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Notes on Quantum Field Theory Mark Srednicki

1: Attempts at relativistic quantum mechanics

In order to combine quantum mechanics and relativity, we must first

understand what we mean by “quantum mechanics” and “relativity”. Let us

begin with quantum mechanics.

Somewhere in most textbooks on the subject, one can find a list of the

“axioms of quantum mechanics”. These include statements along the lines

of

The state of the system is represented by a vector in Hilbert space.

Observables are represented by hermitian operators.

The measurement of an observable always yields one of its eigenvalues as

the result.

And so on. We do not need to review these closely here. The axiom we

need to focus on is the one that says that the time evolution of the state of

the system is governed by the Schrödinger equation,

ih̄
∂

∂t
|ψ, t〉 = H|ψ, t〉 , (1)

where H is the hamiltonian operator, representing the total energy.

Let us consider a very simple system: a spinless, nonrelativistic particle

with no forces acting on it. In this case, the hamiltonian is

H =
1

2m
P2 , (2)

where m is the particle’s mass, and P is the momentum operator. In the

position basis, eq. (1) becomes

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∇2ψ(x, t) , (3)

where ψ(x, t) = 〈x|ψ, t〉 is the position-space wave function. We would like

to generalize this to relativistic motion.
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The obvious way to proceed is to take

H = +
√

P2c2 +m2c4 , (4)

which gives the correct energy-momentum relation. If we formally expand

this hamiltonian in inverse powers of the speed of light c, we get

H = mc2 +
1

2m
P2 + . . . . (5)

This is simply a constant (the rest energy), plus the usual nonrelativistic

hamiltonian, eq. (2), plus higher-order corrections. With the hamiltonian

given by eq. (4), the Schrödinger equation becomes

ih̄
∂

∂t
ψ(x, t) = +

√
−h̄2c2∇2 +m2c4 ψ(x, t) . (6)

The square root of the differential operator looks nasty, but it is perfectly

well defined in momentum space. Have we, then, succeeded in constructing

a relativistic form of quantum mechanics?

To answer this, we must first examine what we mean by “relativity”.

Special relativity tells us that physics looks the same in all inertial frames.

To explain what this means, let us first suppose that a certain spacetime

coordinate system (ct,x) represents (by fiat) an inertial frame. Let us define

x0 = ct, and write xµ, where µ = 0, 1, 2, 3, in place of (ct,x). It is also

convenient (for reasons not at all obvious at this point) to define x0 = −x0

and xi = xi, where i = 1, 2, 3. More succintly, we can introduce the metric

of flat spacetime,

gµν =




−1
+1

+1
+1


 . (7)

We then have xµ = gµνx
ν , where the repeated indices are summed. To invert

this formula, we need to introduce the inverse of g, which is confusingly also

called g, except with both indices up:

gµν =




−1
+1

+1
+1


 . (8)
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We then have gµνgνρ = δµ
ρ, where δµ

ρ is the Kronecker delta (equal to one

if its two indices take on the same value, zero otherwise). Now we can also

write xµ = gµνxν . It is a general rule that, for any pair of repeated indices,

one must be a superscript, and one must be a subscript. Also, unsummed

indices must match (in both name and height) on the left and right sides

of any valid equation. (This is the Einstein summation convention. It may

seem like a rather complicated way of keeping track of a minus sign, but it

will prove its worth in the end.)

Now we are ready to specify what we mean by an inertial frame. If the

coordinates xµ represent an inertial frame (which they do, by assumption),

then so do any other coordinates x̄µ that are related by

x̄µ = Λµ
νx

µ + aµ , (9)

where Λµ
ν is a Lorentz transformation matrix and aµ is a translation vector.

Both Λµ
ν and aµ are constant (that is, indendent of xµ). Furthermore, Λµ

ν

must obey

gµνΛ
µ

ρΛ
ν
σ = gρσ . (10)

Eq. (10) ensures that the invariant distance between two different spacetime

points that are labeled by xµ and x′µ in one inertial frame, and by x̄µ and

x̄′µ in another, is the same. This distance is defined to be

(x− x′)2 ≡ gµν(x− x′)µ(x− x′)ν = (x− x′)2 − c2(t− t′)2 . (11)

In the second frame, we have

(x̄− x̄′)2 = gµν(x̄− x̄′)µ(x̄− x̄′)ν

= gµνΛ
µ

ρΛ
ν
σ(x− x′)ρ(x− x′)σ

= gρσ(x− x′)ρ(x− x′)σ

= (x− x′)2 , (12)

as desired.

When we say that physics looks the same, we mean that two observers

(Alice and Bob, say) using two different sets of coordinates (representing two

different inertial frames) should agree on the predicted results of all possible
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experiments. In the case of quantum mechanics, this requires Alice and Bob

to agree on the value of the wave function at a particular spacetime point,

a point which is called x by Alice and x̄ by Bob. Thus if Alice’s predicted

wave function is ψ(x), and Bob’s is ψ̄(x̄), then ψ(x) = ψ̄(x̄). Therefore, the

two functions ψ(x) and ψ̄(x) are related via

ψ̄(x) = ψ(Λ−1(x− a)) , (13)

where (Λ−1)µ
ν = Λν

µ. [This formula for Λ−1 follows from eq. (10); see section

2.] Furthermore, in order to maintain ψ(x) = ψ̄(x̄) throughout spacetime,

ψ(x) and ψ̄(x̄) must obey the same equation of motion.

Let us see if this is true of our candidate Schrödinger equation for rela-

tivistic quantum mechanics, eq. (6). First let us define some useful notation

for spacetime derivatives:

∂µ ≡
∂

∂xµ
=

(
+

1

c

∂

∂t
,∇
)
, (14)

∂µ ≡ ∂

∂xµ

=

(
−1

c

∂

∂t
,∇
)
. (15)

Note that ∂µxν = gµν, so that our matching-index-height rule is satisfied.

Also, ∂̄µ = Λµ
ν∂

ν , which means that ∂µ transforms in the same way as xµ.

To verify this, note that

gρσ = ∂̄ρx̄σ = (Λρ
µ∂

µ)(Λσ
νx

ν + aµ) = Λρ
µΛσ

ν(∂
µxν) = Λρ

µΛ
σ

νg
µν , (16)

and that gρσ = Λρ
µΛ

σ
νg

µν the last equality is just another form of eq. (10)

[again, see section 2].

Rewriting eq. (6) in this notation yields

ih̄c ∂0ψ(x) = +
√
−h̄2c2

∑3
i=1∂

2
i +m2c4 ψ(x) . (17)

We should also have

ih̄c ∂̄0ψ̄(x̄) = +
√
−h̄2c2

∑3
i=1∂̄

2
i +m2c4 ψ̄(x̄) . (18)

Now replace ψ̄(x̄) with ψ(x), and use ∂̄µ = Λµ
ν∂ν to get

ih̄cΛ0
ν∂νψ(x) = +

√
−h̄2c2

∑3
i=1(Λi

ν∂ν)2 +m2c4 ψ(x) . (19)
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It is obvious that eq. (19) does not have the same form as eq. (17). There

is a preferred frame where the derivative that is not under the square-root

sign is purely a time derivative. In any other inertial frame, it is a linear

combination of time and space derivatives. Thus, our candidate Schrödinger

equation is not consistent with relativity.

Let us try something else: let us square the differential operators on each

side of eq. (17) before applying them to the wave function. Then we get

−h̄2c2∂2
0ψ(x) = (−h̄2c2∇2 +m2c4)ψ(x) . (20)

or, after rearranging and identifying ∂2 ≡ ∂µ∂µ = −∂2
0 +∇2,

(−∂2 +m2c2/h̄2)ψ(x) = 0 . (21)

This is the Klein-Gordon equation.

To see if it is consistent with relativity, start with Bob’s version of the

equation, (−∂̄2 +m2c2/h̄2)ψ̄(x̄). Replace ψ̄(x̄) with ψ(x), and note that

∂̄2 = gµν ∂̄
µ∂̄ν = gµνΛ

µ
ρΛ

µ
σ∂

ρ∂σ = ∂2 . (22)

Thus, we get eq. (21) back again! This means that the Klein-Gordon equation

is consistent with relativity: it takes the same form in every inertial frame.

This is the good news. The bad news is that we have violated one of

the axioms of quantum mechanics: eq. (1), the Schrödinger equation in its

abstract form. The abstract Schrödinger equation has the fundamental prop-

erty of being first order in the time derivative, whereas the Klein-Gordon

equation is second order. This seems like it might not be too important, but

in fact it has drastic consequences. One of these is that the norm of a state,

〈ψ, t|ψ, t〉 =
∫
d3x 〈ψ, t|x〉〈x|ψ, t〉 =

∫
d3xψ∗(x)ψ(x), (23)

is not in general time independent. Thus probability is not conserved. The

Klein-Gordon equation obeys relativity, but not quantum mechanics.

Dirac attempted to solve this problem (for spin-one-half particles) by

introducing an extra discrete label on the wave function, to account for spin:

ψa(x), a = 1, 2. He then tried a Schrödinger equation of the form

ih̄
∂

∂t
ψa(x) =

(
−ih̄c(αj)ab∂j +mc2(β)ab

)
ψb(x) , (24)
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where all repeated indices are summed, and αj and β are four matrices in

spin-space. This equation, the Dirac equation, is linear in both time and

space derivatives, and so has a chance to obey the rules of both quantum

mechanics and relativity. In fact, it manifestly obeys the rules of quantum

mechanics, and so the norm
∑

a=1,2

∫
d3x |ψa(x)|2 is time independent, as

it should be. To gain some understanding of its properties under Lorentz

transformations, let us consider the hamiltonian it specifies,

Hab = cPj(α
j)ab +mc2(β)ab , (25)

where Pj is a component of the momentum operator. If we square this

hamiltonian, we get

(H2)ab = c2PjPk(α
jαk)ab + h̄mc3Pj(α

jβ + βαj)ab +mc2(β2)ab . (26)

Since PjPk is symmetric on exchange of j and k, we can replace αjαk by its

symmetric part, 1
2
{αj, αk}, where {A,B} = AB+BA is the anticommutator.

Then, if we choose matrices such that

{αj, αk}ab = 2δjkδab , {αj, β}ab = 0 , (β2)ab = δab , (27)

we will get

(H2)ab = (P2c2 +m2c4)δab . (28)

Thus, the eigenstates of H2 are momentum eigenstates, with H2 eigenvalue

p2c2 + m2c4. This is, of course, the correct relativstic energy-momentum

relation. While it is outside the scope of this section to demonstrate it, it

turns out that the Dirac equation is fully consistent with relativity provided

the Dirac matrices obey eq. (27). So we have succeeded in constructing a

quantum mechanical, relativistic theory!

There are, however, some problems. First, the Dirac matrices must be at

least 4× 4, and not 2× 2 as we would like (in order to account for electron

spin). To see this, note that the 2×2 Pauli matrices obey {σi, σj} = 2δij, and

are thus candidates for the Dirac αi matrices. However, there is no fourth

matrix that anticommutes with these three (easily proven by writing down

the most general 2 × 2 matrix and working out the three anticommutators

explicitly). Also, the Dirac matrices must be even dimensional. To see this,
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first define the matrix γ ≡ βα1α2α3. This matrix obeys γ2 = 1 and also

{γ, αi} = {γ, β} = 0. Hence, using the cyclic property of matrix traces on

γβγ, we have Tr γβγ = Tr γ2β = Tr β. On the other hand, using βγ = −γβ,

we also have Tr γβγ = −Tr γ2β = −Tr β. Thus, Tr β is equal to minus itself,

and hence must be zero. (Similarly, we can show Trαi = 0.) Also, β2 = 1

implies that the eigenvalues of β are all ±1. Because β has zero trace, these

eigenvalues must sum to zero, and hence the dimension of the matrix must

be even. From now on we will take the Dirac matrices to be 4 × 4, and it

remains for us to interpret the two extra possible “spin” states.

However, these extra states cause a more severe problem than a mere

overcounting. Acting on a momentum eigenstate, H becomes the matrix

c α ·p + mc2β. The trace of this matrix is zero. Thus the four eigenvalues

must be +E(p),+E(p),−E(p),−E(p), where E(p) = +(p2c2 + m2c4)1/2.

The negative eigenvalues are the problem: they indicate that there is no

ground state. In a more elaborate theory that included interactions with

photons, there seems to be no reason why a positive energy electron could not

emit a photon and drop down into a negative energy state. This downward

cascade could continue forever. (The same problem also arises in attempts

to interpret the Klein-Gordon equation as a modified form of quantum me-

chanics.)

Dirac made a wildly brilliant attempt to fix this problem of negative

energy states. His solution is based on an empirical fact about electrons:

they obey the Pauli exclusion principle. It is impossible to put more than

one of them in the same quantum state. What if, Dirac speculated, all the

negative energy states were already occupied? In this case, a positive energy

electron could not drop into one of these states, by Pauli exclusion!

Many questions immediately arise. Why don’t we see the negative electric

charge of this Dirac sea of electrons? Dirac’s answer: because we’re used to

it. (More precisely, the physical effects of a uniform charge density depend on

the boundary conditions at infinity that we impose on Maxwell’s equations,

and there is a choice that renders such a uniform charge density invisible.)

However, Dirac noted, if one of these negative energy electrons were excited

into a positive energy state (by, say, a sufficiently energetic photon), it would

leave behind a hole in the sea of negative energy electrons. This hole would
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appear to have positive charge, and positive energy. Dirac therefore predicted

(in 1927) the existence of the positron, a particle with the same mass as the

electron, but opposite charge. The positron was found experimentally five

years later.

However, we have now jumped from an attempt at a quantum description

of a single relativistic particle to a theory that apparently requires an infinite

number of particles. Even if we accept this, we still have not solved the

problem of how to describe particles like photons or pions or alpha nuclei

that do not obey Pauli exclusion.

At this point, it is worthwhile to stop and reflect on why it has proven

to be so hard to find an acceptable relativistic wave equation for a single

quantum particle. Perhaps there is something wrong with our basic approach.

And there is. Recall the axiom of quantum mechanics that says that

“Observables are represented by hermitian operators.” This is not entirely

true. There is one observable in quantum mechanics that is not represented

by a hermitian operator: time. Time enters into quantum mechanics only

when we announce that the “state of the system” depends on an extra pa-

rameter t. This parameter is not the eigenvalue of any operator. This is

in sharp contrast to the particle’s position x, which is the eigenvalue of an

operator. Thus, space and time are treated very differently, a fact that is

obscured by writing the Schrödinger equation in terms of the position-space

wave function ψ(x, t). Since space and time are treated asymmetrically, it is

not surprising that we are having trouble incorporating a symmetry which

mixes them up.

So, what are we to do?

In principle, the problem could be an intractable one: it might be im-

possible to combine quantum mechanics and relativity. In this case, there

would have to be some meta-theory, one that reduces in the nonrelativistic

limit to quantum mechanics, and in the classical limit to relativistic particle

dynamics, but is actually neither.

This, however, turns out not to be the case. We can solve our problem,

but we must put space and time on an equal footing at the outset. There

are two ways to do this. One is to demote position from its status as an

operator, and render it as an extra label, like time. The other is to promote
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time to an operator.

Let us discuss the second option first. If time becomes an operator,

what replaces the Schrödinger equation? Luckily, in relativistic theories,

there are plenty of times lying around. We can use the proper time τ of the

particle (or, more technically, any affine parameter along its worldline) as the

“extra” parameter, while promoting coordinate time T to an operator. In the

Heisenberg picture (where the state of the system is fixed, but the operators

are functions of time that obey the classical equations of motion), we would

have operators Xµ(τ), where X0 = T . Relativistic quantum mechanics can

indeed be developed along these lines, but it is surprisingly complicated to do

so. (The many times are the problem; any monotonic function of τ is just as

good a candidate as τ itself for the proper time, and this infinite redundancy

of descriptions must be understood and accounted for.)

One of the advantages of considering different formalisms is that they may

suggest different directions for generalizations. For example, once we have

Xµ(τ), why not consider adding some more parameters? Then we would

have, for example, Xµ(σ, τ). Classically, this would give us a continuous

family of worldlines, what we might call a worldsheet, and so Xµ(σ, τ) would

describe a propagating string. This is indeed the starting point for string

theory.

Thus, promoting time to an operator is a viable option, but is complicated

in practice. Let us then turn to the other option, demoting position to a

label. The first question is, label on what? The answer is, on operators.

Thus, consider assigning an operator to each point x in space; call these

operators ϕ(x). A set of operators like this is called a quantum field. In the

Heisenberg picture, the operators are also time dependent:

ϕ(x, t) = eiHt/h̄ϕ(x, 0)e−iHt/h̄ . (29)

Thus, both position and (in the Heisenberg picture) time are now labels on

operators; neither is itself the eigenvalue of an operator.

So, now we have two different approaches to relativistic quantum theory,

approaches that might, in principle, yield different results. This, however, is

not the case: it turns out that any relativistic quantum physics that can be

treated in one formalism can also be treated in the other. Which we use is a
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matter of convenience and taste. And, quantum field theory, the formalism

in which position and time are both labels on operators, is by far the more

convenient and efficient. (For particles, anyway; for strings, the opposite

seems to be true, at least as of this writing.)

There is another useful equivalence: ordinary nonrelativistic quantum

mechanics, for a fixed number of particles, can be rewritten as a quantum

field theory. This is an informative exercise, since the corresponding physics

is already familiar. Let us carry it out.

Begin with the position-basis Schrödinger equation for n particles, all with

the same mass m, moving in an external potential U(x), and interacting with

each other via an interparticle potential V (x1 − x2):

ih̄
∂

∂t
ψ =

[
n∑

j=1

(
− h̄2

2m
∇2

j + U(xj)

)
+

n∑

j=1

j−1∑

k=1

V (xj − xk)

]
ψ , (30)

where ψ = ψ(x1, . . . ,xn; t) is the position-space wave function. The quantum

mechanics of this system can be rewritten in the abstract form of eq. (1) by

first introducing (in, for now, the Schrödinger picture) a quantum field a(x)

and its hermitian conjugate a†(x). We take these operators to have the

commutation relations

[a(x), a(x′)] = 0 , [a†(x), a†(x′)] = 0 , [a(x), a†(x′)] = δ3(x− x′) , (31)

where δ3(x) is the three-dimensional Dirac delta function. Thus, a† and a

behave like harmonic-oscillator creation and annihilation operators that are

labeled by a continuous index. In terms of them, we introduce the hamilto-

nian operator of our quantum field theory,

H =
∫
d3x a†(x)

(
− h̄2

2m
∇2 + U(x)

)
a(x)

+ 1
2

∫
d3x d3y V (x− y)a†(x)a†(y)a(y)a(x) . (32)

Now consider a time-dependent state of the form

|ψ, t〉 =
∫
d3x1 . . . d

3xn ψ(x1, . . . ,xn; t)a†(x1) . . . a
†(xn)|0〉 , (33)

where ψ(x1, . . . ,xn; t) is some function of the n particle positions and time,

and |0〉 is the vacuum state, the state that is annihilated by all the a’s:
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a(x)|0〉 = 0. It is now straightforward (though tedious) to verify that the

abstract Schrödinger equation, eq. (1), is obeyed if and only if the function

ψ satisfies eq. (30).

Thus we can interpret the state |0〉 as a state of “no particles”, the state

a†(x1)|0〉 as a state with one particle at position x1, the state a†(x1)a
†(x2)|0〉

as a state with one particle at position x1 and another at position x2, and so

on. The operator

N =
∫
d3x a†(x)a(x) (34)

counts the total number of particles. It commutes with the hamiltonian, as

is easily checked; thus, if we start with a state of n particles, we remain with

a state of n particles at all times.

However, we can imagine generalizations of this version of the theory

(generalizations that would not be possible without the field formalism) in

which the number of particles is not conserved. For example, we could try

adding to H a term like

∆H ∝
∫
d3x

[
a†(x)a2(x) + h.c.

]
. (35)

This term does not commute with N , and so the number of particles would

not be conserved with this addition to H.

Theories in which the number of particles can change as time evolves

are a good thing: they are needed for correct phenomenology. We are al-

ready familiar with the notion that atoms and molecules can emit and absorb

photons, and so we had better have a formalism that can incorporate this

phenomenon. We are less familiar with emission and absorbtion (that is to

say, creation and annihilation) of electrons, but this process also occurs in

nature; it is less common because it must be accompanied by the emission

or absorbtion of a positron, antiparticle to the electron. There are not a

lot of positrons around to facilitate electron annihilation, while e+e− pair

creation requires us to have on hand at least 2mc2 of energy available for

the rest-mass energy of these two particles. The photon, on the other hand,

is its own antiparticle, and has zero rest mass; thus photons are easily and

copiously produced and destroyed.

There is another important aspect of the quantum theory specified by

eqs. (32) and (33). Because the creation operators commute with each other,
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only the completely symmetric part of ψ survives the integration in eq. (33),

so we can, without loss of generality, restrict our attention to ψ’s of this type:

ψ(. . .xi . . .xj . . . ; t) = +ψ(. . .xj . . .xi . . . ; t) (36)

This means that we have a theory of bosons, particles that (like photons or

pions or alpha nuclei) obey Bose-Einstein statistics. If we want Fermi-Dirac

statistics instead, we must replace eq. (31) with

{a(x), a(x′)} = 0 , {a†(x), a†(x′)} = 0 , {a(x), a†(x′)} = δ3(x− x′) ,

(37)

where again {A,B} = AB +BA is the anticommutator. Now only the fully

antisymmetric part of ψ survives the integration in eq. (33), and so we can

restrict our atttention to

ψ(. . .xi . . .xj . . . ; t) = −ψ(. . .xj . . .xi . . . ; t) (38)

Thus we have a theory of fermions. It is straightforward to check that the ab-

stract Schrödinger equation, eq. (1), still implies that ψ obeys the differential

equation (30). [Now, however, the ordering of the last two a operators in the

last term of H, eq. (32), becomes important, and it must be as written.] In-

terestingly, there is no simple way to write down a quantum field theory with

particles that obey Boltzmann statistics, corresponding to a wave function

with no particular symmetry. This is a hint of the spin-statistics theorem,

which applies to relativistic quantum field theory. It says that interacting

particles with integer spin must be bosons, and interacting particles with

half-integer spin must be fermions. In our nonrelativistic example, the inter-

acting particles clearly have spin zero (because their creation operators carry

no labels that could be interpreted as corresponding to different spin states),

but can be either bosons or fermions, as we have seen.

Now that we have seen how to rewrite the nonrelativistic quantum me-

chanics of multiple bosons or fermions as a quantum field theory, it is time

to try to construct a relativistic version.
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Notes on Quantum Field Theory Mark Srednicki

2: Lorentz Invariance

A Lorentz transformation is a linear, homogeneous change of coordinates

from xµ to x̄µ,

x̄µ = Λµ
νx

ν , (39)

that preserves the invariant distance from the origin, x2 = xµxµ = gµνx
µxν =

x2 − t2; this means that the matrix Λµ
ν must obey

gµνΛ
µ

ρΛ
ν
σ = gρσ , (40)

where

gµν =




−1
+1

+1
+1


 . (41)

is the flat-space metric.

Note that this set of transformations includes ordinary spatial rotations:

take Λ0
0 = 1, Λ0

i = Λi
0 = 0, and Λi

j = Rij, where R is an orthogonal

rotation matrix.

The set of all Lorentz transformations [that is, matrices obeying eq. (40)]

forms a group: the product of any two Lorentz transformations is another

Lorentz transformation, the product is associative, and every Lorentz trans-

formation has an inverse. It is easy to demonstrate these statements explic-

itly. For example, to find the inverse transformation (Λ−1)µ
ν, note that the

left-hand side of eq. (40) can be written as ΛνρΛ
ν
σ, and that we can raise the

ρ index on both sides to get Λν
ρΛν

σ = δρ
σ. On the other hand, by definition,

(Λ−1)ρ
νΛ

ν
σ = δρ

σ. Therefore

(Λ−1)ρ
ν = Λν

ρ . (42)
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Another useful version of eq. (40) is

gµνΛρ
µΛ

σ
ν = gρσ . (43)

To get this, start with eq. (40), but with the inverse transformations (Λ−1)µ
ρ

and (Λ−1)ν
σ. Then use eq. (42), raise all down indices, and lower all up

indices. The result is eq. (43).

For an infinitesimal Lorentz transformation, we can write

Λµ
ν = δµ

ν + δωµ
ν . (44)

Eq. (40) can be used to show that δω with both indices down (or up) is

antisymmetric:

δωρσ = −δωσρ . (45)

Thus there are six independent infinitesimal Lorentz transformations (in four

spacetime dimensions). These can be divided into three rotations (δωij =

εijkn̂kδθ for a rotation by angle δθ about the unit vector n̂) and three boosts

(δω0i = n̂iδη for a boost in the direction n̂ by rapidity δη).

Not all Lorentz transformations can be reached by compounding infinites-

imal ones. If we take the determinant of eq. (42), we get (det Λ)−1 = det Λ,

which implies det Λ = ±1. Transformations with det Λ = +1 are proper, and

transformations with det Λ = −1 are improper. Note that the product of

any two proper Lorentz transformations is also proper. Also, infinitesimal

transformations of the form Λ = 1 + δω are proper. Therefore, any trans-

formation that can be reached by compounding infinitesimal ones is proper.

The proper transformations form a subgroup of the Lorentz group.

Another subgroup is that of the orthochronous Lorentz transformations:

those for which Λ0
0 ≥ +1. Note that eq. (40) implies (Λ0

0)
2 − Λi

0Λ
i
0 = 1;

thus, either Λ0
0 > +1 or Λ0

0 < −1. An infinitesimal transformation is

clearly orthochronous, and it is straightforward to show that the product of

two orthochronous transformations is also orthochronous.

Thus, the Lorentz transformations that can be reached by compounding

infinitesimal ones are both proper and orthochronous, and they form a sub-

group. We can introduce two discrete transformations that take us out of
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this subgroup: parity and time reversal. The parity transformation is

Pµ
ν = (P−1)µ

ν =




+1
−1

−1
−1


 . (46)

It is orthochronous, but improper. The time-reversal transformation is

T µ
ν = (T −1)µ

ν =




−1
+1

+1
+1


 . (47)

It is nonorthochronous and improper.

Generally, when a theory is said to be Lorentz invariant, this means under

the proper orthochronous subgroup only. Parity and time reversal are treated

separately. It is possible for a quantum field theory to be invariant under the

proper orthochronous subgroup, but not under parity and/or time-reversal.

From here on, in this section, we will treat the proper orthochronous

subgroup only. Parity and time reversal will be treated in section 23.

In quantum theory, symmetries are represented by unitary (or antiuni-

tary) operators. This means that we associate a unitary operator U(Λ) to

each proper, orthochronous Lorentz transformation Λ. These operators must

obey the composition rule

U(Λ′Λ) = U(Λ′)U(Λ) . (48)

For an infinitesimal transformation, we can write

U(1+δω) = I + i
2
δωµνM

µν , (49)

where Mµν = −Mνµ is a set of hermitian operators called the generators of

the Lorentz group. If we start with U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ) and let

Λ′ = 1 + δω′, we can show that

U(Λ)−1MµνU(Λ) = Λµ
ρΛ

ν
σM

ρσ . (50)

Thus, each vector index on Mµν undergoes its own Lorentz transformation.

This is a general result: any operator carrying one or more vector indices
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should behave similarly. For example, consider the energy-momentum four-

vector P µ, where P 0 is the hamiltonian H and P i are the components of the

total three-momentum operator. We expect

U(Λ)−1P µU(Λ) = Λµ
ρP

ρ . (51)

If we now let Λ = 1 + δω in eq. (50), we get the commutation relations

[Mµν ,Mρσ] = i
(
gµσMνρ − (µ↔ ν)

)
− (ρ↔ σ) . (52)

We can identify the components of the angular momentum operator J with

Ji ≡ 1
2
εijkM

jk, and the componenets of the boost operator K with Ki ≡M i0.

We then find from eq. (52) that

[Ji, Jj] = +iεijkJk ,

[Ji, Kj] = +iεijkKk ,

[Ki, Kj] = −iεijkJk . (53)

The first of these is the usual set of commutators for angular momentum,

and the second says that K transforms as a three-vector under rotations.

The third implies that a series of boosts can be equivalent to a rotation.

Similarly, we can let Λ = 1 + δω in eq. (51) to get

[P µ,Mρσ] = i
(
gµσP νρ − (ρ↔ σ)

)
, (54)

which becomes

[Ji, H] = 0 ,

[Ji, Pj] = +iεijkPk ,

[Ki, H] = +iPi ,

[Ki, Pj] = +iδijH , (55)

Also, the components of P µ should commute with each other:

[Pi, Pj] = 0 ,

[Pi, H] = 0 . (56)

18



Together, eqs. (53), (55), and (56) form the Poincaré algebra.

Let us now consider what should happen to a quantum scalar field ϕ(x)

under a Lorentz transformation. We begin by recalling how time evolution

works in the Heisenberg picture:

e+iHtϕ(x, 0)e−iHt = ϕ(x, t) . (57)

Obviously, this should have a relativistic generalization,

e−iPxϕ(0)e+iPx = ϕ(x) , (58)

where Px = P µxµ = P·x−Ht. We can make this a little fancier by defining

the unitary spacetime translation operator

T (a) ≡ exp(−iP µaµ) . (59)

Then we have

T (a)−1ϕ(x)T (a) = ϕ(x− a) . (60)

For an infinitesimal translation,

T (δa) = I − iδaµP
µ . (61)

Comparing eqs. (49) and (61), we see that eq. (60) leads us to expect

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (62)

Derivatives of ϕ then carry vector indices that transform in the appropriate

way, e.g.,

U(Λ)−1∂µϕ(x)U(Λ) = Λµ
ρ∂̄

ρϕ(Λ−1x) , (63)

where the bar on a derivative means that it is with respect to the argument

x̄ = Λ−1x. Eq. (63) also implies

U(Λ)−1∂2ϕ(x)U(Λ) = ∂̄2ϕ(Λ−1x) , (64)

so that the Klein-Gordon equation, (−∂2 +m2)ϕ = 0, is Lorentz invariant.
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3: Relativistic Quantum Fields

Let us go back and drastically simplify the hamiltonian we constructed

in section 1, reducing it to that of free particles:

H =
∫
d3x a†(x)

(
− 1

2m
∇2
)
a(x)

=
∫
d3p 1

2m
p2 ã†(p)ã(p) , (65)

where

ã(p) =
∫

d3x

(2π)3/2
e−ip·x a(x) . (66)

Note that we have simplified our notation by setting h̄ = 1; the appropriate

factors of h̄ can always be restored in any of our formulas via dimensional

analysis. The commutation (or anticommutation) relations of the ã(p) and

ã†(p) operators are

[ã(p), ã(p′)]∓ = 0 ,

[ã†(p), ã†(p′)]∓ = 0 ,

[ã(p), ã†(p′)]∓ = δ3(p− p′) , (67)

where [A,B]∓ is either the commutator (if we want a theory of bosons) or

the anticommutator (if we want a theory of fermions). Thus ã†(p) can be

interpreted as creating a state of definite momentum p, and eq. (65) de-

scribes a theory of free particles. The eigenstates of H are all of the form

ã†(p1) . . . ã
†(pn)|0〉, and the corresponding energy eigenvalue is E(p1)+ . . .+

E(pn), where E(p) = 1
2m

p2.

It is easy to see how to generalize this theory to a relativistic one; all we

need use the relativistic formula E(p) = +(p2c2 +m2c4)1/2:

H =
∫
d3p (p2c2 +m2c4)1/2 ã†(p)ã(p) . (68)
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Now we have a theory of free relativistic spin-zero particles, and they can be

either bosons or fermions.

Is this theory really Lorentz invariant? We will answer this question (in

the affirmative) in a very roundabout way: by constructing it again, from

a rather different point of view, a point of view that emphasizes Lorentz

invariance from the beginning.

We will start with the classical physics of a real scalar field ϕ(x). Real

means that ϕ(x) assigns a real number to every point in spacetime. Scalar

means that Alice [who uses coordinates xµ and calls the field ϕ(x)] and Bob

[who uses coordinates x̄µ, related to Alice’s coordinates by x̄µ = Λµ
νx

ν + aν ,

and calls the field ϕ̄(x̄)], agree on the numerical value of the field: ϕ(x) =

ϕ̄(x̄). This then implies that the equation of motion for ϕ(x) must be the

same as that for ϕ̄(x̄). We have already met an equation of this type in

our earlier attempt to construct a relativistic equation for a quantum wave

function: the Klein-Gordon equation, (−∂2+m2)ϕ(x) = 0. (Here, to simplify

the notation, we have set c = 1 in addition to h̄ = 1. As with h̄, factors of

c can restored, if desired, by dimensional analysis.) Let us adopt this as the

equation of motion we would like ϕ(x) to obey.

It should be emphasized at this point that we are doing classical physics

of a real scalar field. We are not to think of ϕ(x) as a quantum wave function.

Thus, there should not be any factors of h̄ in this version of the Klein-Gordon

equation. This means that the parameter m must have dimensions of inverse

length; m is not (yet) to be thought of as a mass.

The equation of motion can be derived from variation of an action S =∫
dt L, where L is the lagrangian. Since the Klein-Gordon equation is lo-

cal, we expect that the lagrangian can be written as the space integral of

a lagrangian density L: L =
∫
d3xL. Thus, S =

∫
d4xL. The integration

measure d4x is Lorentz invariant: if we change to coordinates x̄µ = Λµ
νx

ν , we

have d4x̄ = |det Λ| d4x = d4x. Thus, for the action to be Lorentz invariant,

the lagrangian density must be a Lorentz scalar: L(x) = L̄(x̄). Then we

have S̄ =
∫
d4x̄ L̄(x̄) =

∫
d4xL(x) = S. Any simple function of ϕ is a Lorentz

scalar, and so are products of derivatives with all indices contracted, such as

∂µϕ∂µϕ. We will take for L

L = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 + Λ0 , (69)
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because (as we will see momentarily) this choice yields the Klein-Gordon

equation as the equation of motion. Here Λ0 is an arbitary constant that

does not affect the equations of motion.

The Euler-Lagrange equation is found by making a small variation δϕ(x)

in ϕ(x), and requiring the corresponding variation of the action to vanish:

0 = δS

=
∫
d4x

[
−1

2
∂µδϕ∂µϕ− 1

2
∂µϕ∂µδϕ−m2ϕ δϕ

]

=
∫
d4x

[
+∂µ∂µϕ−m2ϕ

]
δφ . (70)

In the last line, we have integrated by parts in each of the first two terms,

putting both derivatives on ϕ. We assume δφ(x) vanishes at infinity in any

direction (spatial or temporal), so that there is no surface term. Since δϕ has

an arbitrary x dependence, eq. (70) can be true if and only if (−∂2+m2)ϕ = 0.

One solution of the Klein-Gordon equation is a plane wave of the form

exp(ik·x± iωt), where k is an arbitrary real wave-vector, and

ω = +(k2 +m2)1/2 . (71)

The general solution (assuming boundary conditions that do not allow ϕ to

become infinite at spatial infinity) is then

ϕ(x, t) =
∫ d3k

f(k)

[
a(k)eik·x−iωt + b(k)eik·x+iωt

]
, (72)

where a(k) and b(k) are arbitrary functions of the wave vector k, and f(k)

is a redundant function of the magnitude of k which we have inserted for

later convenience. Note that, if we were attempting to interpret ϕ(x) as a

quantum wave function (which we most definitely are not), then the second

term would constitute the “negative energy” contributions to the wave func-

tion. This is because a plane-wave solution of the nonrelativistic Schrödinger

equation for a single particle looks like exp(ip·x−iE(p)t), with E(p) = 1
2m

p2;

there is a minus sign in front of the positive energy. We are trying to in-

terpret eq. (72) as a real classical field, but this formula does not generically

result in ϕ being real. We must impose ϕ∗(x) = ϕ(x), where

ϕ∗(x, t) =
∫

d3k

f(k)

[
a∗(k)e−ik·x+iωt + b∗(k)e−ik·x−iωt

]
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=
∫ d3k

f(k)

[
a∗(k)e−ik·x+iωt + b∗(−k)e+ik·x−iωt

]
. (73)

In the second line, we have changed the dummy integration variable k (in

the second term only) to −k. Comparing eqs. (72) and (73), we see that

ϕ∗(x) = ϕ(x) requires b∗(−k) = a(k). Imposing this condition, we can

rewrite ϕ as

ϕ(x, t) =
∫ d3k

f(k)

[
a(k)eik·x−iωt + a∗(−k)eik·x+iωt

]

=
∫

d3k

f(k)

[
a(k)eik·x−iωt + a∗(k)e−ik·x+iωt

]

=
∫

d3k

f(k)

[
a(k)eikx + a∗(k)e−ikx

]
, (74)

where kx = k ·x − ωt is the Lorentz-invariant product of the four-vectors

xµ = (t,x) and kµ = (ω,k): kx = kµxµ = gµνk
µxν . Note that

k2 = kµkµ = k2 − ω2 = −m2 . (75)

It is now convenient to choose f(k) so that d3k/f(k) is Lorentz invariant. A

manifestly Lorentz-invariant measure is d4k δ(k2+m2), where k0 is an inte-

gration variable, and not fixed to be equal to ω = +(k2 +m2)1/2. Performing

the integral over k0 from −∞ to +∞ gives

d4k δ(k2+m2) =
d3k

ω
. (76)

Here we have used the rule
∫ +∞

−∞
dx δ(f(x)) =

∑

i

1

|f ′(xi)|
, (77)

where f(xi) = 0. In our choice of f(k), we will throw in some extra numerical

factors: f(k) = (2π)32ω. It is then convenient to give the corresponding

Lorentz-invariant differential its own name:

d̃k ≡ d3k

(2π)32ω
. (78)
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Thus we finally have

ϕ(x) =
∫
d̃k

[
a(k)eikx + a∗(k)e−ikx

]
. (79)

We can also invert this formula to get a(k) in terms of ϕ(x):

a(k) = eiωt
∫
d3x e−ik·x

[
i ϕ̇(x) + ωϕ(x)

]

= i
∫
d3x e−ikx

↔
∂0ϕ(x) , (80)

where f
↔
∂µ g = f(∂µg) − (∂µf)g, and ∂0ϕ = ∂ϕ/∂t = ϕ̇. Note that a(k) is

time independent.

Now that we have the lagrangian, we can construct the hamiltonian by

the usual rules. Recall that, given a lagrangian L(qi, q̇i) as a function of some

coordinates qi and their time derivatives q̇i, the conjugate momenta are given

by pi = ∂L/∂q̇i, and the hamiltonian by H =
∑

i piq̇i − L. In our case, the

role of qi(t) is played by ϕ(x, t), with x playing the role of a (continuous)

index. The appropriate generalizations are then

Π(x) =
∂L

∂ϕ̇(x)
(81)

and

H = Πϕ̇− L , (82)

where H is the hamiltonian density, and the hamiltonian itself is H =∫
d3x H. In our case, we have

H = 1
2
Π2 + 1

2
(∇ϕ)2 + 1

2
m2ϕ2 − Λ0 . (83)

Using eq. (79), we can write H in terms of the a(k) and a∗(k) coefficients:

H = −Λ0V + 1
2

∫
d̃k d̃k

′
d3x

[

(
−iω a(k)eikx + iω a∗(k)e−ikx

) (
−iω′ a(k′)eik′x + iω′ a∗(k′)e−ik′x

)

+
(
+ik a(k)eikx − ik a∗(k)e−ikx

) (
+ik′ a(k′)eik′x − ik′ a∗(k′)e−ik′x

)

+m2
(
a(k)eikx + a∗(k)e−ikx

) (
a(k′)eik′x + a∗(k′)e−ik′x

)]
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= −Λ0V + 1
2
(2π)3

∫
d̃k d̃k

′ [

δ3(k− k′)(+ωω′ + k·k′ +m2)

×
(
a∗(k)a(k′)e−i(ω−ω′)t + a(k)a∗(k′)e+i(ω−ω′)t

)

+ δ3(k + k′)(−ωω′ − k·k′ +m2)

×
(
a(k)a(k′)e−i(ω+ω′)t) + a∗(k)a∗(k′)e+i(ω+ω′)t)

)

= −Λ0V + 1
2

∫
d̃k

1

2ω

[

(+ω2 + k2 +m2) (a∗(k)a(k) + a(k)a∗(k))

+ (−ω2 + k2 +m2) (a(k)a(−k) + a∗(k)a∗(−k))
]

= −Λ0V + 1
2

∫
d̃k ω (a∗(k)a(k) + a(k)a∗(k)) , (84)

where V is the volume of space. We have used ω = +(k2+m2)1/2 and

d̃k = d3k/(2π)32ω at various points. Also, we have been careful to keep the

ordering of a(k) and a∗(k) unchanged throughout, in anticipation of passing

to the quantum theory where these classical functions will become operators

that may not commute.

Let us take up the quantum theory now. We can go from classical to

quantum mechanics via canonical quantization. This means that we promote

qi and pi to operators, with commutation relations [qi, qj] = 0, [pi, pj] = 0,

and [qi, pj] = ih̄δij. In the Heisenberg picture, these operators should be

taken at equal times. In our case, where the “index” is continuous (and we

have set h̄ = 1), this becomes

[ϕ(x, t), ϕ(x′, t)] = 0 ,

[Π(x, t),Π(x′, t)] = 0 ,

[ϕ(x, t),Π(x′, t)] = iδ3(x− x′) . (85)

From these, and from eq. (80), we can deduce

[a(k), a(k′)] = 0 ,

[a†(k), a†(k′)] = 0 ,

[a(k), a†(k′)] = (2π)32ω δ3(k− k′) . (86)
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We are now denoting a∗(k) as a†(k), since a†(k) is now the hermitian conju-

gate (rather than the complex conjugate) of the operator a(k). We can now

rewrite the hamiltonian as

H =
∫
d̃k ω a†(k)a(k) + (E0 − Λ0)V , (87)

where E0 = 1
2

∫
d̃k ω is the total zero-point energy of all the oscillators per unit

volume, and, using (2π)3δ3(k) =
∫
d3x eik·x, we have interpreted (2π)3δ3(0)

as the volume of space V . If you try to evaluate E0, you will find that it

is infinite. However, Λ0 was arbitrary, so we are free to chooes Λ0 = E0,

whether or not E0 is infinite. And that is what we will do.

The hamiltonian of eq. (87) is now the same as that of eq. (68), with

a(k) = [(2π)32ω]1/2 ã(k). The commutation relations (67) and (86) are

also equivalent, if we choose commutators (rather than anticommutators) in

eq. (67). Thus, we have re-derived the hamiltonian of free relativistic bosons

by quantization of a scalar field whose equation of motion is the Klein-Gordon

equation.

What if we want fermions? Then we should use anticommutators in

eqs. (85) and (86). There is a problem, though; eq. (84) does not then become

eq. (87). Instead, we get H = −Λ0V , a constant! Clearly there is something

wrong with using anticommutators. This is another hint of the spin-statistics

theorem, which we will take up in section 4.

Next, we would like to add Lorentz-invariant interactions to our theory.

With the formalism we have developed, this is easy to do. Any local function

of ϕ(x) is a Lorentz scalar, and so if we add a term like ϕ3 or ϕ4 to the

lagrangian density L, the resulting action will still be Lorentz invariant.

Now, however, we will have interactions among the particles. Our next task

is to deduce the consequences of these interactions.

However, we already have enough tools at our disposal to prove the spin-

statistics theorem for spin-zero particles, and that is what we turn to next.
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4: The Spin-Statistics Theorem

Let us consider a theory of free, spin-zero particles specified by the hamil-

tonian

H0 =
∫
d̃k ω a†(k)a(k) (88)

and the either the commutation or anticommutation relations

[a(k), a(k′)]∓ = 0 ,

[a†(k), a†(k′)]∓ = 0 ,

[a(k), a†(k′)]∓ = (2π)32ω δ3(k− k′) . (89)

Of course, if we want a theory of bosons, we should use commutators, and if

we want fermions, we should use anticommutators.

Now let us consider adding terms to the hamiltonian that will result in

local, Lorentz invariant interactions. In order to do this, it is convenient to

define a non-hermitian field,

ϕ+(x, 0) ≡
∫
d̃k eik·x a(k) (90)

and its hermitian conjugate

ϕ−(x, 0) ≡
∫
d̃k e−ik·x a†(k) . (91)

These are then time-evolved with H0:

ϕ+(x, t) = eiH0tϕ+(x, 0)e−iH0t =
∫
d̃k eikx a(k) ,

ϕ−(x, t) = eiH0tϕ−(x, 0)e−iH0t =
∫
d̃k e−ikx a†(k) . (92)

Note that the usual hermitian free field ϕ(x) is just the sum of these: ϕ(x) =

ϕ+(x) + ϕ−(x).
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For a proper orthochronous Lorentz transformation Λ, we have

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (93)

This implies that the particle creation and annihilation operators transform

as

U(Λ)−1a(k)U(Λ) = a(Λk) ,

U(Λ)−1a†(k)U(Λ) = a†(Λk) . (94)

This, in turn, implies that ϕ+(x) and ϕ−(x) are Lorentz scalars:

U(Λ)−1ϕ±(x)U(Λ) = ϕ±(Λ−1x) . (95)

We will then have local, Lorentz invariant interactions if we take the inter-

action lagrangian density L1 to be a hermitian function of ϕ+(x) and ϕ−(x).

To proceed we need to recall some facts about time-dependent perturba-

tion theory in quantum mechanics. The transition amplitude Tf←i to start

with an initial state |i〉 at time t = −∞ and end with a final state |f〉 at

time t = +∞ is

Tf←i = 〈f |T exp
[
−i
∫ +∞

−∞
dt HI(t)

]
|i〉 , (96)

where HI(t) is the perturbing hamiltonian in the interaction picture,

HI(t) = exp(+iH0t)H1 exp(−iH0t) , (97)

H0 is the unperturbed hamiltonian, and T is the time ordering symbol : a

product of operators to its right is to be ordered, not as written, but with

operators at later times to the left of those at earlier times. Using eq. (92),

we can write

HI(t) =
∫
d3x H1(x) , (98)

where H1(x) is an ordinary function of ϕ+(x) and ϕ−(x).

Here is the key point: for the transition amplitude Tf←i to be Lorentz

invariant, the time ordering must be frame independent. The time ordering

of two spacetime points x and x′ is frame independent if their separation
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is timelike; this means that (x − x′)2 < 0. Two spacetime points whose

separation is spacelike, (x−x′)2 > 0, can have different temporal ordering in

different frames. In order to avoid Tf←i being different in different frames,

we must then require

[
HI(x),HI(x

′)
]

= 0 whenever (x− x′)2 > 0 . (99)

Obviously, [ϕ+(x), ϕ+(x′)]∓ = [ϕ−(x), ϕ−(x′)]∓ = 0. However,

[ϕ+(x), ϕ−(x′)]∓ =
∫
d̃k d̃k

′
ei(kx−k′x′)[a(k), a†(k′)]∓

=
∫
d̃k eik(x−x′)

=
m

4π2r
K1(mr)

≡ C(r) . (100)

In the next-to-last line, we have taken (x − x′)2 = r2 > 0, and K1(z) is

the modified Bessel function. (This Lorentz-invariant integral is most easily

evaluated in the frame where t′ = t; for m = 0, C(r) = 1/4π2r2.) The

function C(r) is not zero for any r > 0. On the other hand, HI(x) must

involve both ϕ+(x) and ϕ−(x), by hermiticity. Thus, generically, we will not

be able to satisfy eq. (99).

To resolve this problem, let us try using special linear combinations of

ϕ+(x) and ϕ−(x) only. Define

ϕλ(x) ≡ ϕ+(x) + λϕ−(x) ,

ϕ†λ(x) ≡ ϕ−(x) + λ∗ϕ+(x) , (101)

where λ is an arbitrary complex number. We then have

[ϕλ(x), ϕ
†
λ(x
′)]∓ = [ϕ+(x), ϕ−(x′)]∓ + |λ|2[ϕ−(x), ϕ+(x′)]∓

= (1∓ |λ|2)C(r) (102)

and

[ϕλ(x), ϕλ(x
′)]∓ = λ[ϕ+(x), ϕ−(x′)]∓ + λ[ϕ−(x), ϕ+(x′)]∓

= λ(1∓ 1)C(r) . (103)
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Thus, if we want ϕλ(x) to either commute or anticommute with both ϕλ(x
′)

and ϕ†λ(x
′) at spacelike separations, we must choose |λ| = 1, and we must

choose commutators. Then (and only then), we can build a suitable HI(x)

by making it a hermitian function of ϕλ(x).

But this has simply returned us to the theory of a real scalar field, because,

for λ = eiα, e−iα/2ϕλ(x) is hermitian. In fact, if we make the replacement

a(k) → eiα/2a(k) (which does not change the commutation relations of these

operators), then e−iα/2ϕλ(x) = ϕ(x) = ϕ+(x) + ϕ−(x). Thus, our attempt

to start with the creation and annihilation operators a†(k) and a(k) as the

fundamental objects has simply led us back to the real, commuting, scalar

field ϕ(x) as the fundamental object.

Let us return to thinking of ϕ(x) as fundamental, with a lagrangian den-

sity specified by some function of the Lorentz scalars ϕ(x) and ∂µϕ(x)∂µϕ(x).

Then, quantization will result in [ϕ(x), ϕ(x′)]∓ = 0 for t = t′. If we choose

anticommutators, then [ϕ(x)]2 = 0 and [∂µϕ(x)]2 = 0, resulting in L = 0.

This clearly does not make sense.

This situation turns out to generalize to fields of higher spin, in any

number of spacetime dimensions. One choice of quantization (commutators

or anticommutators) always leads to vanishing L (or to an L that is a total

derivative), and this choice is disallowed. Furthermore, the allowed choice is

always commutators for fields of integer spin, and anticommutators for fields

of half-integer spin. If we try treating the particle creation and annihilation

operators as fundamental, rather than the fields, we find a situation similar

to that of the spin-zero case, and are led to the reconstruction of a field that

must obey the appropriate quantization scheme.
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5: The LSZ Reduction Formula

Let us now consider how to construct appropriate initial and final states

for scattering experiments. In the free theory, we can create a state of one

particle by acting on the vacuum state with the creation operator:

|k, 1〉 = a†(k)|0〉 , (104)

where

a†(k) = −i
∫
d3x eikx

↔
∂0ϕ(x) . (105)

Recall that a†(k) is time independent in the free theory. The state |k, 1〉 has

the Lorentz-invariant normalization

〈k, 1|k′, 1〉 = (2π)3 2ω δ3(k− k′) , (106)

where ω = +(k2 +m2)1/2.

Let us consider an operator that (in the free theory) creates a particle

localized in momentum space near k1, and localized in position space near

the origin:

a†1 ≡
∫
d3k f1(k)a†(k) , (107)

where

f1(k) ∝ exp[−(k− k1)
2/4σ2] (108)

is an appropriate wave packet, and σ is its width in momentum space.

If we time evolve (in the Schrödinger picture) the state created by this

time-independent operator, then the wave packet will propagate (and spread

out). The particle will thus be localized far from the origin as t→ ±∞. If we

consider an initial state |i〉 = a†1a
†
2|0〉, where k1 6= k2, then the two particles

will be widely separated in the far past.
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Let us guess that this still works in the interacting theory. One compli-

cation is that a†(k) will no longer be time independent, and so a†1, eq. (107),

becomes time dependent as well. Our guess for a suitable initial state of a

scattering experiment is then

|i〉 = lim
t→−∞

a†1(t)a
†
2(t)|0〉 . (109)

By appropriately normalizing the wave packets, we can make 〈i|i〉 = 1, and

we will assume that this is the case. Similarly, we can consider a final state

|f〉 = lim
t→+∞

a†1′(t)a
†
2′(t)|0〉 , (110)

where k′1 6= k′2, and 〈f |f〉 = 1. This describes two widely separated particles

in the far future. (We could also consider acting with more creation operators,

if we are interested in the production of some extra particles in the collision

of two.) Now the scattering amplitude is simply given by 〈f |i〉.
We need to find a more useful expression for 〈f |i〉. To this end, let us

note that

a†1(−∞) = a†1(+∞)−
∫ +∞

−∞
dt ∂0a

†
1(t)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x ∂0

(
eikx

↔
∂0ϕ(x)

)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 + ω2)ϕ(x)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 + k2 +m2)ϕ(x)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 −
←
∇2 +m2)ϕ(x)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 −
→
∇2 +m2)ϕ(x)

= a†1(+∞) + i
∫
d3k f1(k)

∫
d4x eikx(−∂2 +m2)ϕ(x) . (111)

The first line is just the fundamental theorem of calculus. In the second, we

substituted the definition of a†1(t), and combined the d3x from this definition

with the dt to get d4x. The third line comes from straightforward evaluation

of the time derivatives. The fourth uses ω2 = k2 + m2. The fifth writes k2

as −∇2 acting on eik·x. The sixth uses integration by parts to move the ∇2
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onto the field ϕ(x); here the wave packet is needed to avoid a surface term.

The seventh simply identifies ∂2
0 −∇2 as −∂2.

In free-field theory, the right-hand side of eq. (111) is zero, since ϕ(x)

obeys the Klein-Gordon equation. In an interacting theory, with (say) L1 =
1
6
gϕ3, we have instead (−∂2 + m2)ϕ = 1

2
gϕ2. Thus the right-hand side of

eq. (111) is not zero in an interacting theory.

We will also need the hermitian conjugate of eq. (111), which (after some

slight rearranging) reads

a1(+∞) = a1(−∞) + i
∫
d3k f1(k)

∫
d4x e−ikx(−∂2 +m2)ϕ(x) . (112)

Let us return to the scattering amplitude,

〈f |i〉 = 〈0|a1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)|0〉 . (113)

Note that the operators are in time order. Thus, if we feel like it, we can put

in a time-ordering symbol without changing anything:

〈f |i〉 = 〈0|Ta1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)|0〉 . (114)

The symbol T means a the product of operators to its right is to be ordered,

not as written, but with operators at later times to the left of those at earlier

times.

Now let us use eqs. (111) and (112) in eq. (114). The time-ordering symbol

automatically moves all ai′(−∞)’s to the right, where they annihilate |0〉.
Similarly, all a†i (+∞)’s move to the left, where they annihilate 〈0|.

The wave packets no longer play a key role, and we can take the σ → 0

limit in eq. (108), so that f1(k) = δ3(k − k1). The initial and final states

now have a delta-function normalization, the multiparticle generalization of

eq. (106). We are left with

〈f |i〉 = in+n′
∫
d4x1 e

ik1x1(−∂2
1 +m2) . . .

d4x1′ e
−ik′1x′1(−∂2

1′ +m2) . . .

×〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉 . (115)

This formula has been written to apply to the more general case of n incoming

particles and n′ outgoing particles; the ellipses stand for similar factors for

each of the other incoming and outgoing particles.
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Eq. (115) is the Lehmann-Symanzik-Zimmerman reduction formula, or

LSZ formula for short. It is one of the key equations of quantum field theory.

However, we cheated a little in our derivation of the LSZ formula, be-

cause we assumed that the creation operators of free field theory would work

comparably in the interacting theory. This is a rather suspect assumption,

and so we must review it.

Let us consider what we can deduce about the energy and momentum

eigenstates of the interacting theory on physical grounds. First, we assume

that there is a unique ground state |0〉, with zero energy and momentum.

The first excited state is a state of a single particle with mass m. This

state can have an arbitrary three-momentum k, and then has energy E =

ω = +(k2 + m2)1/2. The next excited state is that of two particles. These

two particles could form a bound state with energy less than 2m (like the

hydrogen atom in QED4), but, to keep things simple, let us assume that there

are no such bound states. Then the lowest possible energy of a two-particle

state is 2m. However, a two-particle state with zero total three-momentum

can have any energy above 2m, because the two particles could have some

relative momentum that contributes to their total energy. Thus we are led

to a picture of the states of theory as shown in fig. (1).

Now let us consider what happens when we act on the ground state with

the field operator ϕ(x). To this end, it is helpful to write

ϕ(x) = exp(−iP µxµ)ϕ(0) exp(+iP µxµ) , (116)

where P µ is the energy-momentum four-vector. (This equation, introduced

in section 2, is just the relativistic generalization of the Heisenberg equation.)

Now let us sandwich ϕ(x) between the ground state (on the right), and other

possible states (on the left). For example, let us put the ground state on the

left as well. Then we have

〈0|ϕ(x)|0〉 = 〈0|e−iPxϕ(0)e+iPx|0〉
= 〈0|ϕ(0)|0〉 . (117)

To get the second line, we used P µ|0〉 = 0. The final expression is just a

Lorentz-invariant number. Since |0〉 is the exact ground state of the inter-

acting theory, we have (in general) no idea what this number is.
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P

E

2m

m

0

Figure 1: The exact energy eigenstates in the (P, E) plane. The ground state
is isolated at (0, 0), the one-particle states form an isolated hyperbola that
passes through (0, m), and the multi-particle continuum lies at and above
the hyperbola that passes through (0, 2m).
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We would like 〈0|ϕ(0)|0〉 to be zero. This is because we would like

a†1(±∞), when acting on |0〉, to create a single particle state. We do not

want a†1(±∞) to create a linear combination of a single particle state and

the ground state. But this is precisely what will happen if 〈0|ϕ(0)|0〉 is not

zero.

So, if v ≡ 〈0|ϕ(0)|0〉 is not zero, we will force it to be zero by shifting ϕ(x)

by v. Go back to the lagrangian, and replace ϕ(x) everywhere by ϕ(x) + v.

This is just a change of the name of the operator of interest, and does not

affect the physics. However, the shifted ϕ(x) will obey 〈0|ϕ(x)|0〉 = 0.

Let us now consider 〈p, 1|ϕ(x)|0〉, where |p, 1〉 is a one-particle state with

four-momentum p, normalized according to eq. (106). Again using eq. (116),

we have

〈p, 1|ϕ(x)|0〉 = 〈p, 1|e−iPxϕ(0)e+iPx|0〉
= e−ipx〈p, 1|ϕ(0)|0〉 , (118)

where 〈p, 1|ϕ(0)|0〉 is a Lorentz-invariant number. It is a function of p, but

the only Lorentz-invariant functions of p are functions of p2, and p2 is just

the constant −m2. So 〈p, 1|ϕ(0)|0〉 is just some number that depends on m

and (presumably) the other parameters in the lagrangian.

We would like 〈p, 1|ϕ(0)|0〉 to be one. That is what it is in free-field theory,

and we know that, in free-field theory, a†1(±∞) creates a correctly normalized

one-particle state. Thus, for a†1(±∞) to create a correctly normalized one-

particle state in the interacting theory, we must have 〈p, 1|ϕ(0)|0〉 = 1.

So, if 〈p, 1|ϕ(0)|0〉 is not equal to one, we will force it to be one by rescaling

(or, one might say, renormalizing) ϕ(x) by an overall constant. This is just

a change of the name of the operator of interest, and does not affect the

physics. However, the rescaled ϕ(x) will obey 〈p, 1|ϕ(0)|0〉 = 1.

Finally, consider 〈p, n|ϕ(x)|0〉, where |p, n〉 is a multiparticle state with

total four-momentum p, and n is short for all other labels (such as relative

momenta) needed to specify this state. We have

〈p, n|ϕ(x)|0〉 = 〈p, n|e−iPxϕ(0)e+iPx|0〉
= e−ipx〈p, n|ϕ(0)|0〉
= e−ipxAn(p) , (119)
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where An(p) is a function of Lorentz invariant products of the various (rel-

ative and total) four-momenta needed to specify the state. Note that, from

fig. (1), p0 = +(p2 +M2)1/2 with M ≥ 2m. The invariant mass M is one of

the parameters included in the set n.

We would like 〈p, n|ϕ(x)|0〉 to be zero, because we would like a†1(±∞),

when acting on |0〉, to create a single particle state. We do not want a†1(±∞)

to create any multiparticle states. But this is precisely what may happen if

〈p, n|ϕ(x)|0〉 is not zero.

Actually, we are being a little too strict. We really need 〈p, n|a†1(±∞)|0〉
to be zero, and perhaps it will be zero even if 〈p, n|ϕ(x)|0〉 is not. Also,

we really should test a†1(±∞)|0〉 only against normalizable states. Mathe-

matically, non-normalizable states cause all sorts of trouble; mathematicians

don’t consider them to be states at all. In physics, this usually doesn’t bother

us, but here we must be especially careful. So let us write

|ψ〉 =
∑

n

∫
d3p ψn(p)|p, n〉 , (120)

where the ψn(p)’s are wave packets for the total three-momentum p. Note

that eq. (120) is highly schematic; the sum over n is shorthand for integrals

over various continuous parameters (relative momenta).

Now we want to examine

〈ψ|a†1(t)|0〉 = −i
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x eikx

↔
∂0 〈p, n|ϕ(x)|0〉 .

(121)

We will take the limit t → ±∞ in a moment. Using eq. (119), eq. (121)

becomes

〈ψ|a†1(t)|0〉 = −i
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x

(
eikx

↔
∂0 e

−ipx
)
An(p)

=
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x (p0+k0)ei(k−p)xAn(p) .

(122)

Next we use
∫
d3x ei(k−p)·x = (2π)3δ3(k− p) to get

〈ψ|a†1(t)|0〉 =
∑

n

∫
d3p (2π)3(p0+k0)ψ∗n(p)f1(p)An(p)ei(p0−k0)t , (123)
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where p0 = +(p2 +M2)1/2 and k0 = +(p2 +m2)1/2. We assume that ψ∗n(p),

f1(p), and An(p) are all smooth functions of p.

Now comes the punchline. Note that p0 is strictly greater than k0, because

M ≥ 2m. Thus the integrand of eq. (123) contains a phase factor that

oscillates more and more rapidly as |p| → ∞. Therefore, by the Riemann-

Lebesgue lemma, the right-hand side of eq. (123) vanishes faster than any

inverse power of t as t→ ±∞.

Physically, this means that a one-particle wave packet spreads out differ-

ently than a multiparticle wave packet, and the overlap between them goes

to zero as the elapsed time goes to infinity. Thus, even though our operator

a†1(t) creates some multiparticle states that we don’t want, we can “follow”

the one-particle state that we do want by using an appropriate wave packet.

By waiting long enough, we can make the multiparticle contribution to the

scattering amplitude as small as we like.

Let us recap. The basic formula for a scattering amplitude in terms of

the fields of an interacting quantum field theory is the LSZ formula, which

is worth writing down again:

〈f |i〉 = in+n′
∫
d4x1 e

ik1x1(−∂2
1 +m2) . . .

d4x1′ e
−ik′1x′1(−∂2

1′ +m2) . . .

×〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉 . (124)

The LSZ formula is valid provided that the field obeys

〈0|ϕ(x)|0〉 = 0 and 〈k, 1|ϕ(x)|0〉 = e−ikx . (125)

These normalization conditions may conflict with our original choice of field

and parameter normalization in the lagrangian. Consider, for example, a

lagrangian originally specified as

L = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 + 1

6
gϕ3 . (126)

After shifting and rescaling (and renaming some parameters), we will have

instead

L = −1
2
Zϕ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 + 1
6
Zggϕ

3 + Y ϕ . (127)
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Here the three Z’s and Y are as yet unknown constants. They must be

chosen to ensure the validity of eq. (125); this gives us two conditions in four

unknowns. We also require that the parameter m in L be the actual, physical

mass of the particle. Finally, the parameter g must be related to some

measured scattering cross section; exactly how to do this will be explained

later. Now we have four conditions in four unknowns, and it is possible to

calculate Y and the three Z’s order by order in perturbation theory.

Next, we must develop the tools needed to compute the correlation func-

tions 〈0|Tϕ(x1) . . . |0〉 in an interacting quantum field theory.
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6: Path Integrals in Quantum Mechanics

Consider the nonrelativistic quantum mechanics of one particle in one

dimension; the hamiltonian is

H(P,Q) = 1
2m
P 2 + V (Q) , (128)

where P and Q are operators obeying [Q,P ] = i. (We set h̄ = 1 for nota-

tional convenience.) We wish to evaluate the probability amplitude for the

particle to start at position q′ at time t′, and end at position q′′ at time t′′.

This amplitude is 〈q′′|e−iH(t′′−t′)|q′〉, where |q′〉 and |q′′〉 are eigenstates of the

position operator Q.

We can also formulate this question in the Heisenberg picture, where

operators are time dependent and the state of the system is time independent,

as opposed to the more familiar Schrödinger picture. In the Heisenberg

picture, we write Q(t) = eiHtQe−iHt. We can then define an instantaneous

eigenstate of Q(t) via Q(t)|q, t〉 = q|q, t〉. These instantaneous eigenstates

can be expressed explicitly as |q, t〉 = e+iHt|q〉, where Q|q〉 = q|q〉. Then our

transition amplitude can be written as 〈q′′, t′′|q′, t′〉 in the Heisenberg picture.

To evaluate 〈q′′, t′′|q′, t′〉, we begin by dividing the time interval T ≡ t′′−t′
into N + 1 equal pieces of duration δt = T/(N + 1). Then introduce N

complete sets of position eigenstates to get

〈q′′, t′′|q′, t′〉 =
∫ N∏

j=1

dqj 〈q′′|e−iHδt|qN〉〈qN |e−iHδt|qN−1〉 . . . 〈q1|e−iHδt|q′〉 .

(129)

The integrals over the q’s all run from −∞ to +∞.

Now consider 〈q2|e−iHδt|q1〉. We can use the Campbell-Baker-Hausdorf

formula

exp(A+B) = exp(A) exp(B) exp(− 1
2
[A,B] + . . .) (130)
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to write

exp(−iHδt) = exp[−i(δt/2m)P 2] exp[−iδtV (Q)] exp[O(δt2)] . (131)

Then, in the limit of small δt, we should be able to ignore the final exponen-

tial. Inserting a complete set of momentum states then gives

〈q2|e−iHδt|q1〉 =
∫
dp1 〈q2|e−i(δt/2m)P 2 |p1〉〈p1|e−iδtV (Q)|q1〉

=
∫
dp1 e

−i(δt/2m)p2
1 e−iδtV (q1) 〈q2|p1〉〈p1|q1〉

=
∫ dp1

2π
e−i(δt/2m)p2

1 e−iδtV (q1) eip1(q2−q1) .

=
∫ dp1

2π
e−iH(p1,q1)δt eip1(q2−q1) . (132)

To get the third line, we used 〈q|p〉 = (2π)−1/2 exp(ipq).

If we happen to be interested in more general hamiltonians than eq. (128),

then eq. (132) is not quite correct; in the last line, H(p1, q1) should be replaced

with H(p1, q̄), where q̄ = 1
2
(q1 + q2). Then the right-hand side is symmetric

with respect to switching the roles of q1 and q2. Though this replacement is

an obvious guess, its derivation is actually surprisingly complicated.

We now have

〈q′′, t′′|q′, t′〉 =
∫
dp0

N∏

j=1

dpjdqj
2π

eipj(qj+1−qj) e−iH(pj ,q̄j)δt , (133)

where q̄j = 1
2
(qj+1 + qj). If we now define q̇j ≡ (qj+1 − qj)/δt, and take the

formal limit of δt→ 0, then

〈q′′, t′′|q′, t′〉 =
∫
DpDq exp

[
i
∫ t′′

t′
dt
(
p(t)q̇(t)−H(p(t), q(t))

)]
. (134)

The integration is to be understood as over all paths in phase space that

start at q(t′) = q′ (with an arbitary value of the initial momentum) and end

at q(t′′) = q′′ (with an arbitary value of the final momentum). Of course,

this is just words; eq. (134) is really just a fancy shorthand for eq. (133).

If H(p, q) is no more than quadratic in the momenta [as is the case for

eq. (128)], then the integral over p is gaussian, and can be done in closed
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form. If the term that is quadratic in p is independent of q [as is the case

for eq. (128)], then the prefactors generated by the gaussian integrals are

all constants, and can be absorbed into the definition of Dq. The result of

integrating out p is then

〈q′′, t′′|q′, t′〉 =
∫
Dq exp

[
i
∫ t′′

t′
dt L(q̇(t), q(t))

]
, (135)

where L(q̇, q) is computed by first finding the stationary point of the p integral

by solving

0 =
∂

∂p

(
pq̇ −H(p, q)

)
= q̇ − ∂H(p, q)

∂p
(136)

for p in terms of q̇ and q, and then plugging this solution back into pq̇−H to

get L. We recognize this procedure from classical mechanics: we are passing

from the hamiltonian formulation to the lagrangian formulation.

Now that we have eqs. (134) and (135), what are we going to do with

them? Let us begin by considering some generalizations; let us examine, for

example, 〈q′′, t′′|Q(t1)|q′, t′〉, where t′ < t1 < t′′. This is given by

〈q′′, t′′|Q(t1)|q′, t′〉 = 〈q′′|e−iH(t′′−t1)Qe−iH(t1−t′)|q′〉 . (137)

In the path integral formula, the extra operator Q inserted at time t1 will

simply result in an extra factor of q(t1). Thus

〈q′′, t′′|Q(t1)|q′, t′〉 =
∫
DpDq q(t1) eiS , (138)

where S =
∫ t′′

t′ dt (pq̇−H). Now let us go in the other direction; consider∫ DpDq q(t1)q(t2)eiS. This clearly requires the operators Q(t1) and Q(t2),

but their order depends on whether t1 < t2 or t2 < t1. Thus we have

∫
DpDq q(t1)q(t2) eiS = 〈q′′, t′′|TQ(t1)Q(t2)|q′, t′〉 . (139)

where T is the time ordering symbol : a product of operators to its right is

to be ordered, not as written, but with operators at later times to the left

of those at earlier times. This is significant, because time-ordered products

enter into the LSZ formula for scattering amplitudes.
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To further develop these methods, we need another trick: functional

derivatives. We define the functional derivative δ/δf(t) via

δ

δf(t1)
f(t2) = δ(t1 − t2) , (140)

where δ(t) is the Dirac delta function. Also, functional derivatives are defined

to satisfy all the usual rules of derivatives (product rule, chain rule, etc).

Eq. (140) can be thought of as the continuous generalization of (∂/∂xi)xj =

δij.

Now, consider modifying the lagrangian of our theory by including exter-

nal forces acting on the paticle:

H(p, q)→ H(p, q)− f(t)q(t)− h(t)p(t) , (141)

where f(t) and h(t) are specified functions. In this case we will write

〈q′′, t′′|q′, t′〉f,h =
∫
DpDq exp

[
i
∫ t′′

t′
dt
(
pq̇ −H + fq + hp

)]
. (142)

where H is the original hamiltonian. Then we have

1

i

δ

δf(t1)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq q(t1) ei

∫
dt [pq̇−H+fq+hp] ,

1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq q(t1)q(t2) ei

∫
dt [pq̇−H+fq+hp] ,

1

i

δ

δh(t1)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq p(t1) ei

∫
dt [pq̇−H+fq+hp] , (143)

and so on. After we are done bringing down as many factors of q(ti) or p(ti)

as we like, we can set f(t) = h(t) = 0, and return to the original hamiltonian.

Thus,

〈q′′, t′′|TQ(t1) . . . P (tn) . . . |q′, t′〉

=
1

i

δ

δf(t1)
. . .

1

i

δ

δh(tn)
. . . 〈q′′, t′′|q′, t′〉f,h

∣∣∣
f=h=0

. (144)

Suppose we are also interested in initial and final states other than po-

sition eigenstates. Then we must multiply by the wave functions for these
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states, and integrate. We will be interested, in particular, in the ground state

as both the initial and final state. Also, we will take the limits t′ → −∞ and

t′′ → +∞. The object of our attention is then

〈0|0〉f,h = lim
t′→−∞
t′′→+∞

∫
dq′′ dq′ ψ∗0(q

′′) 〈q′′, t′′|q′, t′〉f,h ψ0(q
′) , (145)

where ψ0(q) = 〈q|0〉 is the ground-state wave function. Eq. (145) is a rather

cumbersome formula, however. We will, therefore, employ a trick to simplify

it.

Let |n〉 denote an eigenstate of H with eigenvalue En. We will suppose

that E0 = 0; if this is not the case, we will shift H by an appropriate constant.

Next we write

|q′, t′〉 = eiHt′ |q′〉

=
∞∑

n=0

eiHt′ |n〉〈n|q′〉

=
∞∑

n=0

ψ∗n(q′)eiEnt′ |n〉 , (146)

where ψn(q) = 〈q|n〉 is the wave function of the nth eigenstate. Now, replace

H with (1−iε)H in eq. (146), where ε is a small positive infinitesimal. Then,

take the limit t′ → −∞ of eq. (146) with ε held fixed. Every state except the

ground state is then multiplied by a vanishing exponential factor, and so the

limit is simply ψ∗0(q
′)|0〉. Next, multiply by an arbitrary function χ(q′), and

integrate over q′. The only requirement is that 〈0|χ〉 6= 0. We then have a

constant times |0〉, and this constant can be absorbed into the normalization

of the path integral. A similar analysis of 〈q′′, t′′| = 〈q′′|e−iHt′′ shows that the

replacement H → (1−iε)H also picks out the ground state as the final state

in the t′′ → +∞ limit.

What all this means is that if we use (1−iε)H instead of H, we can be

cavalier about the boundary conditions on the endpoints of the path. Any

reasonable boundary conditions will result in the ground state as both the

initial and final state. Thus we have

〈0|0〉f,h =
∫
DpDq exp

[
i
∫ +∞

−∞
dt
(
pq̇ − (1−iε)H + fq + hp

)]
. (147)
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Now let us suppose that H = H0 + H1, where we can solve for the

eigenstates and eigenvalues of H0, and H1 can be treated as a perturbation.

Suppressing the iε, eq. (147) can be written as

〈0|0〉f,h =
∫
DpDq exp

[
i
∫ +∞

−∞
dt
(
pq̇ −H0(p, q)−H1(p, q) + fq + hp

)]

= exp
[
−i
∫ +∞

−∞
dtH1

(
1

i

δ

δh(t)
,
1

i

δ

δf(t)

)]

×
∫
DpDq exp

[
i
∫ +∞

−∞
dt
(
pq̇ −H0(p, q) + fq + hp

)]
. (148)

To understand the second line of this equation, take the exponential prefactor

inside the integral. Then the functional derivatives (that appear as the argu-

ments of H1) just pull out appropriate factors of p(t) and q(t), generating the

right-hand side of the first line. We presumably can compute the functional

integral in the second line, since it involves only the solvable hamiltonian H0.

The exponential prefactor can then be expanded in powers of H1 to generate

a perturbation series.

If H1 depends only on q (and not on p), and if we are only interested

in time-ordered products of Q’s (and not P ’s), and if H is no more than

quadratic in P , and if the term quadratic in P does not involve Q, then

eq. (148) can be simplified to

〈0|0〉f = exp
[
i
∫ +∞

−∞
dt L1

(
1

i

δ

δf(t)

)]

×
∫
Dq exp

[
i
∫ +∞

−∞
dt
(
L0(q̇, q) + fq

)]
. (149)

where L1(q) = −H1(q).
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7: The Path Integral for the Harmonic Oscillator

Consider a harmonic oscillator with hamiltonian

H(P,Q) = 1
2m
P 2 + 1

2
mω2Q2 . (150)

We begin with the formula from section 6 for the ground state to ground

state transition amplitude in the presence of an external force, specialized to

the case of a a harmonic oscillator:

〈0|0〉f,h =
∫
DpDq exp i

∫ +∞

−∞
dt
[
pq̇ − (1−iε)H + fq

]
. (151)

Looking at eq. (150), we see that multiplying H by 1−iε is equivalent to

the replacements m−1 → (1−iε)m−1 [or, equivalently, m → (1+iε)m] and

mω2 → (1−iε)mω2. Passing to the lagrangian formulation then gives

〈0|0〉f =
∫
Dq exp i

∫ +∞

−∞
dt
[

1
2
(1+iε)m(q̇+h)2− 1

2
(1−iε)mω2q2+fq

]
. (152)

From now on, we will simplify the notation by setting m = 1.

Next, let us use Fourier-transformed variables,

q̃(E) =
∫ +∞

−∞
dt eiEt q(t) , q(t) =

∫ +∞

−∞

dE

2π
e−iEt q̃(E) . (153)

The expression in square brackets in eq. (152) becomes

[
· · ·
]

=
1

2

∫ +∞

−∞

dE

2π

dE ′

2π
e−i(E+E′)t

[(
−(1+iε)EE ′ − (1−iε)ω2

)
q̃(E)q̃(E ′)

+ f̃(E)q̃(E ′) + f̃(E ′)q̃(E)
]
. (154)

Note that the only t dependence is now in the prefactor. Integrating over t

then generates a factor of 2πδ(E+E ′). Then we can easily integrate over E ′
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to get

S =
∫ +∞

−∞
dt
[
· · ·
]

=
1

2

∫ +∞

−∞

dE

2π

[(
(1+iε)E2 − (1−iε)ω2

)
q̃(E)q̃(−E)

+ f̃(E)q̃(−E) + f̃(−E)q̃(E)
]
. (155)

The factor in large parentheses is equal to E2−ω2 + i(E2 +ω2)ε, and we can

absorb the positive coefficient into ε to get E2 − ω2 + iε.

Now it is convenient to change integration variables to

x̃(E) = q̃(E) +
f̃(E)

E2 − ω2 + iε
. (156)

Then we get

S =
1

2

∫ +∞

−∞

dE

2π

[
x̃(E)(E2 − ω2 + iε)x̃(−E)− f̃(E)f̃(−E)

E2 − ω2 + iε

]
. (157)

Furthermore, because eq. (156) is just a shift by a constant, Dq = Dx. Now

we have

〈0|0〉f = exp

[
i

2

∫ +∞

−∞

dE

2π

f̃(E)f̃(−E)

− E2 + ω2 − iε

]

×
∫
Dx exp

[
i

2

∫ +∞

−∞

dE

2π
x̃(E)(E2 − ω2 + iε)x̃(−E)

]
. (158)

Now comes the punchline. The path integral in eq. (158) is what we would

have gotten for 〈0|0〉f in the case f = 0. On the other hand, if there is no

external force, a system in its ground state will remain in its ground state;

thus 〈0|0〉f=0 = 1. And so

〈0|0〉f = exp

[
i

2

∫ +∞

−∞

dE

2π

f̃(E)f̃(−E)

− E2 + ω2 − iε

]
. (159)

We can also rewrite this in terms of time-domain variables as

〈0|0〉f = exp
[
i

2

∫ +∞

−∞
dt dt′ f(t)G(t− t′)f(t′)

]
, (160)
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where

G(t− t′) =
∫ +∞

−∞

dE

2π

e−iE(t−t′)

− E2 + ω2 − iε
. (161)

Note that G(t−t′) is a Green’s function for the oscillator equation of motion:
(
∂2

∂t2
+ ω2

)
G(t− t′) = δ(t− t′) . (162)

This can be seen directly by plugging eq. (161) into eq. (162) and then tak-

ing the ε → 0 limit. We can also evaluate G(t − t′) explicitly by contour

integration. The result is

G(t− t′) =
i

2ω
exp

(
−iω|t− t′|

)
. (163)

The derivation is left as an exercise.

Consider now the formula from section 6 for the time-ordered product of

operators. In the case of initial and final ground states, it becomes

〈0|TQ(t1) . . . |0〉 =
1

i

δ

δf(t1)
. . . 〈0|0〉f

∣∣∣
f=0

. (164)

Using our explicit formula, eq. (160), we have

〈0|TQ(t1)Q(t2)|0〉 =
1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈0|0〉f

∣∣∣
f=0

=
1

i

δ

δf(t1)

[∫ +∞

−∞
dt′G(t2 − t′)f(t′)

]
〈0|0〉f

∣∣∣
f=0

=
[

1
i
G(t2 − t1) + (term with f ’s)

]
〈0|0〉f

∣∣∣
f=0

= 1
i
G(t2 − t1) . (165)

We can continue in this way to compute the ground-state expectation value

of the time-ordered product of more Q(t)’s. If the number of Q(t)’s is odd,

then there is always a left-over f(t) in the prefactor, and so the result is

zero. If the number of Q(t)’s is even, then we must pair up the functional

derivatives in an appropriate way to get a nonzero result. Thus, for example,

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =
1

i2

[
G(t1 − t2)G(t3 − t4)

+G(t1 − t3)G(t2 − t4)

+G(t1 − t4)G(t2 − t3)
]
. (166)
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More generally,

〈0|TQ(t1) . . . Q(t2n)|0〉 =
1

in
∑

pairings

G(ti1 − ti2) . . . G(ti2n−1 − ti2n) . (167)
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8: The Path Integral for Free Field Theory

Our results for the harmonic oscillator can be straightforwardly general-

ized to a free field theory with hamiltonian density

H0 = 1
2
Π2 + 1

2
(∇ϕ)2 + 1

2
m2ϕ2 . (168)

The dictionary we need is

q(t) −→ ϕ(x, t) (classical field)

Q(t) −→ ϕ(x, t) (operator field)

f(t) −→ J(x, t) (classical source) (169)

The distinction between the classical field ϕ(x) and the corresponding oper-

ator field should be clear from context.

To employ the ε trick, we multiply H0 by 1−iε. The results are equivalent

to replacing m2 in H0 with m2 − iε. From now on, for notational simplicity,

we will write m2 when we really mean m2 − iε.

Let us write down the path integral (also called the functional integral)

for our free field theory:

Z0(J) ≡ 〈0|0〉J =
∫
Dϕ ei

∫
d4x[L0+Jϕ] , (170)

where

L0 = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 . (171)

Note that when we say path integral , we now mean a path in the space of

field configurations.

We can evaluate Z0(J) by mimicing what we did for the harmonic oscil-

lator. We introduce four-dimensional Fourier transforms,

ϕ̃(k) =
∫
d4x e−ikx ϕ(x) , ϕ(x) =

∫
d4k

(2π)4
eikx ϕ̃(k) , (172)

50



where kx = −k0t + k·x, and k0 is an integration variable. Then we get

S0 =
1

2

∫
d4k

(2π)4

[
−ϕ̃(k)(k2 +m2)ϕ̃(−k) + J̃(k)ϕ̃(−k) + J̃(−k)ϕ̃(k)

]
, (173)

where S0 =
∫
d4xL0, and k2 = k2 − (k0)2. We now change path integration

variables to

χ̃(k) = ϕ̃(k)− J̃(k)

k2 +m2
. (174)

Since this is merely a shift by a constant, we have Dϕ = Dχ. The action

becomes

S0 =
1

2

∫ d4k

(2π)4

[
J̃(k)J̃(−k)
k2 +m2

− χ̃(k)(k2 +m2)χ̃(−k)
]
. (175)

Just as for the harmonic oscillator, the integral over χ simply yields a factor

of Z0(0) = 〈0|0〉J=0 = 1. Therefore

Z0(J) = exp

[
i

2

∫
d4k

(2π)4

J̃(k)J̃(−k)
k2 +m2 − iε

]

= exp
[
i

2

∫
d4x d4x′ J(x)∆(x− x′)J(x′)

]
. (176)

Here we have defined the Feynman propagator,

∆(x− x′) =
∫

d4k

(2π)4

eik(x−x′)

k2 +m2 − iε
. (177)

The Feynman propagator is a Green’s function for the Klein-Gordon equa-

tion,

(−∂2
x +m2)∆(x− x′) = δ(x− x′) . (178)

This can be seen directly by plugging eq. (177) into eq. (178) and then taking

the ε → 0 limit. We can also evaluate ∆(x − x′) explicitly by treating the

k0 integral on the right-hand side of eq. (178) as a contour integration in the

complex k0 plane, and then evaluating the contour integral via the residue

theorem. The result is

∆(x− x′) =
∫
d̃k eik·(x−x′)−iω|t−t′|

= iθ(t−t′)
∫
d̃k eik(x−x′) + iθ(t′−t)

∫
d̃k e−ik(x−x′) , (179)
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where θ(t) is the unit step function. The integral over d̃k can also be per-

formed in terms of Bessel functions; see section 4.

Now, by analogy with the formula for the ground-state expectation value

of a time-ordered product of operators for the harmonic oscillator, we have

〈0|Tϕ(x1) . . . |0〉 =
1

i

δ

δJ(x1)
. . . Z0(J)

∣∣∣
J=0

. (180)

Using our explicit formula, eq. (176), we have

〈0|Tϕ(x1)ϕ(x2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
Z0(J)

∣∣∣
J=0

=
1

i

δ

δJ(x1)

[∫
d4x′∆(x2 − x′)J(x′)

]
Z0(J)

∣∣∣
J=0

=
[

1
i
∆(x2 − x1) + (term with J ’s)

]
Z0(J)

∣∣∣
J=0

= 1
i
∆(x2 − x1) . (181)

We can continue in this way to compute the ground-state expectation value

of the time-ordered product of more ϕ’s. If the number of ϕ’s is odd, then

there is always a left-over J in the prefactor, and so the result is zero. If the

number of ϕ’s is even, then we must pair up the functional derivatives in an

appropriate way to get a nonzero result. Thus, for example,

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 =
1

i2

[
∆(x1 − x2)∆(x3 − x4)

+ ∆(x1 − x3)∆(x2 − x4)

+ ∆(x1 − x4)∆(x2 − x3)
]
. (182)

More generally,

〈0|Tϕ(x1) . . . ϕ(x2n)|0〉 =
1

in
∑

pairings

∆(xi1 − xi2) . . .∆(xi2n−1 − xi2n) . (183)

This result is known as Wick’s theorem.
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9: The Path Integral for Interacting Field Theory

Let us consider an interacting quantum field theory specified by a la-

grangian of the form

L = −1
2
Zϕ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 + 1
6
Zggϕ

3 + Y ϕ , (184)

where m is the mass of the particle, g is to be fixed in terms of some scattering

cross section, the field is normalized by

〈0|ϕ(x)|0〉 = 0 and 〈k, 1|ϕ(x)|0〉 = e−ikx , (185)

and Y and the three Z’s are to be adjusted to meet these four conditions.

Before going further, let us note that this theory (known as ϕ3 theory,

pronounced “phi-cubed”) actually has a fatal flaw. The hamiltonian density

is

H = 1
2
Z−1

ϕ Π2 − Y ϕ+ 1
2
Zmm

2ϕ2 − 1
6
Zggϕ

3 . (186)

Classically, we can make this arbitrarily negative by choosing an arbitrarily

large value for ϕ. Quantum mechanically, this means that this hamiltonian

has no ground state. If we start off near ϕ = 0, we can tunnel through

the potential barrier to large ϕ, and then “roll down the hill”. However,

this process is invisible in perturbation theory in g. The situation is exactly

analogous to the problem of a harmonic oscillator perturbed by an x3 term.

This system has no ground state, but perturbation theory (both time de-

pendent and time independent) does not “know” this. We will be interested

in eq. (184) only as an example of how to do perturbation exapansions in a

simple context, and so we will overlook this problem.

We would like to evaluate the path integral for this theory:

Z(J) ≡ 〈0|0〉J =
∫
Dϕ ei

∫
d4x[L0+L1+Jϕ] . (187)
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We can evaluate Z(J) by mimicing what we did for quantum mechanics.

Specifically, we can rewrite eq. (187) as

Z(J) = ei
∫

d4x L1( 1
i

δ
δJ(x))

∫
Dϕ ei

∫
d4x[L0+L1+Jϕ] .

∝ ei
∫

d4x L1( 1
i

δ
δJ(x)) Z0(J) , (188)

where Z0(J) is the result in free-field theory,

Z0(J) = exp
[
i

2

∫
d4x d4x′ J(x)∆(x − x′)J(x′)

]
. (189)

We have written Z(J) as proportional to (rather than equal to) the right-

hand side of eq. (188) because the ε trick does not give us the correct overall

normalization; instead, we must require Z(0) = 1, and enforce this by hand.

Note that, in eq. (189), we have implicitly assumed that

L0 = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 , (190)

since this is the L0 that gives us eq. (189). Therefore, the rest of L must be

stuffed into L1:

L1 = 1
6
Zggϕ

3 − 1
2
(Zϕ−1)∂µϕ∂µϕ− 1

2
(Zm−1)m2ϕ2 + Y ϕ . (191)

The extra interaction terms are called counterterms. We expect that, as g →
0, Y → 0 and Zi → 1. In fact, as we will see, Y = O(g) and Zi = 1 +O(g2).

In order to make use of eq. (189), we will have to compute lots and lots of

functional derivatives of Z0(J). Let us begin by ignoring the counterterms,

and computing

Z1(J) ∝ exp

[
i

6
Zgg

∫
d4x

(
1

i

δ

δJ(x)

)
3
]
Z0(J)

∝
∞∑

V =0

1

V !

[
iZgg

6

∫
d4x

(
1

i

δ

δJ(x)

)
3
]V

×
∞∑

P=0

1

P !

[
i

2

∫
d4y d4z J(y)∆(y−z)J(z)

]P

. (192)

If we focus on a term in eq. (192) with particular values of V and P , then

the number of surviving sources is E = 2P − 3V . (E stands for external ,
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  S = 2 x 3!

Figure 2: All diagrams with E = 0 and V = 2.

a terminology that should become clearer by the end of the section.) The

overall phase factor of such a term is then iV (1/i)3V iP = iV +E−P , and the 3V

functional derivatives can act on the 2P sources in (2P )!/(3V )!E! different

combinations. However, many of resulting expressions are algebraically iden-

tical. To organize them, we introduce Feynman diagrams. In these diagrams,

a line segment (straight or curved) stands for a propagator 1
i
∆(x−y), a filled

circle at one end of a line segment for a source i
∫
d4x J(x), and a vertex

joining three line segments for iZgg
∫
d4x. The complete set of diagrams for

different values of E and V are shown in figs. (2–12). In each diagram, the

number of lines is P , the number of lines connected to a source is E, and the

number of vertices is V . In a given diagram, there are 2PP ! ways of rearrang-

ing the sources (before we take derivatives) without changing the diagram.

Similarly, there are (3!)V V ! ways of rearranging the derivatives (before they

act on the sources) without changing the diagram. These counting factors

neatly cancel the numbers from the dual Taylor expansions in eq. (192).

However, this procedure generally results in an overcounting of the num-

ber of terms that give equal results. This happens when some rearrangement

of derivatives gives the same matchup to sources as some rearrangement of

sources. This possibility is always connected to some symmetry property of

the diagram, and so the factor by which we have overcounted is called the

symmetry factor.

Consider, for example, the diagram of fig. (2). The propagators can be

rearranged in 3! ways, and all can be duplicated by exchanging derivatives.

Furthermore the endpoints of each propagator can be swapped, and the effect

duplicated by swapping the two vertices.
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S = 2     3       S = 4!

S = 2
   S = 2  x 3!3

2

Figure 3: All diagrams with E = 0 and V = 4.

  S = 2

Figure 4: All diagrams with E = 1 and V = 1.
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  S = 22

  S = 23

  S = 22

Figure 5: All diagrams with E = 1 and V = 3.

  S = 2

Figure 6: All diagrams with E = 2 and V = 0.

  S = 22  S = 22

Figure 7: All diagrams with E = 2 and V = 2.
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2

2

                              S = 2

                              S = 2

           S = 2
           S = 22

3

           S = 23

Figure 8: All diagrams with E = 2 and V = 4.
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              S = 3!

Figure 9: All diagrams with E = 3 and V = 1.

2

                              S = 22

S = 3!                              S = 2

Figure 10: All diagrams with E = 3 and V = 3.
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S = 23

Figure 11: All diagrams with E = 4 and V = 2.

Let us consider two more examples. In the first diagram of fig. (7), the

exchange of the two external propagators (along with their attached sources)

can be duplicated by exchanging all the derivatives at one vertex for those

at the other. Also, the effect of swapping the top and bottom semicircular

propagators can be duplicated by swapping the corresponding derivatives

within each vertex. Thus, the symmetry factor is S = 2× 2 = 4.

In the diagram of fig. (11), we can exchange derivatives to match swaps

of the top and bottom external propators on the left, or the top and bottom

external propators on the right, or the set of external propagators on the left

with the set of external propagators on the right. Thus, the symmetry factor

is S = 2× 2× 2 = 8.

The diagrams in figs. (2–12) are all simply connected (or just connected

for short), but these are not the only contributions to Z(J). The most general

diagram consists of a product of several connected diagrams. Let CI stand

for a particular connected diagram, including its symmetry factor. A general

diagram D can then be expressed as

D =
1

SD

∏

I

(CI)
nI , (193)

where nI is an integer that counts the number of CI ’s in D, and SD is the

additional symmetry factor for D (that is, the part of the symmetry factor

that is not already accounted for by the symmetry factors already included
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2

                              S = 23

S = 24

S = 24

S = 2

                              S = 22

S = 22

Figure 12: All diagrams with E = 4 and V = 4.
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in each of the connected diagrams). We now need to determine SD.

Since we have already accounted for propagator and vertex rearrange-

ments within each CI , we need to consider only exchanges of propagators

and vertices among different connected diagrams. These can leave the total

diagram D unchanged only if (1) the exchanges are made among different

but identical connected diagrams, and only if (2) the exchanges involve all

of the propagators and vertices in a given connected diagram. If there are nI

factors of CI in D, there are nI ! ways to make these rearrangements. Overall,

then, we have

SD =
∏

I

nI ! . (194)

Now Z1(J) is given (up to an overall normalization) by summing all diagrams

D, and each D is labeled by the integers nI . Therefore

Z1(J) ∝
∑

{nI}
D

∝
∑

{nI}

∏

I

1

nI !
(CI)

nI

∝
∏

I

∞∑

nI=0

1

nI !
(CI)

nI

∝
∏

I

exp (CI)

∝ exp (
∑

I CI) . (195)

Thus we have a remarkable result: Z1(J) is given by the exponential of the

sum of connected diagrams. This makes it easy to impose the normalization

Z1(0) = 1: we simply omit the vacuum diagrams (those with no sources),

like those of figs. (2) and (3). We then have

Z1(J) = exp[W1(J)] , (196)

where we have defined

W1(J) ≡
∑

I 6={0}
CI , (197)

and the notation I 6= {0} means that the vacuum diagrams are omitted from

the sum, so that W1(0) = 0.
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We would have Z(J) = Z1(J) if we did not include the counterterms in

L1; let us see what we would get in this case. In particular, let us compute

the vacuum expectation value of the field ϕ(x), which is given by

〈0|ϕ(x)|0〉 =
1

i

δ

δJ(x)
Z1(J)

∣∣∣∣
J=0

=
1

i

δ

δJ(x)
W1(J)

∣∣∣∣
J=0

. (198)

This expression is then the sum of all diagrams [such as those in figs. (4) and

(5)] that have a single source, with the source removed:

〈0|ϕ(x)|0〉 = 1
2
ig
∫
d4y 1

i
∆(x−y)1

i
∆(y−y) +O(g3) . (199)

Here we have set Zg = 1 in the first term, since Zg = 1 +O(g2). We see the

vacuum-expectation value of ϕ(x) is not zero, as is required for the validity

of the LSZ formula. To fix this, we must introduce the counterterm Y ϕ.

Including this term in the interaction lagrangian L1 introduces a new kind of

vertex, one where a single line segment ends; the corresponding vertex factor

is iY
∫
d4y. The simplest diagrams including this new vertex are shown in

fig. (13), with an X standing for the vertex.

Assuming Y = O(g), only the first diagram in fig. (13) contributes at

O(g), and we have

〈0|ϕ(x)|0〉 =
(
iY + 1

2
(ig)1

i
∆(0)

) ∫
d4y 1

i
∆(x−y) +O(g3) . (200)

Thus, in order to have 〈0|ϕ(x)|0〉 = 0, we should choose

Y = 1
2
ig∆(0) +O(g3) . (201)

The factor of i is disturbing, because Y must be a real number: it is the

coefficient of a hermitian operator in the hamiltonian, as seen in eq. (186).

Therefore, ∆(0) must be purely imaginary, or we are in trouble. We have

∆(0) =
∫

d4k

(2π)4

1

k2 +m2 − iε
. (202)
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S = 1   S = 2

  S = 2   S = 2

Figure 13: All diagrams with E = 1, X ≥ 1 (where X is the number of
one-point vertices from the linear counterterm), and V +X ≤ 3.

From this forumula, it is not obvious whether or not ∆(0) is purely imaginary,

but it reveals another problem: the integral diverges at large k, and ∆(0) is

infinite.

To make some progress, we will modify the propagator in an ad hoc way:

∆(x− y)→
∫

d4k

(2π)4

eik(x−y)

k2 +m2 − iε

(
Λ2

k2 + Λ2 − iε

)2
. (203)

Here Λ is a new parameter called the ultraviolet cutoff. It has dimensions of

energy, and we assume that it is much larger than any energy of physical inter-

est. Note that the modified propagator has the same Lorentz-transformation

properties as the original, so the Lorentz invariance of the theory should not

be affected. In the limit Λ → ∞, the modified ∆(x−y) goes back to the

original one.

We can now evaluate the modified ∆(0) with the methods of section 14;

the result is

∆(0) =
i

16π2
Λ2 . (204)
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Thus Y is real, as required. We can now formally take the limit Λ → ∞.

The parameter Y becomes infinite, but 〈0|ϕ(x)|0〉 remains zero, at least to

this order in g.

It may be disturbing to have a parameter in the lagrangian which is

formally infinite. However, such parameters are not directly measurable,

and so need not obey our preconceptions about their magnitudes. Also, it

is important to remember that Y includes a factor of g; this means that we

can expand in powers of Y as part of our general expansion in powers of g.

When we compute something measurable (like a scattering amplitude), all

the formally infinite numbers will cancel in a well-defined way, leaving behind

finite coefficients for the various powers of g. We will see how this works in

detail in sections 14–20.

As we go to higher orders in g, things become more complicated, but in

principle the procedure is the same. Thus, at O(g3), we sum up the diagrams

of figs. (5) and (13), and then add to Y whatever O(g3) term is needed to

maintain 〈0|ϕ(x)|0〉 = 0. In this way we can determine the value of Y order

by order in powers of g.

Once this is done, there is a remarkable simplification. Our adjustment

of Y to keep 〈0|ϕ(x)|0〉 = 0 means that the sum of all connected diagrams

with a single source is zero. Consider now that same infinite set of diagrams,

but replace the source in each of them with some other subdiagram. Here

is the point: no matter what this replacement subdiagram is, the sum of all

these diagrams is still zero. Therefore, we need not bother to compute any

of them! The rule is this: ignore any diagram that, when a single line is

cut, falls into two parts, one of which has no sources. All of these diagrams

(known as tadpoles) are cancelled by the Y counterterm, no matter what

subdiagram they are attached to. The diagrams that remain (and need to

be computed!) are shown in figs. (14) and (15).

We turn next to the remaining two counterterms. For notational simplic-

ity we define

A = Zϕ − 1 , B = Zm − 1 , (205)
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Figure 14: All diagrams without tadpoles with E ≤ 3 and V ≤ 4.
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Figure 15: All diagrams without tadpoles with E = 4 and V ≤ 4.
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and recall that we expect each of these to be O(g2). We now have

Z(J) = exp

[
− i

2

∫
d4x

(
1

i

δ

δJ(x)

)(
−A∂2

x +Bm2
)(1

i

δ

δJ(x)

)]
Z1(J) .

(206)

We have integrated by parts to put both ∂x’s onto one δ/δJ(x). Also, we

have cheated a little: the time derivatives in this interaction really need to

be treated by including an extra source term for the conjugate momentum

Π = ϕ̇. However, the terms with space derivatives are correctly treated, and

the time derivatives must work out comparably by Lorentz invariance.

Eq. (206) results in a new vertex at which two lines meet. The corre-

sponding vertex factor is (−i) ∫ d4x(A∂2
x +Bm2); the ∂2

x acts on the x in one

or the other (but not both) propagators. (Which one does not matter, and

can be changed via integration by parts.) Diagramatically, all we need do

is sprinkle these new vertices onto the propagators in our existing diagrams.

How many of these vertices we add depends on the order in g we are working

to achieve.

This completes our calculation of Z(J) in ϕ3 theory. We express it as

Z(J) = exp[W (J)] , (207)

where W (J) is given by the sum of all connected diagrams with no tad-

poles and at least two sources, and including the counterterm vertices just

discussed.

Now that we have Z(J), we must find out what we can do with it.
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Notes on Quantum Field Theory Mark Srednicki

10: Scattering Amplitudes and the Feynman Rules

Now that we have an expression for Z(J), we can take functional deriva-

tives to compute vacuum expectation values of time-ordered products of

fields. Consider the case of two fields; we define the exact propagator via

1
i
∆(x1 − x2) ≡ 〈0|Tϕ(x1)ϕ(x2)|0〉 . (208)

For notational simplicity let us define

δj ≡
1

i

δ

δJ(xj)
. (209)

Then we have

〈0|Tϕ(x1)ϕ(x2)|0〉 = δ1δ2Z(J)
∣∣∣
J=0

= δ1δ2W (J)
∣∣∣
J=0

− δ1W (J)
∣∣∣
J=0

δ2W (J)
∣∣∣
J=0

= δ1δ2W (J)
∣∣∣
J=0

. (210)

To get the last line we used δxW (J)|J=0 = 〈0|ϕ(x)|0〉 = 0. Diagramatically,

δ1 removes a source, and labels the propagator endpoint x1. Thus 1
i
∆(x1−x2)

is given by the sum of diagrams with two sources, with those sources removed

and the endpoints labeled x1 and x2. (The labels must be applied in both

ways. If the diagram was originally symmetric on exchange of the two sources,

the associated symmetry factor of 2 is then canceled by the double labeling.)

At lowest order, the only contribution is the “barbell” diagram of fig. (6) with

the sources removed. Thus we recover the obvious fact that 1
i
∆(x1−x2) =

1
i
∆(x1−x2) +O(g2). We will take up the subject of the O(g2) corrections in

section 14.
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For now, let us go on to compute

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 = δ1δ2δ3δ4Z(J)

=
[
δ1δ2δ3δ4W

+ (δ1δ2W )(δ3δ4W )

+ (δ1δ3W )(δ2δ4W )

+ (δ1δ4W )(δ2δ3W )
]
J=0

. (211)

We have dropped terms that vanish because 〈0|ϕ(x)|0〉 = 0. According to

eq. (210), the last three terms in eq. (211) simply give products of the exact

propagators. Let us see what happens when these terms are inserted into

the LSZ formula for two incoming and two outgoing particles,

〈f |i〉 = i4
∫
d4x1 d

4x2 d
4x′1 d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2)

×(−∂2
1 +m2)(−∂2

2 +m2)(−∂2
1′ +m2)(−∂2

2′ +m2)

×〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉 . (212)

If we consider, for example, 1
i
∆(x1−x′1)1

i
∆(x2−x′2) as one term in the cor-

relation function in eq. (212), we get from this term

∫
d4x1 d

4x2 d
4x′1 d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2) F (x11′)F (x22′)

= (2π)4δ4(k1−k′1) (2π)4δ4(k2−k′2) F̃ (k̄11′) F̃ (k̄22′) , (213)

where F (xij) ≡ (−∂2
i +m2)(−∂2

j +m2)∆(xij), F̃ (k) is its Fourier transform,

xij′ ≡ xi−x′j, and k̄ij′ ≡ 1
2
(ki+k

′
j). The important point is the two delta

functions: these tell us that the four-momenta of the two outgoing particles

(1′ and 2′) are equal to the four-momenta of the two incoming particles (1 and

2). In other words, no scattering has occured. This is not the event whose

probability we wish to compute! The other two similar terms in eq. (211)

either contribute to “no scattering” events, or vanish due to factors like

δ4(k1+k2) (which is zero because k0
1+k

0
2 ≥ 2m > 0). In general, the diagrams

that contribute to the scattering process of interest are only those that are

fully connected : every endpoint can be reached from every other endpoint

by tracing through the diagram. These are the diagrams that arise from all
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the δ’s acting on a single factor of W . Therefore, from here on, we restrict

our attention to those diagrams alone. We define the connected correlation

functions via

〈0|Tϕ(x1) . . . ϕ(xE)|0〉C ≡ δ1 . . . δEW (J)
∣∣∣
j=0

, (214)

and use these instead of 〈0|Tϕ(x1) . . . ϕ(xE)|0〉 in the LSZ formula.

Returning to eq. (211), we have

〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C = δ1δ2δ1′δ2′W
∣∣∣
J=0

. (215)

The lowest-order (in g) nonzero contribution to this comes from the diagram

of fig. (11), which has four sources and two vertices. The four δ’s remove the

four sources; there are 4! ways of matching up the δ’s to the sources. These

24 diagrams can then be collected into 3 groups of 8 diagrams each; the 8

diagrams in each group are identical. The 3 distinct diagrams are shown in

fig. (16). Note that the factor of 8 neatly cancels the symmetry factor S = 8

of this diagram.

This is a general result for tree diagrams (those with no closed loops): once

the sources have been stripped off and the endpoints labeled, each diagram

with a distinct endpoint labeling has an overall symmetry factor of one. The

tree diagrams for a given process represent the lowest-order (in g) nonzero

contribution to that process.

We now have

〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C
= (ig)2

(
1
i

)5
∫
d4y d4z∆(y−z)

×
[

∆(x1−y)∆(x2−y)∆(x′1−z)∆(x′2−z)
+ ∆(x1−y)∆(x′1−y)∆(x2−z)∆(x′2−z)
+ ∆(x1−y)∆(x′2−y)∆(x2−z)∆(x′1−z)

]

+O(g4) . (216)

We now put this into the LSZ formula, eq. (212). Each Klein-Gordon wave

operator acts on a propagator to give

(−∂2
1 +m2)∆(x1 − y) = δ4(x1 − y) . (217)
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Figure 16: The three tree-level Feynman diagrams that contribute to the
connected correlation function 〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C.
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The integrals over the external spacetime labels x1,2,1′,2′ are then trivial, and

we get

〈f |i〉 = (ig)2
(

1
i

) ∫
d4y d4z∆(y−z)

[
ei(k1y+k2y−k′1z−k′2z)

+ ei(k1y+k2z−k′1y−k′2z)

+ ei(k1y+k2z−k′1z−k′2y)
]
+O(g4) .(218)

This can be simplified by substituting

∆(y − z) =
∫

d4k

(2π)4

eik(y−z)

k2 +m2 − iε
(219)

into eq. (216). Then the spacetime arguments appear only in phase factors,

and we can integrate them to get delta functions:

〈f |i〉 = ig2
∫

d4k

(2π)4

1

k2 +m2 − iε

×
[
(2π)4δ4(k1+k2+k) (2π)4δ4(k′1+k

′
2+k)

+ (2π)4δ4(k1−k′1+k) (2π)4δ4(k2−k′2+k)
+ (2π)4δ4(k1−k′2+k) (2π)4δ4(k2−k′1+k)

]
+O(g4) (220)

= ig2 (2π)4δ4(k1+k2−k′1−k′2)

×
[

1

(k1+k2)2 +m2
+

1

(k1−k′1)2 +m2
+

1

(k1−k′2)2 +m2

]

+O(g4) . (221)

In eq. (221), we have left out the iε’s for notational convenience only; m2

is really m2−iε. The overall delta function in eq. (221) tells that that four-

momentum is conserved in the scattering process, which we should, of course,

expect. For a general scattering process, it is then convenient to define a

scattering matrix element T via

〈f |i〉 = i(2π)4δ4(kin−kout) T , (222)

where kin and kout are the total four-momenta of the incoming and outgoing

particles, respectively.
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Examining the calculation which led to eq. (221), we can take away some

universal features that lead to a simple set of Feynman rules for computing

contributions to T for a given scattering process. The Feynman rules are:

1) Draw lines (called external lines) for each incoming and each outgoing

particle, and label each line with the particle’s four-momentum.

2) Leave one end of each external line free, and connect the other to

a vertex at which exactly three lines meet. Include extra internal lines in

order to do this. In this way, draw all possible diagrams that are topologically

inequivalent. Assign each internal line its own four-momentum.

3) On each incoming line, draw an arrow pointing away from the free

end. On each outgoing line, draw an arrow pointing towards the free end.

On each internal line, draw an arrow with an arbitrary direction.

4) Think of the four-momenta as flowing along the arrows, and conserve

four-momentum at each vertex. For a tree diagram, this fixes the momenta

on all the internal lines.

5) The value of a diagram consists of the following factors: for each

external line, 1; for each vertex, iZgg; for each internal line, −i/(k2+m2−iε),
where k is the four-momentum of that line.

6) A diagram with L closed loops will have L internal momenta that are

not fixed by Rule 4. Integrate over each of these momenta `i with measure

d4`i/(2π)4

7) A loop diagram may have some leftover symmetry factors if there

are exchanges of internal propagators and vertices that leave the diagram

unchanged; in this case, divide the value of the diagram by the symmetry

factor associated with exchanges of internal propagators and vertices.

8) Include diagrams with the counterterm vertex that connects two prop-

agators, each with the same four-momentum k. The value of this vertex is

−i(Ak2 +Bm2), where A = Zϕ − 1 and B = Zm − 1, and each is O(g2).

9) The value of iT is given by a sum over the values of all these diagrams.

For the two-particle scattering process, the tree-level diagrams resulting

from these rules are shown in fig. (17).

Now that we have our procedure for computing the scattering amplitude

T , we must see how to relate it to a measurable cross section.
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Figure 17: The tree-level s-, t-, and u-channel diagrams contributing to iT
for two particle scattering.

75



Notes on Quantum Field Theory Mark Srednicki

11: Cross Sections and Decay Rates

Now that we have a method for computing the scattering amplitude T ,

we must convert it into something that could be measured in an experiment.

In practice, we are almost always concerned with one of two generic cases:

one incoming particle, for which we compute a decay rate, or two incoming

particles, for which we compute a cross section. We begin with the latter.

Let us also specialize, for now, to the case of two outgoing particles as

well as two incoming particles. In ϕ3 theory, we found in section 10 that in

this case we have

T = g2

[
1

(k1+k2)2 +m2
+

1

(k1−k′1)2 +m2
+

1

(k1−k′2)2 +m2

]
+O(g4) ,

(223)

where k1 and k2 are the four-momenta of the two incoming particles, k′1 and

k′2 are the four-momenta of the two outgoing particles, and k1 +k2 = k′1 +k′2.

Also, these particles are all on-shell, so that k2
i = −m2

i . (Here, for later use,

we allow for the possibility that the particles all have different masses.)

Let us think about the kinematics of this process. In the center-of-mass

frame, or CM frame for short, we take k1+k2 = 0, and choose k1 to be in the

+z direction. Now the only variable left to specify about the initial state is

the magnitude of k1. Equivalently, we could specify the total center-of-mass

energy squared s ≡ (E1 + E2)
2. The nice feature of s is that it can also be

defined as the Lorentz scalar −(k1 + k2)
2, which reduces to (E1 +E2)

2 in the

CM frame. Then, since E1 = (k2
1 + m2

1)
1/2 and E2 = (k2

1 + m2
2)

1/2, we can

solve for |k1| in terms of s, with the result

|k1| =
1

2
√
s

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 (CM frame) . (224)

Now consider the two outgoing particles. Since momentum is conserved, we

must have k′1 + k′2 = 0, and since energy is conserved, we must also have
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(E ′1 + E ′2)
2 = s. Then we find

|k′1| =
1

2
√
s

√
s2 − 2(m2

1′ +m2
2′)s+ (m2

1′ −m2
2′)

2 (CM frame) . (225)

Now the only variable left to specify about the final state is the angle θ

between k1 and k′1. However, it is often more convenient to work with the

Lorentz scalar t ≡ −(k1 − k′1)
2, which is related to θ by

t = m2
1 +m2

1′ − 2E1E
′
1 + 2|k1||k′1| cos θ . (226)

This formula is valid in any frame.

The Lorentz scalars s and t are two of the three Mandelstam variables,

defined as

s ≡ −(k1 + k2)
2 = −(k′1 + k′2)

2 ,

t ≡ −(k1 − k′1)
2 = −(k2 − k′2)

2 ,

u ≡ −(k1 − k′2)
2 = −(k2 − k′1)

2 . (227)

The three Mandelstam variables are not independent; they satisfy the linear

relation

s+ t + u = m2
1 +m2

2 +m2
1′ +m2

2′ . (228)

In terms of s, t, and u, we can rewrite eq. (223) as

T = g2
[

1

m2 − s
+

1

m2 − t
+

1

m2 − u

]
+O(g4) , (229)

which demonstrates the notational utility of the Mandelstam variables.

Now let us consider a different frame, the fixed target or FT frame (also

sometimes called the lab frame), in which particle #2 is initially at rest:

k2 = 0. In this case we have

|k1| =
1

2m2

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 (FT frame) . (230)

Note that, from eqs. (230) and (224),

m2|k1|FT =
√
s |k1|CM . (231)
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This will be useful later.

We would now like to derive a formula for the differential scattering cross

section. In order to do so, we assume that the whole experiment is taking

place in a big box of volume V , and lasts for a large time T . We should

really think about wave packets coming together, but we will use some simple

shortcuts instead. Also, to get a more general answer, we will let the number

of outgoing particles be arbitrary.

Recall from section 10 that the overlap between the initial and final states

is given by

〈f |i〉 = i(2π)4δ4(kin−kout) T . (232)

To get a probability, we must square 〈f |i〉, and divide by the norms of the

initial and final states:

P =
|〈f |i〉|2
〈f |f〉〈i|i〉 . (233)

The numerator of this expression is

|〈f |i〉|2 = [(2π)4δ4(kin−kout)]
2 |T |2 . (234)

We write the square of the delta function as

[(2π)4δ4(kin−kout)]
2 = (2π)4δ4(kin−kout)× (2π)4δ4(0) , (235)

and note that

(2π)4δ4(0) =
∫
d4x ei0·x = V T . (236)

Also, the norm of a single particle state is given by

〈k|k〉 = (2π)32k0δ3(0) = 2k0V . (237)

Thus we have

〈i|i〉 = 4E1E2V
2 , (238)

〈f |f〉 =
n′∏

j=1

2k′j
0V , (239)

where n′ is the number of outgoing particles.
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If we now divide eq. (233) by the elapsed time T , we get a probability per

unit time

Ṗ =
(2π)4δ4(kin−kout)V |T |2

4E1E2V 2
∏n′

j=1 2k
′0
j V

. (240)

This is the probability per unit time to scatter into a set of outgoing particles

with precise momenta. To get something measurable, we should sum each

outgoing three-momentum k′j over some small range. All three-momenta

are quantized due to the box: k′j = (2π/L)n′j, where V = L3, and n′j is a

three-vector with integer entries. (Here we have assumed periodic boundary

conditions, but this choice does not affect the final result.) In the limit of

large L, we have
∑

n′j

→ V

(2π)3

∫
d3k′j . (241)

Thus we should multiply Ṗ by a factor of V d3k′j/(2π)3 for each outgoing

particle. Then we get

Ṗ =
(2π)4δ4(kin−kout)

4E1E2V
|T |2

n′∏

j=1

d̃k′j , (242)

where we have identified the Lorentz-invariant phase-space differential

d̃k ≡ d3k

(2π)32k0
(243)

that we first introduced in section 3.

To convert Ṗ to a differential cross section dσ, we must divide by the

incident flux. Let us see how this works in the FT frame, where particle #2

is at rest. The incident flux is the number of particles per unit volume that

are striking the target particle (#2), times their speed. We have one incident

particle (#1) in a volume V with speed v = |k1|/E1, and so the incident flux

is |k1|/E1V . Dividing eq. (242) by this flux cancels the last factor of V , and

replaces E1 in the denominator with |k1|. We also set E2 = m2 and note that

eq. (230) gives |k1|m2 as a function of s; dσ will be Lorentz invariant if, in

other frames, we simply use this function as the value of |k1|m2. Adopting

this convention, and using eq. (231), we have

dσ =
1

4|k1|CM

√
s
|T |2 dLIPSn′ , (244)
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where |k1|CM is given as a function of s by eq. (224), and we have defined the

n′-body Lorentz-invariant phase-space measure

dLIPSn′ ≡ (2π)4δ4(k1+k2−
∑n′

j=1 k
′
i)

n′∏

j=1

d̃k′j . (245)

Eq. (244) is our final result for the differential cross section for the scattering

of two incoming particles into n′ outgoing particles.

Let us now specialize to the case of two outgoing particles. We need to

evaluate

dLIPS2 = (2π)4δ4(k1+k2−k′1−k′2) d̃k′1d̃k′2 . (246)

Since dLIPS2 is Lorentz invariant, we can compute it in any convenient frame.

Let us work in the CM frame, where k1 + k2 = 0 and E1 + E2 =
√
s; then

we have

dLIPS2 =
1

4(2π)2E ′1E
′
2

δ(E ′1+E
′
2−
√
s ) δ3(k′1+k′2) d

3k′1d
3k′2 . (247)

We can use the spatial part of the delta function to integrate over d3k′2, with

the result

dLIPS2 =
1

4(2π)2E ′1E
′
2

δ(E ′1+E
′
2−
√
s ) d3k′1 , (248)

where now

E ′1 =
√

k′1
2 +m2

2′ and E ′2 =
√

k′1
2 +m2

2′ . (249)

Next, let us write

d3k′1 = |k′1|2 d|k′1| dΩCM , (250)

where dΩCM = sin θ dθ dφ is the differential solid angle, and θ is the angle

between k1 and k′1 in the CM frame. We can carry out the integral over

the magnitude of k′1 in eq. (248) using
∫
dx δ(f(x)) =

∑
i |f ′(xi)|−1, where xi

satisfies f(xi) = 0. In our case, the argument of the delta function vanishes

at just one value of |k′1|, the value given by eq. (225). Also, the derivative of

that argument with respect to |k′1| is given by

∂

∂|k′1|
(
E ′1 + E ′2 −

√
s
)

=
|k′1|
E ′1

+
|k′1|
E ′2
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= |k′1|
(
E ′1 + E ′2
E ′1E

′
2

)

=
|k′1|
√
s

E ′1E
′
2

. (251)

Putting all of this together, we get

dLIPS2 =
|k′1|

16π2
√
s
dΩ . (252)

Combining this with eq. (244), we have

dσ

dΩCM

=
1

64π2s

|k′1|
|k1|

|T |2 , (253)

where |k1| and |k′1| are the functions of s given by eqs. (224) and (225), and

dΩCM is the differential solid angle in the CM frame.

The differential cross section can also be expressed in a frame-independent

manner by noting that, in the CM frame, we can take the differential of

eq. (226) at fixed s to get

dt = 2 |k1| |k′1| d cos θ (254)

= 2 |k1| |k′1|
dΩCM

2π
. (255)

Now we can rewrite eq. (253) as

dσ

dt
=

1

64πs|k1|2
|T |2 , (256)

where |k1| is given as a function of s by eq. (224).

We can now transform dσ/dt into dσ/dΩ in any frame we might like

(such as the FT frame) by taking the differential of eq. (226) in that frame.

In general, though, |k′1| depends on θ as well as s, so the result is more

complicated than it is in eq. (254) for the CM frame.

Returning to the general case of n′ outgoing particles, we can define a

Lorentz invariant total cross section by integrating completely over all the

outgoing momenta, and dividing by an appropriate symmetry factor S. If

there are n′i identical outgoing particles of type i, then

S =
∏

i

n′i! , (257)
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and

σ =
1

S

∫
dσ , (258)

where dσ is given by eq. (244). We need the symmetry factor because merely

integrating over all the outgoing momenta in dLIPSn′ treats the final state

as being labeled by an ordered list of these momenta. But if some outgoing

particles are identical, this not correct; the momenta of the identical particles

should be specified by an unordered list [because, for example, the state

a†1a
†
2|0〉 is identical to the state a†2a

†
1|0〉]. The symmetry factor provides the

appropriate correction.

In the case of two outgoing particles, eq. (258) becomes

σ =
1

S

∫
dΩCM

dσ

dΩCM

(259)

=
2π

S

∫ +1

−1
d cos θ

dσ

dΩCM

, (260)

where S = 2 if the two outgoing particles are identical, and S = 1 if they are

distinguishable. Equivalently, we can compute σ from eq. (256) via

σ =
1

S

∫ tmax

tmin

dt
dσ

dt
, (261)

where tmin and tmax are given by eq. (226) in the CM frame with cos θ = −1

and +1, respectively. To compute σ with eq. (260), we should first express t

and u in terms of s and θ via eqs. (226) and (228), and then integrate over θ

at fixed s. To compute σ with eq. (261), we should first express u in terms

of s and t via eq. (228), and then integrate over t at fixed s.

Let us see how all this works for the scattering amplitude of ϕ3 theory,

eq. (223). In this case, all the masses are equal, and so, in the CM frame,

E = 1
2

√
s for all four particles, and |k′1| = |k1| = 1

2
(s−4m2)1/2. Then eq. (226)

becomes

t = −1
2
(s− 4m2)(1− cos θ) . (262)

From eq. (228), we also have

u = −1
2
(s− 4m2)(1 + cos θ) . (263)

82



Thus |T |2 is quite a complicated function of s and θ. In the nonrelativistic

limit, |k1| � m or equivalently s− 4m2 � m2, we have

T =
5g2

3m2

[
1− 8

15

(
s− 4m2

m2

)
+

3

18

(
1 +

27

25
cos2 θ

)(
s− 4m2

m2

)
2

+ . . .

]

+O(g4) . (264)

Thus the differential cross section is nearly isotropic. In the extreme rela-

tivistic limit, |k1| � m or equivalently s� m2, we have

T =
g2

s sin2 θ

[
3 + cos2 θ −

(
(3 + cos2 θ)2

sin2 θ
− 16

)
m2

s
+ . . .

]

+O(g4) . (265)

Now the differential cross section is sharply peaked in the forward (θ = 0)

and backward (θ = π) directions.

We can compute the total cross section σ from eq. (261). We have in this

case tmin = −(s − 4m2) and tmax = 0. Since the two outgoing particles are

identical, the symmetry factor is S = 2. Then setting u = 4m2 − s− t, and

performing the integral in eq. (261) over t at fixed s, we get

σ =
g4

32πs(s− 4m2)

[
2

m2
+

s− 4m2

(s−m2)2
− 2

s− 3m2

+
4m2

(s−m2)(s− 2m2)
ln

(
s− 3m2

m2

)]
+O(g6) . (266)

In the nonrelativistic limit, this becomes

σ =
25g4

288πsm4

[
1− 16

15

(
s− 4m2

m2

)
+ . . .

]
+O(g6) . (267)

In the extreme relativistic limit, we get

σ =
g4

16πs2m2

[
1 +

7

2

m2

s
+ . . .

]
+O(g6) . (268)

These results illustrate how even a very simple quantum field theory can yield

specific predictions for cross sections that could be tested experimentally.
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Let us now turn to the other basic problem mentioned at the beginning

of this section: the case of a single incoming particle that decays to n′ other

particles.

We have an immediate conceptual problem. According to our develop-

ment of the LSZ formula in section 5, each incoming and outgoing particle

should correspond to a single-particle state that is an exact eigenstate of

the exact hamiltonian. This is clearly not the case for a particle that can

decay. Refering to fig. (124), the hyperbola of such a particle must lie above

the continuum threshold. Strictly speaking, then, the LSZ formula is not

applicable.

A proper understanding of this issue requires a study of loop corrections

that we will undertake in section 24. For now, we will simply assume that

the LSZ formula continues to hold for a single incoming particle. Then we

can retrace the steps from eq. (233) to eq. (242); the only change is that the

norm of the initial state is now

〈i|i〉 = 2E1V (269)

instead of eq. (238). Identifying the differential decay rate dΓ with Ṗ then

gives

dΓ =
1

2E1
|T |2 dLIPSn′ , (270)

where now k2 = 0 and s = m2
1. In the CM frame (which is now the rest frame

of the initial particle), we have E1 = m1; in other frames, the relative factor

of E1/m1 in dΓ accounts for relativistic time dilation of the decay rate.

We can also define a total decay rate by integrating over all the outgoing

momenta, and dividing by the symmetry factor of eq. (257):

Γ =
1

S

∫
dΓ . (271)

We will compute a decay rate in section 24.
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Notes on Quantum Field Theory Mark Srednicki

12: The Lehmann-Källén Form of the Exact Propagator

Before turning to the subject of loop corrections to scattering amplitudes,

it will be helpful to consider what we can learn about the exact propagator

∆(x− y) from general principles. We define the exact propagator via

∆(x− y) ≡ i〈0|Tϕ(x)ϕ(y)|0〉 . (272)

We take the field ϕ(x) to be normalized so that

〈0|ϕ(x)|0〉 = 0 and 〈k, 1|ϕ(x)|0〉 = e−ikx , (273)

where the one-particle state |k, 1〉 has the normalization

〈k, 1|k′, 1〉 = (2π)3 2ω δ3(k− k′) , (274)

with ω = (k2 +m2)1/2. The corresponding completeness statement is
∫
d̃k |k, 1〉〈k, 1| = I1 , (275)

where I1 is the identity operator in the one-particle subspace, and

d̃k ≡ d3k

(2π)32ω
(276)

is the Lorentz invariant phase-space differential. We also define the exact

momentum-space propagator ∆̃(k2) via

∆(x− y) ≡
∫ d4k

(2π)4
eik(x−y) ∆̃(k2) . (277)

In free-field theory, the momentum-space propagator is

∆̃(k2) =
1

k2 +m2 − iε
. (278)
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It has an isolated pole at k2 = −m2 with residue one; m is the actual, physical

mass of the particle, the mass that enters into the energy-momentum relation.

Now let us return to the exact propagator, eq. (272), take x0 > y0, and in-

sert a complete set of energy eigenstates between the two fields. Recall from

section 5 that there are three general classes of energy eigenstates: (1) The

ground state or vacuum |0〉, which is a single state with zero energy and mo-

mentum. (2) The one particle states |k, 1〉, specified by a three-momentum k

and with energy ω = (k2 +m2)1/2. (3) States in the multiparticle continuum

|k, n〉, specified by a three-momentum k and other parameters (such as rela-

tive momenta among the different particles) that we will collectively denote

as n. The energy of one of these states is ω = (k2 +M2)1/2, where M ≥ 2m;

M is one of the parameters in the set n. Thus we get

〈0|ϕ(x)ϕ(y)|0〉 = 〈0|ϕ(x)|0〉〈0|ϕ(y)|0〉
+
∫
d̃k 〈0|ϕ(x)|k, 1〉〈k, 1|ϕ(y)|0〉

+
∑

n

∫
d̃k 〈0|ϕ(x)|k, n〉〈k, n|ϕ(y)|0〉 . (279)

The first two terms can be simplified via eq. (273). Also, writing the field as

ϕ(x) = exp(−iP µxµ)ϕ(0) exp(+iP µxµ), where P µ is the energy-momentum

operator, gives us

〈n, k|ϕ(x)|0〉 = e−ikx〈n, k|ϕ(0)|0〉 , (280)

where k0 = (k2 +M2)1/2. We now have

〈0|ϕ(x)ϕ(y)|0〉 =
∫
d̃k eik(x−y) +

∑

n

∫
d̃k eik(x−y)|〈n, k|ϕ(0)|0〉|2 . (281)

Next, we define the spectral density

ρ(s) ≡
∑

n

|〈n, k|ϕ(0)|0〉|2 δ(s−M2) . (282)

Obviously, ρ(s) ≥ 0 for s ≥ 4m2, and ρ(s) = 0 for s < 4m2. Now we have

〈0|ϕ(x)ϕ(y)|0〉 =
∫
d̃k eik(x−y) +

∫ ∞

4m2
ds ρ(s)

∫
d̃k eik(x−y) . (283)
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In the first term, k0 = (k2 +m2)1/2, and in the second term, k0 = (k2 +s)1/2.

Clearly we can also swap x and y to get

〈0|ϕ(y)ϕ(x)|0〉 =
∫
d̃k e−ik(x−y) +

∫ ∞

4m2
ds ρ(s)

∫
d̃k e−ik(x−y) . (284)

as well. We can then combine eqs. (283) and (284) into a formula for the

time-ordered product

〈0|Tϕ(x)ϕ(y)|0〉 = θ(x0 − y0)〈0|ϕ(x)ϕ(y)|0〉+ θ(y0 − x0)〈0|ϕ(y)ϕ(x)|0〉,
(285)

where θ(t) is the unit step function, by means of the identity

∫ d4k

(2π)4

eik(x−y)

k2 +m2 − iε
= iθ(x0−y0)

∫
d̃k eik(x−y) + iθ(y0−x0)

∫
d̃k e−ik(x−y) ;

(286)

the derivation of eq. (286) was sketched in section 8. Combining eqs. (283),

(284), (285), and (286), we get

i〈0|Tϕ(x)ϕ(y)|0〉 =
∫

d4k

(2π)4
eik(x−y)

[
1

k2 +m2 − iε

+
∫ ∞

4m2
ds ρ(s)

1

k2 + s − iε

]
. (287)

Comparing eqs. (272), (277), and (287), we see that

∆̃(k2) =
1

k2 +m2 − iε
+
∫ ∞

4m2
ds ρ(s)

1

k2 + s− iε
. (288)

This is the Lehmann-Källén form of the exact momentum-space propagator

∆̃(k2). We note in particular that ∆̃(k2) has an isolated pole at k2 = −m2

with residue one, just like the propagator in free-field theory.
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Notes on Quantum Field Theory Mark Srednicki

13: Dimensional Analysis with h̄ = c = 1

We have set h̄ = c = 1. This allows us to convert a time T to a length

L via T = L/c, and a length L to a mass M via M = h̄c−1/L. Thus any

quantity A can be thought of as having units of mass to some some power

(positive, negative, or zero) that we will call [A]. For example,

[m] = +1 , (289)

[xµ] = −1 , (290)

[∂µ] = +1 , (291)

[ddx] = −d . (292)

In the last line, we have generalized our considerations to theories in d space-

time dimensions.

Let us now consider a scalar field in d spacetime dimensions with la-

grangian density

L = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 −

N∑

n=3

1
n!
gnϕ

n . (293)

The action is

S =
∫
ddxL , (294)

and the path integral is

Z(J) =
∫
Dϕ exp

[
i
∫
ddx (L+ Jϕ)

]
. (295)

From eq. (295), we see that the action S must be dimensionless, because it

appears as the argument of the exponential function. Therefore

[S] = 0 . (296)
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From eqs. (296) and (292), we see that

[L] = +d . (297)

Then, from eqs. (297) and (291), and the fact that ∂µϕ∂µϕ is a term in L,

we see that we must have

[ϕ] =
1

2
(d− 2) . (298)

Then, since gnϕ
n is also a term in L, we must have

[gn] = d− n

2
(d− 2) . (299)

In particular, for the ϕ3 theory we have been working with, we have

[g3] =
1

2
(6− d) . (300)

Thus we see that the coupling constant of ϕ3 theory is dimensionless in d = 6

spacetime dimensions.

Theories with dimensionless couplings tend to be more interesting than

theories with dimensionful couplings. This is because any nontrivial depen-

dence of a scattering amplitude on a coupling must be expressed as a function

of a dimensionless parameter. If the coupling is itself dimensionful, this pa-

rameter must be the ratio of the coupling to the appropriate power of either

the particle mass m (if it isn’t zero) or, in the high-energy regime s � m2,

the Mandelstam variable s. Thus the relevant parameter is g s−[g]/2. If [g]

is negative [and it usually is: see eq. (299)], then g s−[g]/2 blows up at high

energies, and the perturbative expansion breaks down. This behavior is con-

nected to the nonrenormalizability of theories with couplings with negative

mass dimension, a subject we will take up in section 18. It turns out that, at

best, such theories require an infinite number of input parameters to make

sense. In the opposite case, [g] positive, the theory becomes trivial at high

energy, because g s−[g]/2 goes rapidly to zero.

Thus the case of [g] = 0 is just right: scattering amplitudes can have a

nontrivial dependence on g at all energies.

Therefore, from here on, we will be primarily interested in ϕ3 theory in

d = 6 spacetime dimensions, where [g3] = 0.
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Notes on Quantum Field Theory Mark Srednicki

14: Loop Corrections to the Propagator

In section 10, we wrote the exact propagator as

1
i
∆(x1−x2) ≡ 〈0|Tϕ(x1)ϕ(x2)|0〉 = δ1δ2W (J)

∣∣∣
J=0

, (301)

where W (J) is the sum of connected diagrams, and δi acts to remove a

source from a diagram and label the corresponding propagator endpoint xi.

In ϕ3 theory, the O(g2) corrections to 1
i
∆(x1−x2) come from the diagrams

of fig. (18). To compute them, it is simplest to work directly in momentum

space, following the Feynman rules of section 10. An appropriate assignment

of momenta to the lines is shown in fig. (18); we then have

1
i
∆̃(k2) = 1

i
∆̃(k2) + 1

i
∆̃(k2)

[
iΠ(k2)

]
1
i
∆̃(k2) +O(g4) , (302)

where

iΠ(k2) = 1
2
(ig)2

(
1
i

)2
∫

dd`

(2π)d
∆̃(`+k)∆̃(`)

− i(Ak2 +Bm2) +O(g4) . (303)

Here we have written the integral appropriate for d spacetime dimensions;

for now we will leave d arbitrary, but later we will want to focus on d = 6,

where the coupling g is dimensionless. In eq. (303),

∆̃(k2) =
1

k2 +m2
(304)

is the free-field propagator; here, m2 is really m2−iε, but we will suppress

the iε’s for notational convenience. The factor of one-half in the first term is

due to the symmetry factor associated with exchanging the top and bottom

semicircular propagators. Also, we have written the vertex factor as ig rather
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Figure 18: The O(g2) corrections to the propagator.

Figure 19: The infinite series of insertions of Π(k2).
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Figure 20: The O(g4) contributions to Π(k2).

than iZgg because we expect Zg = 1 +O(g2), and so the Zg− 1 contribution

can be lumped into the O(g4) term. In the second term, A = Zϕ − 1 and

B = Zm − 1 are both expected to be O(g2).

Before evaluating Π(k2), let us consider the infinite series of diagrams

that result from further insertions of Π(k2), as shown in fig. (19). We have

1
i
∆̃(k2) = 1

i
∆̃(k2) + 1

i
∆̃(k2)

[
iΠ(k2)

]
1
i
∆̃(k2)

+ 1
i
∆̃(k2)

[
iΠ(k2)

]
1
i
∆̃(k2)

[
iΠ(k2)

]
1
i
∆̃(k2)

+ . . . . (305)

This sum will include all the diagrams that contribute to ∆̃(k2) if we define

iΠ(k2) to be given by the sum of all diagrams that are one-particle irreducible,

or 1PI for short. A diagram is 1PI if it is still simply connected after any

one line is cut. The O(g4) contributions to iΠ(k2) are shown in fig. (20). In

writing down the value of one of these diagrams, we omit the two external

propagators.

The nice thing about eq. (305) is that it represents a geometric series that

can be summed up to give

∆̃(k2) =
1

k2 +m2 − Π(k2)
. (306)

In section 12, we learned that the exact propagator has a pole at k2 = −m2

with residue one. This is consistent with eq. (306) if and only if

Π(−m2) = 0 , (307)

Π′(−m2) = 0 , (308)
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where the prime denotes a derivative with respect to k2. We will use eqs. (307)

and (308) to fix the values of A and B.

Next we turn to the evautation of the O(g2) contribution to iΠ(k2) in

eq. (303). We have the immediate problem that the integral on the right-

hand side clearly diverges at large ` for d ≥ 4. We faced a similar situation

in section 9 when we evaluated the lowest-order tadpole diagram. There we

modified ∆̃(`2) by changing its behavior at large `2. Here, for now, we will

simply restrict our attention to d < 4, where the integral in eq. (303) is finite.

Later we will see what we can say about larger values of d.

We will evaluate the integral in eq. (303) with a series of tricks. We first

use Feynman’s formula to combine denominators,

1

a1 . . . an

=
∫
dFn (x1a1 + . . .+ xnan)−n , (309)

where the integration measure over the Feynman parameters xi is
∫
dFn = (n−1)!

∫ 1

0
dx1 . . . dxn δ(x1 + . . .+ xn − 1) . (310)

This measure is normalized so that
∫
dFn 1 = 1 . (311)

Eq. (309) can be proven by direct evaluation for n = 2, and by induction for

n > 2. In the case at hand, we have

∆̃(k+`)∆̃(`) =
1

(`2 +m2)((`+ k)2 +m2)

=
∫ 1

0
dx
[
x((`+ k)2 +m2) + (1−x)(`2 +m2)

]−2

=
∫ 1

0
dx
[
`2 + 2x`·k + xk2 +m2

]−2

=
∫ 1

0
dx
[
(`+ xk)2 + x(1−x)k2 +m2

]−2

=
∫ 1

0
dx
[
q2 +D

]−2
. (312)

In the last line we have defined q ≡ `+ xk and

D ≡ x(1−x)k2 +m2 . (313)
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Figure 21: The k0 integration contour along the real axis can be rotated to
the imaginary axis without passing through the poles at k0 = −ω + iε and
k0 = +ω − iε.

We then change the integration variable in eq. (303) from ` to q; the jacobian

is trivial, and we have dd` = ddq.

Next, think of the integral over q0 from −∞ to +∞ as a contour integral

in the complex q0 plane. We can rotate this contour clockwise by 90◦, as

shown in fig. (21), so that it runs from −i∞ to +i∞. In making this Wick

rotation, the contour does not pass over any poles. (The iε’s are needed

to make this statement unambiguous.) Thus the value of the integral is

unchanged. It is now convenient to define a euclidean d-dimensional vector

q̄ via q0 = iq̄d and qj = q̄j; then q2 = q̄2, where

q̄2 = q̄2
1 + . . .+ q̄2

d . (314)

Also, ddq = i ddq̄. Therefore, in general,
∫
ddq f(q2−iε) = i

∫
ddq̄ f(q̄2) . (315)

Then we can write

Π(k2) = 1
2
g2I(k2)− Ak2 −Bm2 +O(g4) , (316)

where

I(k2) ≡
∫ 1

0
dx
∫

ddq̄

(2π)d

1

(q̄2 +D)2
. (317)

It is now straightforward to evaluate the d-dimensional integral over q̄ in

spherical coordinates.
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Before we perform this calculation, however, let us introduce another

trick, one that can simplify the task of fixing A and B through the imposition

of eqs. (307) and (308). Here is the trick: differentiate Π(k2) twice with

respect to k2 to get

Π′′(k2) = 1
2
g2I ′′(k2) +O(g4) , (318)

where, from eqs. (317) and (313),

I ′′(k2) =
∫ 1

0
dx 6x2(1−x)2

∫
ddq̄

(2π)d

1

(q̄2 +D)4
. (319)

Then, after we evaluate these integrals, we can get Π(k2) by integrating with

respect to k2, subject to the boundary conditions of eqs. (307) and (308). In

this way we can construct Π(k2) without ever explicitly computing A and B.

Notice that this trick does something else for us as well. The integral over

q̄ in eq. (319) is finite for any d < 8, whereas the original integral in eq. (317)

is finite only for d < 4. This expanded range of d now includes the value of

greatest interest, d = 6.

How did this happen? We can gain some insight by making a Taylor

expansion of Π(k2) about k2 = −m2:

Π(k2) =
[

1
2
g2I(−m2) + (A− B)m2

]

+
[

1
2
g2I ′(−m2) + A

]
(k2 +m2)

+ 1
2
g2I ′′(−m2) (k2 +m2)2 + . . .

+O(g4) . (320)

Note that I(−m2) is divergent for d ≥ 4, I ′(−m2) is divergent for d ≥ 6,

and, in general, I (n)(−m2) is divergent for d ≥ 4+2n. We can use the O(g2)

terms in A and B to cancel off the 1
2
g2I(−m2) and 1

2
g2I ′(−m2) terms in

Π(k2), whether or not they are divergent. But if we are to end up with a

finite Π(k2), all of the remaining terms must be finite, since we have no more

free parameters left to adjust. This is the case for d < 8.

Of course, for 4 ≤ d < 8, the values of A and B (and hence the lagrangian

coefficients Z = 1 + A and Zm = 1 + B) are formally infinite, and this may

be disturbing. However, these coefficients are not directly measurable, and
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so need not obey our preconceptions about their magnitudes. Also, it is im-

portant to remember that A and B each includes a factor of g2; this means

that we can expand in powers of A and B as part of our general expan-

sion in powers of g. When we compute Π(k2) (which enters into observable

cross sections), all the formally infinite numbers cancel in a well-defined way,

provided d < 8.

For d ≥ 8, this procedure breaks down, and we do not obtain a finite

expression for Π(k2). In this case, we say that the theory is nonrenormaliz-

able. We will discuss the criteria for renormalizability of a theory in detail

in section 18. It turns out that ϕ3 theory is renormalizable for d ≤ 6. (The

problem with 6 < d < 8 arises from higher-order corrections, as we will see

in section 18.)

Now let us return to the calculation of Π(k2). Rather than using the

trick of first computing Π′′(k2), we will instead evaluate Π(k2) directly from

eq. (317) as a function of d for d < 4. Then we will analytically continue the

result to arbitrary d. This procedure is known as dimensional regularization.

Then we will fix A and B by imposing eqs. (307) and (308), and finally take

the limit d→ 6.

We could just as well use the method of section 9. Making the replacement

∆̃(p2) → 1

p2 +m2

Λ2

p2 + Λ2
, (321)

where Λ is a parameter with dimensions of mass called the ultraviolet cutoff ,

renders the O(g2) term in Π(k2) finite for d < 8; This procedure is known

as Pauli–Villars regularization. We then evaluate Π(k2) as a function of Λ,

fix A and B by imposing eqs. (307) and (308), and take the Λ → ∞ limit.

Calculations with Pauli-Villars regularization are generally much more cum-

bersome than they are with dimensional regularization. However, the final

result for Π(k2) is the same. Eq. (320) demonstrates that any regularization

scheme will give the same result for d < 8, at least as long as it preserves the

Lorentz invariance of the integrals.

We therefore turn to the evaluation of I(k2), eq. (317). The angular part

of the integral over q̄ yields the area Ωd of the unit sphere in d dimensions,

which is Ωd = 2πd/2/Γ(1
2
d). (This is most easily verified by computing the
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gaussian integral
∫
ddq̄ e−q̄2

in both cartesian and spherical coordinates.) Here

Γ(x) is the Euler gamma function; for a nonnegative integer n and small x,

Γ(n+1) = n! , (322)

Γ(n+1
2
) =

(2n)!

n!2n

√
π , (323)

Γ(−n+x) =
(−1)n

n!

[
1

x
− γ +

∑n

k=1
k−1 +O(x)

]
, (324)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.

The radial part of the q̄ integral can also be evaluated in terms of gamma

functions. The overall result (generalized slightly for later use) is

∫
ddq̄

(2π)d

(q̄2)a

(q̄2 +D)b
=

Γ(b−a−1
2
d)Γ(a+1

2
d)

(4π)d/2Γ(b)Γ(1
2
d)

D−(b−a−d/2) . (325)

In the case of interest, eq. (317), we have a = 0 and b = 2.

There is one more complication to deal with. Recall that we want to

focus on d = 6 because in that case g is dimensionless. However, for general

d, g has mass dimension ε/2, where

ε ≡ 6− d . (326)

To account for this, we introduce a new parameter µ̃ with dimensions of

mass, and make the replacement

g → g µ̃ε/2 . (327)

In this way g remains dimensionless for all ε. Of course, µ̃ is not an actual

parameter of the d = 6 theory. Therefore, nothing measurable (like a cross

section) can depend on it.

This seemingly innocuous statement is actually quite powerful, and will

eventually serve as the foundation of the renormalization group.

We now return to eq. (317), use eq. (324), and set d = 6− ε; we get

I(k2) =
Γ(−1+ε

2
)

(4π)3

∫ 1

0
dxD

(
4π

D

)ε/2

. (328)
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Hence, with the substitution of eq. (327), and defining

α ≡ g2

(4π)3
(329)

for notational convenience, we have

Π(k2) = 1
2
αΓ(−1+ε

2
)
∫ 1

0
dxD

(
4πµ̃2

D

)ε/2

− Ak2 −Bm2 +O(α2) . (330)

Now we can take the ε→ 0 limit, using eq. (324) and

Aε/2 = 1 + ε
2

lnA +O(ε2) . (331)

The result is

Π(k2) = −1
2
α

[(
2
ε + 1

)(
1
6
k2 +m2

)
+
∫ 1

0
dxD ln

(
4πµ̃2

eγD

)]

− Ak2 −Bm2 +O(α2) . (332)

Here we have used
∫ 1
0 dxD = 1

6
k2 +m2. It is now convenient to define

µ ≡
√

4π e−γ/2 µ̃ , (333)

and rearrange things to get

Π(k2) = −
{

1
6
α
[

1
ε + ln(µ/m) + 1

2

]
+ A

}
k2

−
{
α
[

1
ε + ln(µ/m) + 1

2

]
+B

}
m2

+ 1
2
α
∫ 1

0
dxD ln

(
D/m2

)

+O(α2) . (334)

If we take A and B to have the form

A = −1
6
α
[

1
ε + ln(µ/m) + 1

2
+ κA

]
+O(α2) , (335)

B = − α
[

1
ε + ln(µ/m) + 1

2
+ κB

]
+O(α2) , (336)
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where κA and κB are purely numerical constants, then we get

Π(k2) = 1
2
α
∫ 1

0
dxD ln

(
D/m2

)

+ α
(

1
6
κAk

2 + κBm
2
)

+O(α2) . (337)

Thus this choice of A and B renders Π(k2) finite and independent of µ, as

required.

To fix κA and κB, we must still impose the conditions Π(−m2) = 0 and

Π′(−m2) = 0. The easiest way to do this is to first note that, schematically,

Π(k2) = 1
2
α
∫ 1

0
dxD lnD + linear in k2 and m2 +O(α2) . (338)

We can then impose Π(−m2) = 0 via

Π(k2) = 1
2
α
∫ 1

0
dxD ln(D/D0) + linear in (k2 +m2) +O(α2) . (339)

where

D0 ≡ D
∣∣∣
k2=−m2

= [1−x(1−x)]m2 . (340)

Now it is straightforward to differentiate eq. (339) with respect to k2, and

find that Π′(−m2) vanishes for

Π(k2) = 1
2
α
∫ 1

0
dxD ln(D/D0)− 1

12
α(k2 +m2) + O(α2) . (341)

This is our final formula for the O(α) term in Π(k2). The integral over x can

in fact be done in closed form, but the result is not particularly illuminating.
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15: The One-Loop Correction in Lehmann-Källén Form

In section 12, we found that the exact propagator could be written in

Lehmann-Källén form as

∆̃(k2) =
1

k2 +m2 − iε
+
∫ ∞

4m2
ds ρ(s)

1

k2 + s− iε
, (342)

where the spectral density ρ(s) is real and nonnegative. In section 14, on the

other hand, we found that the exact propagator could be written as

∆̃(k2) =
1

k2 +m2 − iε− Π(k2)
, (343)

and that, to O(g2) in ϕ3 theory in six dimensions,

Π(k2) = 1
2
α
∫ 1

0
dxD ln(D/D0)− 1

12
α(k2 +m2) + O(α2) , (344)

where

α ≡ g2/(4π)3 , (345)

D = x(1−x)k2 +m2 − iε , (346)

D0 = [1−x(1−x)]m2 . (347)

In this section, we will attempt to reconcile eqs. (343) and (344) with eq. (342).

Let us begin by considering the imaginary part of the propagator. We

will always take k2 and m2 to be real, and explicitly include the appropriate

factors of iε whenever they are needed.

We can use eq. (342) and the identity

1

x− iε
=

x

x2 + ε2
+

iε

x2 + ε2

= P
1

x
+ iπδ(x) , (348)
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where P means the principal part, to write

Im ∆̃(k2) = πδ(k2 +m2) +
∫ ∞

4m2
ds ρ(s) πδ(k2 + s) .

= πδ(k2 +m2) + πρ(−k2) , (349)

where ρ(s) ≡ 0 for s < 4m2. Thus we have

πρ(s) = Im ∆̃(−s) for s ≥ 4m2 . (350)

Let us now suppose that Im Π(k2) = 0 for some range of k2. Then, from

eqs. (343) and (348), we get

Im ∆̃(k2) = πδ(k2 +m2 − Π(k2)) for Im Π(k2) = 0 . (351)

From Π(−m2) = 0, we know that the argument of the delta function vanishes

at k2 = −m2, and from Π′(−m2) = 0, we know that the derivative of this

argument with respect to k2 equals one at k2 = −m2. Therefore

Im ∆̃(k2) = πδ(k2 +m2) for Im Π(k2) = 0 . (352)

Comparing this with eq. (349), we see that ρ(−k2) = 0 if Im Π(k2) = 0

Now suppose Im Π(k2) is not zero for some range of k2. Then we can

ignore the iε in eq. (343), and

Im ∆̃(k2) =
Im Π(k2)

(k2 +m2 + Re Π(k2))2 + (Im Π(k2))2
for Im Π(k2) 6= 0 .

(353)

Comparing this with eq. (349) we see that

πρ(s) =
Im Π(−s)

(−s+m2 + Re Π(−s))2 + (Im Π(−s))2
. (354)

Since we know ρ(s) = 0 for s < 4m2, this tells us that we must also have

Im Π(−s) = 0 for s < 4m2, or equivalently Im Π(k2) = 0 for k2 > −4m2.

Let us see if this is true for the O(α) contribution to Π(k2), eq. (344). The

integrand in this formula is real as long as the argument of the logarithm is

real and positive. From eq. (346), we see that D is real and positive if and

only if x(1−x)k2 > −m2. The minimum value of x(1−x) is 1/4, and so the

101



argurment of the logarithm is real and positive for the whole integration range

0 ≤ x ≤ 1 if and only if k2 > −4m2. In this regime, Im Π(k2) = 0. On the

other hand, for k2 < −4m2, the argument of the logarithm becomes negative

for some of the integration range, and so Im Π(k2) 6= 0 for k2 < −4m2. This

is exactly what we need to reconcile eqs. (343) and (344) with eq. (342).
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16: Loop Corrections to the Vertex

Consider the O(g3) diagram of fig. (22), which corrects the ϕ3 vertex. In

this section we will evaluate this diagram.

We can define an exact three-point vertex function igV3(k1, k2, k3) as the

sum of one-particle irreducible diagrams with three external lines carrying

momenta k1, k2, and k3, all incoming, with k1 + k2 + k3 = 0 by momentum

conservation. (In adopting this convention, we allow k0
i to have either sign;

if ki is the momentum of an external particle, then the sign of k0
i is positive

if the particle is incoming, and negative if it is outgoing.) The original vertex

iZgg is the first term in this sum, and the diagram of fig. (22) is the second.

Thus we have

igV3(k1, k2, k3) = iZgg + (ig)3
(

1
i

)3
∫

dd`

(2π)d
∆̃(`−k1)∆̃(`+k2)∆̃(`)

+O(g5) . (355)

In the second term, we have set Zg = 1 +O(g2). We proceed immediately to

the evaluation of this integral, using the series of tricks from section 14.

First we use Feynman’s formula to write

∆̃(`−k1)∆̃(`+k2)∆̃(`)

=
∫
dF3

[
x1(`− k1)

2 + x2(`+ k2)
2 + x3`

2 +m2
]−3

. (356)

We manipulate the right-hand side of eq. (356) to get

∆̃(`−k1)∆̃(`+k2)∆̃(`)

=
∫
dF3

[
`2 − 2`·(x1k1 − x2k2) + x1k

2
1 + x2k

2
2 +m2

]−3

=
∫
dF3

[
(`− x1k1 + x2k2)

2 + x1(1−x1)k
2
1 + x2(1−x2)k

2
2
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+ 2x1x2k1 ·k2 +m2
]−3

=
∫
dF3

[
q2 +D

]−3
. (357)

In the last line, we have defined q ≡ `− x1k1 + x2k2, and

D ≡ x1(1−x1)k
2
1 + x2(1−x2)k

2
2 + 2x1x2k1 ·k2 +m2

= x3x1k
2
1 + x1x2k

2
2 + x2x3k

2
3 +m2 . (358)

To get the more symmetric form of D, we used k2
3 = (k1 +k2)

2 and x1 +x2 +

x3 = 1, which is enforced by the measure dF3. After making a Wick rotation

of the q0 contour, we have

V3(k1, k2, k3) = Zg + g2
∫
dF3

∫
ddq̄

(2π)d

1

(q̄2 +D)3
+O(g4) , (359)

where q̄ is a euclidean vector. This integral diverges for d ≥ 6. We therefore

evaluate it for general d < 6 using the general formula from section 14, which

yields
∫

ddq̄

(2π)d

1

(q̄2 +D)3
=

Γ(3−1
2
d)

2(4π)d/2
D−(3−d/2) . (360)

Then we set d = 6 − ε. To keep g dimensionless, we make the replacement

g → g µ̃ε/2. Then we have

V3(k1, k2, k3) = Zg + 1
2
αΓ(ε

2
)
∫
dF3

(
4πµ̃2

D

)ε/2

+O(α2) , (361)

where α = g2/(4π)3. Now we can take the ε→ 0 limit. The result is

V3(k1, k2, k3) = Zg + 1
2
α

[
2

ε
+
∫
dF3 ln

(
4πµ̃2

eγD

)]
+O(α2) , (362)

where we have used
∫
dF3 = 1. We use µ2 = 4πe−γ µ̃2, set

Zg = 1 + C , (363)

and rearrange to get

V3(k1, k2, k3) = 1 +
{
α
[

1
ε + ln(µ/m)

]
+ C

}

− 1
2
α
∫
dF3 D ln

(
D/m2

)

+ O(α2) . (364)
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Figure 22: The O(g3) correction to the vertex igV3(k1, k2, k3).

If we take C to have the form

C = −α
[

1
ε + ln(µ/m) + κC

]
+O(α2) , (365)

where κC is a purely numerical constant, then we get

V3(k1, k2, k3) = 1− 1
2
α
∫
dF3 ln

(
D/m2

)
− κCα +O(α2) . (366)

Thus this choice of C renders V3(k1, k2, k3) finite and independent of µ, as

required.

We now need a condition, analogous to Π(−m2) = 0 and Π′(−m2) = 0,

to fix the value of κC . These conditions on Π(k2) were mandated by known

properties of the exact propagator, but there is nothing directly comparable

for the vertex. Different choices of κC correspond to different definitions of

105



the coupling g. This is because, in order to measure g, we would measure

a cross section that depends on g; these cross sections also depend on κC .

Thus we can use any value for κC that we might fancy, as long as we all

agree on that value when we compare our calculations with experimental

measurements. It is then most convenient to simply set κC = 0. This

corresponds to the condition

V3(0, 0, 0) = 1 . (367)

This condition can then be used to fix the higher-order (in g) terms in Zg.
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17: Other 1PI Vertices

In section 16, we defined the three-point vertex function igV3(k1, k2, k3)

as the sum of all one-particle irreducible diagrams with three external lines,

with the external propagators removed. We can extend this definition to

the n-point vertex iVn(k1, . . . , kn). (Here we have chosen the convention of

keeping all factors of g in Vn, rather than pulling one out, as we did with

V3 in section 16.)

There are two key differences between Vn>3 and V3 in ϕ3 theory. The

first is that there is no tree-level contribution to Vn>3. The second is that

the one-loop contribution to Vn>3 is finite for d < 2n. In particular, the

one-loop contribution to Vn>3 is finite for d = 6.

Let us see how this works for the case n = 4. We treat all the external

momenta as incoming, so that k1 + k2 + k3 + k4 = 0. One of the three

contributing one-loop diagrams is shown in fig. (23); in this diagram, the k3

vertex is opposite to the k1 vertex. Two other inequivalent diagrams are then

obtained by swapping k3 ↔ k2 and k3 ↔ k4. We then have

iV4 = g4
∫

d6`

(2π)6
∆̃(`−k1)∆̃(`+k2)∆̃(`+k2+k3)∆̃(`)

+ (k3 ↔ k2) + (k3 ↔ k4)

+O(g6) . (368)

Feynman’s formula gives

∆̃(`−k1)∆̃(`+k2)∆̃(`+k2+k3)∆̃(`)

=
∫
dF4

[
x1(`−k1)

2 + x2(`+k2)
2 + x3(`+k2+k3)

2 + x4`
2 +m2

]−4

=
∫
dF4

[
q2 +D1234

]−4
, (369)
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where q = ` − x1k1 + x2k2 + x3(k2+k3) and, after making repeated use of

x1+x2+x3+x4 = 1 and k1+k2+k3+k4 = 0,

D1234 = x1x4k
2
1 + x2x4k

2
2 + x2x3k

2
3 + x1x3k

2
4

+ x1x2(k1 + k2)
2 + x3x4(k2 + k3)

2 +m2 . (370)

We see that the integral over q is finite for d < 8, and in particular for d = 6.

After a Wick rotation of the q0 contour and applying the general formula of

section 14, we find

∫ d6q

(2π)6

1

(q2 +D)4
=

i

6(4π)3D
. (371)

Thus we get

V4 =
g4

6(4π)3

∫
dF4

(
1

D1234
+

1

D1324
+

1

D1243

)
+O(g6) . (372)

This expression is finite and well-defined; the same is true for the one-loop

contribution to Vn for all n > 3.
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Figure 23: One of the three one-loop Feynman diagrams contributing to the
four-point vertex iV4(k1, k2, k3, k4); the other two are obtained by swapping
k3 ↔ k2 and k3 ↔ k4.
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18: Higher-Order Corrections and Renormalizability

In sections 14–17, we computed the one-loop diagrams with two, three,

and four external lines for ϕ3 theory in six dimensions. We found that the

first two involved divergent momentum integrals, but that these divergences

could be absorbed into the coefficients of terms in the lagrangian. If this is

true for all higher-order (in g) contributions to the propagator and to the

one-particle irreducible vertex functions (with n ≥ 3 external lines), then we

say that the theory is renormalizable. If this is not the case, and further

divergences arise, it may be possible to absorb them by adding some new

terms to the lagrangian. If a finite number of such new terms is required,

the theory is still said to be renormalizable. However, if an infinite number

of new tems is required, then the theory is said to be nonrenormalizable.

In this section we wish to consider the circumstances under which a theory

is renormalizable. As an example, we will analyze a scalar field theory in d

spacetime dimensions of the form

L = −1
2
Zϕ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 −
∞∑

n=3

1
n!
Zngnϕ

n . (373)

Consider a Feynman diagram with E external lines, I internal lines, L

closed loops, and Vn vertices that connect n lines. (Here Vn is just a number,

not to be confused with the vertex function Vn.) Do the momentum integrals

associated with this diagram diverge?

We begin by noting that each closed loop gives a factor of dd`i, and each

internal propagator gives a factor of 1/(p2 + m2), where p is some linear

combination of external momenta ki and loop momenta `i. The diagram

would then appear to have an ultraviolet divergence at large `i if there are

more `’s in the numerator than there are in the denominator. The number

of `’s in the numerator minus the number of `’s in the denominator is the
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diagram’s superficial degree of divergence

D ≡ dL− 2I , (374)

and the diagram appears to be divergent if

D ≥ 0 . (375)

Next we derive a more useful formula for D. The diagram has E external

lines, so another contributing diagram is the tree diagram where all the lines

are joined by a single vertex, with vertex factor −iZEgE; this is, in fact, the

value of this entire diagram, which then has mass dimension [gE]. (The Z’s

are all dimensionless, by definition.) Therefore, so does the original diagram,

since both are contributions to the same scattering amplitude:

[diagram] = [gE] . (376)

On the other hand, the mass dimension of any diagram is given by the sum

of the mass dimensions of its components, namely

[diagram] = dL− 2I +
∞∑

n=3

Vn[gn] . (377)

From eqs. (374), (376), and (377), we get

D = [gE]−
∞∑

n=3

Vn[gn] . (378)

This is the formula we need.

From eq. (378), it is immediately clear that if any [gn] < 0, we expect

uncontrollable divergences, since D increases with every added vertex of this

type. Therefore, a theory with any [gn] < 0 is nonrenormalizable.

According to our results in section 13, the coupling constants have mass

dimension

[gn] = d− n

2
(d− 2) , (379)

and so we have

[gn] < 0 if n >
2d

d− 2
. (380)
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Thus we are limited to powers no higher than ϕ4 in four dimensions, and no

higher than ϕ3 in six dimensions.

The same criterion applies to more complicated theories as well: a theory

is nonrenormalizable if any coefficient of any term in the lagrangian has

negative mass dimension.

What about theories with couplings with only positive or zero mass di-

mension? We see from eq. (378) that the only dangerous diagrams (those

with D ≥ 0) are those for which [gE] ≥ 0. But in this case, we can ab-

sorb the divergence simply by adjusting the value of ZE. This discussion

also applies to the propagator; we can think of Π(k2) as representing the

loop-corrected counterterm vertex Ak2 +Bm2, with A and Bm2 playing the

roles of two couplings. We have [A] = 0 and [Bm2] = 2, so the contributing

diagrams are expected to be divergent (as we have already seen in detail),

and the divergences must be absorbed into A and Bm2.

D is called the superficial degree of divergence because a diagram might

diverge even if D < 0, or might be finite even ifD ≥ 0. The latter can happen

if there are momentum-depedent vertices whose structure as a function of the

external momenta forces some `’s in the numerator to vanish. QED4 provides

an example that we will encounter in Part III. For now we turn our attention

to the case of diagrams with D < 0 that nevertheless diverge.

Consider, for example, the diagrams of fig. (24) and (25). The one-loop

diagram of fig. (24) with E = 4 is finite, but the two-loop correction from the

first diagram of fig. (25) is not: the bubble on the upper propagator diverges.

This is an example of a divergent subdiagram. However, this is not a problem

in this case, because this divergence is canceled by the second diagram of

fig. (25), which has a counterterm vertex in place of the bubble.

This is the generic situation: divergent subdiagrams are diagrams that,

considered in isolation, have D ≥ 0. These are precisely the diagrams whose

divergences can be canceled by adjusting the Z factor of the corresponding

tree diagram (in theories where [gn] ≥ 0 for all nonzer gn).

Thus, we expect that theories couplings whose mass dimensions are all

positive or zero will be renormalizable. A detailed study of the properties of

the momentum integrals in Feynman diagrams is necessary to give a complete

proof of this. It turns out to be true without further restrictions for theories
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Figure 24: The one-loop contribution to the four-point function.

Figure 25: A two-loop contribution to the four-point function, and the cor-
responding counterterm insertion.
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that have spin-zero and spin-one-half fields only.

Theories with spin-one fields are renormalizable for d = 4 if and only if

these spin-one fields are associated with a gauge symmetry. We will study

this in Part III.

Theories of fields with spin greater than one are never renormalizable for

d ≥ 4.

114



Notes on Quantum Field Theory Mark Srednicki

19: Perturbation Theory to All Orders: the Skeleton Expansion

In section 18, we found that, generally, a theory is renormalizable if all

of its lagrangian coefficients have positive or zero mass dimension. In this

section, using ϕ3 theory in six dimensions as our example, we will see how

to construct a finite expression for a scattering amplitude to arbitrarily high

order in the ϕ3 coupling g.

We begin by summing all one-particle irreducible diagrams with two ex-

ternal lines; this gives us the propagator correction Π(k2). Order by order in

g, we must adjust the value of the counterterm coefficients A = Zϕ − 1 and

B = Zm − 1 to maintain the conditions Π(−m2) = 0 and Π′(−m2) = 0.

We next sum all 1PI diagrams with three external lines; this gives us

the vertex function V3(k1, k2, k3). Order by order in g, we must adjust the

value of the counterterm coefficient C = Zg − 1 to maintain the condition

V3(0, 0, 0) = 1.

Next we consider the other 1PI vertex functions Vn(k1, . . . , kn) for 4 ≤
n ≤ E, where E is the number of external lines in the process of interest.

We compute these using a skeleton expansion. This means that we draw all

the contributing diagrams, but omit diagrams that include either propagator

or vertex corrections, or counterterm vertices. That is, we consider only

diagrams that are not only 1PI, but also 2PI and 3PI: they remain simply

connected when any one, two, or three lines are cut. (Cutting three lines may

isolate a single tree-level vertex, but nothing more complicated.) Next, we

consider the propagators and vertices in these diagrams to be given by the

exact propagator ∆̃(k2) = (k2 + m2 − Π(k2))−1 and vertex gV3(k1, k2, k3),

rather than by the tree-level propagator ∆(k2) = (k2 +m2)−1 and vertex g.

(More precisely, by the exact propagator and vertex computed to however

high an order in g we wish to go, or could manage to do.) Then we sum

these skeleton diagrams to get Vn for 4 ≤ n ≤ E.
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Next we draw all tree-level diagrams contributing to the process of interest

(which has E external lines), including not only three-point vertices, but also

n-point vertices for n = 3, 4, . . . , E. Then we evaluate these diagrams using

the exact propagator ∆̃(k2) for internal lines, and the exact 1PI vertices Vn.

External lines are assigned a factor of one. This is because, in the LSZ

formula, each Klein-Gordon wave operator becomes (in momentum space) a

factor of k2
i + m2 that multiplies each external propagator, leaving behind

only the residue of the pole in that propagator at k2
i = −m2. We have

constructed the exact propagator so that this residue is precisely one.

A careful examination of this complete procedure will reveal that we

have now included all of the original contributing Feynman diagrams, with

the correct counting factors.

Thus we now know how to compute an arbitrary scattering amplitude

to arbitrarily high order. The procedure is the same in any quantum field

theory; only the form of the propagators and verticies change, depending on

the spins of the fields. In practice, we very rarely go beyond two loops, unless

the problem has some special features that simplify higher-loop calculations.

The tree-level diagrams of the final step can be thought of as the Feyn-

man diagrams of a quantum action (or effective action, or quantum effective

action) Γ(ϕ). There is a simple and interesting relationship between the ef-

fective action Γ(ϕ) and the sum of connected diagrams with sources W (J).

We derive it in section 21.
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20: Two-Particle Elastic Scattering at One Loop

We now illustrate the general rules of section 19 by computing the two-

particle elastic scattering amplitude, including all one-loop corrections, in

ϕ3 theory in six dimensions. Elastic means that the number of outgoing

particles (of each species, in more general contexts) is the same as the number

of incoming particles (of each species).

We computed the amplitude for this process at tree level in section 10,

with the result

iTtree = 1
i
(ig)2

[
∆̃(−s) + ∆̃(−t) + ∆̃(−u)

]
, (381)

where ∆̃(−s) = 1/(−s +m2 − iε) is the free-field propagator, and s, t, and

u are the Mandelstam variables. Later we will need to remember that s is

positive, that t and u are negative, and that s+ t + u = 4m2.

The exact scattering amplitude is given by the diagrams of fig. (26), with

all propagators and vertices interpreted as exact propagators and vertices.

We get the one-loop approximation to the exact amplitude by using the one-

loop expressions for the propagator and vertices. We thus have

iT1−loop = 1
i

{
[igV3(s)]

2∆̃(−s) + [iV3(t)]
2∆̃(−t) + [iV3(u)]

2∆̃(−u)
}

+ iV4(s, t, u) , (382)

where

∆̃(−s) =
1

−s+m2 − Π(−s) , (383)

Π(−s) = 1
2
α
∫ 1

0
dxD2(s) ln

(
D2(s)/D0

)

− 1
12
α(−s+m2) , (384)

V3(s) = 1− 1
2
α
∫
dF3 ln

(
D3(s)/m

2
)
, (385)
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V4(s, t, u) = 1
6
g2α

∫
dF4

[
1

D4(s, t)
+

1

D4(t, u)
+

1

D4(u, s)

]
. (386)

Here α = g2/(4π)3, the Feynman integration measure is
∫
dFn f(x) = (n−1)!

∫ 1

0
dx1 . . . dxn δ(x1+ . . .+xn−1)f(x)

= (n−1)!
∫ 1

0
dx1

∫ 1−x1

0
dx2 . . .

∫ 1−x1−...−xn−2

0
dxn−1

×f(x)
∣∣∣
xn=1−x1−...−xn−1

, (387)

and we have defined

D2(s) = −x(1−x)s+m2 , (388)

D0 = +[1−x(1−x)]m2 , (389)

D3(s) = −x1x2s+ [1−(x1+x2)x3]m
2 , (390)

D4(s, t) = −x1x2s− x3x4t + [1−(x1+x2)(x3+x4)]m
2 . (391)

We obtain V3(s) from the general three-point function V3(k1, k2, k3) by set-

ting two of the three k2
i to −m2, and the third to −s. We obtain V4(s, t, u)

from the general four-point function V4(k1, . . . , k4) by setting all four k2
i to

−m2, (k1 + k2)
2 to −s, (k1 + k3)

2 to −t, and (k1 + k4)
2 to −u. (Recall that

the vertex functions are defined with all momenta treated as incoming; here

we have identified −k3 and −k4 as the outgoing momenta.)

Eqs. (382–391) are formidable expressions. To gain some intuition about

them, let us consider the limit of high-energy, fixed angle scattering, where we

take s, |t|, and |u| all much larger than m2. Equivalently, we are considering

the amplitude in the limit of zero particle mass.

We can then set m2 = 0 in D2(s), D3(s), and D4(s, t). For the propagator,

we get

Π(−s) = − 1
2
α s

∫ 1

0
dx x(1−x)

[
ln
(−s
m2

)
+ ln

(
x(1−x)

1−x(1−x)

)]
+ 1

12
α s

= − 1
12
α s
[
ln(−s/m2) + 3− π

√
3
]
. (392)

Thus,

∆̃(−s) =
1

−s− Π(−s)
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Figure 26: The Feynman diagrams contributing to the two-particle elastic
scattering amplitude; in these diagrams, the lines and points represent the
exact propagators and vertices.
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= −1

s

(
1 + 1

12
α s
[
ln(−s/m2) + 3− π

√
3
])

+O(α2) . (393)

The appropriate branch of the logarithm is found by replacing s by s + iε;

for s real and positive, −(s+ iε) lies just below the negative real axis, and so

ln[−(s+iε)] = ln s−iπ. For t (or u), which is negative, we have ln(−t) = ln |t|
and ln t = ln(t+ iε) = ln |t|+ iπ.

For the three-point vertex, we get

V3(s) = 1− 1
2
α
∫
dF3

[
ln(−s/m2) + ln(x1x2)

]
,

= 1− 1
2
α
[
ln(−s/m2)− 3

]
, (394)

where the same comments about the appropriate branch apply.

For the four-point vertex, after some intrigue with the integral over the

Feynman parameters, we get

V4(s, t) = − 1
2
g2α

1

s+ t

(
π2 +

[
ln(s/t)

]2)

= + 1
2
g2α

1

u

(
π2 +

[
ln(s/t)

]2)
, (395)

where the second line follows from s+ t + u = 0.

Putting all of this together, we have

T1−loop = g2
[
F (s, t, u) + F (t, u, s) + F (u, s, t)

]
, (396)

where

F (s, t, u) ≡ − 1

s

(
1− 11

12
α
[
ln(−s/m2) + c

]
− 1

2
α
[
ln(t/u)

]2)
, (397)

and c = (39 − π
√

3 − 6π2)/11 = −2.333. This is a typical result of a loop

calculation: the original tree-level amplitude is corrected by powers of loga-

rithms of kinematic variables.
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21: The Quantum Action

In section 19, we saw how to compute (in ϕ3 theory in six dimensions)

the 1PI vertex functions Vn(k1, . . . , kn) for n ≥ 4 via the skeleton expan-

sion: draw all Feynman diagrams with n external lines that are one-, two-,

and three-particle irreducible, and compute them using the exact propaga-

tor ∆̃(k2) and three-point vertex function V3(k1, k2, k3). [In this section, we

include the factor of g in V3(k1, k2, k3), so that V3(0, 0, 0) = g.]

We now define the quantum action (or effective action, or quantum effec-

tive action)

Γ(ϕ) ≡ 1

2

∫
d6k

(2π)6
ϕ̃(−k)

(
k2 +m2 − Π(k2)

)
ϕ̃(k)

+
∞∑

n=3

1

n!

∫
d6k1

(2π)6
. . .

d6kn

(2π)6
(2π)6δ6(k1+ . . .+kn)

×Vn(k1, . . . , kn) ϕ̃(k1) . . . ϕ̃(kn) , (398)

where ϕ̃(k) =
∫
d6x e−ikxϕ(x). The quantum action has the property that

the tree-level Feynman diagrams it generates give the complete scattering

amplitude of the original theory.

In this section, we will determine the relationship between Γ(ϕ) and the

sum of connected diagrams with sources, W (J), introduced in section 9.

Recall that W (J) is related to the path integral

Z(J) =
∫
Dϕ exp

[
iS(ϕ) + i

∫
d6x Jϕ

]
, (399)

where S =
∫
d6xL is the action, via

Z(J) = exp[W (J)] . (400)
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Consider now the path integral

ZΓ(J) ≡
∫
Dϕ exp

[
iΓ(ϕ) + i

∫
d6x Jϕ

]
(401)

= exp[WΓ(J)] . (402)

WΓ(J) is given by the sum of connected diagrams (with sources) in which

each line represents the exact propagator, and each n-point vertex represents

the exact 1PI vertex Vn. WΓ(J) would be equal to W (J) if we included only

tree diagrams in WΓ(J).

We can isolate the tree-level contribution to a path integral by means of

the following trick. Introduce a dimensionless parameter that we will call h̄,

and the path integral

ZΓ,h̄(J) ≡
∫
Dϕ exp

[
i

h̄

(
Γ(ϕ) +

∫
d6x Jϕ

)]
(403)

= exp[WΓ,h̄(J)] . (404)

In a given connected diagram with sources, every propagator (including those

that connect to sources) is multiplied by h̄, every source by 1/h̄, and every

vertex by 1/h̄. The overall factor of h̄ is then h̄P−E−V , where V is the number

of vertices, E is the number of sources (equivalently, the number of exter-

nal lines after we remove the sources), and P is the number of propagators

(external and internal). We next note that P−E−V is equal to L−1, where

L is the number of closed loops. This can be seen by counting the number

of internal momenta and the constraints among them. Speficially, assign an

unfixed momentum to each internal line; there are P−E of these momenta.

Then the V vertices provide V constraints. One linear combination of these

constraints gives overall momentum conservation, and so does not constrain

the internal momenta. Therefore, the number of internal momenta left un-

fixed by the vertex constraints is (P−E)−(V−1), and the number of unfixed

momenta is the same as the number of loops L.

So, WΓ,h̄(J) can be expressed as a power series in h̄ of the form

WΓ,h̄(J) =
∞∑

L=0

h̄L−1WΓ,L(J) . (405)
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If we take the formal limit of h̄ → 0, the dominant term is the one with

L = 0, which is given by the sum of tree diagrams only. This is just what we

want. We conclude that

W (J) = WΓ,L=0(J) . (406)

Next we perform the path integral in eq. (403) by the method of stationary

phase. We find the point (actually, the field configuration) at which the

exponent is stationary; this is given by the solution of the quantum equation

of motion
δ

δϕ(x)
Γ(ϕ) = −J(x) . (407)

Let ϕJ(x) denote the solution of eq. (407) with a specifed source function

J(x). Then the stationary-phase approximation to ZΓ,h̄(J) is

ZΓ,h̄(J) = exp
[
i

h̄

(
Γ(ϕJ) +

∫
d6x JϕJ

)
+O(h̄0)

]
. (408)

Combining the results of eqs. (404), (405), (406), and (408), we find

W (J) = iΓ(ϕJ) + i
∫
d6x JϕJ . (409)

This is the main result of this section.

Let us explore it further. Recall from section 9 that the vacuum expec-

tation value of the field operator ϕ(x) is given by

〈0|ϕ(x)|0〉 =
1

i

δ

δJ(x)
W (J)

∣∣∣∣
J=0

. (410)

Now consider what we get if we do not set J = 0 after taking the derivative:

〈0|ϕ(x)|0〉J ≡
1

i

δ

δJ(x)
W (J) . (411)

This is the vacuum expectation value of ϕ(x) in the presence of a nonzero

source function J(x). We can get some more information about it by using

eq. (409) for W (J). Making use of the product rule for derivatives, we have

〈0|ϕ(x)|0〉J =
δ

δJ(x)
Γ(ϕJ) + ϕJ(x) +

∫
d6y J(y)

δϕJ(y)

δJ(x)
. (412)
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We can evaluate the first term on the right-hand side by using the chain rule,

δ

δJ(x)
Γ(ϕJ) =

∫
d6y

δΓ(ϕJ)

δϕJ(y)

δϕJ(y)

δJ(x)
. (413)

Then we can combine the first and third terms on the right-hand side of

eq. (412) to get

〈0|ϕ(x)|0〉J =
∫
d6y

[
δΓ(ϕJ)

δϕJ(y)
+ J(y)

]
δϕJ(y)

δJ(x)
+ ϕJ(x) . (414)

Now we note from eq. (407) that the factor in large brackets on the right-hand

side of eq. (414) vanishes, and so

〈0|ϕ(x)|0〉J = ϕJ(x) . (415)

That is, the vacuum expectation value of the field operator ϕ(x) in the pres-

ence of a nonzero source function is also the solution to the quantum equation

of motion, eq. (407).

We can also write the quantum action in terms of a derivative expansion,

Γ(ϕ) =
∫
d6x

[
− U(ϕ)− 1

2
Z(ϕ)∂µϕ∂µϕ+ . . .

]
, (416)

where the ellipses stand for an infinite number of terms with more and more

derivatives, and U(ϕ) and Z(ϕ) are ordinary functions (not functionals) of

ϕ(x). U(ϕ) is called the quantum potential (or effective potential, or quan-

tum effective poential), and it plays an important conceptual role in theories

with spontaneous symmetry breaking; see section 28. However, it is rarely

necessary to compute it explicitly, except in those cases where we are unable

to do so.
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22: Continuous Symmetries and Conserved Currents

Suppose we have a set of scalar fields ϕa(x), and a lagrangian density

L(x) = L(ϕa(x), ∂µϕa(x)). Consider what happens to L(x) if we make an

infinitesimal change ϕa(x) → ϕa(x) + δϕa(x) in each field. We have L(x) →
L(x) + δL(x), where δL(x) is given by the chain rule,

δL(x) =
∂L

∂ϕa(x)
δϕa(x) +

∂L
∂(∂µϕa(x))

∂µδϕa(x) . (417)

Next consider the classical equations of motion (also known as the Euler-

Lagrange equations, or the field equations), given by the action principle

δS

δϕa(x)
= 0 , (418)

where S =
∫
d4yL(y) is the action, and δ/δϕa(x) is a functional derivative.

We have (with repeated indices implicitly summed)

δS

δϕa(x)
=

∫
d4y

δL(y)

δϕa(x)

=
∫
d4y

[
∂L(y)

∂ϕb(y)

δϕb(y)

δϕa(x)
+

∂L(y)

∂(∂µϕb(y))

δ(∂µϕb(y))

δϕa(x)

]

=
∫
d4y

[
∂L(y)

∂ϕb(y)
δbaδ

4(y − x) +
∂L(y)

∂(∂µϕb(y))
δba∂µδ

4(y − x)

]

=
∂L(x)

∂ϕa(x)
− ∂µ

∂L(x)

∂(∂µϕa(x))
. (419)

We can use this result to make the replacement

∂L(x)

∂ϕa(x)
→ ∂µ

∂L(x)

∂(∂µϕa(x))
+

δS

δϕa(x)
δϕa(x) (420)
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in eq. (417). Then, combining two of the terms, we get

δL(x) = ∂µ

(
∂L(x)

∂(∂µϕa(x))
δϕa(x)

)
+

δS

δϕa(x)
δϕa(x) . (421)

Next we define the Noether current

jµ(x) ≡ ∂L(x)

∂(∂µϕa(x))
δϕa(x) . (422)

Eq. (421) then implies

∂µj
µ(x) = δL(x)− δS

δϕa(x)
δϕa(x) . (423)

If the classical field equations are satisfied, then the second term on the

right-hand side of eq. (423) vanishes.

The Noether current plays a special role if we can find a set of infinitesi-

mal field transformations that leaves the lagrangian unchanged, or invariant.

In this case, we have δL = 0, and we say that the lagrangian has a contin-

uous symmetry. From eq. (423), we then have ∂µj
µ = 0 whenever the field

equations are satisfied, and we say that the Noether current is conserved. In

terms of its space and time components, this means that

∂

∂t
j0(x) +∇ · j(x) = 0 . (424)

If we interpret j0(x) as a charge density , and j(x) as the corresponding current

density, then eq. (424) expresses the local conservation of this charge.

Let us see an example of this. Consider a theory of a complex scalar field

with lagrangian

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4
λ(ϕ†ϕ)2 . (425)

We can also rewrite L in terms of two real scalar fields by setting ϕ =

(ϕ1 + iϕ2)/
√

2 to get

L = −1
2
∂µϕ1∂µϕ1 − 1

2
∂µϕ2∂µϕ2 − 1

2
m2(ϕ2

1 + ϕ2
2)− 1

16
λ(ϕ2

1 + ϕ2
2)

2 . (426)

In the form of eq. (425), it is obvious that L is left invariant by the transfor-

mation

ϕ(x) → e−iα ϕ(x) , (427)
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where α is a real number. This is called a U(1) transformation, a transfor-

mation by a unitary 1×1 matrix. In terms of ϕ1 and ϕ2, this transformation

reads (
ϕ1(x)

ϕ2(x)

)
→
(

cosα sinα

− sinα cosα

)(
ϕ1(x)

ϕ2(x)

)
. (428)

If we think of (ϕ1, ϕ2) as a two-component vector, then eq. (428) is just

a rotation of this vector in the plane by angle α. Eq. (428) is called an

SO(2) transformation, a transformation by an orthogonal 2× 2 matrix with

a speical value of the determinant (namely +1, as opposed to −1, the only

other possibility for an orthogonal matrix). We have learned that a U(1)

transformation can be mapped into an SO(2) transformation.

The infinitesimal form of eq. (427) is

ϕ(x) → ϕ(x)− iα ϕ(x) ,

ϕ†(x) → ϕ†(x) + iα ϕ†(x) , (429)

where α is now infinitesimal. In eq. (422), we should treat ϕ and ϕ† as

independent fields. The Noether current is then

jµ =
∂L

∂(∂µϕ)
δϕ+

∂L
∂(∂µϕ†)

δϕ†

=
(
−∂µϕ†

)(
−iαϕ

)
+
(
−∂µϕ

)(
+iαϕ†

)

= α Im
(
ϕ†
↔
∂µϕ

)
, (430)

where A
↔
∂µB ≡ A∂µB − (∂µA)B. It is conventional to drop the infinitesimal

parameter on the right-hand side in the final expression for the Noether

current.

We can also repeat this exercise using the SO(2) form of the transforma-

tion. For infinitesimal α, eq. (428) becomes δϕ1 = +αϕ2 and δϕ2 = −αϕ1.

Then the Noether current is

jµ =
∂L

∂(∂µϕ1)
δϕ1 +

∂L
∂(∂µϕ2)

δϕ2

=
(
−∂µϕ1

)(
+αϕ2

)
+
(
−∂µϕ2

)(
−αϕ1

)

= α
(
ϕ1

↔
∂µϕ2

)
, (431)
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which is (hearteningly) equivalent to eq. (430).

Let us define the total charge

Q ≡
∫
d3x j0(x) =

∫
d3x Im

(
ϕ†
↔
∂0ϕ

)
, (432)

and investigate its properties. If we integrate eq. (424) over d3x, use Gauss’s

law to write the volume integral of ∇·j as a surface integral, and assume that

the boundary conditions at infinity fix j(x) = 0 on that surface, then we find

that Q is constant in time. To get a better idea of the physical implications

of this, let us rewrite Q using the free-field expansions

ϕ(x) =
∫
d̃k
[
a(k)eikx + b∗(k)e−ikx

]
,

ϕ†(x) =
∫
d̃k
[
b(k)eikx + a∗(k)e−ikx

]
. (433)

We have written a∗(k) and b∗(k) rather than a†(k) and b†(k) because so far

our discussion has been about the classical field theory. In a theory with

interactions, these formulae (and their first time derivatives) are valid at any

one particular time (say, t = −∞). Then, we can plug them into eq. (432),

and find (after some manipulation similar to what we did for the hamiltonian

in section 3)

Q =
∫
d̃k
[
a∗(k)a(k)− b(k)b∗(k)

]
. (434)

In the quantum theory, this becomes an operator that counts the number

of a particles minus the number of b particles. This number is then time-

independent, and so the scattering amplitude vanishes identically for any

process that changes the value of Q. This can be seen directly from the

Feynman rules, which conserve Q at every vertex.

To better understand the implications of the Noether current in the

quantum theory, we begin by considering the infinitesimal transformation

ϕa(x) → ϕa(x) + δϕa(x) as a change of integration variable in the path

integral,

Z(J) =
∫
Dϕ ei[S+

∫
d4y Jaϕa] . (435)

As with any integral, its value is unchanged by a change of integration vari-

able. In our case, this change is just a shift, with unit jacobian, and so the
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measure Dϕ is unchanged. Thus we have

0 = δZ(J)

= i
∫
Dϕ ei[S+

∫
d4y Jbϕb]

∫
d4x

(
δS

δϕa(x)
+ Ja(x)

)
δϕa(x) . (436)

Since this is true for arbitrary δϕa(x), we can remove it (and the integral

over d4x) from the right-hand side. We can also take n functional derivatives

with respect to Jaj
(xj), and then set J = 0, to get

0 =
∫
Dϕ eiS

[
i

δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)

+
n∑

j=1

ϕa1(x1) . . . δaaj
δ4(x− xj) . . . ϕan(xn)

]
(437)

= i〈0|T δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)|0〉

+
n∑

j=1

〈0|Tϕa1(x1) . . . δaaj
δ4(x− xj) . . . ϕan(xn)|0〉 . (438)

These are the Schwinger-Dyson equations for the theory.

To get a feel for them, let us look at free-field theory for a single real

scalar field, for which δS/δϕ(x) = (∂2
x −m2)ϕ(x). For n = 1 we get

(−∂2
x +m2)i〈0|Tϕ(x)ϕ(x1)|0〉 = δ4(x− x1) . (439)

That the Klein-Gordon wave operator should sit outside the time-ordered

product (and hence act on the time-ordering step functions) is clear from

the path integral form of eq. (437). We see from eq. (439) that the free-field

propagator, ∆(x − x1) = i〈0|Tϕ(x)ϕ(x1)|0〉, is a Green’s function for the

Klein-Gordon wave operator, a fact we first learned in section 8.

More generally, we can write

〈0|T δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)|0〉 = 0 for x 6= x1,...,n . (440)

We see that the classical equation of motion is satisfied by a quantum field

inside a correlation function, as long as its spacetime argument differs from
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those of all the other fields. When this is not the case, we get extra contact

terms.

Let us return to the Noether current for a theory with a continuous sym-

metry, so that δL = 0. We can now multiply eq. (438) by δϕa(x), sum over

a, and use eq. (423) with δL = 0 to get the Ward identity

0 = ∂µ〈0|Tjµ(x)ϕa1(x1) . . . ϕan(xn)|0〉

+ i
n∑

j=1

〈0|Tϕa1(x1) . . . δϕaj
(x)δ4(x− xj) . . . ϕan(xn)|0〉 . (441)

Thus, conservation of the Noether current holds in the quantum theory, with

the current inside a correlation function, up to contact terms with a specific

form that depends on the details of the infinitesimal transformation that

leaves L invariant.

The Noether current is also useful in a slightly more general context.

Suppose we have a transformation of the fields such that δL(x) is not zero,

but instead is a total divergence: δL(x) = ∂µK
µ(x) for some Kµ(x). Then

there is still a conserved current, now given by

jµ(x) =
∂L(x)

∂(∂µϕa(x))
δϕa(x)−Kµ(x) . (442)

An example of this is provided by the symmetry of spacetime translations.

We transform the fields via ϕa(x) → ϕa(x+ a), where aµ is a constant four-

vector. The infinitesimal version of this is ϕa(x) → ϕa(x) + aν∂νϕa(x), and

so we have δϕa(x) = aν∂νϕa(x). Under this transformation, we obviously

have L(x) → L(x+a), and so δL(x) = aν∂νL(x) = ∂ν(a
νL(x)). Thus in this

case Kν(x) = aνL(x), and the conserved current is

jµ(x) =
∂L(x)

∂(∂µϕa(x))
aν∂νϕa(x)− aµL(x)

= −aνT
µν(x) , (443)

where we have defined the stress-energy or energy-momentum tensor

T µν(x) ≡ − ∂L(x)

∂(∂µϕa(x))
∂νϕa(x) + gµνL(x) . (444)
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For a renormalizable theory of a set of real scalar fields ϕa(x), the la-

grangian takes the form

L = −1
2
∂µϕa∂µϕa − V (ϕ) , (445)

where V (ϕ) is a polynomial in the ϕa’s. In this case

T µν = ∂µϕa∂
νϕa + gµνL . (446)

In particular,

T 00 = 1
2
Π2

a + 1
2
(∇ϕa)

2 + V (ϕ) , (447)

where Πa = ∂0ϕa is the canonical momentum conjugate to the field ϕa.

We recognize T 00 as the hamiltonian density H that corresponds to the la-

grangian density of eq. (445). Then, by Lorentz symmetry, T 0j must be the

corresponding momentum density. We have

T 0j = ∂0ϕa∂
jϕa = −Πa∇jϕa . (448)

If we use the free-field expansion for a set of real scalar fields [the same as

eq. (433) but with b(k) = a(k) for each field], we find that the momentum

operator is given by

P j =
∫
d3x T 0j(x) =

∫
d̃k kj a†a(k)aa(k) . (449)

This formula holds even in an interacting theory, but of course the expression

for the hamiltonian is comparably simple only in a free-field theory. In any

case, we can now identify the energy-momentum four-vector as

P µ =
∫
d3x T 0µ(x) . (450)

Recall that in section 2 we defined the spacetime translation operator as

T (a) ≡ exp(−iP µaµ) , (451)

and announced that it had the property that

T (a)−1ϕ(x)T (a) = ϕ(x− a) . (452)
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Now that we have an explicit formula for P µ, we can check this. This is

easiest to do for infinitesimal aµ, which yields

[ϕ(x), P µ] = 1
i
∂µϕ(x) . (453)

This can indeed be verified by using the canonical commutation relations for

ϕ(x) and Π(x).

One more symmetry we can investigate is Lorentz symmetry. If we make

an infinitesimal Lorentz transformation, we have ϕa(x) → ϕa(x + δω ·x),
where δω·x is shorthand for δων

ρx
ρ. This case is thus very similar to that of

spacetime translations; the only difference is that the translation parameter

aν is now x dependent, aν → δων
ρx

ρ. The resulting conserved current is

Mµνρ(x) = xνT µρ(x)− xρT µν(x) , (454)

and it obeys ∂µMµνρ = 0, with the derivative contracted with the first index.

Mµνρ is antisymmetric on its second two indices; this comes about because

δωνρ is antisymmetric. The conserved charges associated with this current

are

Mνρ =
∫
d3xM0νρ(x) , (455)

and these are the generators of the Lorentz group that were introduced in sec-

tion 3. Again, we can use the canonical commutation relations for the fields

to check that the Lorentz generators have the right commutation relations,

both with the fields and with each other.
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23: Discrete Symmetries: P , T , C, and Z

In section 2, we studied the proper orthochronous Lorentz transforma-

tions, which are continuously connected to the identity. In this section, we

will consider the effects of parity,

Pµ
ν = (P−1)µ

ν =




+1
−1

−1
−1


 . (456)

and time reversal,

T µ
ν = (T −1)µ

ν =




−1
+1

+1
+1


 . (457)

We will also consider certain other discrete transformations that are not

Lorentz transformations, but are usefully treated together.

Recall from section 2 that for every proper orthochronous Lorentz trans-

formation Λµ
ν there is an associated unitary operator U(Λ) with the property

that

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (458)

Thus for parity and time-reversal, we expect that there are corresponding

unitary operators

P ≡ U(P) , (459)

T ≡ U(T ) , (460)

such that

P−1ϕ(x)P = ϕ(Px) , (461)

T−1ϕ(x)T = ϕ(T x) . (462)
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There is, however, an extra possible complication. If we make a second

parity or time-reversal transformation, we get

P−2ϕ(x)P 2 = ϕ(x) , (463)

T−2ϕ(x)T 2 = ϕ(x) , (464)

and so the field returns to itself. Since the field is in principle an observable—

it is a hermitian operator—this is required. However, another possibility,

different from eqs. (461) and (462) but nevertheless consistent with eqs. (463)

and (464), is

P−1ϕ(x)P = −ϕ(Px) , (465)

T−1ϕ(x)T = −ϕ(T x) . (466)

This possible extra minus sign cannot arise for proper orthochronous Lorentz

transformations, because they are continuously connected to the identity, and

for the identity transformation (that is, no transformation at all), we must

obviously have the plus sign.

If the minus sign appears on the right-hand side, we say that the field

is odd under parity (or time reversal). If a scalar field is odd under parity,

we sometimes say that it is a pseudoscalar. [It is still a scalar under proper

orthochronous Lorentz transformations; that is, eq. (458) still holds. Thus

the appellation scalar often means eq. (458), and either eq. (461) or eq. (465),

and that is how we will use the term.]

So, how do we know which is right, eqs. (461) and (462), or eqs. (465)

and (466)? The general answer is that we get to choose, but there is a key

principle to guide our choice: if at all possible, we want to define P and T

so that the lagrangian density is even,

P−1L(x)P = +L(Px) , (467)

T−1L(x)T = +L(T x) . (468)

Then, after we integrate over d4x to get the action S, the action will be

invariant. This means that parity and time-reversal are conserved .

For theories with spin-zero fields only, it is clear that the choice of eqs. (461)

and (462) always leads to eqs. (467) and (468), and so there is no reason to
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flirt with eqs. (465) and (466). For theories that also include spin-one-half

fields, certain scalar bilinears in these fields are necessarily odd under parity

and time reversal, as we will see in section ??. If a scalar field couples to

such a bilinear, then eqs. (467) and (468) will hold if and only if we choose

eqs. (465) and (466) for that scalar, and so that is what we must do.

There is one more interesting fact about the time-reversal operator T : it

is antiunitary, rather than unitary. Antiunitary means that T−1iT = −i.
To see why this must be the case, consider a Lorentz transformation of

the energy-momentum four-vector,

U(Λ)−1P µU(Λ) = Λµ
νP

ν . (469)

For parity and time-reversal, we therefore expect

P−1P µP = Pµ
νP

ν , (470)

T−1P µT = T µ
νP

ν . (471)

In particular, for µ = 0, we expect P−1HP = +H and T−1HT = −H. The

first of these is fine; it says the hamiltonian is invariant under parity, which is

what we want. [It may be that no operator exists that satisfies either eq. (461)

or eq. (465), and also eq. (470); in this case we say that parity is explicitly

broken.] However, eq. (471) is a disaster: it says that the hamiltonian is

invariant under time-reversal if and only if H = −H. This is clearly untrue

for a system whose energy is bounded below and unbounded above, as we

always have in a realistic quantum field theory.

Can we just toss in an extra minus sign on the right-hand side of eq. (471),

as we did for eq. (466)? The answer is no. We constructed P µ explicitly in

terms of the fields in section 22, and it is easy to check that choosing eq. (466)

for the fields does not yield an extra minus sign in eq. (471) for the energy-

momentum four-vector.

Let us reconsider the origin of eq. (469). We can derive it from

U(Λ)−1T (a)U(Λ) = T (Λ−1a) , (472)

where T (a) = exp(−iP ·a) is the spacetime translation operator (not to be

confused with the time-reversal operator!), which transforms the field via
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T (a)−1ϕ(x)T (a) = ϕ(x − a). We can get eq. (472) (up to a possible phase

that turns out to be irrelevant) from

U(Λ)−1T (a)−1U(Λ)ϕ(x)U(Λ)−1T (a)U(Λ)

= U(Λ)−1T (a)−1ϕ(Λx)T (a)U(Λ)

= U(Λ)−1ϕ(Λx− a)U(Λ)

= ϕ(x− Λ−1a)

= T (Λ−1a)−1ϕ(x)T (Λ−1a) . (473)

Now, treat aµ as infinitesimal in eq. (472) to get

U(Λ)−1(I − iaµP
µ)U(Λ) = I − i(Λ−1)ν

µaµP
ν

= I − iΛµ
νaµP

ν . (474)

For time-reversal, this becomes

T−1(I − iaµP
µ)T = I − iT µ

νaµP
ν . (475)

If we now identify the coefficients of −iaµ on each side, we get eq. (471). But,

we will get that extra minus sign that we need if we impose the antiunitary

condition

T−1iT = −i . (476)

And so that is what we must do.

We turn now to other unitary operators that change the signs of scalar

fields, but do nothing to their spacetime arguments. Suppose we have a

theory with real scalar fields ϕa(x), and a unitary operator Z that obeys

Z−1ϕa(x)Z = ηaϕa(x) , (477)

where ηa is either +1 or −1 for each field. We will call Z a Z2 operator,

because Z2 is the additive group of the integers modulo 2, which is equivalent

to the multiplicative group of +1 and −1. This also implies that Z2 = 1, and

so Z−1 = Z. (For theories with spin-zero fields only, the same is also true of

P and T , but things are more subtle for higher spin, as we will see in Parts

II and III.)
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Consider the theory of a complex scalar field ϕ = (ϕ1 + iϕ2)/
√

2 that was

introduced in section 22, with lagrangian

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4
λ(ϕ†ϕ)2 (478)

= −1
2
∂µϕ1∂µϕ1 − 1

2
∂µϕ2∂µϕ2 − 1

2
m2(ϕ2

1 + ϕ2
2)− 1

16
λ(ϕ2

1 + ϕ2
2)

2. (479)

In the form of eq. (478), L is obviously invariant under the U(1) transforma-

tion

ϕ(x) → e−iα ϕ(x) . (480)

In the form of eq. (479), L is obviously invariant under the equivalent SO(2)

transformation,

(
ϕ1(x)

ϕ2(x)

)
→
(

cosα sinα

− sinα cosα

)(
ϕ1(x)

ϕ2(x)

)
. (481)

However, it is also obvious that L has an additional discrete symmetry,

ϕ(x) ↔ ϕ†(x) (482)

in the form of eq. (478), or equivalently

(
ϕ1(x)

ϕ2(x)

)
→
(

+1 0

0 −1

)(
ϕ1(x)

ϕ2(x)

)
. (483)

in the form of eq. (479). This discrete symmetry is called charge conjugation.

It always occurs as a companion to a continuous U(1) symmetry. In terms

of the two real fields, it enlarges the group from SO(2) (the group of 2 ×
2 orthogonal matrices with determinant +1) to O(2) (the group of 2 × 2

orthogonal matrices).

We can implement charge conjugation by means of a particular Z2 oper-

ator C that obeys

C−1ϕ(x)C = ϕ†(x) , (484)

or equivalently

C−1ϕ1(x)C = +ϕ1(x) , (485)

C−1ϕ2(x)C = −ϕ2(x) . (486)
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We then have

C−1L(x)C = L(x) , (487)

and so charge conjugation is a symmetry of the theory. Physically, it implies

that the scattering amplitudes are unchanged if we exchange all the a parti-

cles (which have charge +1) with all the b particles (which have charge −1).

This means, in particular, that the a and b particles must have exactly the

same mass. We say that b is a’s antiparticle.

More generally, we can also have Z2 symmetries that are not related to

antiparticles. Consider, for example, ϕ4 theory, where ϕ is a real scalar field

with lagrangian

L = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 − 1

24
λϕ4 . (488)

If we define the Z2 operator Z via

Z−1ϕ(x)Z = −ϕ(x) , (489)

then L is obviously invariant. We therefore have Z−1HZ = H, or equiva-

lently [Z,H] = 0, where H is the hamiltonian. If we assume that (as usual)

the ground state is unique, then, since Z commutes with H, the ground

state must also be an eigenstate of Z. We can fix the phase of Z [which is

undetermined by eq. (489)] via

Z|0〉 = Z−1|0〉 = +|0〉 . (490)

Then, using eqs. (489) and (490), we have

〈0|ϕ(x)|0〉 = 〈0|ZZ−1ϕ(x)ZZ−1|0〉
= −〈0|ϕ(x)|0〉 . (491)

Since 〈0|ϕ(x)|0〉 is equal to minus itself, it must be zero. Thus, the Z2 symme-

try of ϕ4 theory guarantees that the field has zero vacuum expectation value.

We do not need to enforce this condition with an appropriate counterterm,

as we did in ϕ3 theory.
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24: Unstable Particles and Resonances

Consider a theory of two real scalar fields, ϕ and χ, with lagrangian

L = −1
2
∂µϕ∂µϕ− 1

2
m2

ϕϕ
2 − 1

2
∂µχ∂µχ− 1

2
m2

χχ
2 + 1

2
gϕχ2 + 1

6
hϕ3 , (492)

This theory is renormalizable in six dimensions, where g and h are dimen-

sionless coupling constants.

Let us assume that mϕ > 2mχ. Then it is kinematically possible for the

ϕ particle to decay into two χ particles. The amplitude for this process is

given at tree level by the Feynman diagram of fig. (27), and is simply T = g.

We can also choose to work in an on-shell renormalization scheme in which

T = g exactly. According to the formulae of section 11, the differential decay

rate (in the rest frame of the initial ϕ particle) is

dΓ =
1

2mϕ

dLIPS2 |T |2 , (493)

where dLIPS2 is the Lorentz invariant phase space differential for two out-

going particles, introduced in section 11. We must make a slight adaptation

for six dimensions:

dLIPS2 ≡ (2π)6δ6(k−k′1−k′2) d̃k′1 d̃k′2 . (494)

Here k = (mϕ, 0) is the energy-momentum of the decaying particle, and

d̃k =
d6k

(2π)6
πδ(k2 +m2) (495)

=
d5k

(2π)52ω
(496)

is the Lorentz-invariant phase-space differential for one particle. Repeating

for six dimensions what we did in section 11 for four dimensions, we find

dLIPS2 =
|k′1|3

4(2π)4mϕ
dΩ , (497)
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k1

k2
k

Figure 27: The tree-level Feynman diagram for the decay of a ϕ particle
(dashed line) into two χ particles (solid lines).

where |k′1| = 1
2
(m2

ϕ − 4m2
χ)1/2 is the magnitude of the spatial momentum

of one of the outgoing particles. We can now plug this into eq. (493), and

integrate
∫
dΩ = Ω5 = 2π5/2/Γ(5/2) = 8π2/3. We also need an extra factor

of 1/2, due to the presence of two identical particles in the final state. The

result is

Γ = 1
12
π α

(
1− 4m2

χ/m
2
ϕ

)3/2
mϕ , (498)

where α = g2/(4π)3.

However, as we discussed in section 11, we have a conceptual problem.

According to our development of the LSZ formula in section 5, each incoming

and outgoing particle should correspond to a single-particle state that is an

exact eigenstate of the exact hamiltonian. This is clearly not the case for a

particle that can decay.

Let us, then, compute something else instead: the correction to the ϕ

propagator from a loop of χ particles, as shown in fig. (28). The diagram

is the same as the one we already analyzed in section 14, except that the

internal propagators contain mχ instead of mϕ. (There is also a contribution

from a loop of ϕ particles, but we can ignore it if we assume that h � g.)

We have

Π(k2) = 1
2
α
∫ 1

0
dxD lnD − A′k2 −B′m2 , (499)

where

D = x(1−x)k2 +m2
χ − iε , (500)
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Figure 28: A loop of χ particles correcting the ϕ propagator.

and A′ and B′ are the finite counterterm coefficients that remain after the

infinities have been absorbed. We now try to fix A′ and B′ by imposing the

usual on-shell conditions Π(−m2
ϕ) = 0 and Π′(−m2

ϕ) = 0.

But, we have a problem. For k2 = −m2
ϕ and mϕ > 2mχ, D is negative for

part of the range of x. Therefore lnD has an imaginary part. This imaginary

part cannot be cancelled by A′ and B′, since A′ and B′ must be real: they

are coefficients of hermitian operators in the lagrangian. The best we can do

is Re Π(−m2
ϕ) = 0 and Re Π′(−m2

ϕ) = 0. Imposing these gives

Π(k2) = 1
2
α
∫ 1

0
dxD ln(D/|D0|)− 1

12
α(k2 +m2) , (501)

where

D0 = −x(1−x)m2
ϕ +m2

χ . (502)

Now let us compute the imaginary part of Π(k2). This arises from the inte-

gration range x− < x < x+, where x± = 1
2
± (1

4
−m2

χ/m
2
ϕ)1/2 are the roots

of D0 = 0. In this range, Im lnD = −iπ; the minus sign arises because,

according to eq. (500), D has a small negative imaginary part. Now we have

Im Π(k2) = −1
2
π α

∫ x+

x−
dxD ,

= − 1
12
π α

[(
1 +

2m2
χ

m2
ϕ

)
k2 + 6m2

χ

](
1− 4m2

χ

m2
ϕ

)1/2

. (503)

Evaluating this at k2 = −m2
ϕ, we get

Im Π(−m2
ϕ) = 1

12
π α

(
1− 4m2

χ/m
2
ϕ

)3/2
m2

ϕ . (504)

From this and eq. (498), we see that

Im Π(−m2
ϕ) = mϕΓ . (505)

141



This is not an accident. Instead, it is a general rule. We will argue this

in two ways: first, from the mathematics of Feynman diagrams, and second,

from the physics of resonant scattering in quantum mechanics.

We begin with the mathematics of Feynman diagrams. Return to the

diagramatic expression for Π(k2), before we evaluated any of the integrals:

Π(k2) = −1
2
ig2

∫
d6`

(2π)6

1

`2 +m2 − iε

1

(`−k)2 +m2 − iε

− (Ak2 +Bm2) . (506)

We can take the imaginary part by using the identity

1

x− iε
= P

1

x
+ iπδ(x) , (507)

where P means the principal part. Schematically, we then get

Im Π ∼ −1
2
g2
∫ (

PP − δδ
)
. (508)

One can show (though apparently not easily) that
∫
PP = 1

2

∫
δδ, and so

Im Π(k2) = 1
4
g2
∫

d6`

(2π)6
πδ
(
`2 +m2

)
πδ
(
(`−k)2 +m2

)
. (509)

Now we want to make this look like an integral over dLIPS2. Rename `

as k′1, and introduce a factor of

1 =
∫

d6k′2
(2π)6

(2π)6δ6(k−k′1−k′2) (510)

Then we have

Im Π(k2) = 1
4
g2
∫

d6k′1
(2π)6

d6k′2
(2π)6

(2π)6δ6(k−k′1−k′2)

× πδ
(
k′1

2 +m2
)
πδ
(
k′2

2 +m2
)
. (511)

If we now set k2 = −m2
ϕ, use eqs. (494) and (496), and recall that T = g is

the decay amplitude, we can rewrite eq. (511) as

Im Π(−m2
ϕ) =

1

4

∫
dLIPS2 |T |2 . (512)
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Figure 29: χχ scattering with an intermediate ϕ propagator in the s-channel.

Comparing eqs. (493) and (512), we see that we indeed have

Im Π(−m2
ϕ) = mϕΓ . (513)

This relation can be proven to hold to all orders in perturbation theory by us-

ing Cutkosky’s cutting rules for evalutating the imaginary parts of Feynman

diagrams.

To get a more physical understanding of this result, recall that in nonrel-

ativistic quantum mechanics, a metastable state with energy E0 and angular

momentum quantum number ` shows up as a resonance in the partial-wave

scattering amplitude,

f`(E) ∼ 1

E − E0 + iΓ/2
. (514)

If we imagine convolving this amplitude with a wave packet ψ̃(E)e−iEt, we

will find a time dependence

ψ(t) ∼
∫
dE

1

E − E0 + iΓ/2
ψ̃(E)e−iEt

∼ e−iE0t−Γt/2 . (515)

Therefore |ψ(t)|2 ∼ e−Γt, and we identify Γ as the inverse lifetime of the

metastable state.

In the relativistic case, consider the scattering χχ → χχ with an inter-

mediate ϕ propagator, as shown in fig. (29). In this case we have

T =
g2

−s+m2
ϕ − Π(−s) + (s↔ t) + (s↔ u) . (516)
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Suppose we tune the center-of-mass energy squared s to be close to m2
ϕ: let

s = (mϕ + ε)2 ' m2
ϕ + 2mϕε , (517)

where ε� mϕ is the amount of energy by which our incoming particles are

off resonance. We then have

T ' −g2/2mϕ

ε+ Π(−m2
ϕ)/2mϕ

. (518)

Recalling that ReΠ(−m2
ϕ) = 0, and comparing with eq. (514), we see that

we should make the identification of eq. (513).
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25: Infrared Divergences

In section 20, we computed the ϕϕ → ϕϕ scattering amplitude in φ3

theory in six dimensions in the high-energy limit (s, |t|, and |u| all much

larger than m2). We found that

T = T0

[
1− 11

12
α
(
ln(s/m2) +O(1)

)
+O(α2)

]
, (519)

where T0 = −g2(s−1 + t−1 + u−1) is the tree-level result, and the O(1) term

includes everything without a large logarithm that blows up in the limit

m→ 0. [In writing T in this form, we have traded factors of ln t and ln u for

ln s by first using ln t = ln s + ln(t/s), and then hiding the ln(t/s) terms in

the O(1) catchall.]

Suppose we are interested in the limit of massless particles. The large log

is then problematic, since it blows up in this limit. What does this mean?

It means we have made a mistake. Actually, two mistakes. In this section,

we will remedy one of them.

Throughout the physical sciences, it is necessary to make various ideal-

izations of problems in order to make progress (recall the “massless springs”

and “frictionless planes” of freshman mechanics). Sometimes these idealiza-

tions can lead us into trouble, and that is one of the things that has gone

wrong here.

We have assumed that we can isolate individual particles. The reason-

ing behind this was carefully explained in section 5. However, our reasoning

breaks down in the massless limit. In this case, it is possible that the scat-

tering process involved the creation of some extra very low energy (or soft)

particles that escaped detection. Or, there may have been some extra soft

particles hiding in the initial state that discreetly participated in the scatter-

ing process. Or, what was seen as a single high-energy particle may actually
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k1

k2k

Figure 30: An outgoing particle splits into two. The gray circle stands for
the sum of all diagrams contributing to the original amplitude iT .

have been two or more particles that were moving colinearly and sharing the

energy.

Let us, then, correct our idealization of a perfect detector and account

for these possibilities. We will work with ϕ3 theory, initially in d spacetime

dimensions.

Let T be the amplitude for some scattering process in ϕ3 theory. Now

consider the possibility that one of the outgoing particles in this process splits

into two, as shown in fig. (30). The amplitude for this new process is given

in terms of T by

Tsplit = ig
−i

k2 +m2
T , (520)

where k = k1 + k2, and k1 and k2 are the on-shell four-momenta of the

two particles produced by the split. (For notational convenience, we drop

our usual primes on the outgoing momenta.) The key point is this: in the

massless limit, it is possible for 1/(k2 +m2) to diverge.

To understand the physical consequences of this possibility, we should

compute an appropriate cross-section. To get the cross section for the original
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process (without the split), we multiply |T |2 by d̃k (as well as by similar

differentials for other outgoing particles, and by an overall energy-momentum

delta function). For the process with the split, we multiply |Tsplit|2 by 1
2
d̃k1d̃k2

instead of d̃k. (The factor of one-half is for counting of identical particles.) If

we assume that (due to some imperfection) our detector cannot tell whether

or not the one particle actually split into two, then we should (according

to the usual rules of quantum mechanics) add the probabilities for the two

events, which are distinguishable in principle. We can therefore define an

effectively observable squared-amplitude via

|T |2obs d̃k = |T |2 d̃k + |Tsplit|2 1
2
d̃k1d̃k2 + . . . . (521)

Here the ellipses stand for all other similar processes involving emission of

one or more extra particles in the final state, or absorption of one or more

extra particles in the initial state. We can simplify eq. (521) by including a

factor of

1 = (2π)d−1 2ω δd−1(k1+k2−k) d̃k (522)

in the second term. Now all terms in eq. (521) include a factor of d̃k, so we

can drop it. Then, using eq. (520), we get

|T |2obs ≡ |T |2
[
1 +

g2

(k2 +m2)2
(2π)d−1 2ω δd−1(k1+k2−k) 1

2
d̃k1d̃k2 + . . .

]
.

(523)

Now we come to the point: in the massless limit, the phase space integral in

the second term in eq. (523) can diverge. This is because, for m = 0,

k2 = (k1 + k2)
2 = −4ω1ω2 sin2(θ/2) , (524)

where θ is the angle between the three-momenta k1 and k2, and ω1,2 = |k1,2|.
Also, for m = 0,

d̃k1d̃k2 ∼ (ωd−3
1 dω1) (ωd−3

2 dω2) (sind−3 θ dθ) . (525)

Therefore, for small θ,

d̃k1d̃k2

(k2)2
∼ dω1

ω5−d
1

dω2

ω5−d
2

dθ

θ7−d
. (526)
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Thus the integral over each ω diverges at the low end for d ≤ 4, and the

integral over θ diverges at the low end for d ≤ 6. These divergent integrals

would be cut off (and rendered finite) if we kept the mass m nonzero, as we

will see below.

Our discussion leads us to expect that the m → 0 divergence in the

second term of eq. (523) should cancel the m → 0 divergence in the loop

correction to |T |2. We will now see how this works (or fails to work) in detail

for the familiar case of two-particle scattering in six spacetime dimensions,

where T is given by eq. (519). For d = 6, there is no problem with soft

particles (corresponding to the small-ω divergence), but there is a problem

with colinear particles (corresponding to the small-θ divergence).

Let us assume that our imperfect detector cannot tell one particle from

two nearly colinear particles if the angle θ between their three-momenta is

less than some small angle δ. Since we ultimately want to take the m → 0

limit, we will evaluate eq. (523) with m2/k2 � δ2 � 1.

We can immediately integrate over d5k2 using the delta function, which

results in setting k2 = k−k1 everywhere. Let α then be the angle between k1

(which is still to be integrated over) and k (which is fixed). For two-particle

scattering, |k| = 1
2

√
s in the limit m→ 0. We then have

(2π)5 2ω δ5(k1+k2−k) 1
2
d̃k1d̃k2 →

Ω4

4(2π)5

ω

ω1ω2
|k1|4 d|k1| sin3α dα , (527)

where Ω4 = 2π2 is the area of the unit four-sphere. Now let β be the angle

between k2 and k. The geometry of this trio of vectors implies θ = α + β,

|k1| = (sin β/sin θ)|k|, and |k2| = (sinα/sin θ)|k|. All three of the angles are

small and positive, and it then is useful to write α = xθ and β = (1−x)θ,
with 0 ≤ x ≤ 1 and θ ≤ δ � 1.

In the low mass limit, we can safely set m = 0 everywhere in eq. (523)

except in the propagator, 1/(k2 +m2). Then, expanding to leading order in

both θ and m, we find (after some algebra)

k2 +m2 ' −x(1−x)k2
[
θ2 + (m2/k2)f(x)

]
, (528)

where f(x) = (1−x+x2)/(x−x2)2. Everywhere else in eq. (523), we can

safely set ω1 = |k1| = (1−x)|k| and ω2 = |k2| = x|k|. Then, changing the
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integration variables in eq. (527) from |k1| and α to x and θ, we get

|T |2obs = |T |2
[
1 +

g2Ω4

4(2π)5

∫ 1

0
x(1−x)dx

∫ δ

0

θ3 dθ

[θ2 + (m2/k2)f(x)]2
+ . . .

]
.

(529)

Performing the integral over θ yields

1
2
ln
(
δ2k2/m2

)
− 1

2
ln f(x)− 1

2
, (530)

and so

|T |2obs = |T |2
[
1 + 1

12
α
(
ln(δ2k2/m2) + c

)
+ . . .

]
, (531)

where c = (4− 3
√

3π)/36 = −0.3423.

The displayed correction term accounts for the possible splitting of one of

the two outgoing particles. Obviously, there is an identical correction for the

other outgoing particle. Less obviously (but still true), there is an identical

correction for each of the two incoming particles. (A glib explanation is that

we are computing an effective amplitude-squared, and this is the same for

the reverse process, with in and outgoing particles switched. So in and out

particles should be treated symmetrically.) Then, since we have a total of

four in and out particles (before accounting for any splitting),

|T |2obs = |T |2
[
1 + 4

12
α
(
ln(δ2k2/m2) + c

)
+O(α2)

]
. (532)

We have now accounted for the O(α) corrections due to the failure of our

detector to separate two particles whose three-momenta are nearly parallel.

Combining this with eq. (519), and recalling that k2 = 1
4
s, we get

|T |2obs = |T0|2
[
1− 11

6
α
(
ln(s/m2) +O(1)

)]

×
[
1 + 1

3
α
(
ln(s/m2)− ln(1/δ2) +O(1)

)]

= |T0|2
[
1− α

(
3
2
ln(s/m2) + 1

3
ln(1/δ2) +O(1)

)]
. (533)

We now have two kinds of large logs. One is ln(1/δ2); this factor depends

on the properties of our detector. If we build a very good detector, one

for which α ln(1/δ2) is not small, then we will have to do more work, and

calculate higher-order corrections to eq. (533).
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The other large log is our original nemesis ln(s/m2). This factor blows

up in the massless limit. This means that there is still a mistake hidden

somewhere in our analysis.
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26: Other Renormalization Schemes

To find the remaining mistake in eq. (533), we must review our renor-

malization procedure. Recall our result from section 14 for the one-loop

correction to the propagator,

Π(k2) = −
[
A + 1

12
α
(

2
ε + 1

)]
k2 −

[
B + 1

2
α
(

2
ε + 1

)]
m2

+ 1
2
α
∫ 1

0
dxD ln(D/µ2) +O(α2) , (534)

where D = x(1−x)k2+m2. The derivative of Π(k2) with respect to k2 is

Π′(k2) = −
[
A + 1

12
α
(

2
ε + 1

)]

+ 1
2
α
∫ 1

0
dx x(1− x)

[
ln(D/µ2) + 1] +O(α2) . (535)

We previously determined A and B via the requirements Π(−m2) = 0 and

Π′(−m2) = 0. The first condition ensures that the exact propagator ∆(k2)

has a pole at k2 = −m2, and the second ensures that the residue of this pole

is one. Recall that the field must be normalized in this way for the validity

of the LSZ formula.

We now consider the massless limit. We have D = x(1−x)k2, and we

should apparently try to impose Π(0) = Π′(0) = 0. However, Π(0) is now

automatically zero for any values of A and B, while Π′(0) is ill defined.

The only way out of this difficulty is to change the renormalization

scheme. Let us first see what this means in the case m 6= 0, where we

know what we are doing.

Let us try a different choice of A and B. Specifically, let

A = −1
6
α 1
ε +O(α2) ,

B = −α 1
ε +O(α2) . (536)
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Here we have chosen A and B to cancel the infinities, and nothing more;

we say that A and B have no finite parts. This choice represents a differ-

ent renormalization scheme. Our original choice (which, up until now, we

have pretended was inevitable!) is called the on-shell or OS scheme. The

choice of eq. (536) is called the modified minimal-subtraction or MS (pro-

nounced “emm-ess-bar”) scheme. [“Modified” because we introduced µ via

g → g µ̃ε/2, with µ =
√

4π e−γ/2 µ̃; had we set µ = µ̃ instead, the scheme

would be just plain minimal subtraction or MS.] Now we have

ΠMS(k
2) = − 1

12
α(k2 + 6m2) + 1

2
α
∫ 1

0
dxD ln(D/µ2) +O(α2) , (537)

as compared to our old result in the on-shell scheme,

ΠOS(k
2) = − 1

12
α(k2 +m2) + 1

2
α
∫ 1

0
dxD ln(D/D0) +O(α2) , (538)

where again D = x(1−x)k2+m2, and D0 = [−x(1−x)+1]m2. Notice that

ΠMS(k
2) has a well-defined m → 0 limit, whereas ΠOS(k

2) does not. On the

other hand, ΠMS(k
2) depends explicitly on the fake parameter µ, whereas

ΠOS(k
2) does not.

What does this all mean?

First, in the MS scheme, the propagator ∆MS(k
2) will no longer have a

pole at k2 = −m2. The pole will be somewhere else. However, by definition,

the actual physical mass mph of the particle is determined by the location of

this pole: k2 = −m2
ph. Thus, the lagrangian parameter m is no longer the

same as mph.

Furthermore, the residue of this pole is no longer one. Let us call the

residue R. The LSZ formula must now be corrected by multiplying its right-

hand side by a factor of R−1/2 for each external particle (incoming or outgo-

ing). This is because it is the field R−1/2ϕ(x) that now has unit amplitude

to create a one-particle state.

Note also that, in the LSZ formula, each Klein-Gordon wave operator

should be −∂2 +m2
ph, and not −∂2 +m2; also, each external four-momentum

should square to −m2
ph, and not −m2. A review of the derivation of the LSZ

formula clearly shows that each of these mass parameters must be the actual

particle mass, and not the parameter in the lagrangian.
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Finally, in the LSZ formula, each external line will contribute a factor of

R when the associated Klein-Gordon wave operator hits the external prop-

agator and cancels its momentum-space pole, leaving behind the residue R.

Combined with the correction factor of R−1/2 for each field, we get a net

factor of R1/2 for each external line when using the MS scheme. Internal

lines each contribute a factor of (−i)/(k2 +m2), where m is the lagrangian-

parameter mass, and each vertex contributes a factor of ig, where g is the

lagrangian-parameter coupling.

Let us now compute the relation between m and mph, and then com-

pute R. We have ∆MS(k
2)−1 = k2 + m2 − ΠMS(k

2), and, by definition,

∆MS(−m2
ph) = 0. So we find

m2
ph = m2 − ΠMS(−m2

ph) . (539)

Since ΠMS(k
2) is O(α), we see that the difference between m2

ph and m2 is

O(α). Therefore, on the right-hand side, we can replace m2
ph with m2, and

only make an error of O(α2). Thus

m2
ph = m2 − ΠMS(−m2) +O(α2) . (540)

Working this out, we get

m2
ph = m2 + 1

2
α
[
−1

6
m2 +m2 −

∫ 1

0
dxD0 ln(D0/µ

2)
]

+O(α2) , (541)

where D0 = [1−x(1−x)]m2. Doing the integrals yields

m2
ph = m2

[
1 + 5

12
α
(
ln(µ2/m2) + c′

)
+O(α2)

]
. (542)

where c′ = (34− 3π
√

3)/15 = 1.178.

Now, physics should be independent of the fake parameter µ. However,

the right-hand side of eq. (542) depends explicitly on µ. It must, be, then,

that m and α take on different numerical values as µ is varied, in just the

right way to leave physical quantities (like mph) unchanged.

We can use this information to find differential equations that tell us how

m and α change with µ. For example, take the logarithm of eq. (542):

lnmph = lnm+ 5
12
α
(
ln(µ/m) + 1

2
c′
)

+O(α2) . (543)
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Now differentiate with respect to lnµ and require mph to remain fixed:

0 =
d

d lnµ
lnmph

=
1

m

dm

d lnµ
+ 5

12
α +O(α2) . (544)

To get the second line, we had to assume that dα/d lnµ = O(α2), which

we will verify shortly; we also used dm/d lnµ = O(α), which is implied by

eq. (544) itself. Thus we have

dm

d lnµ
=
(
− 5

12
α +O(α2)

)
m . (545)

The factor in large parentheses on the right is called the anomalous dimension

of the mass parameter, and it is often given the name γm(α).

Turning now to the residue R, we have

R−1 = 1− Π′
MS

(−m2
ph)

= 1− Π′
MS

(−m2) +O(α2)

= 1 + 1
12
α
(
ln(µ2/m2) + c′′

)
+O(α2) , (546)

where c′′ = (17− 3− π −
√

3)/3 = 0.2253.

We can also use MS to define the vertex function. We take

C = −α 1
ε +O(α2) , (547)

and so

V3,MS(k1, k2, k3) = g
[
1− 1

2
α
∫
dF3 ln(D/µ2) +O(α2)

]
(548)

where D = xyk2
1 + yzk2

2 + zxk2
3 +m2.

Let us now compute the ϕϕ→ ϕϕ scattering amplitude in our fancy new

renormalization scheme. In the low-mass limit, repeating the steps that led

to eq. (519), and including the LSZ correction factor (R1/2)4, we get

T = R2 T0

[
1− 11

12
α
(
ln(s/µ2) +O(1)

)]
, (549)
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where T0 = g2(s−1 + t−1 + u−1) is the tree-level result. Now using R from

eq. (546), we find

T = T0

[
1− α

(
11
12

ln(s/µ2) + 1
6
ln(µ2/m2) +O(1)

)]
. (550)

To get an observable amplitude-squared with an imperfect detector, we must

square eq. (550) and multiply it by the correction factor we derived in section

25,

|T |2obs = |T |2
[
1 + 1

3
α
(
ln(δ2s/m2) +O(1)

)
+O(α2)

]
. (551)

Combining this with eq. (550), we get

|T |2obs = |T0|2
[
1− α

(
3
2
ln(s/µ2) + 1

3
ln(1/δ2) +O(1)

)]
. (552)

All factors of lnm2 have disappeared! This expression thus has a well-defined

m→ 0 limit.

Of course, µ is still a fake parameter, and so |T |2obs cannot depend on it.

It must be, then, that the explicit dependence on µ in eq. (552) is canceled

by the implicit µ dependence of α. We can use this information to figure out

how α must vary with µ. Noting that |T0|2 = O(g4) = O(α2), we have

ln |T |2obs = C1 + 2 lnα + 3α(lnµ+ C2) +O(α2) , (553)

where C1 and C2 are independent of µ and α (but depend on the Mandelstam

variables). Differentiating with respect to lnµ then gives

0 =
d

d lnµ
ln |T |2obs

=
2

α

dα

d lnµ
+ 3α+O(α2) , (554)

or, after rearranging,
dα

d lnµ
= −3

2
α2 +O(α3) . (555)

The right-hand side of this equation is called the beta function.

Returning to eq. (552), we are free to choose any convenient value of µ

that we might like. To avoid introducing unnecessary large logs, we should

choose µ2 ∼ s.
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To compare the results at different values of s, we need to solve eq. (555).

Keeping only the leading term in the beta function, the solution is

α(µ2) =
α(µ1)

1 + 3
2
α(µ1) ln(µ2/µ1)

. (556)

Thus, as µ increases, α(µ) decreases. A theory with this property is said

to be asymptotically free. In this case, the tree-level approximation (in the

MS scheme with µ2 ∼ s) becomes better and better at higher and higher

energies.

Of course, the opposite is true as well: as µ decreases, α(µ) increases.

As we go to lower and lower energies, the theory becomes more and more

strongly coupled.

If the particle mass is nonzero, this process stops at µ ∼ m. This is

because the minimum value of s is 4m2, and so the factor of ln(s/µ2) becomes

an unwanted large log for µ � m. We should therefore not use values of µ

below m. Perturbation theory is still good at these low energies if α(m) � 1.

If the particle mass is zero, α(µ) continues to increase at lower and lower

energies, and eventually perturbation theory breaks down. This is a signal

that the low-energy physics may be quite different from what we expect on

the basis of a perturbative analysis.

In the case of ϕ3 theory, we know what the correct low-energy physics

is: the perturbative ground state is unstable against tunneling through the

potential barrier, and there is no true ground state. Asymptotic freedom is,

in this case, a signal of this impending disaster.

Much more interesting is asymptotic freedom in a theory that does have

a true ground state, such as QCD4. In this example, the particle excitations

are colorless hadrons, rather than the quarks and gluons we would expect

from examining the lagrangian.

If the sign of the beta function is positive, then the theory is infrared

free. The coupling increases as µ increases, and, at sufficiently high energy,

perturbation theory breaks down. On the other hand, the coupling decreases

as we go to lower energies. Once again, though, we should stop this process

at µ ∼ m if the particles have nonzero mass. QED4 with massive electrons

(but, of course, massless photons) is in this category.
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Still more complicated behaviors are possible if the beta function has a

zero at a nonzero value of α. We briefly consider this case in the next section.

157



Notes on Quantum Field Theory Mark Srednicki

27: Formal Development of the Renormalization Group

In section 26 we introduced the MS renormalization scheme, and used the

fact that physical observables must be independent of the fake parameter µ

to figure out how the lagrangian parameters m and g must change with

µ. In this section we re-derive these results from a much more formal (but

calculationally simpler) point of view, and see how they extend to all orders

of perturbation theory.

Let us recall the lagrangian of our theory, and write it in two different

ways:

L = lim
ε→0

[
−1

2
Zϕ ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 + 1
6
Zg g µ̃

ε/2 ϕ3 + Y ϕ
]

(557)

and

L = −1
2
∂µϕ0∂µϕ0 − 1

2
m2

0ϕ
2
0 + 1

6
g0ϕ

3
0 + Y0ϕ0 . (558)

The fields and parameters in eq. (557) are the renormalized fields and param-

eters. (And in particular, they are renormalized using the MS scheme, with

µ =
√

4πe−γ/2µ̃.) The fields and parameters in eq. (558) are the bare fields

and parameters. Comparing eqs. (557) and (558) gives us the relationships

between them:

ϕ0(x) = Z−1/2
ϕ ϕ(x) , (559)

m0 = Z−1/2
ϕ Z1/2

m m , (560)

g0 = Z−3/2
ϕ Zg µ̃

ε/2 g . (561)

Recall that, after using dimensional regularization, the infinities coming

from loop integrals take the form of inverse powers of ε = 6− d. In the MS

renormalization scheme, we choose the Z’s to cancel off these powers of 1/ε,
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Figure 31: O(g4) corrections to Π(k2).

and nothing more. Therefore the Z’s can be written as

Zϕ = 1 +
∞∑

n=1

an(α)

εn
, (562)

Zm = 1 +
∞∑

n=1

bn(α)

εn
, (563)

Zg = 1 +
∞∑

n=1

cn(α)

εn
. (564)

Computing ΠMS(k
2) and V3,MS(k1, k2, k3) in perturbation theory gives us

Talyor series in α for an(α), bn(α), and cn(α). So far we have found

a1(α) = −1
6
α +O(α2) , (565)

b1(α) = −α +O(α2) , (566)

c1(α) = −α +O(α2) , (567)

and that an(α), bn(α), and cn(α) are all at least O(α2) for n ≥ 2.

We now argue that an(α), bn(α), and cn(α) each begins with a term of

order αn. To see this, consider the two-loop corrections to ΠMS(k
2) shown in

fig. (31). The first two diagrams just give ∆MS(`
2), computed to one loop,

on one of the propagators. At large `2, ∆MS(`
2) ∼ g2 ln(`2/µ2)/`2. Then

the remaining loop integral will yield a contributions ΠMS(k
2) of the form

(g4/ε)(k2 or m2) ln(k2/µ2).

Such contributions to ΠMS(k
2) must be cancelled by some other contribu-

tion. This is because structures like k2 ln k2 or m2 ln k2 cannot be reproduced

by any simple counterterm in the lagrangian, and certainly not by adjusting
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the values of A and B. If these dangerous terms are not cancelled, the theory

is nonrenormalizable.

A cancelling contribution, then, must come from the last diagram in

fig. (31). This diagram has the form (gµε/2)4×integrals, and the only way it

can yield a term like (g4/ε)(k2 or m2) ln(k2/µ2) is if the integrals produce a

1/ε2. Therefore, they must. (This can, of course, be checked explicitly.) Now,

however, the last diagram also makes a contribution like (g4/ε2)(k2 or m2),

and this must be cancelled by adjusting A and B. Thus a2(α) and b2(α)

must have terms of order α2. A similar argument can be made for c2(α).

This argument can now be iterated to show that, at the three-loop level,

a diagram that of the form (gµε/2)6×integrals must cancel a contribution like

(g6/ε2)(k2 or m2) ln(k2/µ2). Therefore the integrals must result in a 1/ε3.

And so on.

Next we turn to the trick we will employ to compute the beta function

for α, the anomalous dimension of m, and other useful things. This is the

trick: bare fields and parameters must be independent of µ.

Why is this so? Recall that we introduced µ when we found that we had

to regularize the theory to avoid infinities in the loop integrals of Feynman

diagrams. We argued at the time (and ever since) that physical quantities

had to be independent of µ. Thus µ is not really a parameter of the theory,

but just a crutch that we had to introduce at an intermediate stage of the

calculation. In principle, the theory is completely specified by the values of

the bare fields and parameters, and, if we were smart enough, we would be

able to compute the exact scattering amplitudes in terms of them, without

ever introducing µ. Therefore, the bare parameters must be independent of

µ.

Let us start with g0. It is convenient to define

α0 ≡ g2
0/(4π)3 = Z2

g Z
−3
ϕ µ̃ε α , (568)

and also

G(α, ε) ≡ ln
(
Z2

gZ
−3
ϕ

)

=
∞∑

n=1

Gn(α)

εn
, (569)
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where Gn(α) begins with a term of order αn. From eqs. (565) and (567) we

have

G1(α) =
(
2(−1)− 3(− 1

6
)
)
α +O(α2)

= −3
2
α +O(α2) . (570)

The logarithm of eq. (568) can now be written as

lnα0 = G(α, ε) + lnα + ε ln µ̃ . (571)

Next, differentiate with respect to lnµ, and require that α0 be independent

of it:

0 =
d

d lnµ
lnα0

=
∂G(α, ε)

∂α

dα

d lnµ
+

1

α

dα

d lnµ
+ ε . (572)

Rearranging, we find
dα

d lnµ
=

−εα
1 + α ∂G/∂α

. (573)

From eq. (569), we have

α
∂G(α, ε)

∂α
=
∞∑

n=1

αG′n(α)

εn
. (574)

Next, we formally Taylor expand the denominator of eq. (573) in powers of

α. Since αG′n(α) starts at O(αn), we get

dα

d lnµ
= −εα

(
1− αG′1(α)

ε
+
α2G′1(α)2 − αG′2(α)

ε2
+ . . .

)

= −εα + α2G′1(α) + . . . . (575)

In the last line, the ellipses stand for all terms that have powers of 1/ε. These

terms obviously blow up in the ε→ 0 limit. Therefore, dα/d lnµ appears to

be infinite in this limit.
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On the other hand, this cannot be correct in a renormalizable theory, since

dα/d lnµ is the rate at which α must change to compensate for a small change

in lnµ. It does not make sense for this rate to be infinite, if compensation is

possible at all. Therefore, all the badly-behaved terms on the right-hand side

of eq. (575) must add up to exactly zero. Thus, for example, it must be that

G′2(α) = αG′1(α)2. This seems incredible, but in fact it is just a reflection of

the cancellation of the ln k2 terms among different Feynman diagrams. It is,

in any case, straightforward enough to check order by order in perturbation

theory.

Assuming this to be true, we have, in the ε→ 0 limit,

dα

d lnµ
≡ β(α) = +α2G′1(α) . (576)

Then, using eq. (570), we get

β(α) = −3
2
α2 +O(α3) . (577)

Hearteningly, this is the same result we found in section 26 by requiring the

observed scattering cross section |T |2obs to be independent of µ. However,

simply as a matter of practical calculation, it is much easier to compute

G1(α) than it is to compute |T |2obs.

Next consider the invariance of m0. We begin by defining

M(α, ε) ≡ ln
(
Z1/2

m Z−1/2
ϕ

)

=
∞∑

n=1

Mn(α)

εn
. (578)

From eqs. (565) and (567) we have

M1(α) =
(

1
2
(−1)− 1

2
(−1

6
)
)
α +O(α2)

= − 5
12
α +O(α2) . (579)

Then, from eq. (560), we have

lnm0 = M(α, ε) + lnm . (580)
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Take the derivative with respect to lnµ and require m0 to be unchanged:

0 =
d

d lnµ
lnm0

=
∂M(α, ε)

∂α

dα

d lnµ
+

1

m

dm

d lnµ
.

=
∂M(α, ε)

∂α

(
−εα + β(α)

)
+

1

m

dm

d lnµ
. (581)

Rearranging, we find

1

m

dm

d lnµ
=

(
εα− β(α)

) ∞∑

n=1

M ′n(α)

εn

= +αM ′1(α) + . . . , (582)

where the ellipses stand for terms with powers of 1/ε. It does not make sense

(in a renormalizable theory) for dm/d lnµ to be infinite, and so these terms

must actually all be zero. Therefore,

1

m

dm

d lnµ
= +αM ′1(α)

= − 5
12
α +O(α2) (583)

Comfortingly, this is just what we found in section 26.

Let us now consider the propagator in the MS renormalization scheme,

∆(k2) = i
∫
d6x eikx〈0|Tϕ(x)ϕ(0)|0〉 . (584)

(We omit the MS subscript for notational simplicity.) The bare propagator,

∆0(k
2) = i

∫
d6x eikx〈0|Tϕ0(x)ϕ0(0)|0〉 , (585)

should be (by the now-familiar argument) independent of µ. The bare and

renormalized propagators are related by

∆0(k
2) = Zϕ ∆(k2) . (586)
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Taking the logarithm and differentiating with respect to lnµ, we get

0 =
d

d lnµ
ln∆0(k

2)

=
d

d lnµ
lnZϕ +

d

d lnµ
ln∆(k2)

=
∂ lnZϕ

∂α

dα

d lnµ

+
1

∆(k2)

(
∂

∂ lnµ
+

dα

d lnµ

∂

∂α
+

dm

d lnµ

∂

∂m

)
∆(k2). (587)

We can write

lnZϕ =
a1(α)

ε
+
a2(α)− 1

2
a2

1(α)

ε2
+ . . . . (588)

Then we have

∂ lnZϕ

∂α

dα

d lnµ
=

(
a′1(α)

ε
+ . . .

)(
−εα + β(α)

)

= −αa′1(α) + . . . , (589)

where the ellipses in the last line stand for terms with powers of 1/ε. Since

∆(k2) should vary smoothly with µ, these must all be zero. We then define

the anomalous dimension of the field γϕ(α) via

2γϕ(α) ≡ −αa′1(α)

= +1
6
α+O(α2) . (590)

Eq. (587) can now be written as

(
∂

∂ lnµ
+ β(α)

∂

∂α
+ γm(α)m

∂

∂m
+ 2γϕ(α)

)
∆(k2) = 0 (591)

in the ε→ 0 limit. This is the Callan-Symanzik equation for the propagator.

The Callan-Symanzik equation is most interesting in the massless limit,

and for a theory with a zero of the beta function at a nonzero value of α.

164



So, let us suppose that β(α∗) = 0 for some α∗ 6= 0. Then, for α = α∗ and

m = 0, the Callan-Symanzik equation becomes

(
∂

∂ lnµ
+ 2γϕ(α∗)

)
∆(k2) = 0 . (592)

The solution is

∆(k2) =
C(α∗)

k2

(
µ2

k2

)−γϕ(α∗)

, (593)

where C(α∗) is an integration constant. (We used the fact that ∆(k2) has

mass dimension −2 to get the k2 dependence in addition to the µ depen-

dence.) Thus the naive scaling law ∆(k2) ∼ k−2 is changed to ∆(k2) ∼
k−2[1−γϕ(α∗)]. This has applications in the theory of critical phenomena, which

is beyond the scope of this book.
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28: Spontaneous Symmetry Breaking

Consider ϕ4 theory, where ϕ is a real scalar field with lagrangian

L = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 − 1

24
λϕ4 . (594)

As we discussed in section 23, this theory has a Z2 symmetry: L is invariant

under ϕ(x) → −ϕ(x), and we can define a unitary operator Z that imple-

ments this:

Z−1ϕ(x)Z = −ϕ(x) . (595)

We also have Z2 = 1, and so Z−1 = Z. Since unitarity implies Z−1 = Z†,

this makes Z hermitian as well as unitary.

Now suppose that the parameter m2 is, in spite of its name, negative

rather than positive. We can write L in the form

L = −1
2
∂µϕ∂µϕ− V (ϕ) , (596)

where the potential is

V (ϕ) = 1
2
m2ϕ2 + 1

24
λϕ4

= 1
24
λ(ϕ2 − v2)2 − 1

24
λv4 . (597)

In the second line, we have defined

v ≡ +(6|m2|/λ)1/2 . (598)

We can (and will) drop the last, constant, term in eq. (597). From eq. (597)

it is clear that there are two classical field configurations that minimize the

energy: ϕ(x) = +v and ϕ(x) = −v. This is in contrast to the usual case

of positive m2, for which the minimum-energy classical field configuration is

ϕ(x) = 0.
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We can expect that the quantum theory will follow suit. For m2 < 0,

there will be two ground states, |0+〉 and |0−〉, with the property that

〈0+|ϕ(x)|0+〉 = +v ,

〈0−|ϕ(x)|0−〉 = −v , (599)

up to quantum corrections from loop diagrams that we will treat in detail in

section 29. These two ground states are exchanged by the operator Z,

Z|0+〉 = |0−〉 , (600)

and they are orthogonal: 〈0+|0−〉 = 0.

This last claim requires some comment. Consider a similar problem in

quantum mechanics,

H = 1
2
p2 + 1

24
λ(x2 − v2)2 . (601)

We could find two approximate ground states in this case, specified by the

approximate wave functions

ψ±(x) = 〈x|0±〉 ∼ exp[−ω(x∓ v)2/2] , (602)

where ω = (λv2/3)1/2 is the frequency of small oscillations about the mini-

mum. However, the true ground state would be a symmetric linear combi-

nation of these. The antisymmetric linear combination would have a slightly

higher energy, due to the effects of quantum tunneling.

We can regard a field theory as an infinite set of oscillators, one for each

point in space, each with a hamiltonian like eq. (601), and coupled together

by the (∇ϕ)2 term in the field-theory hamiltonian. There is a tunneling

amplitude for each oscillator, but to turn the field-theoretic state |0+〉 into

|0−〉, all the oscillators have to tunnel, and so the tunneling amplitude gets

raised to the power of the number of oscillators, that is, to the power of

infinity (more precisely, to a power that scales like the volume of space).

Therefore, in the limit of infinite volume, 〈0+|0−〉 vanishes.

Thus we can pick either |0+〉 or |0−〉 to use as the ground state. Let us

choose |0+〉. Then we can define a shifted field,

ρ(x) = ϕ(x)− v , (603)
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which obeys 〈0+|ρ(x)|0+〉 = 0. (We must still worry about loop corrections,

which we will do at the end of this section.) The potential becomes

V (ϕ) = 1
24
λ[(ρ+ v)2 − v2]2

= 1
6
λv2ρ2 + 1

6
λvρ3 + 1

24
λρ4 , (604)

and so the lagrangian is now

L = −1
2
∂µρ∂µρ− 1

6
λv2ρ2 − 1

6
λvρ3 − 1

24
λρ4 . (605)

We see that the coefficient of the ρ2 term is 1
6
λv2 = |m2|. This coefficient

should be identified as 1
2
m2

ρ, where mρ is the mass of the the corresponding

ρ particle. Also, we see that the shifted field now has a cubic as well as a

quartic interaction.

Eq. (605) specifies a perfectly sensible, renormalizable quantum field the-

ory, but it no longer has an obvious Z2 symmetry. We say that the Z2

symmetry is hidden, or secret , or (most popular of all) spontaneously broken.

This leads to a question about renormalization. If we include renormal-

izing Z factors in the original lagrangian, we get

L = −1
2
Zϕ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 − 1
24
Zλλϕ

4 . (606)

For positive m2, these three Z factors—which should not be confused with

the Z2 operator Z of eq. (595)!—are sufficient to absorb infinities for d ≤ 4,

where the mass dimension of λ is positive or zero. On the other hand, looking

at the lagrangian for negative m2 after the shift, eq. (605), we would seem to

need an extra Z factor for the ρ3 term. Also, once we have a ρ3 term, we

would expect to need to add a ρ term to cancel tadpoles. So, the question

is, are the original three Z factors sufficient to absorb all the divergences in

the Feynman diagrams derived from eq. (606)?

The answer is yes. To see why, consider the quantum action (introduced

in section 21)

Γ(ϕ) =
1

2

∫ d4k

(2π)4
ϕ̃(−k)

(
k2 +m2 − Π(k2)

)
ϕ̃(k)

+
∞∑

n=3

1

n!

∫ d4k1

(2π)4
. . .

d4kn

(2π)4
(2π)4δ4(k1+ . . .+kn)

×Vn(k1, . . . , kn) ϕ̃(k1) . . . ϕ̃(kn) , (607)
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computed with m2 > 0. The ingredients of Γ(ϕ)—the propagator correction

Π(k2) and the exact vertices Vn—are all made finite and well-defined (in, say,

the MS renormalization scheme) by adjusting the three Z factors in eq. (606).

Furthermore, for m2 > 0, the quantum action inherits all the symmetries of

the the classical action. This follows from the properties of the Feynman

diagrams that are derived from the classical action. For example, in the

present case of a Z2 symmetry, Vn is zero for odd n, simply because there is

no way to draw a 1PI diagram with an odd number of external lines using

only a four-point vertex.

Once we have computed the quantum action for m2 > 0, we can go ahead

and consider the case of m2 < 0. Recall from section 21 that the quantum

equation of motion in the presence of a source is δΓ/δϕ(x) = −J(x), and

that the solution of this equation is also the vacuum expectation value of

ϕ(x). Now set J(x) = 0, and look for a translationally invariant (that is,

constant) solution ϕ(x) = v. If there is more than one such solution, we

want the one(s) with the lowest energy. This is equivalent to minimizing the

quantum potential U(ϕ), where

Γ(ϕ) =
∫
d4x

[
− U(ϕ)− 1

2
Z(ϕ)∂µϕ∂µϕ+ . . .

]
, (608)

where the ellipses stand for terms with more derivatives. In a weakly coupled

theory, we can expect the loop-corrected potential U(ϕ) to be qualitatively

similar to the classical potential V (ϕ). Therefore, for m2 < 0, we expect

that there are two minima of U(ϕ) with equal energy, located at ϕ(x) = ±v,
where v = 〈0|ϕ(x)|0〉 is the exact vacuum expectation value of the field.

Thus we have a description of spontaneous symmetry breaking in the

quantum theory based on the quantum action, and the quantum action is

made finite by adjusting only the three Z factors that appear in the original,

symmetric form of the lagrangian.

In the next section, we will see how this works in explicit calculations.
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29: Spontaneous Symmetry Breaking and Loop Corrections

Consider ϕ4 theory, where ϕ is a real scalar field with lagrangian

L = −1
2
Zϕ∂

µϕ∂µϕ− 1
2
Zmm

2ϕ2 − 1
24
Zλλϕ

4 . (609)

In d = 4 spacetime dimensions, the coupling λ is dimensionless.

We begin by considering the case m2 > 0, where the Z2 symmetry of L
under ϕ → −ϕ is manifest. We wish to compute the three renormalizing Z

factors. We work in d = 4− ε dimensions, and take λ → λµ̃ε (where µ̃ has

dimensions of mass) so that λ remains dimensionless.

The propagator correction Π(k2) is given by the diagrams of fig. (32),

which yield

iΠ(k2) = 1
2
(−iλµ̃ε)1

i
∆(0)− i(Ak2 +Bm2) , (610)

where A = Zϕ − 1 and B = Zm − 1, and

∆(0) =
∫ dd`

(2π)d

1

`2 +m2
. (611)

Using the usual bag of tricks from section 14, we find

µ̃ε∆(0) =
−i

(4π)2

[
2

ε
+ 1 + ln

(
µ2/m2

)]
m2 , (612)

where µ2 = 4πe−γµ̃2. Thus

Π(k2) =
λ

2(4π)2

[
2

ε
+ 1 + ln

(
µ2/m2

)]
m2 − Ak2 − Bm2 . (613)

From eq. (613) we see that we must have

A = O(λ2) , (614)

B =
λ

16π2

[
1

ε
+ κB

]
+O(λ2) , (615)
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Figure 32: O(λ) corrections to Π(k2).

where κB is a finite constant. In the MS renormalization scheme, we take

κB = 0, but we will leave κB arbitrary for now.

Next we turn to the vertex correction, given by the diagram of fig. (33),

plus two others with k2 ↔ k3 and k2 ↔ k4; all momenta are treated as

incoming. We have

iV4(k1, k2, k3, k4) = −iZλλ+ 1
2
(−iλ)2

(
1
i

)2 [
iF (−s) + iF (−t) + iF (−u)

]

+O(λ3) . (616)

Here we have defined s = −(k1 + k2)
2, t = −(k1 + k3)

2, u = −(k1 + k4)
2, and

iF (k2) ≡ µ̃ε
∫

dd`

(2π)d

1

((`+k)2 +m2)(`2 +m2)

=
i

16π2

[
2

ε
+
∫ 1

0
dx ln

(
µ2/D

)]
, (617)

where D = x(1−x)k2 +m2. Setting Zλ = 1 + C in eq. (616), we see that we

need

C =
3λ

16π2

[
1

ε
+ κC

]
+O(λ2) , (618)

where κC is a finite constant.

We may as well pause to compute the beta function, β(λ) = dλ/d lnµ,

where the derivative is taken with the bare coupling λ0 held fixed, and the fi-

nite parts of the counterterms set to zero, in accord with the MS prescription.

We have

λ0 = ZλZ
−2
ϕ λ µ̃ε , (619)
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Figure 33: The O(λ2) correction to V3(k1, k2, k3). Two other diagrams,
obtained from this one via k2 ↔ k3 and k2 ↔ k4, also contribute.

with

ln
(
ZλZ

−2
ϕ

)
=

3λ

16π2

1

ε
+O(λ2) . (620)

A review of the procedure of section 27 reveals that the first term in the beta

function is given by λ times the coefficient of 1/ε in eq. (620). Therefore,

β(λ) =
3λ2

16π2
+O(λ3) . (621)

The beta function is positive, which means that the theory becomes more

and more strongly coupled at higher and higher energies.

Now we consider the more interesting case of m2 < 0, which results in

the spontaneous breakdown of the Z2 symmetry.

Following the procedure of section 28, we set ϕ(x) = ρ(x) + v, where

v = (6|m2|/λ)1/2 minimizes the potential (without counterterms). Then the

lagrangian becomes

L = −1
2
Zϕ∂

µρ∂µρ− 1
2
(3

4
Zλ−1

4
Zm)m2

ρρ
2

+ 1
2
(Zm−Zλ)(3/λ)1/2m3

ρρ− 1
6
Zλ(3λ)1/2mρρ

3 − 1
24
Zλλρ

4 , (622)

where m2
ρ = 2|m2|, and λ is really λµ̃ε. Now we can compute various one-loop

corrections.

We begin with the vacuum expectation value of ρ. The O(λ) correction

is given by the diagrams of fig. (34). The three-point vertex factor is −iZλg3,
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Figure 34: The O(λ) correction to the vacuum expectation value of the ρ
field.

where g3 can be read off of eq. (622):

g3 = (3λ)1/2mρ . (623)

The one-point vertex factor is iY , where Y can also be read off of eq. (622):

Y = 1
2
(Zm−Zλ)(3/λ)1/2m3

ρ . (624)

Following the discussion of section 9, we then find that

〈0|ρ(x)|0〉 =
(
iY + 1

2
(−iZλg3)

1
i
∆(0)

) ∫
d4y 1

i
∆(x−y) , (625)

plus higher-order corrections. Using eqs. (623), (624), and (612), the factor

in large parentheses in eq. (625) becomes

i

2
(3/λ)1/2m3

ρ

(
Zm−Zλ +

λ

16π2

[
2

ε
+ 1 + ln

(
µ2/m2

)]
+O(λ2)

)
. (626)

Using Zm = 1+B and Zλ = 1+C, with B and C from eqs. (615) and (618),

the factor in large parentheses in eq. (626) becomes

λ

16π2

[
κB − κC + 1 + ln

(
µ2/m2

)]
. (627)

All the 1/ε’s have canceled. The remaining finite vacuum expectation value

for ρ(x) can now be removed by choosing

κB − κC = −1− ln(µ2/m2) . (628)

This will also cancel all diagrams with tadpoles.
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Next we consider the ρ propagator. The diagrams contributing to the

O(λ) correction are shown in fig. (35). The counterterm insertion is −iX,

where, again reading off of eq. (622),

X = Ak2 + (3
4
C − 1

4
B)m2

ρ . (629)

Putting together the results of eq. (610) for the first diagram, eq. (617) for

the second, and eq. (629) for the third (with m replaced by mρ everywhere),

we get

Π(k2) = −1
2
(λµ̃ε)1

i
∆(0) + 1

2
g2
3F (k2)−X +O(λ2)

=
λ

32π2
m2

ρ

[
2

ε
+ 1 + ln

(
µ2/m2

ρ

)]

+
λ

32π2
m2

ρ

[
2

ε
+
∫ 1

0
dx ln

(
µ2/D

)]

− Ak2 − (3
4
C − 1

4
B)m2

ρ +O(λ2). (630)

Again using eqs. (615) and (618) for B and C, we see that all the 1/ε’s cancel,

and we’re left with

Π(k2) =
λ

32π2
m2

ρ

[
1 + ln

(
µ2/m2

ρ

)
+
∫ 1

0
dx ln

(
µ2/D

)
+ 1

2
(9κC − κB)

]

+O(λ2) . (631)

We can now choose to work in an OS scheme, where we require Π(−m2
ρ) = 0

and Π′(−m2
ρ) = 0. We see that, to this order in λ, Π(k2) is independent of

k2. Thus, we automatically have Π′(−m2
ρ) = 0, and we can choose 9c− b to

fix Π(−m2
ρ) = 0. Together with eq. (628), this completely determines κB and

κC to this order in λ.

Next we consider the one-loop correction to the three-point vertex, given

by the diagrams of fig. (36). We wish to show that the infinities are canceled

by the value of Zλ = 1 + C that we have already determined. The first

diagram in fig. (36) is finite, and so for our purposes we can ignore it. The

remaining three, plus the original vertex, sum up to give

iV3(k1, k2, k3)div = −iZλg3 + 1
2
(−iλ)(−ig3)

(
1
i

)2

×
[
iF (k2

1) + iF (k2
2) + iF (k2

3)
]

+O(λ5/2) , (632)

174



kk

l

k k

k k
l

l + k

Figure 35: O(λ) corrections to the ρ propagator.

where the subscript div means that we are keeping only the divergent part.

Using eq. (617), we have

V3(k1, k2, k3)div = −g3

(
1 + C − 3λ

16π2

1

ε
+O(λ2)

)
. (633)

From eq. (618), we see that the divergent terms do indeed cancel to this order

in λ.

Finally, we have the correction to the four-point vertex. In this case, the

divergent diagrams are just those of fig. (32), and so the calculation of the

divergent part of V4 is exactly the same as it is when m2 > 0 (but with mρ

in place of m). Since we have already done that calculation (it was how we

determined C in the first place), we need not repeat it.

We have thus seen how we can compute the divergent parts of the coun-

terterms in the simpler case of m2 > 0, where the Z2 symmetry is unbroken,

and that these counterterms will also serve to cancel the divergences in the

more complicated case of m2 < 0, where the Z2 symmetry is spontaneously

broken. This a general rule for renormalizable theories with spontaneous

symmetry breaking, regardless of the nature of the symmetry group.
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Figure 36: O(λ) corrections to the ρ propagator.
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30: Spontaneous Breakdown of Continuous Symmetries

Consider the theory (introduced in section 22) of a complex scalar field

ϕ with

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4
λ(ϕ†ϕ)2 . (634)

This lagrangian is obviously invariant under the U(1) transformation

ϕ(x) → e−iαϕ(x) , (635)

where α is a real number. We can also rewrite L in terms of two real scalar

fields by setting ϕ = (ϕ1 + iϕ2)/
√

2 to get

L = −1
2
∂µϕ1∂µϕ1 − 1

2
∂µϕ2∂µϕ2 − 1

2
m2(ϕ2

1 + ϕ2
2)− 1

16
λ(ϕ2

1 + ϕ2
2)

2 . (636)

In terms of ϕ1 and ϕ2, the U(1) transformation becomes an SO(2) transfor-

mation, (
ϕ1(x)

ϕ2(x)

)
→
(

cosα sinα

− sinα cosα

)(
ϕ1(x)

ϕ2(x)

)
. (637)

If we think of (ϕ1, ϕ2) as a two-component vector, then eq. (637) is just a

rotation of this vector in the plane by angle α.

Now suppose that m2 is negative. The minimum of the potential of

eq. (634) is achieved for ϕ(x) = ve−iθ/
√

2, where v = (4|m2|/λ)1/2 and the

phase θ is arbitrary. (The factor of the square root of two is conventional).

Thus we have a continuous family of minima of the potential, parameterized

by θ. Under the U(1) transformation of eq. (635), θ changes to θ+α; thus the

different minimum-energy field configurations are all related to each other by

the symmetry.

In the quantum theory, we therefore expect to find a continuous family

of ground states, labeled by θ, with the property that

〈θ|ϕ(x)|θ〉 = 1√
2
ve−iθ . (638)
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Also, according to the discussion in section 28, we expect 〈θ′|θ〉 = 0 for θ′ 6= θ.

Returning to classical language, there is a flat direction in field space that

we can move along without changing the energy. The physical consequence

of this is the existence of a massless particle called a Goldstone boson.

Let us see how this works, first using the SO(2) form of the theory,

eq. (636). We will choose the phase θ = 0, and write

ϕ1(x) = v + a(x) ,

ϕ2(x) = b(x) . (639)

Substituting this into eq. (636), we find

L = −1
2
∂µa∂µa− 1

2
∂µb∂µb

− |m2|a2 − 1
2
λ1/2|m|a(a2 + b2)− 1

16
λ(a2 + b2)2 . (640)

We see from this that the a field has a mass given by 1
2
m2

a = |m2|. The

b field, on the other hand, is massless, and we identify it as the Goldstone

boson.

A different parameterization brings out the role of the massless field more

clearly. In terms of the complex field ϕ(x), we write

ϕ(x) = 1√
2

(
v + ρ(x)

)
exp

(
−iχ(x)/v

)
. (641)

Substituting this into eq. (634), we get

L = −1
2
∂µρ∂µρ− 1

2

(
1 +

ρ

v

)2
∂µχ∂µχ

− |m2|ρ2 − 1
2
λ1/2|m|ρ3 − 1

16
λρ4 . (642)

We see from this that the ρ field has a mass given by 1
2
m2

ρ = |m2|, and that

the χ field is massless. These are the same particle masses we found using the

parameterization of eq. (639). This is not an accident: the particle masses

and scattering amplitudes should be independent of how we choose to write

the fields.

Note that the χ field does not appear in the potential at all. Thus it

parameterizes the flat direction. In terms of the ρ and χ fields, the U(1)

transformation takes the simple form χ(x) → χ(x) + α.
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Figure 37: O(λ) corrections to the ρ propagator.

Does the masslessness of the χ field surrive loop corrections? It does. We

will first give a diagrammatic proof, and then a general argument based on

properties of the quantum action.

Before proceeding to diagrams, recall from section 29 that (in a renor-

malizable theory) we can cancel all divergences by including renormalizing

Z factors in the original, symmetric form of the lagrangian [in the case at

hand, either eq. (634) or (636)] with m2 > 0. This is important because the

lagrangian in the form of eq. (642) looks nonrenormalizable. The coefficients

of the interaction terms ρ∂µχ∂µχ and ρ2∂µχ∂µχ are v−1 and v−2, which have

mass dimension −1 and −2. Coupling constants with negative mass dimen-

sion usually signal nonrenormalizability, but here we know that the hidden

U(1) symmetry saves us from this disaster.

Consider, then, the one-loop corrections to the χ propagator shown in

fig. (37). The three-point vertex factor is 2iv−1k1·k2, where k1 and k2 are the

two momenta on the χ lines (both treated as incoming), and the four-point

vertex factor is 2iv−2k1 ·k2. The first diagram thus has a vertex factor of

−2iv−2k2, and the loop contributes a factor of 1
i
∆(0). The important point

is that the diagram is proportional to k2; there is no term independent of k2,
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which would contribute to a mass term for the χ field. The second diagram

is proportional to (k ·`)2/(`2 +m2
ρ). When we integrate over `, we have

∫
dd` `µ`νf(`2) =

1

d
gµν

∫
dd` `2f(`2) . (643)

To get this, note that, by Lorentz invariance, the integral on the left-hand

side must be proportional to gµν; equality of the left- and right-hand sides

then follows by contracting each with gµν. Therefore,

∫
dd` (k ·`)2∆̃(`) ∝ k2 . (644)

Thus we see that the second diagram is also proportional to k2. It should be

clear that this will be true of any diagram we draw, because of the nature of

the vertices. Thus, the χ particle remains exactly massless.

The same conclusion can be reached by considering the quantum action

Γ(ϕ), which includes all loop corrections. According to our discussion in

section 28, the quantum action has the same symmetries as the classical

action. Therefore, in the case at hand, Γ(ϕ) = Γ(e−iαϕ).

Spontaneous symmetry breaking occurs if the minimum of the quantum

potential U(ϕ) is at a constant, nonzero value of ϕ. Because Γ(ϕ) = Γ(e−iαϕ),

the phase of this constant is arbitrary. Therefore, there must be a flat di-

rection in field space, corresponding to the phase of ϕ(x). The physical

consequence of this flat direction is a massless particle, the Goldstone boson.
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31: Nonabelian Symmetries

Consider the theory (introduced in section 22) of a two real scalar fields

ϕ1 and ϕ2 with

L = −1
2
∂µϕ1∂µϕ1 − 1

2
∂µϕ2∂µϕ2 − 1

2
m2(ϕ2

1 + ϕ2
2)− 1

16
λ(ϕ2

1 + ϕ2
2)

2 . (645)

We can generalize this to the case of N real scalar fields ϕi with

L = −1
2
∂µϕi∂µϕi − 1

2
m2ϕiϕi − 1

16
λ(ϕiϕi)

2 , (646)

where a repeated index is summed. This lagrangian is clearly invariant under

the O(N) transformation

ϕi(x) → Rijϕj(x) , (647)

where R is an orthogonal matrix: RT = R−1.

Next we will need some results from group theory. Consider an infinites-

imal O(N) transformation,

Rij = δij + θij +O(θ2) . (648)

Orthogonality of R implies that θ is real and antisymmetric. It is convenient

to express θ in terms of a basis set of hermitian matrices (T a)ij. The index

a runs from 1 to 1
2
N(N − 1), the number of linearly independent, hermitian,

antisymmetric, N×N matrices. We can, for example, choose each T a to have

a single nonzero entry −i above the main diagonal, and a corresponding +i

below the main diagonal. These matrices obey the normalization condition

Tr(T aT b) = 2δab . (649)

In terms of them, we can write θjk = iθa(T a)jk, where θa is a set of 1
2
N(N−1)

real, infinitesimal parameters.
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The T a’s are the generator matrices of O(N). [For infinitesimal transfor-

mations, we do not distinguish O(N), for which detR = ±1, and SO(N), for

which detR = +1, since all infinitesimal transformations have detR = +1.]

The product of any two O(N) rotations is another O(N) rotation. This im-

plies that the commutator of any two T a’s must be a linear combination of

T a’s:

[T a, T b] = if abcT c . (650)

The numerical factors f abc in eq. (650) are called the structure coefficients

of the group. If f abc = 0, the group is abelian. Otherwise, it is nonabelian.

Thus, U(1) and O(2) are abelian groups (since they each have only one

generator that obviously must commute with itself), and O(N) for N ≥ 3 is

nonabelian.

If we multiply eq. (650) on the right by T d, take the trace, and use

eq. (649), we find

fabd = −1
2
iTr

(
[T a, T b]T d

)
. (651)

Using the cyclic property of the trace, we find that f abd must be completely

antisymmetric. Taking the complex conjugate of eq. (651) (and remembering

that the T a’s are hermitian matrices), we find that f abd must be real.

The simplest nonabelian group is O(3). In this case, we can choose

(T a)ij = −iεaij, where εijk is the completely antisymmetric Levi-Civita sym-

bol, with ε123 = +1. The commutation relations become

[T a, T b] = iεabcT c . (652)

That is, the stucture coefficients of O(3) are given by f abc = εabc.

Let us return to eq. (646), and consider the case m2 < 0. The minimum

of the potential of eq. (646) is achieved for ϕi(x) = vi, where v2 = vivi =

4|m2|/λ, and the direction in which the N -component vector ~v points is

arbitrary. In the quantum theory, we interpret vi as the vacuum expectation

value of the quantum field ϕi(x). We can choose our coordinate system so

that vi = vδiN ; that is, the vacuum expectation value lies entirely in the last

component.

Now consider making an infinitesimal O(N) transformation,

vi → Rijvj
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= vi + θijvj

= vi + iθa(T a)ijvj

= vδiN + iθa(T a)iNv . (653)

For some choices of θa, the second term on the right-hand side of eq. (653)

vanishes. This happens if the corresponding T a has no nonzero entry in the

last column. Recall that each T a has a single −i above the main diagonal

(and a coresponding +i below the main diagonal). Thus, there are N−1

T a’s with a nonzero entry in the last column: those with the −i in the first

row and last column, in the second row and last column, etc, down to the

N−1th row and last column. These T a’s are said to be broken generators: a

generator is broken if (T a)ijvj 6= 0, and unbroken if (T a)ijvj = 0.

An infinitesimal O(N) transformation that involves a broken generator

changes the vacuum expectation value of the field, but not the energy. Thus,

each broken generator corresponds to a flat direction in field space. Each flat

direction implies the existence of a correspoding massless particle. This is

Goldstone’s theorem: there is one massless Goldstone boson for each broken

generator.

The unbroken generators, on the other hand, do not change the vac-

uum expectation value of the field. Therfore, after rewriting the lagrangian

in terms of shifted fields (each with zero vacuum expectation value), there

should still be a manifest symmetry corresponding to the set of unbroken

generators. In the present case, the number of unbroken generators is

1
2
N(N−1)− (N−1) = 1

2
(N−1)(N−2) . (654)

This is the number of generators of O(N−1). Therefore, we expect O(N−1)

to be an obvious symmetry of the lagrangian after it is written in terms of

shifted fields.

Let us see how this works in the present case. We can rewrite eq. (646)

as

L = −1
2
∂µϕi∂µϕi − V (ϕ) , (655)

with

V (ϕ) = 1
16
λ
(
(ϕiϕi)

2 − v2
)2
, (656)
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where v = (4|m2|/λ)1/2, and the repeated index i is implicitly summed from

1 to N . Now let ϕN (x) = v + ρ(x), and plug this into eq. (655). With the

repeated index i now implicitly summed from 1 to N−1, we have

L = −1
2
∂µϕi∂µϕi − 1

2
∂µρ∂µρ− V (ρ, ϕ) , (657)

where

V (ρ, ϕ) = 1
16
λ
(
(v+ρ)2 + (ϕiϕi)

2 − v2
)2

= 1
16
λ
(
2vρ+ ρ2 + (ϕiϕi)

2
)2

= 1
4
λv2ρ2 + 1

4
λvρ

(
ρ2 + (ϕiϕi)

2
)2

+ 1
16
λ
(
ρ2 + (ϕiϕi)

2
)2
. (658)

There is indeed a manifest O(N−1) symmetry in eqs. (657) and (658). Also,

theN−1 ϕi fields are massless: they are the expected N−1 Goldstone bosons.

Consider now a theory with N complex scalar fields ϕi, and a lagrangian

L = −∂µϕ†i∂µϕi −m2ϕ†iϕi − 1
4
λ(ϕ†iϕi)

2 , (659)

where a repeated index is summed. This lagrangian is clearly invariant under

the U(N) transformation

ϕi(x) → Uijϕj(x) , (660)

where U is a unitary matrix: U † = U−1. We can write Uij = eiθŨij, where θ

is a real parameter and det Ũij = +1; Ũij is called a special unitary matrix.

Clearly the product of two special unitary matrices is another special unitary

matrix; theN×N special unitary matrices form the group SU(N). The group

U(N) is the direct product of the group U(1) and the group SU(N); we write

U(N) = U(1)× SU(N).

Consider an infinitesimal SU(N) transformation,

Ũij = δij + iθa(T a)ij +O(θ2) , (661)

where θa is a set of real, infinitesimal parameters. Unitarity of Ũ implies that

the generator matrices T a are hermitian, and det Ũ = +1 implies that each T a

is traceless. (This follows from the general matrix formula ln detA = Tr lnA.)
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The index a runs from 1 to N 2−1, the number of linearly independent,

hermitian, traceless, N ×N matrices. We can choose these matrices to obey

the normalization condition of eq. (649). For SU(2), the generators can be

chosen to be the Pauli matrices; the structure coefficients of SU(2) then

turn out to be f abc = 2εabc, the same as those of O(3), up to an irrelevant

overall factor [which could be removed by changing the numerical factor on

right-hand side of eq. (649) from 2 to 1
2
].

For SU(N), we can choose the T a’s in the following way. First, there are

the O(N) generators, with one −i above the main diagonal a corresponding

+i below; there are 1
2
N(N−1) of these. Next, we get another set by putting

one +1 above the main diagonal and a corresponding +1 below; there are
1
2
N(N−1) of these. Finally, there are diagonal matrices with n 1’s along the

main diagonal, followed a single entry −n, followed by zeros [times an overall

normalization constant to enforce eq. (649)]; the are N−1 of these. The total

is N2−1, as required.

We could now return to eq. (659), consider the case m2 < 0, and examine

spontaneous breaking of the U(N) symmetry. However, the lagrangian of

eq. (659) is actually invariant under a larger symmetry group, namely O(2N).

To see this, write each complex scalar field in terms of two real scalar fields,

ϕj = (ϕj1 + iϕj2)/
√

2. Then

ϕ†jϕj = 1
2
(ϕ2

11 + ϕ2
12 + . . .+ ϕ2

N1 + ϕ2
N2) . (662)

Thus, we have 2N real scalar fields that enter L symmetrically, and so the

actual symmetry group of eq. (655) is O(2N), rather than just the obvious

subgroup U(N).

We will, however, meet the SU(N) groups again in Parts II and III, where

they will play a more important role.
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