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Figure 9.1: The stadium billiard [9.9, 9.10] is a 2-
dimensional domain bounded by two semi-circles
of radius d = 1 connected by two straight walls of
length 2a. At the points where the straight walls

C h apte r 9 meet the semi-circles, the curvature of the border
changes discontinuously; these are the only sin-
gular points of the flow. The length a is the only
parameter.

Billiards

Figure 9.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory angle ¢, both mea-
sured counterclockwise with respect to the out-
ward normal 7. (b) The Birkhoff phase-space co-
ordinate pair (s, p) fully specifies the trajectory,
where p = |p|sin¢ is the momentum component

r I HE pyNaMics that we have the best intuitive grasp on, and find easiest to grap-

ple with both numerically and conceptually, is the dynamics of billiards. tangential to the boundary. As the pinball kinetic
For billiards, discrete time is altogether natural; a particle moving through energy is conserved in elastic scattering, the pin-
a billiard suffers a sequence of instantaneous kicks, and executes simple motion ball mass and the magnitude of the pinball mo-

in between, so there is no need to contrive a Poincaré section. We have already mentum are customarily set to m = |p| = 1.

used this system in sect. 1.3 as the intuitively most accessible example of chaos. (@ (o) s
Here we define billiard dynamics more precisely, anticipating the applications to
come. a Hamiltonian system with a 2D-dimensional phase space x = (g, p) and potential

V(g) =0for g € Q, V(q) = oo for g € 0. remark 2.1

e . A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
9.1 Billiard dynamlcs sn, the arc length position of the nth bounce measured along the billiard boundary,
and p, = |p|sin¢,, the momentum component parallel to the boundary, where
¢, is the angle between the outgoing trajectory and the normal to the boundary.
‘We measure both the arc length s, and the parallel momentum p counterclockwise
relative to the outward normal (see figure 9.2 as well as figure 15.15 (a)). In D = 2,
the Poincaré section is a cylinder (topologically an annulus), figure 9.3, where
the parallel momentum p ranges for —|p| to |p|, and the s coordinate is cyclic
along each connected component of Q. The volume in the full phase space is
preserved by the Liouville theorem (8.39). The Birkhoff coordinates x = (s, p) € exercise 9.7
P, are the natural choice, because with them the Poincaré return map preserves
the phase-space volume of the (s, p) parameterized Poincaré section (a perfectly

good coordinate set (s, ¢) does not do that). exercise 9.7
section 9.2

A billiard is defined by a connected region Q c R”, with boundary dQ c RP~!
separating Q from its complement R” \ Q. The region Q can consist of one com-
pact, finite volume component (in which case the billiard phase space is bounded,
as for the stadium billiard of figure 9.1), or can be infinite in extent, with its
complement R? \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the 3-disk pinball game in
figure 1.1). In what follows we shall most often restrict our attention to planar
billiards.

A point particle of mass m and momentum p,, = mv, moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momentum component normal to
the boundary,

Without loss of generality we set m = |[v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conservation |p| = 1 eliminates another,
so the Poincaré section return map P is (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P =p-2p-ih, ©.1)
P2 (su, pn) 7 (Sne1s Pus) 9.2)
with 7 the unit vector normal to the boundary dQ at the collision point. The angle b el Pl
of incidence equals the angle of reflection, as illustrated in figure 9.2. A billiard is from the nth collision to the (n + 1)st collision. The discrete time dynamics map
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Figure 9.3: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentum p ranging
over p € {—1,1}, and with the s coordinate is cyclic
along each connected component of dQ. The rectangle
figure 9.2 (b) is such cylinder unfolded, with periodic
boundary conditions glueing together the left and the
right edge of the rectangle.

P is equivalent to the Hamiltonian flow (8.1) in the sense that both describe the
same full trajectory. Let #, denote the instant of nth collision. Then the position
of the pinball € Q at time #, + T < #,4; is given by 2D — 2 Poincaré section
coordinates (s, p,) € P together with 7, the distance reached by the pinball along
the nth section of its trajectory (as we have set the pinball speed to 1, the time of
flight equals the distance traversed).

Example 9.1 3-disk game of pinball: In the case of bounces off a circular disk,
the position coordinate s = r is given by angle 6 € [0, 2n]. For example, for the 3-disk

game of pinball of figure 1.6 and figure 15.15 (a) we have two types of collisions:exercise 9.1

' = —¢ + 2arcsi
Py: {¢ ¢+ f‘?smp back-reflection 93)
p'=-p+gsing’
=g -2 i 2
P, : { ¢, ¢ . aTCS'?p *2m/3 reflect to 3rd disk. 04
P=p-% sin ¢

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin - one only
needs to compute one square root per each reflection, and the simulations can be very

fast. exercise 9.2

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and
Py’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

9.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems. In-
finitesimal equations of variations (4.2) do not apply, but the multiplicative struc-
ture (4.20) of the finite-time Jacobian matrices does. As they are more physical
than most maps studied by dynamicists, let us work out the billiard stability in
some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by cutting
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trajectories by a Poincaré section. We shall now show how going to a local frame
of motion leads to a [2x2] Jacobian matrix.

Consider a planar billiard with phase-space coordinates x = (g1, g2, p1, P2)-
Let #, be the instant of the nth collision of the pinball with the billiard boundary,
and #; =1, + €, € positive and infinitesimal. With the mass and the speed equal to
1, the momentum direction can be specified by angle 8: x = (g1, g2, sin 6, cos ).
Now parametrize the 2-dimensional neighborhood of a trajectory segment by dx =
(6z,00), where

0z = 6q) cos O — dg sin 6, 9.5)

66 is the variation in the direction of the pinball motion. Due to energy conserva-
tion, there is no need to keep track of dg, variation along the flow, as that remains
constant. (d¢q1, dg>) is the coordinate variation transverse to the kth segment of the
flow. From the Hamilton’s equations of motion for a free particle, dg;/dt = p;,
dp;/dt = 0, we obtain the equations of motion (4.1) for the linearized neighbor-
hood
%60 =0, %61 =00. 9.6)
Let 66, = 66()) and 6z, = 6z(t;) be the local coordinates immediately after the
nth collision, and 66, = 66(1,,), 6z, = 6z(t,) immediately before. Integrating the
free flight from 7_, to 7, we obtain

6z, = 0Zn-1+Tn00p-1, Tp = In —In1

n

00, = 00,1, 9.7)

and the Jacobian matrix (4.19) for the nth free flight segment is
Y |1 T 9.8
T(-xn) “lo 1 . ( - )

At incidence angle ¢, (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse variation §z,, projects onto an
arc on the billiard boundary of length 6z,,/ cos ¢,. The corresponding incidence
angle variation 6¢, = 6z, /pn c0s ¢,,, p, = local radius of curvature, increases the
angular spread to

0z, = -0z,

n

2
66, = -60, - ————5z,, 9.9
! " pacosg, K O

so the Jacobian matrix associated with the reflection is

10] 2

.1 = d (9.10)

Mpg(x,) = — [
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Figure 9.4: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

The full Jacobian matrix for n, consecutive bounces describes a beam of tra-
jectories defocused by My along the free flight (the 7, terms below) and defo-
cused/refocused at reflections by M (the r;, terms below)

o T @[ o
p—(_l) ’ l_[ 0 1 n 1 > (911)

n=n,

where 7, is the flight time of the kth free-flight segment of the orbit, r,, = 2/p, cos ¢,
is the defocusing due to the kth reflection, and p, is the radius of curvature of
the billiard boundary at the nth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase-space volume preserving, det M = 1,
and the eigenvalues are given by (8.30).

This is an example of the Jacobian matrix chain rule (4.22) for discrete time
systems (the Hénon map stability (4.44) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

1 7,

0 1

det M7 = det [ ol

], detMR:det[1 O], 9.12)

but acting in concert in the interwoven sequence (9.11) they can lead to a hyper-
bolic deformation of the infinitesimal neighborhood of a billiard trajectory.

As a concrete application, consider the 3-disk pinball system of sect. 1.3. An-
alytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow

from elementary geometrical considerations. Longer cycles require numerical
evaluation by methods such as those described in chapter 16.

Résumeé

A particulary natural application of the Poincaré section method is the reduction
of a billiard flow to a boundary-to-boundary return map.
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EXERCISES 157
Commentary

Remark 9.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what a pen-
dulum is to integrable systems; the simplest physical example that captures the essence
of chaos. Another contender for the title of the ‘harmonic oscillator of chaos’ is the
baker’s map which is used as the red thread through Ott’s introduction to chaotic dy-
namics [A1.66]. The baker’s map is the simplest reversible dynamical system which is
hyperbolic and has positive entropy. We will not have much use for the baker’s map here,
as due to its piecewise linearity it is so nongeneric that it misses all of the subtleties of
cycle expansion curvature corrections that will be central to this treatise.

That the 3-disk game of pinball is a quintessential example of deterministic chaos
appears to have been first noted by B. Eckhardt [A1.38]. The model was studied in depth
classically, semiclassically and quantum mechanically by P. Gaspard and S.A. Rice [A1.40],
and used by P. Cvitanovi¢ and B. Eckhardt [A1.39] to demonstrate applicability of cycle
expansions to quantum mechanical problems. It has been used to study the higher order
7 corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso Ramirez [9.5],
construct semiclassical evolution operators and entire spectral determinants by P. Cvi-
tanovi¢ and G. Vattay [9.6], and incorporate the diffraction effects into the periodic orbit
theory by G. Vattay, A. Wirzba and P.E. Rosenqvist [9.7]. Gaspard’s monograph [A1.65],
which we warmly recommend, utilizes the 3-disk system in much more depth than will
be attained here. For further links check ChaosBook.org.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regions of stability and regions of
chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face up to much harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The game of pinball
may be thought of as the infinite potential wall limit of a smooth potential, and pinball
symbolic dynamics can serve as a covering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically relax an unstable cycle onto the
corresponding one for the potential under investigation. If things go well, the cycle will
remain unstable and isolated, no new orbits (unaccounted for by the pinball symbolic
dynamics) will be born, and the lost orbits will be accounted for by a set of pruning rules.
The validity of this adiabatic approach has to be checked carefully in each application, as
things can easily go wrong; for example, near a bifurcation the same naive symbol string
assignments can refer to a whole island of distinct periodic orbits.

Remark 9.2 Stability analysis.  The chapter 1 of Gaspard monograph [A1.65] is rec-
ommended reading if you are interested in Hamiltonian flows, and billiards in particular.
A. Wirzba has generalized the stability analysis of sect. 9.2 to scattering off 3-dimensional
spheres (follow the links in ChaosBook.org/extras). A clear discussion of linear stability
for the general d-dimensional case is given in Gaspard [A1.65], sect. 1.4.

Exercises
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9.1.

9.2.

. Stability of billiard cycles.

A pinball simulator. Implement the disk — disk
maps to compute a trajectory of a pinball for a given
starting point, and a given R:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementa-
tion should be within reach of a high-school student.
Please start working on this program now; it will be con-
tinually expanded in chapters to come, incorporating the
Jacobian calculations, Newton root—finding, and so on.
Fast code will use elementary geometry (only one
4/~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work with R:a = 6 and/or 2.5 values. Draw the
correct versions of figure 1.9 or figure 15.3 for R:a = 2.5
and/or 6.

Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for vari-
ous R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their es-
cape. Try also R:a = 6:1, though that might be too thin
and require some magnification. The initial conditions
can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of
interest.

Compute the Floquet
multipliers {A,, A} for a few simple cycles:

oo |

R

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distance L + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

(b) Find all periodic orbits and their stabilities for
a billiard ball bouncing between the diagonal
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9.4.

9.5.

9.6.

9.7.

158

y = x and one of the hyperbola branches y =
—1/x. (continued as exercise 16.4)

Pinball stability. Add to your exercise 9.1 pinball
simulator a routine that computes the [2x2] Jacobian
matrix. To be able to compare with the numerical re-
sults of coming chapters, work with R:a = 6 and/or 2.5
values.

A test of your pinball simulator. Test your exer-
cise 9.4 pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.

Compare your result with the exact analytic formulas of

exercise 16.6 and 16.7.

Stadium billiard. Consider the Bunimovich sta-
dium [9.9, 9.10] defined in figure 9.1. The Jacobian
matrix associated with the reflection is given by (9.10).
Here we take p, = —1 for the semicircle sections of the
boundary, and cos ¢; remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces is 7, = 2 cos ¢. The Jacobian ma-
trix of one semicircle reflection folowed by the flight to
the next bounce is

_ 1 2cosgy 1 0
o= (’1)[0 1 LH—z/cos@ 1]

2cos ¢,
= 1)[2/cos¢k 1 k]'

A free flight must always be followed by k = 1,2,3,---
bounces along a semicircle, hence the natural symbolic
dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues
remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

—2k-1

_ ¢ 2kcos ¢
Jo= 1 [ 2k/ cos ¢

PP ©9.13)

The Jacobian matrix of a cycle p of length n, is given
by

J,)=<—1>Z"kﬂ[ o 1

k=1

I 0
[ 1 ] 9.14)

Nk Tk

Adopt your pinball simulator to the stadium billiard.

Birkhoff coordinates.  Prove that the Birkhoff coor-
dinates are phase-space volume preserving.
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