
Chapter 11

World in a mirror

Even the butterfly that started the hurricane flapped its

wings for a reason.

— Louis Menand, Thinking Sideways, New Yorker,

30 March 2015

S
o far we have discussed the structure of a group as an abstract entity. Now

we switch gears and describe the action of the group on the state space.

This is the key step; if a set of solutions is equivalent by symmetry (let’s

say they live on a circle), we would like to represent it by a single solution (cut

the circle at a point, or rewrite the dynamics in a ‘ symmetry reduced state space,’

where the circle of solutions is represented by a single point). In this chapter we

study quotienting of discrete symmetries, and in chapter 12 we study symmetry

reduction for continuous symmetries. We look at individual orbits, and the ways

they are interrelated by symmetries. This sets the stage for a discussion of how

symmetries affect global densities of trajectories, and the factorization of spectral

determinants to be undertaken in chapter 25.

As we shall show here and in chapter 25, discrete symmetries simplify the dy-

namics in quite a beautiful way: If dynamics is invariant under a set of discrete

symmetries G, the state space M is tiled by a set of symmetry-related tiles, and

the dynamics can be reduced to dynamics within one such tile, the fundamental

domain M/G. In presence of a symmetry the notion of a prime periodic orbit

has to be reexamined: a set of symmetry-related full state space cycles is replaced

by often much shorter relative periodic orbit, the shortest segment of the full state

space cycle which tiles the cycle and all of its copies under the action of the group.

Furthermore, the group operations that relate distinct tiles do double duty as letters

of an alphabet which assigns symbolic itineraries to trajectories. section 14.1
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11.1 Symmetries of solutions

Solutions of an equivariant system can satisfy all of system’s symmetries, a sub-

group of them, or have no symmetry at all. For a generic ergodic orbit f t(x) the

trajectory and any of its images under action of g ∈ G are distinct with probability

one, f t(x) ∩ g f t′ (x) = ∅ for all t, t′. For example, a typical turbulent trajectory

of pipe flow has no symmetry beyond the identity, so its symmetry group is the

trivial {e}. For compact invariant sets, such as fixed points and periodic orbits the

situation is very different. For example, the symmetry of the laminar solution of

the plane Couette flow is the full symmetry of its Navier-Stokes equations. In

between we find solutions whose symmetries are subgroups of the full symmetry

of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps

a state space point x into itself,

Gx = {g ∈ G : gx = x} , (11.1)

is called the isotropy group (or stability subgroup or little group) of x. Think of a

point (0, 0, z), z , 0 on z axis in 3 dimensions. Its isotropy group is the O(2) group

of rotations in the {x, y} plane.

A solution usually exhibits less symmetry than the equations of motion. The

symmetry of a solution is thus a subgroup of the symmetry group of dynamics. We

thus also need a notion of set-wise invariance, as opposed to the above point-wise

invariance under Gx. exercise 10.2

Definition: Symmetry of a solution. We shall refer to the maximal subgroup

Gp ⊆ G of actions on state space points within a compact setMp, which leave no

point fixed but leave the set invariant, as the symmetry Gp of the solution labelled

p,

Gp = {g ∈ Gp | gx ∈ Mp, gx , x for g , e} , (11.2)

and reserve the notion of ‘isotropy’ of a setMp for the subgroup Gp that leaves

each point in it fixed.

A cycle p is Gp-symmetric (set-wise symmetric, self-dual) if the action of

elements of Gp on the set of periodic pointsMp reproduces the set. g ∈ Gp acts

as a shift in time, mapping the periodic point x ∈ Mp into another periodic point.

example 11.1

p. 184

Definition: Multiplicity. For a finite discrete group, the multiplicity of orbit p

is mp = |G|/|Gp|.
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Definition: Stratum. A stratum is the union of group orbits of the same type:

two orbits p, p′ belong to the same stratum if and only if their symmetries Gp, Gp′

are conjugate. In other words, a stratum is to state space what a class is to the set

of all group elements in G.

Definition: Gp-fixed orbits: An equilibrium xq or a compact solution p is point-

wise or Gp-fixed if it lies in the invariant points subspace Fix
(

Gp

)

, gx = x for all

g ∈ Gp, and x = xq or x ∈ Mp. A solution that is G-invariant under all group G

operations has multiplicity 1. Stability of such solutions will have to be examined

with care, as they lie on the boundaries of domains related by the action of the

symmetry group.

example 11.2

p. 184

In the literature the symmetry group of a solution is often called stabilizer

or isotropy subgroup. Saying that Gp is the symmetry of the solution p, or that

the orbitMp is ‘Gp-invariant,’ accomplishes as much without confusing you with

all these names (see remark 10.1). In what follows we say “the symmetry of the

periodic orbit p is C2 = {e,R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.

We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup

G s̃ set-wise invariant cycles s built by repeats of relative cycle segments s̃, and

(iii) isotropy subgroup GEQ-invariant equilibria or point-wise Gp-fixed cycles b.

Definition: Asymmetric (or fully asymmetric) orbits. An orbit (in particular,

an equilibrium or periodic orbit) has no symmetry if {xa} ∩ {gxa} = ∅ for any

g ∈ G, where {xa} is the set of periodic points belonging to the cycle a. Thus

g ∈ G generate |G| distinct orbits with the same number of points and the same

stability properties.

example 11.3

p. 184

In example 11.4, we illustrate the non-abelian, noncommutative group struc-

ture of the 3-disk game of pinball of sect. 1.3, which has symmetry group elements

that do not commute. exercise 10.5

example 11.4

p. 184

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the

iconic flow of Lorenz. The example is long but worth working through: the

symmetry-reduced dynamics is much simpler than the original Lorenz flow. exercise 11.2

exercise 11.3

exercise 11.4
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Figure 11.1: The D1-equivariant bimodal sawtooth map of figure 10.2 has three types of periodic

orbits: (a) D1-fixed fixed point C, asymmetric fixed points pair {L,R}. (b) D1-symmetric (setwise

invariant) 2-cycle LR. (c) Asymmetric 2-cycles pair {LC,CR}. (study example 11.3; continued in

figure 11.5) (Y. Lan)

Figure 11.2: Lorenz attractor of figure 3.4, the full

state space coordinates [x, y, z], with the unstable man-

ifold orbits Wu(EQ0). (Green) is a continuation of the

unstable e(1) of EQ0 , and (brown) is its π-rotated sym-

metric partner. Compare with figure 11.3. (E.

Siminos)
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example 11.5

p. 185

Note: nonlinear coordinate transformations such as the doubled-polar angle

representation (11.10) are not required to implement the symmetry quotienting

M/G. We deploy them only as a visualization aid that might help the reader

disentangle 2-dimensional projections of higher-dimensional flows. All numerical

calculations can still be carried in the initial, full state space formulation of a flow,

with symmetry-related points identified by linear symmetry transformations.

in depth:

appendix A7, p. 868

11.2 Relative periodic orbits

So far we have demonstrated that symmetry relates classes of orbits. Now we

show that a symmetry reduces computation of periodic orbits to repeats of shorter,

‘relative periodic orbit’ segments.
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Figure 11.3: (a) Lorenz attractor plotted in

[x̂, ŷ, z], the doubled-polar angle coordinates

(11.10), with points related by π-rotation in the

[x, y] plane identified. Stable eigenvectors of EQ0:

e(3) and e(2), along the z axis (11.9). Unstable man-

ifold orbit Wu(EQ0) (green) is a continuation of

the unstable e(1) of EQ0. (b) Blow-up of the region

near EQ1: The unstable eigenplane of EQ1 defined

by Re e(2) and Im e(2), the stable eigenvector e(3).

The descent of the EQ0 unstable manifold (green)

defines the innermost edge of the strange attractor.

As it is clear from (a), it also defines its outermost

edge. (E. Siminos)

(a) (b)

Equivariance of a flow under a symmetry means that the symmetry image of

a cycle is again a cycle, with the same period and stability. The new orbit may be

topologically distinct (in which case it contributes to the multiplicity of the cycle)

or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g ∈ Gp if the opera-

tion acts on it as a shift in time, advancing a cycle point to a cycle point on the

symmetry related segment. The cycle p can thus be subdivided into mp repeats

of a relative periodic orbit segment, ‘prime’ in the sense that the full state space

cycle is built from its repeats. Thus, in the presence of a discrete symmetry, the

notion of a periodic orbit is replaced by the notion of the shortest segment of the

full state space cycle which tiles the cycle under the action of the group. In what

follows we refer to this segment as a relative periodic orbit. In the literature this

is sometimes referred to as a short periodic orbit, or, for finite symmetry groups,

as a pre-periodic orbit.

The relative periodic orbitp (or its equivariant periodic orbit) is the orbit x(t)

in state spaceM which exactly recurs

x(t) = gp x(t + T p) (11.3)

for the shortest fixed relative period T p and a fixed group action g ∈ Gp. These

group actions are referred to as ‘shifts’ or, in the case of continuous symmetries,

as ‘phases.’ For a discrete group gm = e and finite m (10.3), the period of the

corresponding full state space orbit is given by the mp × (period of the relative

periodic orbit), Tp = |Gp|T p̃, and the ith Floquet multiplier Λp,i is given by Λ
mp

p̃,i
of

the relative periodic orbit. The elements of the quotient space b ∈ G/Gp generate

the copies bp, so the multiplicity of the full state space cycle p is mp = |G|/|Gp|.

example 11.6

p. 186
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Figure 11.4: Cycle 121212313 has multiplicity 6;

shown here is 121313132 = σ23121212313. How-

ever, 121231313 which has the same stability and

period is related to 121313132 by time reversal,

but not by any C3v symmetry.

11.3 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental

concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of independent

cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit

segments. The next step achieves much more: it replaces each class by a single

(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dynamically equivalent

domains, and thus induces a natural partition of state space: If the dynamics

is invariant under a discrete symmetry, the state spaceM can be completely

tiled by a fundamental domain M̃ and its symmetry images M̃a = aM̃,

M̃b = bM̃, . . . under the action of the symmetry group G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| . (11.4)

2. Discrete symmetry can be used to restrict all computations to the funda-

mental domain M̃ =M/G, the reduced state space quotient of the full state

spaceM by the group actions of G.

We can use the invariance condition (10.4) to move the starting point x

into the fundamental domain x = ax̃, and then use the relation a−1b =

h−1 to also relate the endpoint y ∈ M̃b to its image in the fundamental

domain M̃. While the global trajectory runs over the full space M, the

restricted trajectory is brought back into the fundamental domain M̃ any

time it exits into an adjoining tile; the two trajectories are related by the

symmetry operation h which maps the global endpoint into its fundamental

domain image.

3. Cycle multiplicities induced by the symmetry are removed by reduction

of the full dynamics to the dynamics on a fundamental domain. Each

symmetry-related set of global cycles p corresponds to precisely one fun-

damental domain (or relative) cycle p̃.

4. Conversely, each fundamental domain cycle p̃ traces out a segment of the

global cycle p, with the end point of the cycle p̃ mapped into the irreducible

segment of p with the group element hp̃. A relative periodic orbit segment

in the full state space is thus a periodic orbit in the fundamental domain.
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Figure 11.5: The bimodal Ulam sawtooth map of

figure 11.1 with the D1 symmetry f (−x) = − f (x),

restricted to the fundamental domain. f (x) is in-

dicated by the thin line, and fundamental domain

map f̃ (x̃) by the thick line. (a) Boundary fixed

point C is the fixed point 0. The asymmetric fixed

point pair {L,R} is reduced to the fixed point 2,

and the full state space symmetric 2-cycle LR is

reduced to the fixed point 1. (b) The asymmetric

2-cycle pair {LC,CR} is reduced to 2-cycle 01. (c)

All fundamental domain fixed points and 2-cycles.

(work through example 11.7 ) (Y. Lan) ������
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Figure 11.6: (a) The pair of full-space 9-cycles,

the counter-clockwise 121232313 and the clock-

wise 131323212 correspond to (b) one fundamen-

tal domain 3-cycle 001.

(a) (b)

5. The group elements G = {e, g2, . . . , g|G|} which map the fundamental do-

main M̃ into its copies gM̃, serve also as letters of a symbolic dynamics

alphabet.

For a symmetry reduction in presence of continuous symmetries, see sect. 13.2.

exercise 11.1

example 11.7

p. 186

example 11.8

p. 186

11.4 Invariant polynomials

All invariants are expressible in terms of a finite number

among them. We cannot claim its validity for every group

G; rather, it will be our chief task to investigate for each

particular group whether a finite integrity basis exists or

not; the answer, to be sure, will turn out affirmative in the

most important cases.

—Hermann Weyl, a motivational quote on the “so-

called first main theorem of invariant theory”

Physical laws should have the same form in symmetry-equivalent coordinate frames,

so they are often formulated in terms of functions (Hamiltonians, Lagrangians,

· · · ) invariant under a given set of symmetries. The key result of the representa-

tion theory of invariant functions is:

discrete - 18jan2015 ChaosBook.org version15.9, Jun 24 2017
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Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant

homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d, such that any G-invariant

polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (11.5)

These polynomials are linearly independent, but can be functionally dependent

through nonlinear relations called syzygies.

example 11.9

p. 187

In practice, explicit construction of G-invariant basis can be a laborious un-

dertaking, and we will not take this path except for a few simple low-dimensional

cases, such as the 5-dimensional example of sect. 13.7. We prefer to apply the

symmetry to the system as given, rather than undertake a series of nonlinear co-

ordinate transformations that the theorem suggests. (What ‘compact’ in the above

refers to will become clearer after we have discussed continuous symmetries. For

now, it suffices to know that any finite discrete group is compact.) exercise 10.1

Résumé

We have shown here that if a dynamical system (M, f ) has a symmetry G, the

symmetry should be deployed to ‘quotient’ the state space to fundamental domain

M̂ =M/G, i.e., identify all symmetry-equivalent x ∈ M on each group orbit, thus

replacing the full state space dynamical system (M, f ) by the symmetry-reduced

(M̂, f̂ ). The main result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space

solution p is the group of its symmetries Gp ⊆ G of order 1 ≤ |Gp| ≤ |G|, whose

elements leave the orbitMp invariant. The elements of Gp act on p as shifts, tiling

it with |Gp| copies of its shortest invariant segment, the relative periodic orbit p̃.

The elements of the coset b ∈ G/Gp generate mp = |G|/|Gp| equivalent copies of

p.

Once you grasp the relation between the full state space M and the desym-

metrized, G-quotiented reduced state space (fundamental domain)M/G, you will

find the life as a fundamentalist so much simpler that you will never return to

your full state space ways of yesteryear. The reduction to the fundamental do-

main M̃ =M/G simplifies symbolic dynamics and eliminates symmetry-induced

degeneracies. For the short orbits the labor saving is dramatic. For example, for

the 3-disk game of pinball there are 256 periodic points of length 8, but reduction

to the fundamental domain non-degenerate prime cycles reduces this number to

30. In chapter 24 relative periodic orbits will tile the infinite periodic state space,

and reduce calculation of diffusion constant in an infinite domain to a calculation

on a compact torus.
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Commentary

Remark 11.1 Symmetries of the Lorenz equation: (continued from remark 2.3) Af-

ter having studied example 11.5 you will appreciate why ChaosBook.org starts out with

the symmetry-less Rössler flow (2.27), instead of the better known Lorenz flow (2.22).

Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the baby

out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make

possible a robust heteroclinic connection absent from Rössler flow, with unstable mani-

fold of an equilibrium flowing into the stable manifold of another equilibrium. How such

connections are forced upon us is best grasped by perusing the chapter 13 ‘Heteroclinic

tangles’ of the inimitable Abraham and Shaw illustrated classic [14.23]. Their beauti-

ful hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz

flow (and its high-dimensional Navier-Stokes relatives) better than any computer simu-

lation. Miranda and Stone [11.2] were first to quotient the C2 symmetry and explicitly

construct the desymmetrized, ‘proto-Lorenz system,’ by a nonlinear coordinate transfor-

mation into the Hilbert-Weyl polynomial basis invariant under the action of the symmetry

group [11.3]. For in-depth discussion of symmetry-reduced (‘images’) and symmetry-

extended (‘covers’) topology, symbolic dynamics, periodic orbits, invariant polynomial

bases etc., of Lorenz, Rössler and many other low-dimensional systems there is no bet-

ter reference than the Gilmore and Letellier monograph [13.19]. They interpret [11.5]

the proto-Lorenz and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘am-

plitudes,’ and call quotiented flows such as (Lorenz)/C2 ‘images.’ Our ‘doubled-polar

angle’ visualization figure 14.8 is a proto-Lorenz in disguise; we, however, integrate the

flow and construct Poincaré sections and return maps in the original Lorenz [x, y, z] co-

ordinates, without any nonlinear coordinate transformations. The Poincaré return map

figure 14.9 is reminiscent in shape both of the one given by Lorenz in his original paper,

and the one plotted in a radial coordinate by Gilmore and Letellier. Nevertheless, it is pro-

foundly different: our return maps are from unstable manifold→ itself, and thus intrinsic

and coordinate independent. In this we follow ref. [A1.79]. This construction is neces-

sary for high-dimensional flows in order to avoid problems such as double-valuedness of

return map projections on arbitrary 1-dimensional coordinates encountered already in the

Rössler example of figure 3.3. More importantly, as we know the embedding of the un-

stable manifold into the full state space, a periodic point of our return map is - regardless

of the length of the cycle - the periodic point in the full state space, so no additional New-

ton searches are needed. In homage to Lorenz, we note that his return map was already

symmetry-reduced: as z belongs to the symmetry invariant Fix (G) subspace, one can re-

place dynamics in the full space by ż, z̈, · · · . That is G-invariant by construction [13.19].

Remark 11.2 Examples of systems with discrete symmetries. Almost any

flow of interest is symmetric in some way or other: the list of examples is endless, we

list here a handful that we found interesting. One has a C2 symmetry in the Lorenz

system (remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler poten-

tial [A39.17, 38.18, A1.24], a D4 = C4v symmetry in quartic oscillators [11.10, 11.11],

in the pure x2y2 potential [11.12, 11.13] and in hydrogen in a magnetic field [11.14], and

a D2 = C2v = V4 = C2 × C2 symmetry in the stadium billiard [25.2]. A very nice non-

trivial desymmetrization is carried out in ref. [25.11]. An example of a system with

D3 = C3v symmetry is provided by the motion of a particle in the Hénon-Heiles poten-
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tial [11.17, 11.18, 11.19, 25.10]

V(r, θ) =
1

2
r2 +

1

3
r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands

and because the three orbits that run along the symmetry axis cannot be labeled in our

code. As these orbits run along the boundary of the fundamental domain, they require

the special treatment. A partial classification of the 67 possible symmetries of solutions

of the plane Couette flow of example 12.9, and their reduction 5 conjugate classes is given

in ref. [13.42].

11.5 Examples

Example 11.1 D1-symmetric cycles: For D1 the period of a set-wise symmetric

cycle is even (ns = 2n s̃), and the mirror image of the xs periodic point is reached by

traversing the relative periodic orbit segment s̃ of length n s̃, f ns̃ (xs) = σxs, see fig-

ure 11.1 (b). click to return: p. ??

Example 11.2 D1-invariant cycles: In the example at hand there is only one G-

invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 11.1 (a).

As reflection symmetry is the only discrete symmetry that a map of the interval can

have, this example completes the group-theoretic analysis of 1-dimensional maps. We

shall continue analysis of this system in example 11.7, and work out the symbolic dy-

namics of such reflection symmetric systems in example 15.7. click to return: p. ??

Example 11.3 Group D1 - a reflection symmetric 1d map: Consider the bimodal

‘sawtooth’ map of example 10.5, with the state space M = [−1, 1] split into three

regions M = {ML,MC,MR} which we label with a 3-letter alphabet L(eft), C(enter),

and R(ight). The symbolic dynamics is complete ternary dynamics, with any sequence

of lettersA = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no

additional grammar rules required, see example 14.7 below). The D1-equivariance of

the map, D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.
Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just

this fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, σmaps

it into the reflected cycle σa, with the same period and the same stability properties,

see the fixed points pair {L,R} and the 2-cycles pair {LC,CR} in figure 11.1 (c). click to return: p. ??

Example 11.4 3-disk game of pinball - cycle symmetries: (continued from exam-

ple 10.8) The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by the two cy-

cles 123 and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped

into each other by any reflection, figure 11.4 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the symmetries of p̂ = 1213. This

cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant subgroup

is G p̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232

and 1323, are related by 2π/3 rotations, figure 11.4 (b).
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A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six

copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),

figure 11.4 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may

be related by time reversal symmetry. An example are the cycles 121212313 and

313212121 = 121213132 which have the same periods and stabilities, but are related

by no space symmetry, see figure 11.4. (continued in example 11.8) click to return: p. ??

Example 11.5 Desymmetrization of Lorenz flow: (continuation of example 10.6) Lorenz

equation (2.22) is equivariant under (10.15), the action of order-2 group C2 = {e,C1/2},
where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (11.6)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible sub-

spacesM =M+⊕M−, the z-axisM+ and the [x, y] planeM−, with projection operators

onto the two subspaces given by

P+ =
1

2
(1 +C1/2) =

















0 0 0
0 0 0
0 0 1

















, P− =
1

2
(1 −C1/2) =

















1 0 0
0 1 0
0 0 0

















. (11.7)

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-

mutes with C1/2, and, as we have already seen in example 4.6, the EQ0 stability matrix

decomposes into [x, y] and z blocks.

The 1-dimensional M+ subspace is the fixed-point subspace, with the z-axis

points left point-wise invariant under the group action

M+ = Fix (C2) = {x ∈ M | g x = x for g ∈ {e,C1/2}} (11.8)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A C2-fixed point x(t)

in Fix (C2) moves with time, but according to (10.10) remains within x(t) ∈ Fix (C2) for

all times; the subspaceM+ = Fix (C2) is flow invariant. In case at hand this jargon is a

bit of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (2.22)

is reduced to the exponential contraction to the EQ0 equilibrium,

ż = −b z . (11.9)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-

ensional, with interesting dynamics of their own. Even in this simple case this subspace

plays an important role as a topological obstruction: the orbits can neither enter it nor

exit it, so the number of windings of a trajectory around it provides a natural, topological

symbolic dynamics.

The M− subspace is, however, not flow-invariant, as the nonlinear terms ż =

xy−bz in the Lorenz equation (2.22) send all initial conditions withinM− = (x(0), y(0), 0)

into the full, z(t) , 0 state spaceM/M+.
By taking as a Poincaré section any C1/2-equivariant, non-self-intersecting sur-

face that contains the z axis, the state space is divided into a half-space fundamental

domain M̃ =M/C2 and its 180o rotation C1/2M̃. An example is afforded by the P plane

section of the Lorenz flow in figure 3.4. Take the fundamental domain M̃ to be the half-

space between the viewer and P. Then the full Lorenz flow is captured by re-injecting

back into M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental

domain’ is here largely mater of taste. For purposes of visualization it is convenient
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to make the double-cover nature of the full state space by M̃ explicit, through any

state space redefinition that maps a pair of points related by symmetry into a single

point. In case at hand, this can be easily accomplished by expressing (x, y) in polar

coordinates (x, y) = (r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar

angle representation:’ section 11.4

exercise 11.3

(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (11.10)

as in figure 11.3 (a). In contrast to the original G-equivariant coordinates [x, y, z], the

Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant, see example 11.9.

In this representation the M̃ =M/C2 fundamental domain flow is a smooth, continuous

flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the

entire [x̂, ŷ] plane. (continued in example 14.5) click to return: p. ??

(E. Siminos and J. Halcrow)

Example 11.6 Relative periodic orbits of Lorenz flow: (continuation of exam-

ple 11.5) The relation between the full state space periodic orbits, and the fundamen-

tal domain (11.10) reduced relative periodic orbits of the Lorenz flow: an asymmetric

full state space cycle pair p, Rp maps into a single cycle p̃ in the fundamental domain,

and any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a relative periodic orbit p̃. click to return: p. ??

Example 11.7 Group D1 and reduction to the fundamental domain: Consider

again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of exam-

ple 11.3, with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can be tiled by

half-line M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point.

The dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every

time a trajectory leaves this interval, it is mapped back using σ.

In figure 11.5 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0

segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and

piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we

label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete

ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different

- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the

full state space dynamics are all periodic orbits in the fundamental domain. Consider

figure 11.5:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the

full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric

2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC

is reduced to the 2-cycle 02. This completes the conversion from the full state space

for all fundamental domain fixed points and 2-cycles, figure 11.5 (c). click to return: p. ??

Example 11.8 3-disk game of pinball in the fundamental domain:

If the dynamics is equivariant under interchanges of disks, the absolute disk

labels ǫi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk

increments gi, where gi is the discrete group element that maps disk i−1 into disk i. For

3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation
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by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant

relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions

on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-

main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as

reflecting mirrors (see figure 10.3(d)). A set of orbits related in the full space by dis-

crete symmetries maps onto a single fundamental domain orbit. The reduction to

the fundamental domain desymmetrizes the dynamics and removes all global discrete

symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-

cycles 123 and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles

12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-

erate. Table 15.2 lists some of the shortest binary symbols strings, together with the

corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of

such orbits are shown in figures 11.4 and 11.6. (continued in example 15.8) click to return: p. ??

Example 11.9 Polynomials invariant under discrete operations on R3: (continued

from example 10.3) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant

function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.
C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant func-

tion can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one

syzygy between the basis polynomials, (x2)(y2) − (xy)2 = 0.

P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can

be expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three

syzygies between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2, P} the G-invariant polynomial basis is

{u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0. click to return: p. ??
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Exercises

11.1. Reduction of 3-disk symbolic dynamics to binary.

(continued from exercise 1.1)

(a) Verify that the 3-disk cycles

{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.},
· · · ,
correspond to the fundamental domain cycles 0, 1,

01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 15.2

by drawing them both in the full 3-disk system and

in the fundamental domain, as in figure 11.6.

(c) Optional: Can you see how the group elements

listed in table 15.2 relate irreducible segments to

the fundamental domain periodic orbits?

(continued in exercise 15.7)

11.2. C2-equivariance of Lorenz system. Verify that the

vector field in Lorenz equations (2.22)

ẋ = v(x) =

















ẋ
ẏ
ż

















=

















σ(y − x)
ρx − y − xz

xy − bz

















(11.11)

is equivariant under the action of cyclic group C2 =

{e,C1/2} acting on R3 by a π rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 10.6. (continued in exer-

cise 11.3)

11.3. Lorenz system in polar coordinates: group theory.

Use (A2.3), (A2.4) to rewrite the Lorenz equation

(11.11) in polar coordinates (r, θ, z), where (x, y) =

(r cos θ, r sin θ).

1. Show that in the polar coordinates Lorenz flow

takes form

ṙ =
r

2
(−σ − 1 + (σ + ρ − z) sin 2θ

+(1 − σ) cos 2θ)

θ̇ =
1

2
(−σ + ρ − z + (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (11.12)

2. Argue that the transformation to polar coordinates

is invertible almost everywhere. Where does the

inverse not exist? What is group-theoretically spe-

cial about the subspace on which the inverse not

exist?

3. Show that this is the (Lorenz)/C2 quotient map for

the Lorenz flow, i.e., that it identifies points related

by the π rotation in the [x, y] plane.

4. Rewrite (11.11) in the invariant polynomial basis

of example 11.9 and exercise 11.12.

5. Show that a periodic orbit of the Lorenz flow in

polar representation (11.12) is either a periodic or-

bit or a relative periodic orbit (11.3) of the Lorenz

flow in the (x, y, z) representation.

By going to polar coordinates we have quotiented out the

π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz

equations, and constructed an explicit representation of

the desymmetrized Lorenz flow.

11.4. Proto-Lorenz system. Here we quotient out the C2

symmetry by constructing an explicit “intensity” repre-

sentation of the desymmetrized Lorenz flow, following

Miranda and Stone [11.2].

1. Rewrite the Lorenz equation (2.22) in terms of

variables

(u, v, z) = (x2 − y2, 2xy, z) , (11.13)

show that it takes form

















u̇
v̇
ż

















=

















−(σ + 1)u + (σ − r)v + (1 − σ)N
(r − σ)u − (σ + 1)v + (r + σ)N − uz

v/2 − bz

N =
√

u2 + v2 .

2. Show that this is the (Lorenz)/C2 quotient map for

the Lorenz flow, i.e., that it identifies points related

by the π rotation (11.6).

3. Show that (11.13) is invertible. Where does the

inverse not exist?

4. Compute the equilibria of proto-Lorenz and their

stabilities. Compare with the equilibria of the

Lorenz flow.

5. Plot the strange attractor both in the original form

(2.22) and in the proto-Lorenz form (11.14)
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for the Lorenz parameter values σ = 10, b = 8/3,

ρ = 28. Topologically, does it resemble more the

Lorenz, or the Rössler attractor, or neither? (plot

by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is

either a periodic orbit or a relative periodic orbit

of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz

is also periodic orbit of the Lorenz flow, their Flo-

quet multipliers are the same. How do the Floquet

multipliers of relative periodic orbits of the Lorenz

flow relate to the Floquet multipliers of the proto-

Lorenz?

9 What does the volume contraction formula (4.42)

look like now? Interpret.

10. Show that the coordinate change (11.13) is the

same as rewriting (11.12) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x + iy, z2 =

u + iv.

11. How is (11.14) related to the invariant polynomial

basis of example 11.9 and exercise 11.12?
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wave solutions of plane Couette flow, J. Fluid Mech. 638, 243 (2009),

arXiv:0808.3375.

refsDiscrete - 1feb2014 ChaosBook.org version15.9, Jun 24 2017


