of the local problem,

∆p(E) =
∏
`

(
1 − R`,p(E) e

i
~ S p(E)

)
.

Since ~ is a small parameter we can develop a perturbation series for the ampli-
tudes

ϕ`p(t) =

∞∑
m=0

(
i~
2

)m

ϕ`(m)
p (t)

which can be inserted into the equation (A45.29) and we get an iterative scheme
starting with the semiclassical solution ϕ`(0):

∂tϕ
`(0) + ∇ϕ`(0)∇S +

1
2
ϕ`(0)∆S = 0, (A45.42)

∂tϕ
`(m+1) + ∇ϕ`(m+1)∇S +

1
2
ϕ`(m+1)∆S = ∆ϕ`(m).
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The eigenvalue can also be expanded in powers of i~/2:

R`,p(E) = exp

 ∞∑
m=0

(
i~
2

)m

C(m)
`,p

 =

eC(0)
`,p

1 +
i~
2

C(1)
`,p +

(
i~
2

)2 (
1
2

(C(1)
`,p)2 + C(2)

`,p

)
+ . . .

 . (A45.43)

The eigenvalue equation (A45.41) in ~ expanded form reads as

ϕ`(0)
p (t + Tp) = eC(0)

`,p ϕ`(0)
p (t)

ϕ`(1)
p (t + Tp) = eC(0)

`,p
[
ϕ`(1)

p (t) + C(1)
`,pϕ

`(0)
p (t)

]
ϕ`(2)

p (t + Tp) = eC(0)
`,p

[
ϕ`(2)

p (t) + C(1)
`,pϕ

`(1)
p (t) + (C(2)

`,p +
1
2

(C(1)
`,p)2)ϕ`(0)

p (t)
]
,

and so on. These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for all t.

It is convenient to expand the functions ϕ`(m)
p (x, t) in Taylor series around the

periodic orbit and to solve the equations (A45.43) in this basis [9], since only
a couple of coefficients should be computed to derive the first corrections. One
can derive in general the zero order term C(0)

` = iπνp +
∑D−1

i=1

(
`i + 1

2

)
up,i, where

up,i = log Λp,i are the logarithms of the eigenvalues of the monodromy matrix Mp

and νp is the topological index of the periodic orbit. The first correction is given
by the integral

C(1)
`,p =

∫ Tp

0
dt

∆ϕ`(0)
p (t)

ϕ`(0)
p (t)

.

When the theory is applied for billiard systems, the wave function should
fulfill the Dirichlet boundary condition on hard walls, e.g. it should vanish on
the wall. The wave function determined from (A45.29) behaves discontinuously
when the trajectory xp(t) hits the wall. For the simplicity we consider a 2 dof
billiard system here. The wave function on the wall before the bounce (t−0 ) is
given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0) eiS (x,y(x),t−0)/~, (A45.44)

where y(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave function on the wall after the
bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS (x,y(x),t+0)/~. (A45.45)

The sum of these wave functions should vanish on the hard wall. This implies that
the incoming and the outgoing amplitudes and the phases are related as

S (x, y(x), t−0) = S (x, y(x), t+0), (A45.46)
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and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (A45.47)

The minus sign can be interpreted as the topological phase coming from the hard
wall.

Now we can reexpress the spectral determinant with the local eigenvalues:

∆(E) = eW(E)
∏

p

∏
`

(
1 − R`,p(E) e

i
~S p(E)

)
. (A45.48)

This expression is the quantum generalization of the semiclassical Selberg-product
formula [19]. A similar decomposition has been found for quantum baker maps
in refs. [18, 20]. The functions

ζ−1
` (E) =

∏
p

(
1 − R`,p(E) e

i
~ S p(E)

)
(A45.49)

are the generalizations of the Ruelle type [17] zeta functions. The trace formula
can be recovered from (A45.33):

tr G(E) = g0(E)+
1
i~

∑
p,`

(
Tp(E) − i~

d log R`,p(E)
dE

)
R`,p(E)e

i
~S p(E)

1 − R`,p(E)e
i
~ S p(E)

. (A45.50)

We can rewrite the denominator as a sum of a geometric series and we get

tr G(E) = g0(E)+
1
i~

∑
p,r,`

(
Tp(E) − i~

d log R`,p(E)
dE

)
(R`,p(E))r e

i
~ rS p(E). (A45.51)

The new index r can be interpreted as the repetition number of the prime orbit
p. This expression is the generalization of the semiclassical trace formula for
the exact quantum mechanics. We would like to stress here, that the perturbation
calculus introduced above is just one way to compute the eigenvalues of the local
Schrödinger problems. Non-perturbative methods can be used to calculate the
local eigenvalues for stable, unstable and marginal orbits. Therefore, our trace
formula is not limited to integrable or hyperbolic systems, it can describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-leading
term−i~d log R`,p(E)/dE and using the semiclassical eigenvalue R(0)

`,p(E) = eC`(0)
p =

e−iνpπe−
∑

i(`i+1/2)up,i . Summation for the indexes `i yields the celebrated semiclas-
sical amplitude∑

`

(R(0)
`,p(E))r =

e−irνpπ

| det (1 − Mr
p) |1/2

. (A45.52)

example A45.1

p. 991
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Commentary

Remark A45.1. Birkhoff normal form. Normal forms of equilibria stability manifolds
for 1D Hamiltonian (are-preserving) systems were introduced by Birkhoff [6]. Their con-
vergence is discussed by Moser [16]. In 1927 Birkhoff [7] extended the concept of normal
form to give successive integrable approximations to a non-integrable problem.
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A45.5 Examples

Example A45.1. The first correction C(1)
p,` to 2 dof billiards. To have an impression

about the improvement caused by the quantum corrections we have developed a numerical
code which calculates the first correction C(1)

p,` for general 2 dof billiard systems. The first
correction depends only on some basic data of the periodic orbit such as the lengths of the
free flights between bounces, the angles of incidence and the first three Taylor expansion
coefficients Y2,Y3,Y4 of the wall in the point of incidence. To check that our new local
method gives the same result as the direct calculation of the Feynman integral, we com-
puted the first ~ correction C(1)

p,0 for the periodic orbits of the 3-disk scattering system [11–
13] where the quantum corrections have been found to agree up to the fifth decimal digit,
while our method generates these numbers with any desired precision. Unfortunately,
the ` , 0 coefficients cannot be compared to ref. [1], since the ` dependence was not
realized there due to the lack of general formulas (A45.48) and (A45.49). However, the
` dependence can be checked on the 2 disk scattering system [21, 22]. On the standard
example [1, 8, 10–13, 21, 22], when R, the distance of the centers, is 6 times the disk
radius a, we obtain

C(1)
`

=
1
√

2E
(−0.625 `3 − 0.3125 `2 + 1.4375 ` + 0.625).

For ` = 0 and 1 this has been confirmed by A. Wirzba, who was able to compute C(1)
0 from

his exact quantum calculation. Our method makes it possible to utilize the Cvitanović–
Eckhardt [8] symmetry reduction and to repeat the fundamental domain cycle expansion
calculation of ref. [8] with the first quantum correction. We computed the correction to
the leading 226 prime periodic orbits with 10 or less bounces in the fundamental do-
main. Table A45.1 shows the numerical values of the exact quantum calculation [21,
22], the semiclassical cycle expansion [9] and our corrected calculation. The error of
the corrected calculation vs. the error of the semiclassical calculation decreases with the
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Figure A45.2: A typical bounce off a billiard wall. The wall can be characterized by the local
expansion y(x) = Y2 x2/2! + Y3 x3/3! + Y4 x4/4! + ....

Table A45.1: Real part of the resonances (Re k) of the 3-disk scattering system at disk separation
6:1. Semiclassical and first corrected cycle expansion versus exact quantum calculation and the
error of the semiclassical δS C divided by the error of the first correction δCorr. The magnitude of the
error in the imaginary part of the resonances remains unchanged.

Quantum Semiclassical First correction δS C/δCorr
0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0

wavenumber. Besides the improved results, a convergence up to six decimal digits is ob-
served, in contrast to just three decimal digits obtained in the full domain calculation [1,
10].

click to return: p. 989
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