Chapter 19

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare, The Winter’s Tale

(P. Cvitanovié, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chapter 4 we stud-

ied a small neighborhood of a trajectory and learned that such neighborhood
can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

IN CHAPTERS 2, 3, 8 and 9 we learned how to track an individual trajectory, and

While the trajectory of an individual representative point may be highly con-
voluted, as we shall see, the density of these points might evolve in a manner that
is relatively smooth. The evolution of the density of representative points is for
this reason (and other that will emerge in due course) of great interest. So are
the behaviors of other properties carried by the evolving swarm of representative
points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of linear action of evolution operators.
We shall also show that the important, long-time “natural” invariant densities are
unspeakably unfriendly and essentially uncomputable everywhere singular func-
tions with support on fractal sets. Hence, in chapter 20 we rethink what is it that
the theory needs to predict (“expectation values" of “observables"), relate these
to the eigenvalues of evolution operators, and in chapters 21 to 23 show how to
compute these without ever having to compute a “natural” invariant density pg.
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Figure 19.1: (a) First level of partitioning: A v '

coarse partition of M into regions My, M;, and
M,. (b) n = 2 level of partitioning: A refinement
of the above partition, with each region M; subdi-
vided into My, M;;, and M.

(a) (b)

19.1 Measures

Do I then measure, O my God, and know not what I mea- n
sure?

—St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote by du(x) = p(x)dx. An intuitive way to define and
construct a physically meaningful measure is by a process of coarse-graining.
Consider a sequence 1, 2, ..., n, ... of increasingly refined partitions of state space,
figure 19.1, into 3 regions M; defined by the characteristic function

1 ifxeM,,

0 otherwise. (19.1)

Xi(x) = {
A coarse-grained measure is obtained by assigning the “mass,” or the fraction of
trajectories contained in the ith region M; C M at the nth level of partitioning of
the state space:

A = f () () = f du(x) = f dxp(x). (19.2)
M M; M

The function p(x) = p(x,t) denotes the density of representative points in state
space at time ¢. This density can be (and in chaotic dynamics, often is) an ar-
bitrarily ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect to the
Lebesgue measure (namely the uniform measure on the state space). We shall
assume that the measure is normalized

(1)
ZA“I' =1, (19.3)

i

where the sum is over subregions i at the nth level of partitioning. The infinites-
imal measure p(x) dx can be thought of as an infinitely refined partition limit of
Au; = I\Mi| p(x;) , where | M;| is the volume of subregion M; and x; € M;; also
p(x) is normalized

f dxp(x) = 1. (19.4)
M
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Figure 19.2: The evolution rule f’can be used to map
aregion M; of the state space into the region f'(M;).

Here | M;| is the volume of region M;, and all |M;| —» O as n — oo.

So far, any arbitrary sequence of partitions will do. What are intelligent ways
of partitioning state space? We already know the answer from chapter 14, but let
us anyway have another look at this, in order to develop some intuition about how
the dynamics transports densities.

19.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in a
region M; at time r = 0. As the flow evolves, this region is carried into f'(M,),
as in figure 19.2. No trajectory is created or destroyed, so the conservation of
representative points requires that

f dxp(x,t) = f dxo p(xo,0).
frMy) M;

Transform the integration variable in the expression on the left hand side to the
initial points xo = f~/(x),

f dxo p(f' (x0), 1) [det J'(x0)| = f dxo p(x0,0).
M; M;

2

The density changes with time as the inverse of the Jacobian (4.28)

p(x0,0)

et/ o)l x = f(x0), (19.5)

p(x, 1) =

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.

The relation (19.5) is linear in p, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

o0 = (£09) 0 = [ dio o= )20, 0. (19.6)

Let us check this formula. As long as the zero is not smack on the border of I M,
integrating Dirac delta functions is easy: f [\ dx6(x) = 1if0 € M, zero otherwise.
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Figure 19.3: The piecewise-linear skew ‘full tent ,
map’ (19.37), with Ay = 4/3, A; = —4. See exam- '
ple 19.1.
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The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its
argument evaluated at all of its zeros:

(x=% )h'(% )

f dxs(h(x)) = - \}x (19.7)
B 1
{x:h(x)=0} |h/(x)|

and in d dimensions the denominator is replaced by

1
f dx (h(x)) = f dxs(h(x)) = ) =, (19.8)
2. b 2 e B0

where M; is any open neighborhood that contains the single x; zero of . Now
you can check that (19.6) is just a rewrite of (19.5):

(Lz o p) (x) = _Z; |J£Ei?);’| (1-dimensional)
xo=/7"(x)
W idet J'(xo)| (d-dimensional) . (19.9)

For a deterministic, invertible flow x has only one preimage x; allowing for mul-
tiple preimages also takes account of noninvertible mappings such as the ‘stretch
& fold’ maps of the interval, to be discussed briefly in example 19.1, and in more
detail in sect. 14.3.

We shall refer to the integral operator with singular kernel (19.6) as the Perron-
Frobenius operator:

Ly, x)=6(y- 1), (19.10)

The Perron-Frobenius operator assembles the density p(y,?) at time ¢ by going
back in time to the density p(x, 0) at time ¢ = 0. The family of Perron-Frobenius
operators { L'}, forms a semigroup parameterized by time
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(@ L0 =1

(b) L£1L =L Lt >0 (semigroup property) .

If you do not like the word “kernel” you might prefer to think of £'(y, x) as a
matrix with indices x, y, and index summation in matrix multiplication replaced
by an integral over x, (L' o p)(y) = f dy L'(y, x)p(x) . In example 19.1, Perron-
Frobenius operator is a matrix, and (19.11) illustrates a matrix approximation to
the Perron-Frobenius operator.

& in depth:
” appendix A19, p. 900
example 19.1 fast track:
W p. 363 @ sect. 19.4, p. 353
19.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to different results.

— John Guckenheimer
(R. Artuso and P. Cvitanovi¢)

To a student with a practical bent the above Example 19.1 suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions of state
space into regions M;, with a piecewise-linear approximations f; to the dynamics
in each region, but that would be too naive; much of the physically interesting
spectrum would be missed. As we shall see, the choice of function space for p is
crucial, and the physically motivated choice is a space of smooth functions, rather
than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is nothing but
an elegant way of thinking of the evolution operator, £, as a matrix (this point of
view will be further elaborated in chapter 28). There are many textbook methods
of approximating an operator £ by sequences of finite matrix approximations £,
but in what follows the great achievement will be that we shall avoid construct-
ing any matrix approximation to £ altogether. Why a new method? Why not
just run it on a computer, as many do with such relish in diagonalizing quantum
Hamiltonians?

The simplest possible way of introducing a state space discretization, fig-

ure 19.4, is to partition the state space M with a non-overlapping collection of
sets M;, i =1,..., N, and to consider densities (19.2) piecewise constant on each
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Figure 19.4: State space discretization approach to
computing averages.
exacT .sgec‘hwm 'Ap,l,) A,

Xi(x)

p(x) = s Pi |Mz|

where y;(x) is the characteristic function (19.1) of the set M;. This piecewise

constant density is a coarse grained presentation of a fine grained density p(x),
with (19.2)

pi = f v,

The Perron-Frobenius operator does not preserve the piecewise constant form, but
we may reapply coarse graining to the evolved measure

o = f dx (L o p)(x)

|M|f dxf dyé(x - f0)) |

or
N -1
’ |MJ n f (Mt)l
pi - Z_; p] |M]| .
In this way
IM; 0 f7H M)
L= ———> 7 ! = pLL 19.11

is a matrix approximation to the Perron-Frobenius operator, and its leading left
eigenvector is a piecewise constant approximation to the invariant measure.

The problem with such state space discretization approaches is that they are
blind, the grid knows not what parts of the state space are more or less important.
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This observation motivated the development of the invariant partitions of chaotic
systems undertaken in chapter 14, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space and a measure of the partition
volumes, in the spirit of figure 15.13.

Furthermore, a piecewise constant p belongs to an unphysical function space,
and with such approximations one is plagued by numerical artifacts such as spu-
rious eigenvalues. In chapter 28 we shall employ a more refined approach to
extracting spectra, by expanding the initial and final densities p, p’ in some basis
©o, P1, ¥2,- -+ (orthogonal polynomials, let us say), and replacing L(y, x) by its
¢ basis representation Log = (¢.|Llgg). The art is then the subtle art of finding
a “good” basis for which finite truncations of L,g give accurate estimates of the
eigenvalues of L.

Regardless of how sophisticated the choice of basis might be, the basic prob-
lem cannot be avoided - as illustrated by the natural measure for the Hénon map
(3.18) sketched in figure 19.5, eigenfunctions of £ are complicated, singular func-
tions concentrated on fractal sets, and in general cannot be represented by a nice
basis set of smooth functions. We shall resort to matrix representations of £ and
the ¢, basis approach only insofar this helps us prove that the spectrum that we
compute is indeed the correct one, and that finite periodic orbit truncations do
converge.

- in depth:
” chapter 1, p. 2
19.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

p(x, 1) = p(x,0) = p(x). (19.12)

Conversely, if such a density exists, the transformation f7(x) is said to be measure-
preserving. As we are given deterministic dynamics and our goal is the compu-
tation of asymptotic averages of observables, our task is to identify interesting
invariant measures for a given f’(x). Invariant measures remain unaffected by dy-
namics, so they are fixed points (in the infinite-dimensional function space of p
densities) of the Perron-Frobenius operator (19.10), with the unit eigenvalue:

L) = fM dy 6C = FON)P0) = p(x). (19.13)

We will construct explicitly such eigenfunction for the piecewise linear map in
example 20.4, with p(y) = const and eigenvalue 1. In general, depending on the
choice of f(x) and the function space for p(x), there may be no, one, or many
solutions of the eigenfunction condition (19.13). For instance, a singular measure
du(x) = 6(x — x4)dx concentrated on an equilibrium point x, = f! (x4), or any
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linear combination of such measures, each concentrated on a different equilib-
rium point, is stationary. There are thus infinitely many stationary measures that
can be constructed. Almost all of them are unnatural in the sense that the slightest
perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transfor-
mations experienced by an initial smooth distribution p(x) under the action of f,

po(x)=}LrglofAAdy6(x—f’(Y))p@,0), fMdyp(y,O)=1- (19.14)

Intuitively, the “natural” measure should be the measure that is the least sensitive
to the (in practice unavoidable) external noise, no matter how weak, or round-off
errors in a numerical computation.

19.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechanics?
Yang: I don’t think so.

—XKerson Huang, C.N. Yang interview

In computer experiments, as the Hénon example of figure 19.5, the long time evo-
lution of many “typical" initial conditions leads to the same asymptotic distribu-
tion. Hence the natural measure (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural density,
or even “natural invariant™) is defined as the limit

im0 2 [ dT8(y = £7(x0)) flows
Py = (19.15)
lim, 0 ,ll ZZ;(I) (5(y - fk(xo)) maps,

where xyp is a generic initial point. ~Generated by the action of f, the natural
measure satisfies the stationarity condition (19.13) and is thus invariant by con-
struction.

Staring at an average over infinitely many Dirac deltas is not a prospect we
cherish. From a computational point of view, the natural measure is the visitation
frequency defined by coarse-graining, integrating (19.15) over the M; region

— .0
Afi; = lim =, (19.16)

where t; is the accumulated time that a trajectory of total duration ¢ spends in the
M; region, with the initial point xy picked from some smooth density p(x).

Let a = a(x) be any observable. In the mathematical literature a(x) is a func-
tion belonging to some function space, for instance the space of integrable func-
tions L!, that associates to each point in state space a number or a set of numbers.
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In physical applications the observable a(x) is necessarily a smooth function. The
observable reports on some property of the dynamical system. Several examples
will be given in sect. 20.1.

The space average of the observable a with respect to a measure p is given by
the d-dimensional integral over the state space M:

(@)p = 1 f dx p(x)a(x)
loml Im

loml = f dx p(x) = mass in M. (19.17)
M

For now we assume that the state space M has a finite dimension and a finite
volume. By its construction, {a), is a function(al) of p. For p = po natural measure
we shall drop the subscript in the definition of the space average; (a), = (a).

Inserting the right-hand-side of (19.15) into (19.17), we see that the natural
measure corresponds to a time average of the observable a along a trajectory of
the initial point xg,

t
ay, = lim %f dra(f"(xp)). (19.18)
1—00 0

Analysis of the above asymptotic time limit is the central problem of ergodic
theory. The Birkhoff ergodic theorem asserts that if an invariant measure p ex-
ists, the limit a(xp) for the time average (19.18) exists for (almost) all initial xg.
Still, Birkhoff theorem says nothing about the dependence on xq of time averages
ay, (or, equivalently, that the construction of natural measures (19.15) leads to a
“single" density, independent of xg). This leads to one of the possible definitions
of ergodic evolution: f is ergodic if for any integrable observable a in (19.18)
the limit function is constant. If a flow enjoys such a property, the time averages
coincide (apart from a set of p measure 0) with space averages

lim ! dra(f"(x0)) = {a). (19.19)

t—oo 0

For future reference, we note a further property that is stronger than ergodicity:
if the space average of a product of any two variables decorrelates with time,

lima(e)b(f'(x))) = (a)b), (19.20)

the dynamical system is said to be mixing. The terminology may be understood
better once we consider as the pair of observables in (19.20) characteristic func-
tions of two sets A and B: then (19.20) may be written as

_U(ANfB))
lim ————— = w(B
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Figure 19.5: Natural measure (19.16) for the Hénon
map (3.18) strange attractor at parameter values
(a,b) = (1.4,0.3). See figure 3.7 for a sketch of the
attractor without the natural measure binning. See ex-
ample 19.2. (Courtesy of J.-P. Eckmann)

so that the set 8 spreads “uniformly" over the whole state space as ¢ increases.
Mixing is a fundamental notion in characterizing statistical behavior for dynam-
ical systems: suppose we start with an arbitrary smooth nonequilibrium distribu-
tion p(x)v(x): the after time ¢ the average of an observable a is given by

f dx p(x)v(f'(x))a(x)
M

and this tends to the equilibrium average (a), if f is mixing.

example 19.2
@ p. 363

If an invariant measure is quite singular —for instance a Dirac ¢ concentrated
on a fixed point or a cycle— it is most likely of no physical import. No smooth
initial density will converge to this measure if its neighborhood is repelling. In
practice the average (19.15) is problematic and often hard to control, as generic
dynamical systems are neither uniformly hyperbolic nor structurally stable: it is
not known whether even the simplest model of a strange attractor, the Hénon
attractor of figure 19.5, is “strange,” or merely a transient to a very long stable
cycle.

19.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular p’s, in any physical setting we cannot
do better than to measure p averaged over some region M;; the coarse-graining is
not an approximation but a physical necessity. One is free to think of a measure
as a probability density, as long as one keeps in mind the distinction between
deterministic and stochastic flows. In deterministic evolution the evolution kernels
are not probabilistic; the density of trajectories is transported deterministically.
What this distinction means will became apparent later: for deterministic flows
our trace and determinant formulas will be exact, while for quantum and stochastic
flows they will only be the leading saddle point (stationary phase, steepest descent)
approximations.

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you will never need to compute them, at least not
in this book. How so? The evolution operators to which we next turn, and the
trace and determinant formulas to which they will lead us, will assign the correct
weights to desired averages without recourse to any explicit computation of the
coarse-grained measure Ap;.
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19.5 Density evolution for infinitesimal times

[ > ]
Consider the evolution of a smooth density p(x) = p(x,0) under an infinitesimal
step 07, by expanding the action of £°7 to linear order in 67:
£70) = [ dxoly=17eo)p
= f dx o6(y — x — 0tv(x)) p(x)
M
PG —omvy)  _ pO) = 6Tvi(1)dip(y)
[det (1+6722)| 1+ 67 XL, dmi0)
0
px,01) = p(x,0) - 57(9—(V(X)P(x, 0)). (19.21)
b
Here we have used the infinitesimal form of the flow (2.7), the Dirac delta Jaco- _
exercise 4.1

bian (19.9), and the In det = tr In relation. By the Einstein summation conven-
tion, repeated indices imply summation, v;(y)d; = Zf’zl vi(y)0;. Moving p(y, 0) to
the left hand side and dividing by 67, we discover that the rate of the deformation
of p under the infinitesimal action of the Perron-Frobenius operator is nothing but
the continuity equation for the density:

op+0d-(v) =0. (19.22)

From (19.21), time evolution by an infinitesimal step 67 forward in time is gener-
ated by

N s
Ap() = + lim — (L7 ~1)p(x) = ~Bi(i(x)p(x). (19.23)
We shall refer to
d
A==0-v= vi(0)d (19.24)

]

as the time-evolution generator. If the flow is finite-dimensional and invertible,
A is a generator of a full-fledged group. The left hand side of (19.23) is the
definition of time derivative, so the evolution equation for p(x) is

0
(E —ﬂ)p(x) = 0. (19.25)

The finite time Perron-Frobenius operator (19.10) can be formally expressed
by exponentiating the time evolution generator A as

L=, (19.26)

The generator A is reminiscent of the generator of translations. Indeed, for a con-
stant velocity field dynamical evolution is nothing but a translation by (time X velocity):

) exercise 19.10
e Vora(x) = a(x —tv). (19.27)
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19.6 Liouville operator

J A case of special interest is the Hamiltonian or symplectic flow defined
by Hamilton’s equations of motion (8.1). A reader versed in quantum mechan-
ics will have observed by now that with replacement A — —%FI , where H is
the quantum Hamiltonian operator, (19.25) looks rather like the time dependent
Schrodinger equation, so this is the right moment to figure out what all this means
for Hamiltonian flows.

The Hamilton’s evolution equations (8.1) for any time-independent quantity
0 = 0(g, p) are given by
d 00dq; 0Qdp; O0HO 00 0H
d0 _0Qdqi  0Qdpi _ OHOQ 0QOH (19.28)
dt  0q; dt  0p; dt  0p;dq; Op;0q;
where (p;, g;) span the full state space, which for Hamiltonian flows we shall refer
to as the phase space. As equations with this structure arise frequently for sym-
plectic flows, it is convenient to introduce a notation for them, the Poisson bracket

O0A OB  0A OB
AB = —— - — — 19.29
4. Bl Opi 0q;  0q; Op; ( )

In terms of Poisson brackets the time-evolution equation (19.28) takes the compact
form

o
=10, (19.30)

The discussion of sect. 19.5 applies to any deterministic flow. The full phase
space flow velocity is X = v = (¢, p), where the dot signifies time derivative.

If the density itself is a material invariant, combining
atl +v- 51 = 0 .

and (19.22) we conclude that d;v; = 0 and detJ'(xo) = 1. An example of such
incompressible flow is the Hamiltonian flow. For incompressible flows the con-
tinuity equation (19.22) becomes a statement of conservation of the phase space
volume (see sect. 8.3), or the Liouville theorem

oo +vi0ip=0. (19.31)
The symplectic structure of Hamilton’s equations (8.1) implies that the flow

is incompressible, d;v; = 0, so for Hamiltonian flows the equation for p reduces to
the continuity equation for the phase-space density:

8p+0ipvi)=0, i=12...,D. (19.32)
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Consider the evolution of the phase-space density p of an ensemble of nonin-
teracting particles; the particles are conserved, so

0
+ pi7— |p(q, p,1) = 0.

i ( [)— 24_ i
at” P =\ o T Ueg; T Piap,

Inserting Hamilton’s equations (8.1) we obtain the Liouville equation, a special
case of (19.25):

|
Ep(q, p.t) = —Ap(q, p,t) = {H,p(q, p,D}, (19.33)

where { , } is the Poisson bracket (19.29). The generator of the flow (19.24) is in
this case a generator of infinitesimal symplectic transformations,
0 . 0 O0H i oH i

A= i+ Pi~

= — - — . 19.34
0q; dpi Op;0q; 0q;Op; ( )

For example, for separable Hamiltonians of form H = p?/2m+V(q), the equations
of motion are

_pi V(g

qi , pi= : (19.35)
m 0qi
and the action of the generator
i 0 0
A=-27 L avigp=. (19.36)
m g Opi

Looking back at (19.27) we see that the first term generates a translation in the
configuration space, f(q, p) — f(q — dtq, p), and the second generates acceler-
ation by force dV(g) in the momentum space. They do not commute, hence the
time integration is not trivial.

The time-evolution generator (19.24) for the case of symplectic flows is called
the Liouville operator. You might have encountered it in statistical mechanics,
while discussing what ergodicity means for 6.02214129 x 10?* hard balls. Here
its action will be very tangible; we shall apply the Liouville operator to systems
as small as 1 or 2 hard balls and to our surprise learn that this suffices to already
get a bit of a grip on foundations of the nonequilibrium statistical mechanics.

Résumé

In physically realistic settings the initial state of a system can be specified only to
a finite precision. If the dynamics is chaotic, it is not possible to calculate the long
time trajectory of a given initial point. Depending on the desired precision, and
given a deterministic law of evolution, the state of the system can then be tracked
for a finite time only.

The study of long-time dynamics thus requires trading in the evolution of a
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially
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this means trading in nonlinear dynamical equations on a finite dimensional space
x = (x1,xp -+ xg4) for a linear equation on an infinite dimensional vector space of
density functions p(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator,

plx.0) = (L 0p) (),
and in a differential formulation they satisfy the continuity equation:
op+0-(v) =0.

The most physical of stationary measures is the natural measure, a measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the notion
of an individual deterministic trajectory loses meaning, is much shorter than the
observation time, the “sharp” observables are those dual to time, the eigenval-
ues of evolution operators. This is very much the same situation as in quantum
mechanics; as atomic time scales are so short, what is measured is the energy,
the quantum-mechanical observable dual to the time. Both in classical and quan-
tum mechanics one has a choice of implementing dynamical evolution on densi-
ties (“Schrodinger picture,” sect. 19.5) or on observables (“Heisenberg picture,”
sect. 20.3 and chapter 21).

In what follows we shall find the second formulation more convenient, but the
alternative is worth keeping in mind when posing and solving invariant density
problems. However, as classical evolution operators are not unitary, their eigen-
functions can be quite singular and difficult to work with. In what follows we
shall learn how to avoid dealing with these eigenstates altogether. As a matter of
fact, what follows will be a labor of radical deconstruction; after having argued
so strenuously here that only smooth measures are “natural,” we shall merrily
proceed to erect the whole edifice of our theory on periodic orbits, i.e., objects
that are o-functions in state space. The trick is that each comes with an interval, its
neighborhood — periodic points only serve to pin these intervals, just as millimeter
markings on a measuring rod are used to partition a continuum into intervals.

Commentary

Remark 19.1. Ergodic theory:  An overview of ergodic theory is outside the scope
of this book: the interested reader may find it useful to consult refs. [2, 17, 22, 26].
The existence of time average (19.18) is the basic result of ergodic theory, known as the
Birkhoff theorem, see for example refs. [16, 26], or the statement of theorem 7.3.1 in
ref. [19]. The natural measure (19.16) of sect. 19.4.1 is often referred to as the SRB
or Sinai-Ruelle-Bowen measure [5, 24, 25]. If you experience discomfort whenever a
Dirac function is trotted out, Ten Lessons, Gian-Carlo Rota [23] sensible discussion of
‘density functions’ should bring you peace (“From this definition, all properties of the
Dirac delta function are easily derived without any hysterical appeals to functions taking
infinite values - - - ).
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There is much literature on explicit form of natural measure for special classes of
1-dimensional maps [3, 8, 20] - J. M. Aguirregabiria [1], for example, discusses several
families of maps with known smooth measure, and behavior of measure under smooth
conjugacies. As no such explicit formulas exist for higher dimensions and general dy-
namical systems, we do not discuss such measures here.

Remark 19.2. Time evolution as a Lie group: Time evolution of sect. 19.5 is an exam-
ple of a 1-parameter Lie group. Consult, for example, Bluman and Kumei [4] Chapter 2
for a clear and pedagogical introduction to Lie groups of transformations. For a discussion
of the bounded semigroups of page 377 see, for example, Marsden and Hughes [21].

Remark 19.3. Discretization of the Perron-Frobenius operator operator It is an
old idea of Ulam [27] that such an approximation for the Perron-Frobenius operator is
a meaningful one. The piecewise-linear approximation of the Perron-Frobenius operator
(19.11) has been shown to reproduce the spectrum for expanding maps, once finer and
finer Markov partitions are used [7, 9, 12]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [10, 11].

Remark 19.4. The sign convention of the Poisson bracket: =~ The Poisson bracket
is antisymmetric in its arguments and there is a freedom to define it with either sign
convention. When such freedom exists, it is certain that both conventions are in use and
this is no exception. In some texts [13, 14] you will see the right hand side of (19.29)
defined as {B, A} so that (19.30) is dd—? = {Q, H}. Other equally reputable texts [ 1 5] employ
the convention used here. Landau and Lifshitz [18] denote a Poisson bracket by [A, B],
notation that we reserve here for the quantum-mechanical commutator. As long as one is
consistent, there should be no problem.

Remark 19.5. “Anonit lives"? “Anon it lives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused her of infidelity. Twenty
years later, the servant Paulina shows Leontes this statue of Hermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lived and Paulina has kept her
hidden all these years. The text of the play seems deliberately ambiguous. It is probably
a parable for the resurrection of Christ. (John E. Gibson)
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19.7 Examples

Example 19.1. Perron-Frobenius operator for a piecewise-linear map.  Consider
the expanding 1-dimensional map f(x) of figure 19.3, a piecewise-linear 2—branch map
with slopes Ag > 1 and A| = —Ag/(Ag— 1) < —1:

Jo(x) = Aox, x € My =1[0,1/A0)

f(x>:{ A=A -x), xeM =(1/Ao1]. (19.37)

Both f(My) and f(M;) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left" unstable fixed point xj as the
“Ulam” map. Assume a piecewise constant density

| po ifxeMo
p(x) —{ o1 ifre M - (19.38)

As can be easily checked using (19.9), the Perron-Frobenius operator acts on this piece-
wise constant function as a [2x2] Markov matrix (transfer matrix) L. with matrix elements

(@) - Lp:[ \A_il @ }(@), (19.39)
P1 Aol A 1\P1

stretching both py and p; over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue e = 1/|Ag| + 1/|A{| = 1,
with constant density eigenvector pg = p;. The quantities 1/|Ag|, 1/|A;]| are, respectively,
the fractions of state space taken up by the |[Mjl, |M;]| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to em-
bark in this book, but the full story is much subtler: in general, there will exist no such
finite-dimensional representation for the Perron-Frobenius operator.  (continued in ex-
ample 20.4)

Example 19.2. The Hénon attractor natural measure. A numerical calculation of
the natural measure (19.16) for the Hénon attractor (3.18) is given by the histogram in
figure 19.5. The state space is partitioned into many equal-size areas M;, and the coarse
grained measure (19.16) is computed by a long-time iteration of the Hénon map, and
represented by the height of the column over area M;. What we see is a typical invariant
measure - a complicated, singular function concentrated on a fractal set.
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Exercises
19.1. Integrating over Dirac delta functions. Check the
delta function integrals in
(a) 1 dimension (19.7),
1
dx5(h(x)) = ——,  (19.40)
f Z |’ ()|

{x:h(x)=0}

(b) and in d dimensions (19.8), i : R¢ — R4,

dxo(h dxo(h
fRd“(’“” Zfo((x))
xh(x)Odet 0x

where M are arbitrarily small regions enclosing
the zeros x; (with x; not on the boundary dM;).
For a refresher on Jacobian determinants, read, for
example, Stone and Goldbart Sect. 12.2.2.

(©)

The delta function can be approximated by a se-
quence of Gaussians

fdxd(x)f(x)— hmfdx

Use this approximation to see whether the formal
expression

f dx5(x%)
R

makes sense.

f ().

19.2. Derivatives of Dirac delta functions. Consider

0 (x) = L6(x).

Using integration by parts, determine the value of

f dxd'(y)
R
f dx6? (y) =

f dx b(x)5P(y)

//)2 2

where y = f(x) — x (19.42)
o)* _(1%1}

{x:y(x)=0} b’ |{
1 { b// b/yu
o> o)

2
SO

{x:y(0=0)
ot o3 )](19'44)

of

These formulas are useful for computing effects of weak
noise on deterministic dynamics [6].

exerMeasure - 12sep2003

19.3. L' generates a semigroup.  Check that the Perron-
Frobenius operator has the semigroup property,

t,t > 0.

f dzL”(y,2) L(z,x) = L2 (y, x),
M
(19.45)

As the flows in which we tend to be interested are in-
vertible, the L’s that we will use often do form a group,
with t,1, € R.

19.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in
the interval [0, 1] for the tent map

f(x) =a(l -2|x-0.5])

for several values of a.

(b) Determine analytically the a dependence of the es-
cape rate y(a).

(c) Compare your results for (a) and (b).

19.5. Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.

0 1 0 d
(a) Verify the matrix £ representation (19.39).

(b) The maximum value of the first map is 1. Com-
pute an invariant measure for this map.

©
(d

Compute the leading eigenvalue of £ for this map.

For this map there is an infinite number of in-
variant measures, but only one of them will be
found when one carries out a numerical simula-
tion. Determine that measure, and explain why
your choice is the natural measure for this map.

(e) In the second map the maximum occurs at @ =
(3 = V5)/2 and the slopes are =+( V5 + 1)/2. Find
the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values

is (V3 + 1)/2.
(medium difficulty)
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19.6.

19.7.

19.8.

Escape rate for a flow conserving map. Adjust Ao,
Ay in (19.37) so that the gap between the intervals My,
M, vanishes. Show that the escape rate equals zero in
this situation.

Eigenvalues of the Perron-Frobenius operator for the
skew full tent map.  Show that for the skew full tent

map
1
0.8
A
0.6 0
A
0.4
0.2
0.2 04 0.6 0.8 i
Fo) = Jo(x) = Aox, xe My =1[0,1/Ap)
T AW = 250 -x), xe M =(1/A1].

(19.46)

the eigenvalues are available analytically, compute the
first few.

“Kissing disks” (continuation of exercises 9.1 and
9.2) Close off the escape by setting R = 2, and look
in real time at the density of the Poincaré section iter-
ates for a trajectory with a randomly chosen initial con-
dition. Does it look uniform? Should it be uniform?

exerMeasure - 12sep2003

19.9.

19.10.

19.11.

366

(Hint - phase-space volumes are preserved for Hamil-
tonian flows by the Liouville theorem). Do you notice
the trajectories that loiter near special regions of phase
space for long times? These exemplify “intermittency,”
a bit of unpleasantness to which we shall return in chap-
ter 29.

Invariant measure for the Gauss map. Consider
the Gauss map:
1 [l] x#0
={ x X 19.47
f { R o (19.47)

where [ ] denotes the integer part.

(a) Verity that the density

oo L1
xX) = ——
P log2 1+ x

is an invariant measure for the map.

(b) Is it the natural measure?

A as a generator of translations. Verify that for
a constant velocity field the evolution generator A in
(19.27) is the generator of translations,

i _
ermalx) =alx+1tv).

Incompressible flows.  Show that (19.9) implies that
po(x) = 1 1is an eigenfunction of a volume-preserving
flow with eigenvalue sy = 0. In particular, this im-
plies that the natural measure of hyperbolic and mixing
Hamiltonian flows is uniform. Compare this results with
the numerical experiment of exercise 19.8.
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