
Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeare, A Midsummer Night’s Dream

The time parameter in the definition of a dynamical system can be either con-
tinuous or discrete. Discrete time dynamical systems arise naturally from

section 2.1
flows. In general there are two strategies for replacing a continuous-time

flow by iterated mappings; by cutting it by Poincaré sections, or by strobing it at
a sequence of instants in time. Think of your partner moving to the beat in a di-
sco: a sequence of frozen stills. While ‘strobing’ is what any numerical integrator
does, by representing a trajectory by a sequence of time-integration step separated
points, strobing is in general not a reduction of a flow, as the sequence of strobed
points still resides in the full state spaceM, of dimensionality d. An exception are
non-autonomous flows that are externally periodically forced. In that case it might
be natural to observe the flow by strobing it at time intervals fixed by the external
forcing, as in example 8.7 where strobing of a periodically forced Hamiltonian
leads to the ‘standard map.’

In the Poincaré section method one records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. This triggering event can be
as simple as vanishing of one of the coordinates, or as complicated as the trajectory
cutting through a curved hypersurface. A Poincaré section (or, in the remainder
of this chapter, just ‘section’) is not a projection onto a lower-dimensional space:
rather, it is a local change of coordinates to a direction along the flow, and the
remaining coordinates (spanning the section) transverse to it. No information
about the flow is lost by reducing it to its set of Poincaré section points and the
return maps connecting them; the full space trajectory can always be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than visualization; it is also
a fundamental tool of dynamics - to fully unravel the geometry of a chaotic flow,

63



CHAPTER 3. DISCRETE TIME DYNAMICS 64

Figure 3.1: A trajectory x(t) that intersects a Poi-
ncaré section P at times t1, t2, t3, t4, and closes a cycle
(x̂1, x̂2, x̂3, x̂4), x̂k = x(tk) ∈ P of topological length 4
with respect to the section. In general, the intersecti-
ons are not normal to the section. Note also that the
crossing z does not count, as it in the wrong direction.
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one has to quotient all of its symmetries, and evolution in time is one of these
(This delphic piece of hindsight will be illuminated in chapter 12).

3.1 Poincaré sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point on an orbit
can be used to label the orbit, with the state space thus reduced to a ‘skew-product’
of a (d−1)-dimensional space P of labeling points x̂ j ∈ P and the corresponding 1-
dimensional orbit curvesM j on which the flow acts as a time translation. However,
as orbits can be arbitrarily complicated and, if unstable, uncontrollable for times
beyond the Lyapunov time (1.1), in practice it is necessary to split the orbit into
finite trajectory segments, with time intervals corresponding to the shortest recur-
rence times on a non-wondering set of the flow, finite times for which the flow
is computable. A particular prescription for picking the orbit-labeling points is
called a Poincaré section. In introductory texts Poincaré sections are treated as
pretty visualizations of a chaotic flows, but their dynamical significance is much
deeper than that. Once a section is defined, a ‘Lagrangian’ description of the flow

chapter 12
(discussed above, page 44) is replaced by the ‘Eulerian’ formulation, with the
trajectory-tangent velocity field v(x̂) , x̂ ∈ P enabling us to go freely between the
time-quotiened space P and the full state space M. The dynamically important
transverse dynamics –description of how nearby trajectories attract / repeal each
other– is encoded in mapping of P → P induced by the flow - dynamics along
orbits is of secondary importance.

Successive trajectory intersections with a Poincaré section, a (d−1)-dimension-
al hypersurface embedded in the d-dimensional state spaceM, figure 3.1, define
the Poincaré return map P(x̂), a (d−1)-dimensional map of form

x̂′ = P(x̂) = f τ(x̂)(x̂) , x̂′, x̂ ∈ P . (3.1)

Here the first return function τ(x̂)–sometimes referred to as the ceiling function–
is the time of flight to the next section for a trajectory starting at x̂. The choice
of the section hypersurface P is altogether arbitrary. It is rarely possible to define
a single section that cuts across all trajectories of interest. Fortunately, one often
needs only a local section, a finite hypersurface of codimension 1 intersected by a
swarm of trajectories near to the trajectory of interest (the case of several sections
is discussed in sect. 15.6). Such hypersurface can be specified implicitly by a

maps - 31dec2014 ChaosBook.org version16.0, Dec 27 2017

http://youtube.com/embed/MzhpWE4cw7M


CHAPTER 3. DISCRETE TIME DYNAMICS 65

single condition, through a function U(x) that is zero whenever a point x is on the
Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (3.2)

The gradient of U(x) evaluated at x̂ ∈ P serves a two-fold function. First, the
flow should pierce the hypersurface P, rather than being tangent to it. A nearby
point x̂ + δx is in the hypersurface P if U(x̂ + δx) = 0. A nearby point on the
trajectory is given by δx = vδt, so a traversal is ensured by the transversality
condition

(v · ∇U) =

d∑
j=1

v j(x̂) ∂ jU(x̂) , 0 , ∂ jU(x̂) =
∂

∂x̂ j
U(x̂) , x̂ ∈ P . (3.3)

Second, the gradient ∇U defines the orientation of the hypersurface P. The flow
is oriented as well, and a periodic orbit can pierce P twice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poincaré return map P(x̂) needs
to be supplemented with the orientation condition

x̂n+1 = P(x̂n) , U(x̂n+1) = U(x̂n) = 0 , n ∈ Z+

d∑
j=1

v j(x̂n) ∂ jU(x̂n) > 0 . (3.4)

In this way the continuous time t flow x(t) = f t(x) is reduced to a discrete time n
sequence x̂n of successive oriented trajectory traversals of P.

chapter 20

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section. Depending on the application, one might need
to convert the discrete time n back to the continuous flow time. This is accompli-
shed by adding up the first return function times τ(x̂n), with the accumulated flight
time given by

tn+1 = tn + τ(x̂n) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.

example 3.1

p. 76

example 3.2

p. 76

example 3.3

p. 76
A typical trajectory of the 3-dimensional Rössler flow is plotted in figure 2.6. A

sequence of Poincaré sections of figure 3.2 illustrates the ‘stretch & fold’ action
of Rössler flow. Figure 3.3 exhibits a set of return maps (3.1).

fast track:

sect. 3.3, p. 70
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CHAPTER 3. DISCRETE TIME DYNAMICS 66

Figure 3.2: (Right:) a sequence of Poincaré secti-
ons of the Rössler strange attractor, defined by pla-
nes through the z axis, oriented at angles (a) −60o

(b) 0o, (c) 60o, (d) 120o, in the x-y plane. (Left:)
side and x-y plane view of a typical trajectory with
Poincaré sections superimposed. (R. Paškauskas)
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Figure 3.3: Return maps for the rn → rn+1 ra-
dial distance Poincaré sections of figure 3.2. The
‘multi-valuedness’ of (b) and (c) is only appa-
rent: the full return map is 2-dimensional, {r′, z′} =

P{r, z}. (R. Paškauskas)
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The above examples illustrate why a Poincaré section gives a more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rössler flow figure 2.6 gives us no sense of the thickness of the
attractor, we see clearly in the Poincaré sections of figure 3.2 that even though the
return maps are 2-dimensional → 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall
quantify this claim in example 4.5.)

3.1.1 Section border

How far does the neighborhood of a template extend along the hyperplane (3.14)?
A section captures faithfully neighboring orbits as long as it cuts them transver-
sally; it fails the moment the velocity field at point x̂∗ fails to pierce the section.
At this location the velocity is tangent to the section and, thus, orthogonal to the
template normal n̂,

n̂ · v(x̂∗) = 0 , x̂∗ ∈ S , (3.6)

i.e., v⊥(x̂), component of the v(x̂) normal to the section, vanishes at x̂∗. For a
smooth flow such points form a smooth (d−2)-dimensional section border S ⊂ P,
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CHAPTER 3. DISCRETE TIME DYNAMICS 67

encompassing the open neighborhood of the template characterized by qualitati-
vely similar flow. We shall refer to this region of the section hyperplane as the
(maximal) chart of the template neighborhood for a given hyperplane (3.14).

If the template point is an equilibrium xq, there is no dynamics exactly at this
point as the velocity vanishes (v(xq) = 0 by the definition of equilibrium) and
cannot be used to define a normal to the section. Instead, we use the local linea-
rized flow to construct the local Poincaré section P. We orient P so the unstable
eigenvectors are transverse to the section, and at least the slowest contracting ei-
genvector is tangent to the section, as in figure 4.6. This ensures that the flow is
transverse to P in an open neighborhood of the template xq.

exercise 3.7

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-
dimensional sheet of light. Lagrangian particle trajectories either cross, are tangent
to, or fail to reach this plane; the 1-dimensional curves of tangency points define the
section border. An example is offered by the velocity field of the Rössler flow of
figure 4.5. Pick a Poincaré section hyperplane so it goes through both equilibrium
points. The section might be transverse to a large neighborhood around the inner
equilibrium x−, but dynamics around the outer equilibrium x+ is totally different,
and the competition between the two types of motion is likely to lead to vanishing
of v⊥(x̂), component of the v(x̂) normal to the section, someplace in-between the
two equilibria. A section is good up to the section border, but beyond it an orbit
infinitesimally close to x̂∗ generically does not cross the section hyperplane.

For 3-dimensional flows, the section border S is a 1-dimensional closed curve
in the section 2-dimensional P, and easy to visualize. In higher dimensions, the
section border is a (d−2)-dimensional manifold, not easily visualized, and the best
one can do is to keep checking for change of sign (3.4) at Poincaré section returns
of nearby trajectories close to the section border hypersurface S; (3.6) will be
positive inside, negative immediately outside S.

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent. We do not want to keep recomputing these over
and over. We would rather replace the whole continuous family of solutions by
one solution in order to be more efficient. This approach replaces the dynamics
(M, f ) with dynamics on the quotient state space (M/t, f̂ ). For now, we only

chapter 12
remark that constructing explicit quotient state space flow f̂ is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see cha-
pter 12) will be to resort to the method of slices.
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Figure 3.4: (a) Lorenz flow figure 2.5 cut by y = x
Poincaré section plane P through the z axis and
both EQ1,2 equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near the EQ0 equilibrium, the flow
is cut by the second Poincaré section, P′, through
y = −x and the z axis. (b) Poincaré sections P and
P′ laid side-by-side. The singular nature of these
sections close to EQ0 will be elucidated in exam-
ple 4.6 and figure 14.8 (b). (E.
Siminos)

(a) (b)

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise this book would not be much of a doorstop). The invariants of the flow
are its infinite-time orbits; particularly useful invariants are compact orbits such
as equilibrium points, periodic orbits, and tori. For any orbit it suffices to pick a
single state space point x ∈ Mp, the rest of the orbit is generated by the flow.

Choice of this one ‘labeling’ point is utterly arbitrary; in dynamics this is cal-
led a ‘Poincaré section’, and in theoretical physics this goes by the exceptionally
uninformative name of ‘gauge fixing’. The price is that one generates ‘ghosts’,
or, in dynamics, increases the dimensionality of the state space by additional con-
straints (see sect. 7.2). It is a commonly deployed but inelegant procedure where
symmetry is broken for computational convenience, and restored only at the end
of the calculation, when all broken pieces are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient, as discussed in sect. 15.6. (b) For ease of compu-
tation, pick linear sections (3.14) when possible. (c) If equilibria play important
role in organizing a flow, pick sections that go through them (see example 3.4).
In that case, try to place contracting eigenvectors inside the hyperplane, see Lo-
renz figure 3.4. Remember, the stability eigenvectors are never orthogonal to each
other, unless that is imposed by some symmetry. (d) If you have a global discrete

chapter 11
or continuous symmetry, pick sections left invariant by the symmetry (see exam-
ple 11.8). For example, setting the normal vector n̂ in (3.14) at x to be the velocity
v(x) is natural and locally transverse. (e) If you are solving a local problem, like
finding a periodic orbit, you do not need a global section. Pick a section or a set of
(multi-shooting) sections on the fly, requiring only that they are locally transverse
to the flow. (f) If you have another rule of thumb dear to you, let us know.

example 3.4

p. 77
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CHAPTER 3. DISCRETE TIME DYNAMICS 69

3.2 Computing a Poincaré section

(R. Mainieri)

For almost any flow of physical interest a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when

remark 3.2
you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

Consider the system (2.7) of ordinary differential equations in the vector vari-
able x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.7)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, the map f τn(xn) = xn +

∫
dτ v(x(τ)) cannot be integrated

analytically, so we will have to resort to numerical integration to determine the
trajectories of the system. Our task is to determine the points at which the nume-
rically integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a function U(x) that is zero whenever a point x is
on the Poincaré section, such as the hyperplane (3.14).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very small integration time
step. However, there is a better way to land exactly on the Poincaré section.

Let ta be the time just before U changes sign, and tb the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.8)

we can rewrite the equations of motion (3.7) as

dt
dx1

=
1
v1
, · · · ,

dxd

dx1
=

vd

v1
. (3.9)

Now we use x1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value of x1 on the hypersurface, determined by the hypersurface intersection
condition (3.14). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; any xi can be chosen as the integration
variable, provided the xi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.
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Figure 3.5: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section P as x̂n+1 = f (x̂n) . In this example the orbit of
x̂1 is periodic and consists of the four periodic points
(x̂1, x̂2, x̂3, x̂4).
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example 3.5

p. 77

3.3 Mappings

Do it again! (and again! and again! and ...)
—Isabelle, age 3

Though we have motivated discrete time dynamics by considering sections of a
continuous flow and reduced the continuous-time flow to a family of maps P(x̂)
mapping points x̂ from a section to a section, there are many settings in which
dynamics is inherently discrete, and naturally described by repeated iterations of
the same map

remark 3.1

f :M→M ,

or sequences of consecutive applications of a finite set of maps, a different map,
fA, fB, . . ., for points in different regions {MA,MB, · · · ,MZ},

{ fA, fB, . . . fZ} :M→M , (3.10)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of the map or maps.
As writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting the (non-commutative)
map composition by ‘◦’

fZ(· · · fB( fA(x))) · · · ) = fZ ◦ · · · fB ◦ fA(x) , (3.11)

and the nth iterate of map f by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)
, f 0(x) = x .

The trajectory of x is the finite set of points
section 2.1{

x, f (x), f 2(x), . . . , f n(x)
}
,

traversed in time n, and Mx, the orbit of x, is the subset of all points of M that
can be reached by iterations of f . A periodic point (cycle point) xk belonging to a
periodic orbit (cycle) of period n is a real solution of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (3.12)
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Figure 3.6: The strange attractor and an unstable pe-
riod 7 cycle of the Hénon map (3.17) with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [5])
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For example, the orbit of x̂1 in figure 3.5 is a set of four cycle points, (x̂1, x̂2, x̂3, x̂4) .

The functional form of such Poincaré return maps P as figure 3.3 can be ap-
proximated by tabulating the results of integration of the flow from x̂ to the first
Poincaré section return for many x̂ ∈ P, and constructing a function that interpola-
tes through these points. If we find a good approximation to P(x̂), we can get rid
of numerical integration altogether, by replacing the continuous time trajectory
f t(x̂) by iteration of the Poincaré return map P(x̂). Constructing accurate P(x̂)
for a given flow can be tricky, but we can already learn much from approximate
Poincaré return maps. Multinomial approximations

Pk(x̂) = ak +

d∑
j=1

bk j x̂ j +

d∑
i, j=1

cki j x̂i x̂ j + . . . , x̂ ∈ P (3.13)

to Poincaré return maps
x̂1,n+1
x̂2,n+1
. . .

x̂d,n+1

 =


P1(x̂n)
P2(x̂n)
. . .

Pd(x̂n)

 , x̂n, x̂n+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon map and
Lozi map.

example 3.6

p. 78

example 3.7

p. 78

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flow figure 3.3. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable, and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for

exercise 6.3
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

example 3.8

p. 78

As we shall see in sect. 14.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
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higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

appendix A10.3

fast track:

sect. 4, p. 81

Résumé

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with finite return times. If the orbit is periodic, it returns after
a full period. So, on average, nothing much really happens along the trajectory–
what is important is behavior of neighboring trajectories transverse to the flow.
This observation motivates a replacement of the continuous time flow by iterative
mapping, the Poincaré maps. A visualization of a strange attractor can be greatly
facilitated by a felicitous choice of Poincaré sections, and the reduction of flow
to Poincaré maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is the re-
duction of a billiard flow to a boundary-to-boundary return map, described in
chapter 9. As we shall show in appendix A2, further simplification of a Poincaré

chapter 9
appendix A2

return map, or any nonlinear map, can be attained through rectifying these maps
locally by means of smooth conjugacies.

In truth, as we shall see in chapter 12, the reduction of a continuous time
flow by the method of Poincaré sections is not a convenience, but an absolute
necessity - to make sense of an ergodic flow, all of its continuous symmetries
must be reduced, evolution in time being one of these symmetries.

Commentary

Remark 3.1. Functions, maps, mappings. In mathematics, ‘mapping’ is a noun,
‘map’ is a verb. Nevertheless, ‘mapping’ is often shortened to ‘map’ and is often used
as a synonym for ‘function.’ ‘Function’ is used for mappings that map to a single point
in R or C, while a mapping which maps to Rd would be called a ‘mapping,’ and not a
‘function.’ Likewise, if a point maps to several points and/or has several pre-images, this
is a ‘many-to-many’ mapping, rather than a function. In his review [13], Smale refers to
iterated maps as ‘diffeomorphisms’, in contradistinction to ‘flows’, which are 1-parameter
groups of diffeomorphisms. In the sense used here, in the theory of dynamical systems,
dynamical evolution from an initial state to a state finite time later is a (time-forward)
map.

Remark 3.2. Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [6, 9, 14]. The idea of changing the integration variable from time to one of the
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coordinates, although simple, avoids the alternative of having to interpolate the numerical
solution to determine the intersection.

Remark 3.3. Hénon, Lozi maps. The Hénon map is of no particular physical im-
port in and of itself–its significance lies in the fact that it is a minimal normal form for
modeling flows near a saddle-node bifurcation, and that it is a prototype of the stretching
and folding dynamics that leads to deterministic chaos. It is generic in the sense that it
can exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and
non–hyperbolic behaviors. Its construction was motivated by the best known early exam-
ple of ‘deterministic chaos,’ the Lorenz equation, see example 2.2 and remark 2.3.
Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights into
its stretching and folding dynamics motivated Hénon [8] to introduce the Hénon map in
1976. Hénon’s and Lorenz’s original papers can be found in reprint collections refs. [2,
7]. They are a pleasure to read, and are still the best introduction to the physics motivating
such models. Hénon [8] had conjectured that for (a, b) = (1.4, 0.3) Hénon map a generic
initial point converges to a strange attractor. Its existence has never been proven. While
for all practical purposes this is a strange attractor, it has not been demonstrated that long
time iterations are not attracted by some long attracting limit cycle. Indeed, the pruning
front techniques that we describe below enable us to find stable attractors arbitrarily close

exercise 6.3
by in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219, 0.3). A
rigorous proof of the existence of Hénon attractors close to 1-dimensional parabola map is
due to Benedicks and Carleson [1]. A detailed description of the dynamics of the Hénon
map is given by Mira and coworkers [3, 4, 11], as well as very many other authors. The
Lozi map (3.19) is particularly convenient in investigating the symbolic dynamics of 2-
dimensional mappings. Both the Lorenz and Lozi [10] systems are uniformly expanding
smooth systems with singularities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [12], and the existence of the SRB measure was established by
L.-S. Young [15].

section 19.1
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3.4 Examples

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

Example 3.1. A template and the associated hyperplane Poincaré section.
The simplest choice of a Poincaré section is a plane P specified by a ‘template’ point
(located at the tip of the vector x̂′) and a normal vector n̂ perpendicular to the plane. A
point x̂ is in this plane if it satisfies the linear condition

U(x̂) = (x̂ − x̂′) · n̂ = 0 for x̂ ∈ P . (3.14)

Consider a circular periodic orbit centered at x̂′, but not lying in P. It pierces the hy-
perplane twice; the v · n̂ > 0 traversal orientation condition (3.4) ensures that the first
return time is the full period of the cycle. (continued in example 15.3)

click to return: p. 65

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.2. Pendulum. The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

click to return: p. 65

Motion of a pendulum is so simple that you can sketch it yourself on a piece of
paper. The next example offers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.3. Rössler flow. (Continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Rössler flow (2.27). The strange attractor wraps

exercise 3.1
around the z axis, so one choice for a Poincaré section is a plane passing through the
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.2, illustrates the ‘stretch & fold’ action of the Rössler flow,
by assembling these sections into a series of snapshots of the flow. A line segment
in (a), traversing the width of the attractor at y = 0, x > 0 section, starts out close to
the x-y plane, and after the stretching (a) → (b) followed by the folding (c) → (d), the
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folded segment returns (d)→ (a) close to the initial segment, strongly compressed. In
one Poincaré return the interval is thus stretched, folded and mapped onto itself, so the
flow is expanding. It is also mixing, as in one Poincaré return a point from the interior
of the attractor can map onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.3. Cases (a) and (d) are examples of nice 1-to-1 return maps.
While (b) and (c) appear multimodal and non-invertible, they are artifacts of projecting a

exercise 3.2
2-dimensional return map (rn, zn)→ (rn+1, zn+1) onto a 1-dimensional subspace rn → rn+1.
(continued in example 3.5)

click to return: p. 65

Example 3.4. Sections of Lorenz flow. (Continued from example 2.2) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.4 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilib-
ria, xEQ0 = (0, 0, 0) and the (2.23) pair xEQ1 , xEQ2 . A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

Equilibria xEQ1 , xEQ2 are centers of out-spirals, and close to them the section
is transverse to the flow. However, close to EQ0 trajectories pass the z-axis either
by crossing the section P or staying on the viewer’s side. We are free to deploy as
many sections as we wish: in order to capture the whole flow in this neighborhood
we add the second Poincaré section, P′, through the y = −x diagonal and the z-axis.
Together the two sections, figure 3.4 (b), capture the whole flow near EQ0. In contrast
to Rössler sections of figure 3.2, these appear very singular. We explain this singularity
in example 4.6 and postpone construction of a Poincaré return map until example 11.8.

(E. Siminos and J. Halcrow)
click to return: p. 68

Example 3.5. Computation of Rössler flow Poincaré sections. (Continued from
example 3.3) Convert Rössler equation (2.27) to cylindrical coordinates:

ṙ = υr = −z cos θ + ar sin2 θ

θ̇ = υθ = 1 +
z
r

sin θ +
a
2

sin 2θ

ż = υz = b + z(r cos θ − c) . (3.15)

Poincaré sections of figure 3.2 are defined by the fixing angle U(x) = θ − θ0 = 0. In
principle one should use the equilibrium x+ from (2.28) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.27), and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases
monotonically with time. Integrate

dr
dθ

= υr/υθ ,
dt
dθ

= 1/υθ ,
dz
dθ

= υz/υθ (3.16)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)

click to return: p. 70
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Example 3.6. Hénon map. The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.17)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

xn+1 = 1 − ax2
n + bxn−1 . (3.18)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rössler’s, figure 3.2. It can be obtained by a truncation of a
polynomial approximation (3.13) to a Poincaré return map (3.13) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.6), is obtained by picking an arbitrary starting point and iterating
(3.17) on a computer.

Always plot the dynamics of such maps in the (xn, xn+1) plane, rather than in the
(xn, yn) plane, and make sure that the ordinate and abscissa scales are the same, so
xn = xn+1 is the 45o diagonal. There are several reasons why one should plot this way:
(a) we think of the Hénon map as a model return map xn → xn+1, and (b) as parameter
b varies, the attractor will change its y-axis scale, while in the (xn, xn+1) plane it goes to
a parabola as b→ 0, as it should.

exercise 3.5
As we shall soon see, periodic orbits will be key to understanding the long-time

dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 33.1, and the periodic point labels 0111010, 1110100, · · · in sect. 15.2.

click to return: p. 71

Example 3.7. Lozi map. Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.17) given by

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.19)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch
& fold’ type.

click to return: p. 71

Example 3.8. Parabola. For sufficiently large value of the stretching parameter a,
one iteration of the Hénon map (3.17) stretches and folds a region of the (x, y) plane
centered around the origin, as will be illustrated in figure 15.4. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded
image through the ‘1-step memory’ term bxn−1 in (3.18). In figure 3.6 the parameter b is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
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clearly visible. For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

xn+1 = 1 − ax2
n . (3.20)

By setting b = 0 we lose determinism, as on reals the inverse of map (3.20) has two
exercise 3.6

real preimages {x+
n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon

map is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1-dimensional approximation is very instructive. (continued in example 14.1)

click to return: p. 71
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Exercises

3.1. Poincaré sections of the Rössler flow. (continuation
of exercise 2.8) Calculate numerically a Poincaré se-
ction (or several Poincaré sections) of the Rössler flow.
As the Rössler flow state space is 3D, the flow maps
onto a 2D Poincaré section. Do you see that in your
numerical results? How good an approximation would
a replacement of the return map for this section by a
1-dimensional map be? More precisely, estimate the th-
ickness of the strange attractor. (continued as exe-
rcise 4.4)

(R. Paškauskas)

3.2. A return Poincaré map for the Rössler flow. (con-
tinuation of exercise 3.1) That Poincaré return maps
of figure 3.3 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn → Rn+1.
Construct a genuine sn+1 = f (sn) return map by para-
meterizing points on a Poincaré section of the attractor
figure 3.2 by a Euclidean length s computed curviline-
arly along the attractor section. (For a discussion of
curvilinear parametrizations of invariant manifolds, see
sect. 15.1.1.)
This is best done (using methods to be developed in
what follows) by a continuation of the unstable mani-
fold of the 1-cycle embedded in the strange attractor, fi-
gure ?? (b).

(P. Cvitanović)

3.3. Arbitrary Poincaré sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you can
change the coordinates once you get near the Poi-
ncaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.21)

with dt/ds = κ, and choosing κ to be 1 or 1/ f1.
This allows one to switch between t and x1 as the
integration ’time.’

(b) Introduce an extra dimension xn+1 into your sy-
stem and set

xn+1 = U(x) . (3.22)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré surface
of section by plotting (r1, p1) whenever r2 = 0: Note that
for r2 = 0, p2 is already determined by (8.8). Compare
your results with figure A2.3 (b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.17) are gi-
ven by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (3.23)

3.6. Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-
dimensional contraction F of the interval [0, 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F′| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

3.7. Section border for Rössler. (continuation of exe-
rcise 3.1) Determine numerically section borders (3.6)
for several Rössler flow Poincaré sections of exercise 3.1
and figure 3.2, at least for angles

(a) −60o , (b) 0o, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.28) and figure 4.5. Two
points only fix a line: think of a criterion for a
good orientation of the section hyperplane, perh-
aps by demanding that the contracting eigenvector
of the ’inner’ equilibrium x− lies in it.

(d) (Optional) Hand- or computer-draw a visualiza-
tion of the section border as 3-dimensional fluid
flow which either crosses, is tangent to, or fails
to cross a sheet of light cutting across the flow.
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As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitude of v⊥(x̂),
component of the v(x̂) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For

sections that go through the z-axis, the normal velocity
v⊥(x̂) is tangent to the circle through x̂, and vanishes for
θ̇ in the polar coordinates (3.15), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanović)
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