
Chapter 17

Walkabout: Transition graphs

I think I’ll go on a walkabout

find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

I
n chapters 14 and 15 we learned that invariant manifolds partition the state

space in invariant way, and how to name distinct orbits. We have established

and related the temporally and spatially ordered topological dynamics for a

class of ‘stretch & fold’ dynamical systems, and discussed pruning of inadmissi-

ble trajectories.

Here we shall use these results to generate the totality of admissible itineraries.

This task will be particularly easy for repellers with complete Smale horseshoes

and for subshifts of finite type, for which the admissible itineraries are generated

by finite transition matrices, and the topological dynamics can be visualized by

means of finite transition graphs. We shall then turn topological dynamics into a

linear multiplicative operation on the state space partitions by means of transition

matrices, the simplest examples of ‘evolution operators.’ They will enable us – in

chapter 18 – to count the distinct orbits.

17.1 Matrix representations of topological dynamics

The allowed transitions between the regions of a partition {M1,M2, · · · ,Mm} are

encoded in the [m×m]-dimensional transition matrix whose elements take values

Ti j =

{

1 if the transitionM j →Mi is possible
0 otherwise .

(17.1)

The transition matrix is an explicit linear representation of topological dynam-

ics. If the partition is a dynamically invariant partition constructed from sta-

308

CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 309

Figure 17.1: Points from the region M21 reach re-

gions {M10,M11,M12}, and no other regions, in one

time step. Labeling exemplifies the ‘shift map’ of ex-

ample 14.6 and (14.13).

ble/unstable manifolds, it encodes the topological dynamics as an invariant law

of motion, with the allowed transitions at any instant independent of the trajectory

history, requiring no memory.

Several related matrices as well will be needed in what follows. Often it is

convenient to distinguish between two or more paths connecting the same two

regions; that is encoded by the adjacency matrix with non-negative integer entries,

Ai j =

{

k if a transitionM j →Mi is possible in k ways
0 otherwise .

(17.2)

More generally, we shall encounter [m×m] matrices which assign different real or

complex weights to different transitions,



Li j =

{

Li j ∈ R or C ifM j →Mi is allowed
0 otherwise .

(17.3)

As in statistical physics, we shall refer to these as transfer matrices.

Mi is accessible from M j in k steps if (Lk)i j , 0. A matrix L is called

reducible if there exists one or more index pairs {i, j} such that (Lk)i j = 0 for all

k, otherwise the matrix is irreducible. This means that a trajectory starting in any

partition region eventually reaches all of the partition regions, i.e., the partition

is dynamically transitive or indecomposable, as assumed in (2.3). The notion of

topological transitivity is crucial in ergodic theory: a mapping is transitive if it

has a dense orbit. If that is not the case, state space decomposes into disconnected

pieces, each of which can be analyzed separately by a separate irreducible matrix.

RegionMi is said to be transient if no trajectory returns to it. RegionM j is said

to be absorbing if no trajectory leaves it, L j j , 0, Li j = 0 for all i , j. Hence it

suffices to restrict our considerations to irreducible matrices.

If L has strictly positive entries, Li j > 0, the matrix is called positive; if Li j ≥

0, the matrix is called non-negative. Matrix L is said to be eventually positive or

Perron-Frobenius if Lk is positive for some power k (as a consequence, the matrix

is transitive as well). A non-negative matrix whose columns conserve probability,
∑

i Li j = 1, is called Markov, probability or stochastic matrix.

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 310

Figure 17.2: Topological dynamics: shrink each state

space partition region figure 17.1 to a node, and indi-

cate the possibility of reaching a region by a directed

link. The links stand for transition matrix elements

T10,21 = T11,21 = T12,21 = 1; remaining Ti j,21 = 0. 21

10

11

10

12

21
21

11

12

A subshift (14.15) of finite type is a topological dynamical system (Σ, σ),

where the shift σ acts on the space of all admissible itineraries (sk)

Σ =
{

(sk)k∈Z : Tsk+1sk
= 1 for all k

}

, sk ∈ {a, b, c, · · · , z} . (17.4)

The task of generating the totality of admissible itineraries is particularly easy for

subshifts of finite type, for which the admissible itineraries are generated by finite

transition matrices, and the topological dynamics can be visualized by means of

finite transition graphs.

17.2 Transition graphs: wander from node to node

Let us abstract from a state space partition such as figure 17.1 its topological

essence: indicate a partition regionMa by a node, and indicate the possibility of

reaching the regionMb, Lba , 0 by a directed link, as in figure 17.2. Do this for

all nodes. The result is a transition graph.

A transition graph (or digraph, or simply ‘graph’) consists of a set of nodes

(or vertices, or states), one for each letter in the alphabet A = {a, b, c, · · · , z},

connected by a set of directed links (edges, arcs, arrows). A directed link starts

out from node j and terminates at node i whenever the matrix element (17.3)

takes value Li j , 0. A link connects two nodes, or originates and terminates on

the same node (a ‘self-loop’). For example, if a partition includes regions labeled

{· · · ,M101,M110, · · · }, the transition matrix element connecting the two is drawn

as L101,110 = 110101 , whereas L0,0 = 0 . Here a dotted link indicates that the

shift σ(x011···) = x11··· involves symbol 0, and a full one a shift σ(x110···) = x10···

that involves 1. A j → · · · → k walk (path, itinerary) traverses a connected set

of directed links, starting at node j and ending at node k. A loop (periodic orbit,

cycle) is a walk that ends at the starting node (which can be any node along the

loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (17.5)

Our convention for ordering indices is that the successive steps in a visitation se-

quence j → i → k are generated by matrix multiplication from the left, Tk j =
∑

TkiTi j. Two graphs are isomorphic if one can be obtained from the other by

relabeling links and nodes. As we are interested in recurrent (transitive, indecom-

posable) dynamics, we restrict our attention to irreducible or strongly connected

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 311

graphs, i.e., graphs for which there is a path from any node to any other node. (In

a connected graph one may reach node j from node k, but not node k from node

j.)

A transition graph compactly describes the ways in which the state space re-

gions map into each other, accounts for finite memory effects in dynamics, and

generates the totality of admissible trajectories as the set of all possible walks

along its links. Construction of a good transition graph is, like combinatorics,

unexplainable (check page 245). The only way to learn is by some diagrammatic

gymnastics, so we recommend that you work your way through the examples,

exercises in lieu of plethora of baffling definitions.

example 17.1

p. 315

example 17.2

p. 316

example 17.3

p. 316

The complete unrestricted symbolic dynamics is too simple to be illuminating,

so we turn next to the simplest example of pruned symbolic dynamics, the finite

subshift obtained by prohibition of repeats of one of the symbols, let us say 11 .

This situation arises, for example, in a billiard, and in studies of the circle maps,

where this kind of symbolic dynamics describes “golden mean” rotations. exercise 18.6

exercise 18.8

example 17.4

p. 316

example 17.5

p. 317

In the complete N-ary symbolic dynamics case (see example 17.2) the choice

of the next symbol requires no memory of the previous ones. However, any further

refinement of the state space partition requires finite memory.

example 17.6

p. 317

For M-step memory the only nonvanishing matrix elements are of the form

Ts1 s2...sM+1 ,s0s1...sM
, sM+1 ∈ {0, 1}. This is a sparse matrix, as the only non van-

ishing entries in the a = s0s1 . . . sM column of Tba are in the rows b = s1 . . . sM0

and b = s1 . . . sM1. If we increase the number of remembered steps, the transition exercise 18.1

matrix grows large quickly, as the N-ary dynamics with M-step memory requires

an [NM+1 × NM+1] matrix. Since the matrix is very sparse, it pays to find a com-

pact representation for T . Such a representation is afforded by transition graphs,

which are not only compact, but also give us an intuitive picture of the topological

dynamics.

17.3 Transition graphs: stroll from link to link

(P. Cvitanović and Matjaž Gomilšek)

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 312

What do finite graphs have to do with infinitely long trajectories? To understand

the main idea, let us construct an infinite rooted tree graph that explicitly enumer-

ates all possible itineraries. In this construction the nodes are unlabeled, and the

links labeled (or colored, or dotted in different ways), signifying different kinds of

transitions.

A tree graph is an undirected graph (its links have no sense of direction, j ↔

i) in which there exists exactly one path between any two of its nodes. A tree

graph is thus connected (irreducible) and contains no loops, i.e., it is not possible

to return to any of its nodes by a walk along a sequence of distinct links. A

rooted tree graph is a directed graph (its links are directed, j→ i), obtained from

an undirected tree graph by picking a distinguished node, called the root, and

orienting all links in the tree so that they point away from the root.

Each node in a directed graph has an in-degree (number of links pointing to-

wards it, or the number of ‘parents’), and an out-degree (number of links pointing

away from it, or the number of ‘children’). An internal node has both in- and

out-degree ≥ 1. In a rooted tree graph, all nodes have exactly one parent (in-

degree = 1), except for the root, which is the single “parentless” node (in-degree

= 0), with all links pointing away from it. An external node (leaf ) is a “childless”

node, with in-degree ≥ 1, out-degree = 0. We shall refer to a node with known

ancestors, but as yet unspecified descendants, as a free node.

example 17.7

p. 317

We illustrate how trees are related to transition graphs by first working out

the simplest example of pruned symbolic dynamics, the finite subshift obtained

by prohibition of repeats of one of the symbols, let us say 00 . As we shall

see, for finite grammars a rooted tree (and, by extension, but less obviously, the

associated transition graph) is the precise statement of what is meant topologically

by a “self-similar” fractal; supplemented by scaling information, such a rooted

tree generates a self-similar fractal. Any slightly more complicated grammar

merits a full section of its own, here sect. 17.3.1.

example 17.8

p. 318

17.3.1 Converting pruning blocks into transition graphs

Suppose now that, by hook or crook, you have been so lucky fishing for pruning

rules that you now know the grammar (14.16) in terms of a finite set of pruning

blocks G = {b1, b2, · · · bk}, of lengths ≤ m. Our task is to generate all admissible

itineraries. What to do?

We have already seen the main ingredients of a general algorithm: (1) the

transition graph encodes the self-similarities of the tree of all itineraries, and (2) if

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 313

Figure 17.3: Conversion of the pruning front of

figure 15.11 (b) into a finite transition graph. (a)

Starting with the root node “.”, delineate all prun-

ing blocks on the binary tree. A solid line stands

for “1” and a dashed line for “0”. The ends of for-

bidden strings (i.e., the external nodes) are marked

with ×. Label all internal nodes by reading the bits

connecting “.”, the root of the tree, to the node. (b)

Indicate all admissible starting blocks by arrows.

(c) Recursively drop the leading bits in the admis-

sible blocks; if the truncated string corresponds to

an internal node in (a), identify them. (d) Delete

the transient, non-circulating nodes; all admissi-

ble sequences are generated as walks on this fi-

nite transition graph. (e) Identify all distinct non-

intersecting (products of) loops and construct the

determinant (18.32).

we have a pruning block of length m, we need to descend m levels before we can

start identifying the self-similar sub-trees.

Finite grammar transition graph algorithm.

1. Starting with the root of the tree, delineate all branches that correspond to

all pruning blocks; implement the pruning by removing the last node in each

pruning block (marked ‘×’ in figure 17.3 (a)).

2. Label all nodes internal to pruning blocks by the itinerary connecting the

root node to the internal node, figure 17.3 (a). Why? So far we have pruned

forbidden branches by looking mb steps into future for a given pruning

block, let’s say b = 10110. However, the blocks with the right combina-

tion of past and future [1.0110], [10.110], [101.10] and [1011.0] are also

pruned. In other words, any node whose near past coincides with the begin-

ning of a pruning block is potentially dangerous - a branch further down the

tree might get pruned.

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 314

3. Add to each remaining node, including the root, all remaining branches

allowed by the alphabet, and label their top (free) nodes, figure 17.3 (b).

Why? Each one of the free nodes is the beginning point of an infinite tree,

a tree that should be similar to another one originating closer to the root of

the whole tree.

4. Check that the labels of the newly added free nodes do not themselves

contain any pruning blocks. If they do, remove them (marked ‘×’ in fig-

ure 17.3 (b)).

5. Pick one of the remaining free nodes (e.g. closest to the root of the entire

tree), forget the most distant symbol in its past. Does the truncated itinerary

correspond to an internal node? If yes, identify the two nodes. If not, forget

the next symbol in its past, repeat. If no such truncated past corresponds to

any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free node in question is [1010.].

Three time steps back the past is [010.]. That is not dangerous, as no prun-

ing block in this example starts with 0. Now forget the third step in the past:

[10.] is dangerous, as that is the start of the pruning block [10.110]. Hence

the free node [1010.] should be identified with the internal node [10.].

6. Repeat until all free nodes have been tied back into internal nodes or the

root.

7. Clean up: check whether every node can be reached from every other node.

Remove the transient nodes, i.e., the nodes to which dynamics never returns.

8. The result is a transition graph. There is no guarantee that this is the

smartest, most compact transition graph possible for a given pruning (if

you have a better algorithm, teach us), but walks around it do generate all

admissible itineraries, and nothing else.

example 17.9

p. 318

Résumé

The set of all admissible itineraries is generated multiplicatively by transition

matrices, diagrammatically by transition graphs. Pruning rules for inadmissi-

ble sequences are implemented by constructing corresponding transition matrices

and/or transition graphs. These matrices are the simplest examples of evolution

operators, prerequisite to developing a theory of averaging over chaotic flows.

From our initial chapters 2 to 4 fixation on things local: a representative point,

a short-time trajectory, a neighborhood, in this chapter and the next we make a

courageous leap, and go global.

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 315

Commentary

Remark 17.1 Transition graphs. We enjoyed studying Lind and Marcus [?] intro-

duction to symbolic dynamics and transition graphs. Alligood, Sauer and Yorke [1.10]

discussion of baker’s maps, Smale horseshoes and their symbolic dynamics is simple and

clear. Finite transition graphs or finite automata are discussed in refs. [18.3, 18.4, 18.5].

They belong to the category of regular languages. Transition graphs for unimodal maps

are discussed in refs. [17.8, 27.3, 17.10]. (see also remark 14.1)

Remark 17.2 Inflating transition graphs. In the above examples the symbolic dy-

namics has been encoded by labeling links in the transition graph. Alternatively one can

encode the dynamics by labeling the nodes, as in example 17.6, where the 4 nodes refer

to 4 Markov partition regions {M00,M01,M10,M11}, and the 8 links to the 8 non-zero

entries in the 2-step memory transition matrix (17.11).

Remark 17.3 The unbearable growth of transition graphs. A construction of finite

Markov partitions is described in refs. [17.11, 17.12, 17.13], as well as in the innumerably

many other references.

If two regions in a Markov partition are not disjoint but share a boundary, the bound-

ary trajectories require special treatment in order to avoid overcounting, see sect. 25.4.3.

If the image of a trial partition region cuts across only a part of another trial region and

thus violates the Markov partition condition (14.2), a further refinement of the partition is

needed to distinguish distinct trajectories.

The finite transition graph construction sketched above is not necessarily the minimal

one; for example, the transition graph of figure 17.3 does not generate only the “funda-

mental” cycles (see chapter 23), but shadowed cycles as well, such as t00011 in (18.32). For

methods of reduction to a minimal graph, consult refs. [17.8, 15.48, 27.3]. Furthermore,

when one implements the time reversed dynamics by the same algorithm, one usually

gets a graph of a very different topology even though both graphs generate the same ad-

missible sequences, and have the same determinant. The algorithm described here makes

some sense for 1-dimensional dynamics, but is unnatural for 2-dimensional maps whose

dynamics it treats as 1-dimensional. In practice, generic pruning grows longer and longer,

and more plentiful pruning rules. For generic flows the refinements might never stop,

and almost always we might have to deal with infinite Markov partitions, such as those

that will be discussed in sect. 18.5. Not only do the transition graphs get more and more

unwieldy, they have the unpleasant property that every time we add a new rule, the graph

has to be constructed from scratch, and it might look very different form the previous

one, even though it leads to a minute modification of the topological entropy. The most

determined effort to construct such graphs may be the one of ref. [15.14]. Still, this is the

best technology available, until the day when a reader alerts us to something superior.

17.4 Examples

Example 17.1 Full binary shift. Consider a full shift on two-state partition A =

{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transi-

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 316

Figure 17.4: Transition graph (graph whose links cor-

respond to the nonzero elements of a transition matrix

Tba) describes which regions b can be reached from the

region a in one time step. The 7 nodes correspond to

the 7 regions of the partition (17.8). The links repre-

sent non-vanishing transition matrix elements, such as

T101,110 = 110101 . Dotted links correspond to a shift

by symbol 0, and the full ones by symbol 1.

00 010

100

101

011

110

111

tion graph are

T =

[

1 1
1 1

]

= 0 1 . (17.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts origi-

nating in 1. The admissible itineraries are generated as walks on this transition graph.

(continued in example 17.7) click to return: p. ??

Example 17.2 Complete N-ary dynamics: If all transition matrix entries equal

unity (one can reach any region from any other region in one step),

Tc =































1 1 . . . 1
1 1 . . . 1
.
.
.
.
.
.
. . .

.

.

.

1 1 . . . 1































, (17.7)

the symbolic dynamics is called complete, or a full shift. The corresponding transition

graph is obvious, but a bit tedious to draw for arbitrary N. click to return: p. ??

Example 17.3 A 7-state transition graph. Consider a state space partitioned into 7

regions

{M00,M011,M010,M110,M111,M101,M100} . (17.8)

Let the evolution in time map the regions into each other by acting on the labels as

shift (15.7): M011 → {M110,M111} , M00 → {M00,M011,M010} · · · , with nonvanish-

ing L110,011, L011,00, . . . , etc.. This is compactly summarized by the transition graph of

figure 17.4. (continued as example 18.6) click to return: p. ??

Example 17.4 Pruning rules for a 3-disk alphabet: As the disks are convex, there

can be no two consecutive reflections off the same disk, hence the covering symbolic

dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.

This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of

finite type (see (14.16) for definition), with the transition matrix / graph given by exercise 18.1

T =

















0 1 1
1 0 1
1 1 0

















=
3 1

2

. (17.9)

click to return: p. ??

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 317

Figure 17.5: The self-similarity of the complete bi-

nary symbolic dynamics represented by a rooted bi-

nary tree: trees originating in nodes B, C, · · · (actually

- any node) are the same as the tree originating in the

root node A. Level m = 4 partition is labeled by 16 bi-

nary strings, coded by dotted (0) and full (1) links read

down the tree, starting from A. See also figure 14.12.

A

B C

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0001

0000

Example 17.5 ‘Golden mean’ pruning. Consider a subshift on two-state partition

A = {0, 1}, with the simplest grammar G possible, a single pruned block b = 11

(consecutive repeat of symbol 1 is inadmissible): the stateM0 maps both ontoM0 and

M1, but the stateM1 maps only ontoM0. The transition matrix and the corresponding

transition graph are

T =

[

1 1
1 0

]

= 0 1 . (17.10)

Admissible itineraries correspond to walks on this finite transition graph. (continued in

example 17.8) click to return: p. ??

Example 17.6 Finite memory transition graphs. For the binary labeled repeller with

complete binary symbolic dynamics, we might chose to partition the state space into

four regions {M00,M01,M10,M11}, a 1-step refinement of the initial partition {M0,M1}.

Such partitions are drawn in figure 15.3, as well as figure 1.9. Topologically f acts as a

left shift (15.7), and its action on the rectangle [.01] is to move the decimal point to the

right, to [0.1], forget the past, [.1], and land in either of the two rectangles {[.10], [.11]}.

Filling in the matrix elements for the other three initial states we obtain the 1-step mem-

ory transition matrix/graph acting on the 4-regions partition exercise 14.7

T =

























T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11

























=

01

10

1100 . (17.11)

(continued in example 18.7) click to return: p. ??

Example 17.7 Complete binary topological dynamics. Mark a dot ‘·’ on a piece of

paper. That will be the root of our tree. Draw two short directed lines out of the dot, end

each with a dot. The full line will signify that the first symbol in an itinerary is ‘1,’ and the

dotted line will signifying ‘0.’ Repeat the procedure for each of the two new dots, and

then for the four dots, and so on. The result is the binary tree of figure 17.5. Starting

at the top node, the tree enumerates exhaustively all distinct finite itineraries of lengths

n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}

{000, 001, 010, 011, 100, 101, 111, 110} · · · .

The n = 4 nodes in figure 17.5 correspond to the 16 distinct binary strings of length

4, and so on. By habit we have drawn the tree as the alternating binary tree of fig-

ure 14.12, but that has no significance as far as enumeration of itineraries is concerned

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 318

Figure 17.6: The self-similarity of the 00 pruned bi-

nary tree: trees originating from nodes C and E are the

same as the entire tree. 0
1
1
0

0
1
1
1

0
1
0
1

1
1
0
1

1
1
1
1

1
1
1
0

1
0
1
0

1
0
1
1

A

E

B C

- a binary tree with labels in the natural order, as increasing binary ‘decimals’ would

serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper. On

the other hand, we are not doing much - at each node we are turning either left or

right. Hence all nodes are equivalent. In other words, the tree is self-similar; the trees

originating in nodes B and C are themselves copies of the entire tree. The result of

identifying B = A, C = A is a single node, 2-link transition graph with adjacency matrix

(17.2)

A =
[

2
]

= A=B=C . (17.12)

An itinerary generated by the binary tree figure 17.5, no matter how long, corresponds

to a walk on this graph. This is the most compact encoding of the complete binary

symbolic dynamics. Any number of more complicated transition graphs such as the

2-node (17.6) and the 4-node (17.11) graphs generate all itineraries as well, and might

sometimes be preferable. exercise 18.6

exercise 18.5

click to return: p. ??

Example 17.8 ‘Golden mean’ pruning. (a link-to-link version of example 17.5) Now

the admissible itineraries are enumerated by the pruned binary tree of figure 17.6.

Identification of nodes A = C = E leads to the finite 2-node, 3-links transition graph

T =

[

0 1
1 1

]

= A=C=EB . (17.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible

itineraries. This is the same graph as the 2-node graph (17.10), with full and dotted

lines interchanged. (continued in example 18.4) click to return: p. ??

Example 17.9 Heavy pruning.

We complete this training by examples by implementing the pruning of fig-

ure 15.11 (b). The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (17.14)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as pruning

rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches and

Markov - 14mar2015 ChaosBook.org version15.9, Jun 24 2017

EXERCISES 319

label each internal node by the sequence of 0’s and 1’s connecting it to the root of the

tree, figure 17.3 (a). These nodes are the potentially dangerous nodes - beginnings of

blocks that might end up pruned. Add the side branches to those nodes, figure 17.3 (b).

As we continue down such branches we have to check whether the pruning imposes

constraints on the sequences so generated: we do this by knocking off the leading bits

and checking whether the shortened strings coincide with any of the internal pruning

tree nodes: 00→ 0; 110→ 10; 011→ 11; 0101→ 101 (pruned); 1000→ 00→ 00→ 0;

10011→ 0011→ 011→ 11; 01000→ 0.

The trees originating in identified nodes are identical, so the tree is “self-similar.”

Now connect the side branches to the corresponding nodes, figure 17.3 (d). Nodes “.”

and 1 are transient nodes; no sequence returns to them, and as you are interested here

only in infinitely recurrent sequences, delete them. The result is the finite transition

graph of figure 17.3 (d); the admissible bi-infinite symbol sequences are generated as

all possible walks on this graph. click to return: p. ??

Exercises

17.1. Time reversibility. Hamiltonian flows

are time reversible. Does that mean that their transi-

tion graphs are symmetric in all node → node links,

their transition matrices are adjacency matrices, sym-

metric and diagonalizable, and that they have only real

eigenvalues?

17.2. Alphabet {0,1}, prune 1000 , 00100 , 01100 .

This example is motivated by the pruning front descrip-

tion of the symbolic dynamics for the Hénon-type map-

sremark 15.3.

step 1. 1000 prunes all cycles with a 000 subse-

quence with the exception of the fixed point 0; hence we

factor out (1 − t0) explicitly, and prune 000 from the

rest. This means that x0 is an isolated fixed point - no

cycle stays in its vicinity for more than 2 iterations. In

the notation of sect. 17.3.1, the alphabet is {1, 2, 3; 0},

and the remaining pruning rules have to be rewritten in

terms of symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 .

This means that the 3-cycle 3 = 100 is pruned and no

long cycles stay close enough to it for a single 100

repeat. Prohibition of 33 is implemented by drop-

ping the symbol “3” and extending the alphabet by the

allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 ,

13 13 , where 13 = 13, 23 = 23 are now used as single

letters. Pruning of the repetitions 13 13 (the 4-cycle

13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary

dynamics. The other remaining possible blocks 213 ,

2313 are forbidden by the rules of step 3.

References

[17.1] D.A. Lind and B. Marcus, An introduction to symbolic dynamics and cod-

ing (Cambridge Univ. Press, Cambridge 1995).

[17.2] A. Salomaa, Formal languages (Academic Press, San Diego1973).

[17.3] J.E. Hopcroft and J.D. Ullman, Introduction to automata theory, lan-

guages, and computation (Addison-Wesley, Reading MA 1979).

refsMarkov - 5oct2008 ChaosBook.org version15.9, Jun 24 2017



References 320

[17.4] D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs (Academic

Press, New York 1980).

[17.5] C.J. Puccia and R. Levins, Qualitative modeling of complex systems: An

introduction to loop analysis and time averaging (Harvard Univ. Press, Cam-

bridge MA 1986).

[17.6] E.D. Sontag, Mathematical control theory: Deterministic finite dimen-

sional systems (Springer, New York 1998).

[17.7] J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applica-

tions (Springer, London 2002).

[17.8] P. Grassberger, “On the symbolic dynamics of the one-humped map of the

interval” Z. Naturforsch. A 43, 671 (1988).

[17.9] P. Grassberger, R. Badii and A. Politi, “Scaling laws for invariant measures

on hyperbolic and nonhyperbolic attractors,” J. Stat. Phys. 51, 135 (1988).

[17.10] S. Isola and A. Politi, “Universal encoding for unimodal maps,” J. Stat.

Phys. 61, 259 (1990).

[17.11] A. Boyarski and M. Skarowsky, Trans. Amer. Math. Soc. 225, 243 (1979)

[17.12] A. Boyarski, J. Stat. Phys. 50, 213 (1988).

[17.13] C.S. Hsu, M.C. Kim, Phys. Rev. A 31, 3253 (1985); N. Balmforth, E.A.

Spiegel, C. Tresser, Phys. Rev. Lett. 72, 80 (1994).

refsMarkov - 5oct2008 ChaosBook.org version15.9, Jun 24 2017


