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PREFACE
In the fall of 1979, Benny Lautrup and I set out to write
the ultimate Quantum Chromodynamics review. The report was

going to consist of four parts, one for each line of

From Ghoulies and Ghosties
and Long-leggety Beasties
and Things that go bump in the Night
Good Lord, deliver us!
Ghoulies are body-snatchers and grave robbers: they aré those

revel in that which is revolting, _

Benny had previously described ghosties in a very nice set
cof QCD lectures* which we were going to use as the first part.
Green functions resemble long-leggety beasties; they, and the
general formalism of field theory, were to be devéloped in the
second part. The things that go bump in the night are clearly
the many unpleasant surprises df field theory; divergénces, to-
gether with the régularization and computation techniques, were
to be covered in the third part. Finally; good Lord deliver us,
we were going to actually calculate a few basic QCD integrals.

Well, while I was lecturing about the long-leggety beasties,
Benny deserted me for lattice, and the ultimate QCD review was
never written. That these lectures appear at all is largely due
to tireless work by Ejnar Gyldenkerne and to the criticisms of
the QCD study group at the Niels Bohr Institute. In writing
these lectures I have profited much from discussions with Benny

Lautrup, to whem I direct my thanks.

*B. Lautrup, "Of ghoulies and ghasties - an introduction to QCD", Basko Polje
1976 lectures, available as Niels Bohr Institute preprint NBI-HE-7&-14.




1.  INTRODUCTION

What aré longwieggety beasties? F N\

Long-leggety beasties are to be seen in any field theory or
statistical mechanics textbook; they are Feynman diagrams, Green
functions, S—matrix elements, correlation functions, and so on.
They represent sums of probabilities (statistical mechanics) or

probability amplitudes (guantum mechanics).

There are two ways of visualizing long-leggety beasties*.

In the first picture the transition probabilty (amplitude)
is the sum of all ways in which particles can propagate, dis-
integrate and recombine before reaching a detector. Each possi-
bility is represented by a Feynman diagram, and the penalty as-
sociated with each choice is given by a Feynman integral.

In the second picture the transition probability (amplitude)
is a sum over all "paths" which the system can take between the
initial and the final state. The penalty to be paid for a parti-
cular path is assessed by a Boltzmann factor (phase factor). A
process is dominated by the classical paths, and the fluctua-
tion (quantum) effects arise from the heavily penalized devia-
tions away from the beaten path.

The two pictures are equivalent. The second (path integrals)
is a "Fourier" transform of the first (generating functionals).
In some contexts, such as in perturbative calculations, genera-
ting functionals are the practical choice. In others, such as
in identifying the dominant classical configurations, or in ex-
ploiting symmetries of a theory, the path integral formulation
might be more suggestive.

In these notes we put the usual logic of field theory text-
books on its head; we start with the Feynman rules and end with
Lagrangians. We find it easier to understand field theory this
way: for many particle physicists, diagrams are an important
tool for developing field-theoretic intuition.

Our attitude will be eclectic. We shall start by building
up generating functionals using vertices and propagators as

T

R. Herrick has in his poem "On Julia's Legs" suggested a third way: "Fain
would I kiss my Julia's dainty leg, which is as white and hairless as an

egqg”.



simple building blocks. Then we shall rewrite the results in
terms of path integrals, and from then on use either formalism,
whichever may be more expedient. Each particular physical theory

brings in its own set of ailments (ultraviolet divergences, ill-
defined path integrals, etc.), but the general formalism

should be good enough to describe anything under the sun, from
statistical mechanics to lattice gauge theories to continuum
theories to gravity and cosmology. The general formalism is
straightforward and intuitive. The real work starts only with
specialization to a particular theory; the dominant classical
configurations have to be identified, divergent sums (integrals)
reqularized, etc.

We will apply the general formalism to QCD. Chapter 6 is a
rehash of Benny Lautrup's "Ghoulies and Ghosties". This con-
struction yvields QCD Feynman rules and bare Ward identities.
In chapter 7 we feed these into the general formalism to ob-
tain the Ward identities for full Green functions. At this
point our patience runs out, and the proof of renormalizabil-
ity of QCD and the evaluation of the running coupling constants,
scaling violations and hadron masses are left as exercises
for the reader.

I have included much graphic gore in these notes. The rea-
son is that I fear that the perturbation theory is here to
stay; it will not go away even 1if the gauge theories do. At
least, if I ever have to do a perturbative calculation again,
I will know where to look up the diagrams. The reader is ad-
vised to skip over lengthy perturbative expansions - most par-
ticle physicists reach tenure without doing anything more
strenuous than one-loop Feynman integrals. The exercises are
another matter - we have relegated much of the conceptually
dull but technically important material to the exercises. They
are of three kinds: trivial, undoable, and wrong.

There is nothing in these lectures that is not well-known
and has not been published many other places. The only excuse
for writing them up is that they seem to resemble no other field
theory text on the market. It cannot be precluded that that

might be considered a virtue.



A. Land of Quefithe

Once (and it was not yesterday) there lived a very young
mole and a very young crow who, having heard of the fabulous
land called Quefithe, decided to visit it. Before starting out,
they went to the wise owl and asked what Quefithe was like.

Owl's description of Quefithe was quite confusing. He said
that in Quefithe everything was both up and down. If you knew
where you were, there was no way of knowing where you were go-
ing, and conversely, if you knew where you were going, there
was no way of knowing where you were. The young mole and the
young crow did not understand much, so they went instead to
the o0ld eagle and asked him what Quefithe was like. The eagle
shook his white-feathered head, sized them up with his fierce
eyes, and said: "Action gives automatically invariant descrip-
tion of Quefithe. You must study the unitary representations
of the Lorentz group". The mole and the crow waited for more,
but the eagle remained silent, his gaze fixed on an unfathom-
able string in the sky.

Clearly, if they were ever going to learn anything about
Quefithe, they had to see it for themselves. And that is what
they did.

After a few years had passed, the mole came back. He said
that Quefithe consisted of lots of tunnels. One entered a hole
and wandered through a maze, tunnels splitting and rejoining,
until one found the next hole and got out. Quefithe sounded
like a place only a mole would like, and nobody wanted to hear
more about it.

Not much later the crow landed, flapping its wings and
crowing excitedly. Quefithe was amazing, it said. The most
beautiful landscape with high mountains, perilous passes and
deep valleys. The valley floors were teeming with little moles
who were scurrying down rutted paths. The crow sounded 1like he
had taken too many bubble baths, and many who heard him shook
their heads. The frogs kept on croaking "it is not rigorous,
it is not rigorous!" The eagle said: "It is frightful nonsense.
One must study the unitary representations of the Lorentz group".
But there was something about crow's enthusiasm that was in-

fectious.



The most puzzling thing about it all was that the mole's
description of Quefithe sounded nothing like the crow's de-
scription. Some even doubted that the mole and the crow had
ever gotten to the mythical land. Only the fox, who was by
nature very curious, kept running back and forth between the
mole and the crow and asking gquestions, until he was sure that

he understood them both. Nowadays, anybody can get to Quefithe
- even shails.

two hermaphroditic snails.

I



2.  GENERATING FUNCTIONALS

A. Propagators and vertices
A particle {(an elementary excitation of a theory) is speci-
fied by a list of attributes; its name, its state (spin up, in-

going, ... ), its spacetime location, etc. To develop the form-

this information, so we hide it in a single collective index:

i::{q,a,a,u,xu, cess }

g : particle type

a : colour

3 : Spin

1 Minkowski indices

xu + spacetime coordinates {2.1)

A particle is an interesting particle only 1f it can do
something. The simplest thing it can do is to change its posi-
tion, i1ts spin or some other attribute. The probability (ampli-
tude} that this happens is described by the (bare) propagators:

. (2.2)

Beyond this, many things can happen; a particle can split in
to two, or three, or many other particles. The probability (am-
plitude) that this happens is described by {(bare) vertices:

| k
3
Tiske = i_+_k
i |
Yiqktm © : (2.3)

A particle can also be created (or removed from the system).
This 1s described by a source (or a sink):

J,o=— . (2.4)




The concept of a particle makes sense only if its persist-
ence probability (2.2) is appreciable, i.e. if (2.3), the prob-

ability of its disintegration, is relatively small. In that

case the interac£1ons (2.3f"may béAtreaEEE as small cofrections,

and the perturbation theory applies. If the "particle" de-

scribed by attributes (2.1) has a negligible persistence proba-
bility, the theory should be reformulated in terms of another
set of "elementary excitations" which are a better approxima-
tion to the physical spectrum of the theory (an easy thing to
say}.

How many identical particles (particles with all the same
labels) can coexist? We shall consider two extremes: infinity
(bosons) or at most one (fermions). Other more perverse possi-
bilities cannot be excluded. Assumption of additivity of proba-
bilities/amplitudes then implies that the bosonic propagators

and vertices must be symmetric under interchange of indices

13758510 Yige T Yiik T Vi ©

one we shall use for fermions in chapter 4). For the time be-

.evs (The argument is similar to the

ing, we assume that the vertices (2.3) are symmetric,.

B. Green functions

A typical experiment consists of a setup of the initial
particle configuration, followed by a measurement of the final
configuration. The theoretical prediction is expressed in terms

of the Green functions, For example, if we are considering an

experiment in which particles i and j interact, and the outcome
is particles k, ¢, and m, we draw the corresponding Green func-

tions

{2.5)

(remember that labels i, j, ... stand for all variables and in-
dices which specify a particle.)

A Green function is a sum of the probabilities (amplitudes)




associated with all possible ways in which the final state can

be reached. This is represented by an infinite sum of Feynman

diagrams:
= ——<+--+ + -+ A4 -

Each Feynman diagram corresponds to a sum (or an integral). PFor

example, diagram

represents the probability that 1) a particle whose type, loca-
tion, etc. is described by the collective index a reached any
state labeled b; 2) that b splits intoc any two particles labeled
c and d, and so forth. The intermediate states are summed over

the entire range of possible index values

3 :E:
"—O'—: Ao Vpealertacleraan *
a b,c.dre,f.q ab 'bed ¢f de efg gh

Here the summation signs imply sums over discrete indices {such
as spin) and integrals cver continucus indices (such as position).
In the future we shall drop the explicit summation signs, and

use instead Einstein's repeated index convention; if an index

appears twice in a term, it is summed {integrated) over.

Exercise 2.B.1 Continucus indices. Fogr QCD the cellective index i
stands for:
xH spacetime coordinates,
p=1,2,...,d MNMinkowski indices,
3=1,2,+...,N gluon colours.
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If the propagator 1s dencted by D (x,y) and the three-
glucn vertex by Yﬁ% (x,¥,2), wrlte down the complete ex—
pressien for the above self- energy diagram,

C. Dyson-Schwinger equations

A Green function consists of an infinity of Feynman dia-
grams. For a theory to be manageable, it is essential that
these diagrams can be generated systematically, in order of
their relative importance.

Consider (for simplicity) a theory with only cubic and

guartic verticesT,

Take a Green function and follow a particle
into the blohk, Two things can happen; either the particle sur-

vives .-

or it interacts at least once:

More precisely, entering the diagram via leg 71, we either reach
leg 2, or leg 3, ... , or hit a three-vertex, or a four-vertex,
etc. Adding up all the possibilities, we end up with the Dyson-
Schwinger eguations:

(2.86)

TRemember that the different particle types are covered by a single collect-
ive index, so QCD is alsvc this type.



Iteration of the Dyson-Schwinger (DS) eguations yields all
Feynman diagrams contributing to a given process, ordered by
the numher of vertices (the order in perturbation theory).

A few words about the diagrammatic notation; a diagrammatic
eguation like (2.6) contains precisely the same information as

its algebraic transcription

= +
Gy kn = 2408 RIPAC %56, %z

+ + ..
J..k 0 Uik gLk

* AirYrsthsj..kf._l-AirTrstuGutsj“kR, )

Indices can always bhe omitted. An internal line implies a sum-
mation/integration over the correSpahding indices, and for ex-
ternal lines the equivalent points on each diagram represent.
the same index in all terms of a diagrammatic equation. The ad-
vantages of the diagrammatic notation are obvicus to all those
who prefer the comic strip editions of "The greatest story ever
told" to the unwieldy, fully indexed versionT. Two of the prin-
cipal benefits are that it eliminates "dummy indices” and that
it does not force Feynman integrals into one-dimensional format
{both being means whereby identical integrals can be made to
lock totally different).

D. Combinatoric factors

For a three-leg Green function the DS eguations yield

{disconnected) + 2 -—< + (nﬁ:;i'e ver;:“:ijces) o

It is rather unnatural that an expansion of a three-~leg Green

function does not start with the bare three-vertex, but twice

+C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, N.Y., 1980}.




the bare three-vertex. This is easily fixed-up by including

compensating combinatorial factors into DS equations:

k)l SEE (5 7y

To illustrate how the DS equations generate the perturba-
tion expansion, we expand a two-leg Green function up to one

loop:

-

e-n

+ (more loops)
*_%EE;‘ p
The one-loop tadpole is given by

=1 + (more loops) -1 '—‘O *(more loops)
: | 2 P (2.8)

(il

self- energy expan51on up to two vertices with all the correct

combinatoric factors:

l= — +_.-0-.+ lu—O—q 12: —*—OO—O+ (more loops)
(2.9)

This expansion looks like the usual ¢* + ¢* theory, but it 1is
not only that: the combinatoric factors are correct for any
theory with cubic and guartic vertices, such as QCD with 1ts

full particle content.




|t
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Exercise 2,D.1 Feynman diagrams in the collective index notation lock
like diagrams for scalar field theories. Nevertheless, they do
contain the perturbative expansion for theories with arbitrary
particle content. As an example, ccnsider a QED-type theory
with an "in" particle {(electron), and "out" particle (positron)
and a scalar particle (photon). The collective index (2.1) now

ranges over an array of three sub-collective indices

l:a, in] b=t~ clectron
i t]=

a, ou e=p— positron
u NNy photen

Index a stands for the charged particle's position and spin,
and index y stands for all labels characierizing the neutral
particle. The "in" - "out™ labels can be eliminated by taking
a to be an upper index for "in" particles, and a lower index
for "out" particles. Diagrammatically they are distinguished
by drawing arrows pointing away from upper indices and down
intoc lower indices: -

Show that if the sources and fields are replaced by J=

(3, M Tu), ¢ = (g, +P, a%), the combinatoric factors in
{2,9) cancel, and the vertices such as the electron-positron—
photon vertex have no combinatoric weight:

Law-Lan g - nex il xnnnny
2 2 7i7ig ] 2

1 -1 . &bn o
3!@% 31 Vi9k?1%5 % T VY AYa

Exercise 2,D,2 Write the Dyscn-Schwinger equations for QED-like
theorles. (We say "QED-11lke" because electrons are fermlons.
We shall return to the fermion DS eguations later.)

Exerclse 2.D.3 Determine the one-loop self-energy diagrams (2.9) for
QED-1ike theories.

E. Generating functionals

The structure of the DS eguations is very general; still,
at present we have to write them separately for two-leg Green
functicon, three-leg Green functicon, and so on. To state rela-
tions between Green functions in a more compact way we intro-

duce generating functionals. A generating functional is the

vacuum (legless) Green function for a theory with sources (2.4):

[=a]

G, Jilari veedy

=1+ +% +%+ ceen g (2.10)
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(aS‘Ji is a function which depends on both discrete and con-
tinuous indices, Z[J] is a functional). The coefficients in
this expansion are the usual Green functions. They can be re-
trieved from the generating functional by differentiation:

_d d d : .
GijkffdJ—z[J]l s etc. {2.11)

The DS equations (2.7) can be written as

{2.12)

The bare propagators and vertices can themselves be collect-
ed in a functioconal called the action:

- 1 - .
8[el == 5 0,8 50, + 5,091 . (2.13)
sle1=T v, V?i,i,,?j_‘_':_ﬂ i (2.14)

m w—L'__) ms

m legs

Now the Dyson-Schwinger equations can be stated in an even

more elegant way:

_/ds[a

o (E[4]+3 o . 2.15)
where

_fls_[_d_] =45[el
CON 5 T

=4

=37

The action (or the Lagrangian) is just another way of defining
the propagators and vertices for a given theory. Giving the
Lagrangian or listing the Feynman rules is one and the same

thing.



Exercise 2.E.1 Functional derivatives. For continuous indices the
Kronecker deltas are replaced by Dirac deltas. For example,
check that in d-dimensions

aT(x)

— d -
dJ(y)—G {x-v) .

is the correct definition of the derivative in (2.11).

Exercise 2,E.2 Feynman rules. Consider‘tﬁ3 theory given by the Lagrangian
density

Lix) -5 ORI -3 w0t - g

3!

s = Ja%xc x).

Read cff the bare propagators and vertices (the Feynman rules)
from the Lagrangian.,

__d d d
L T
ij..k d¢l ¢j da¢

sl¢] .
k $=0

Hint: Y

and the derivatives are in this case functional derivatives.

Exercise 2.E.3. Zerc-dimensional fileld theory. Consider a ¢3 theory
defined by trivial Feynoman rules

—e =1 , /L\==g .
k

The wvalue of a graph with k vertices is g™, and k-th crder
contribution to Green function is basically the number of
contributing diagrams. More precisely, if

m!

zlsl=x G]'([m)g
k,m

the Green function

(m) _
Sy _ECG
is the sum of combinatoric factors of all diagrams with m
legs and k vertices. Use the Dyson-Schwinger eguation (2.7)
to show that for a free field theory

Gém)==(m—1}!1 m even
=0 m odd .
Diagrammatically
G(2) - —]

G(4J=)( +X+::f~= 3, etc.

The zero-dimensional field theory is about the only field
theocry which is easily computable to all orders. We shall
use it often to illustrate in a concrete way various field-
theoretic relations,




F. Connected Green functions

Generating functionals are a powerful tecol for stating re-
lations between Green functions, For example, we can use them
to derive relations hetween the full and the connected Green
functions:

Pick out a leg and follow it into a full Green function.

This separates all associated Feynman diagrams into two parts

- the part that is connected to the initial leg, and the re-

mainder:

a
dJd,
1

2[7] =dg§‘ﬂ ARD (2.16)

i

The generating functional for the connected Green functions
1s defined in the same way as (2.10), the generating functional

for the full Green functions:

é%%% = %?? +§% é%? +§%— J%%%X Forrnaans (2.17)

The differential equation (2.16) is easily solved

7[3] = "Y1 (2.18)

A disconnected Feynman diagram Such as

represents a product cf two independent processes:; one could
take place on the moon, and the other in Aarhus. The physical-
ly interesting processes are described by the connected Green

functions. To obtain a systematic perturbation series which
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includes only the connected Feynman diagrams, we use the identi-

a }
AR A @, ‘@, (2.19)

to rewrite the DS eguations (2,15} in terms of the connected

Green functicns:

AW [.T]

0= 35 [ = dJ]+J . {2.20}

This is very elegant, but possibhly not too transparent. To get
a feeling for these equations, take the 42 + $* DS equations
{2.12) and substitute Z[J] = exp(W[J]). The result is, in the
functional notation

awlJl _ 7 41 (dzth] aW[J] dW[J})‘ \?
T, iy 5 2 jkl aJ ddJ dJk dJR

1

L1 d*WLT) |, 5 dWLT] d*wWlg]
& Tykzo\dT a7, dJ ar, dF dy
m Lk k m 2

a5 hj 17 ' (2.21)

and in the longleggedy nhotation

é
}

+
fopt I5

either mutually disconnected, or connected - that is the reason
that there are extra terms in the connected D5 eguations, com-
pared with the full Green functions equations {(2.12}).

+more axplicitly
14, o awla] | )
mg&“iﬁ[J]f[J]}ﬂ( 3T £fla].



Exercise Z.F,1 Use DS equations (Z.21) to compute self-energy to one
locp. How does the result differ from (2.9)7

Exercise 2,F,2 Expand somg full Green functions in terms of the cone
nected ones:

-{-0~+-00-} @

++ (1o terms)

Hint: iterating (2.18) is probably the fastest way.

Q. Free field theory

The connected generating functional for a free field theory
is trivial: there are no interactions, so the only connected

Feynman diagram 1s the propagator:

W,[J1=+ J.A 3.
2 113 43

=5 —x (2.22}

For the free field theory (2.18) gives an explicit eXpression

for the generating functional:
2,031 = e*7i%1373

‘m1+§H+%ﬂ0 tevee w (2.23)

H. One~particle irreducible Green functions

A one~particle irreducible (1PI} diagram canncot be cut into
two discannaected parts by cutting a single internal line. An
arbitrary connected dlagram has in general a number of such lines.
The connected and the 1PI Green functions can be related by our
usyal diagrammatic trick:

Pick out a leg of a connected diagram. This pulls out a 1PI



- 21 —

piece, which ends in 0, 1, 2, ... lines whose cutting would dis-
connect the diagram. Those lines continue intoc further connected

pieces:

—

o3+ ﬁm{§§ +.—€§}uf%% '+%

Aij (Jjﬂj +'ﬂ‘jk¢'k+é ijgcpkcbgﬁ core) s (2.24)

=y
"

Here the "field" ¢ is defined by

_ . . awld] .
— =9, -5 . (2.25)

1

We draw the 1PI Green functions as cross-hatched bhlobs

k
Unlike the full and the connected Green functions, the 1PI ones

do not have propagators on external legs - the external indices
always belong to a vertex of an 1PI diagram. This is indicated
by drawing dots on the edges of 1PI Green functions. Any con-
nected diagram belongs to one and only one term in the expansion

(2.24), FPor example, gouing into connected diagram

we pull out a 1PI bit

followed by connected bits

e

]

Multiplying both sides of (2.24) by the inverse of the bare
propagator we obtain

=J, +T_ + (=4 '+ b+ 4
0] Ji i (-A A W’lj(p] gz I

¢k¢j4-.... .

ijk
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(For reasons which should soon be clear, it is convenient to

define the two-leqg T as Tij=4ﬁ;;+THj, where

leg Green function, or the proper self-energy.)

is the 1PI two-

Collecting all 1PI Green functions into the effective ac-
tion functional

Ti¢l= ., . ¥k %491 (2.26)
o1 ij..k mi

we can write (2.24), the relation between the connected and the

1PI Green functions, as:

(2.27)

This, together with (2.25), can be summarized by a Legendre trans-
formation

W3l =TIe] +9,J. . (2.28)

(2.27) guarantees that W is independent of 4, and (2.25) guaran-
tees that T is independent of J:

il _ ar[o]
dd !

This is elegant, but how does it help us to get 1PI Green func-
tions? The point is that we are not interested in extracting 1PI
Green functions from the cconnected ones; what we need are the

1PI Dyson—-Schwinger equations, i.e. the systematics of generating
1PI diagrams ({(and only 1PI diagrams). To achieve this, we must

first eliminate J-derivatives in favour of #-derivatives {cf.
(2.25)):

d _dp; d _ d*W[J3] 4
ar, 51 d¢j - dJide d$j

1 1

’—é = % (2.29)
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This accounts for all self-energy insertions. The right-hand
gide can be expressed in terms of 1PI Green functions by taking
a derivative of (2.27):

,.@ arlg]

. a2wl[J] d?risl
0=4,, +=— ~-=§ .+ _ . {2.30)
ij de d¢i ij dedJk d¢kd¢i

In order to understand this relation diagrammatically, we sepa-
rate out the bare propagator in (2.2€6} by defining the "inter-
action" part of T:

N T
I'f¢] = z¢iﬂij¢j+ r lel . {(2.31)

Now (2.30) can be written as

2 a*r_[¢]
dW_[J] = A + A I A +
AT " Ty ik AR e, Tey

O+

WLT]"” = 1 . {2.32)
ATr-T L]

Diagrammatically W' is a complete propagator which sums up all

proper self-energies.

We can use (2.25) and {(2.27) to eliminate source-dependent .
functionals in favour cof field-dependent functionals, and (2.29)
to replace J-derivatives by ¢—-derivatives, in order to rewrite

(2.20) as the 1PI Dyson-Schwinger equation:

d¢,

i

ar(e] Ldg[ rp 1.9
& ¢+W[de¢]. (2.33)

The form of this equation is one of the reasons why the
generating functional for 1PI Green functions is called the

effective action. If the derivatives are dropped, the effective

action reduces to the classical action. The role of the deriva-—
tives 1is to generate loops, i.e. guantum corrections (or sta-

tistical fluctuations). We shall return to this in our discussion




of path integrals.

DS equations (2.33) are again so elegant that one is proba-
bly at a loss as to what to do with them. To get a feeling for
their utility, we write them out for the ¢® + ¢" example (2.21):

%

+
b3 e

arlel _ _ -1 1 1 a*wlJ]
a, A3yt éyijk(?kqu * Sxijkﬂ.¢£¢}€.¢.’j HEAPEIL ) a7 a7,
a*wlJl | 1 a[a} a*wlgl a*wlg] _a'riel

+ %’Y- . -Y . - .
i3k af, &y, " Vi aT.aT a3 47 a7 a7 3 09,45,
(2.34)

Such equations are used iteratively. For example, to obtain the
DS equation for the proper self-energYT, take a derivative of
(2.34):

%,

Exercise 2.H.1 Use {2.32) to show that

d _
EEI ‘4@@“' =

(2.386)

This is a useful identity for deriving relations such as (2.34)

and (2.35).

Exercise 2.H.2 Take successive derivatives cf {2.30} to show that the
connected Green functions can be expanded in terms of 1PI Green
functions as

Here the slash stands for inverse propagator; diagrammatically it is a two-
leg vertex, Other vertlces are denoted by dots, and a line connecting two
vertices is always a propagator, so that ﬁl_lj/&jk= ik = Ll = 5,y .

3
PN
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(2.37)

Exercise 2.H.3 Jens J, Jensen,; a serious young student of field theory,

1s getting set to compute the two-locop QCD beta-functicn. He
has drawn up a list of gluon corrections to the three—glucn
vertex. Use the 1PI Dyson-Schwinger equations to check this
list and make Jens aware of 7 {seven) errors before he rushes
his results to a respectable physics journal:

L L /kZL\ 41 HIS}\\
2 5§\ T3 *2
LR -)ﬁ+iﬁ;\
2 2 2
5
TR R BN
T3 T3 T3
ARk Aa A
1 1A 1A
+§-A +E +—2—
*i/—ﬁx *l/é\ *lA\
2 2 2
*%4/9\ *%/&k AN
+_l 522\ +i. /AQEKN +1. }ij\\
4 4 4
S AR A
1 1
+§-«”E£§K\ 3 ,JKE;\ g ,ﬁééém\
1 1 1
*5}'*}\\ 4R "E/é\
A A A
+J
I. Yacuum bubhles

The Green function formalism we have developed so far is

tailored to scattering problems; all the Green functions we
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have considered had external legs. Processes without external
particles (the corresponding legless diagrams are called. wvacuum
bubbles) are ‘also physically interesting. For example, if a
particle is propagating through a hot; dense.soupfy a particle-
particle scattering experiment would be a hopeless and messy
undertaking. Such systems are probed by wvarying bulk parameters,

such as temperature Indeed, the generating functlonals “do not -
depend only on the single-particle sources J;, but on all inter-
action parameters

Z[J] =23, 1 . (2.38)

137 1k Vigkerto

Any of these, or any combination of these, can be varied. Dia-

grammatically we view an n-vertex as an n-particle source. For

example, if we rescale Yi X gylj X and vary infinitesimally
the coupling constant g, we "touch" each 71 X vertex 1in a
Green function:
d 1 ;‘*@E@ _ g, d 4 4d
—Z[J] ==+ = , cas z[Jl . (2.39)
95 =k G M) " 10y & &, @,

We can use such generalizations of the Dyson-Schwinger
equations (from varying single-particle sources J; to varying

many-particle sources } to compute hosts of physically

-\I/ ,
ijk..L
significant quantities. One such gquantity is the expectation

value of the action. We rescale the entire action (2.13)

(2.40)

- 1
(o] ﬁilj]3

IR ViphPyP T

and vary R (depending on the context, B could be the Planck

constant, coupling constant, inverse temperature or something

else):
g aa-- (-1 A0D & B 4 ED )
=_;|h,s[%}z‘[.j] ) (2.41)

minestrone, to be specific.
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To normalize the expectation value properly, we divide by zZ[J]:

<5[¢]>=E[1ET 5{%}2[.1] . (2.42)

That this is really an expectation value will perhaps be easier
to grasp in the path-integral formalism, cf. {(3.11) in the next
chapter. Anyway, we can use (2,19) to rewrite the above in terms

of connected Green functions:

G sten>=-nBl 1 oI, 4

{2.43)

(the diagrammatic expansion is for the ¢’ + ¢* theories). Even
better, we can use {2,25) and {(2.29) together with the identity
(Eollows from (2.2B})

la) _ arle] {2.44)

to relate the ¢S{¢]> tu the effective action:

N

+-?-é- w ) (2.45)

The above expansions can be used to compute the perturkative
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expansions for the connected ‘and 1PI. vacuum bubhles (see exer- .
cises). Their physical significance will become clearer in the

next chapter.

Exercise 2.1.1 Loop expansion. Show that with action {2.40} the ex-
pansion in powers of I is the locop saxpansion,; i.e. that each
loop in a Feynman diagram carriss a factor K, Hence the loop
expansion offers a systematlc way of computing gquantum correc-
tions (or thermal fluctuations in statistical mechanics). Hint:
eagh propagator carries a factor R, while each vertex carries

+

Exercise 2.I.2 Free energy W[0]. Compute _
I _B%4i 4ol 1 1 1
wﬁ“W[O]”_z‘_ﬁ—l-Fﬁe #—éo—o +Ew L

for ¢+ " theory. Hint: use (2,43) and the DS eguations (2.Z21).

Exercise 2.I,3 Gibbs frea energy 7[9], Compute
1 ot O4i 2ok, 1 1
wﬁ"l[O]uz ﬁ+{12e +8C'() 1
2B KD O P 500058
i e = - —— —_
M '+15¢D+a B +75 000+ IOm

+ (2.46)

for ¢ +¢* theory. Hint: use (2.45) and the DS equations (2.34).
Note that the one-particle reducible diagrams from W[0] are in-~
dzed missing, The vacumm-bubble combinatoric welghts ars not al-
ways cbvious ~ eguation {2.45} provides the fastest way of com-
puting them, as far as T know.

Exercise 2.1.4 Show that for the zero—-dimensional ¢3 theory {continua-—-
tion of eXercise 2.E,.3}

a {m=2}
HE} G

Gwﬁ;im-1+3g

Hint: use (2,39} together with the Dyson-Schwinger equations
(2.123,

Show also that {1§==E.G{2}
2 ' (0)
Bence all Green functions can be computed from Z=G . the

vacuum bubkbles, Show that these satisfy

d_  af5 9 a 32d2\
Fage—9 (12 *19a; 1 9ag )% ¢

Compute the first few terms of the expansion in powers of g.
The complete spolution 1S given in exercise 3.C.1.

G
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Exercise 2.I.5 Zero-dimensional field thecry. Show that the connected

vacuum bubbles W=W[0] satisfy

a 2[5 9 aw -3 a’w aw\2\]
ag' ¢ [12 4% g " 29 ( dg? (dq) )}

Use this equation to derive recursion relations for connected
m-leg Green functions. Compute the exact propagator D= GC(Z)

25 4 390 ¢
—1+g+8g+32g+ .....

jny

and check that this agrees wit

D2==%-{:>--+%':EL- =1,
Dh==%—€I}—4-%4f}—-+%-<}c»
+%l(}sl-F%52()_4-%.<gL_
1 1 1 1 _25
+E‘S£L +E-9191+E :EL 4-3.552. == -

Hint: establish first that

gf_d d
—W = + + — + .
[7] J E{JdJ 3g55¢w[J]

That relates GS{M to the vacuum bubbles W.

Exercise 2.I1.6 Zero-dimensicnal ¢3 theory. Combine the DS egquation
(2.34) and the previous results to relate 1PI Green functions
with different numbers of legs:

REN
211012~ ¢+ 345

d
2. 39@)r[¢]

and show that the proper tadpoles J==—T(l) satisfy

Compute the proper self-energy
i 2 y . 35
== + + ==

T=5 g g g 9 S

and the proper three-vertex [ = F(s)

l"—g+g +5g +35g + o

—A

Compare T with the preceeding exercise, D= (1-m}"~

Exercise 2.I.7 Check (2.44).

ek



generating
functicnals

Full Green functions: G."..
ij..k

(c)

Connected Green functions: Gﬁj' *

1PI Green functions:

Full +> connected relation:

1 oo _awdl . d
Z[J]dT—iZ[J]_ aT, +dJi

Connected ++ 1PI relations:

da _ awlJ] d ._é;_
&, " &3, d, = —0€ -

Dyson-Schwinger equations:

asfd _
full (dT‘I'l._E + Jl)Z [J] =0 ’
connected %-_dg‘g‘ﬂ + %} + Jl =0 ,
dri¢] _ ds|. ' _g_]
1PI —d¢i = d¢i[¢+w’ [J]d¢ .

By now we are thoroughly fed up with longleggedy beasties, and
the diagrammatic manipulations:




- 31 -

TYING THE NUDO DEL. DIAGLO
DEVILS KNOT |

A === ey B’y

(coufwueo NEXT wEE\c)

Let us now see whether the crow's wvision cf Quefithe is any more

fun than the mole's version.
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3. PATH INTEGRALS

An inconvenientﬁaspect of the generating functional forma-
lism is the proliferation of derivatives. Green function legs
are pulled out by taking derivatives with respect to sources,
equation (2.11), so that the Dyson-Schwinger equations are
differential equations. This is a familiar problem. It is
usually resolved by finding a transformation (such as Fourier
transform) which diagonalizes the differential operators (for
example, maps gﬁr“*kp)* For generating functionals such trans-
formation is called a path integral.

Path integrals have many virtues: they make the symmetries
of the theory explicit, they help identify physically dominant
configurations, and they suggest systematic ways of computing
the quantum corrections to the classically dominant configura-
tions (the saddlepoint expansion). Sometimes they can even be
evaluated directly, without resorting to perturbative expansions,
by Monte Carlo methods.

A. A Fourier transform

derivatives

To illustrate the idea, let us get rid of ——
1

by going from generating functionals to their Fourier trans-

forms:
Z[J] :J[d¢]§[¢]ei¢iJi , (3.1)
d¢)1 d¢2
[de] =Br \Bm - ' (3.2)
- i3 2191 = [[as]osZ1e1e 171 3.3)

1

Fields ¢; are dual to sources J, in the same sense that momenta

k¥ are dual to space coordinates x"

. As the indices i, j, ...
can take continuous values, these integrals are functional inte-
grals. Z[¢] can be determined by taking a Fourier transform of

the DS equation (2.15):
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This is again an easy differential equation to solve. The solu-

tion is called the path integral representation of generating
functionals:

2[3] = j[d@]e”-‘s["’]"'"’i"i’ . (3.4)

In this "derivation" we were rather cavalier about factors of
"i" and gquestions of convergence. As Jens, the serious young

student of field theory, objects, we try one more time.

B. Gaussian integrals

It has probably not escaped your notice that the only inte-
gral an average physicist can do is the Gaussian integral
¢2
- d
[lag1e @ =, (a¢1 = 5= . (3.5)

This is the Gaussian integral in one dimension. In more di-

mensions, Gaussian integrals make their appearance in a slightly

jazzed-up form

“id.ATL1g.
J[dcb]e M)i'-AJLJcﬁ?J = VDet A . (3.6)
Derivation: Take A, . A real symmetric matrix can be
Chagmuﬂlmxibyziroann R:
(R7AR) ;5 = A1655 -

Volune is rotationally invariant: [d (Rp) ]=[d¢]. Diagonalization
reduces the integral to a product of one-dimensional integrals

(3.5): 2
1] B
; V2T = ]D\l

The result can be expressed as a determinant:
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A 0
Det A = Det (R"AR) = A, =11 A, .
0 .

Using the invariance of the measure under translation ¢;->¢,; +
Jibyis We can add sources and rederive the generating function-

al (2.23) for the free field theory:
-1
2,191 = Laple 121343 * 0475 - BeERetTitisTy | (3.7)

The square-root factor is an overall normalization (vacuum
bubbles) which does not contribute to the connected diagrams
and is (in this case) without physical significance. Remember
that the collective index 1 can take both discrete and contin-

uous values: (3.6) is the definition of the functional Gaussian

integral.

The point of this whole exercise is that Gaussian integrals
give us the desired fields-sources duality:
B €¢2 €¢’2

+ ¢:J. -—I—+ ¢ J;
ESL~J[d¢]e . s I[d¢]¢,e : o . (3.8)
1

Now we can go back to our definition of the path integral, and
make it slightly more respectable by introducing a Gaussian
damping factor:
2
S["‘éc"i&“] “mg"gi"" + ¢iJi
J[d¢]e , e->0, .

Z[J] =e N

This defines the path integral, at least as a formal power

series in ¢ or 4/dJ:
7[J] = J[d¢>]es[¢] teids (3.9)

irrespective of whether the action is real or imaginary, or
whether we have statistical or guantum mechanics in mind. In
the above we have absorbed the damping factcr into propagators:

S[¢l=- 3 o. (AT%+e)¢j+sI[¢] . (3.10)

i ij
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This gives the correct imaginary parts for Feynman propagators
in Minkowski space (this prescription is sometimes referred to

as the Euclidicity postulate).

It will become quite apparent in the discussion of fermion-
ic Green functions that the path integrals should not be taken
too literally as “integrals". They are mostly tricks for re-
placing differential operators -é— by number-valued fields ¢.
That should not give you sleepless nights. The history of the
subject is that the problems are almost always first recognized
and solved in the diagrammatic formalism, and later formulated

elegantly in the language of path integrals.

In the path integral formalism, the full Green functions

are field expectation values:

ij..k

Gyy 1 = <000 = I[dd)]cbiq‘;j..d)k es[q’]/J[d@]eS[“ . (3.11)

In statistical mechanics, the action is a real number which as-
signs the probability (the Boltzmann weight) to a given field
configuration. In quantum mechanics, the action is an imaginary

phase which determines the amplitude of a given field configura-

tion.

Exercise 3.B.1 Extend Gaussian integration to complex fields

k _
Yy = /:(¢2k 1*"l¢2k) v /:(¢2k 1““l¢2k) ’

Take the propagator A% to be a hermitian matrix. Show that

for complex fields the free field generating functional
(3.7) is given by
- — =pAT Y+ Y + Y
z[n,n] = [[apaple ¥® VMW YT

xDetAenAn , (3.12)

k
where nix,n are complex sources.

C. MWick expansion

Splitting of the action into a quadratic part and an inter-
action part, as in (2.13) and (3.10), provides another way of

generating the perturbation expansion:

_ 4d
7[J] m[[dcp]esl[‘“ 36 a7+ 00 Silagly gy (3.13)



One expands both the interaction operator and the free field

functional (3.7) as power series, and collects the nonvanishing

terms:

2a1=(1+4 (ML) M AN )22 0D + ).

where

For example,

LD AL = oo atgerar -2 P

This is called the Wick expansion. It gives all the diagrams
with the correct combinatoric factors, but is quite tedious. In

practice, I prefer the DS equations.

Exercise 3.C.1 Use the Wick expansion (3.13) to show that for zero-
dimensional ¢3 theory (exercise 2.E.3):

Gk W if 3k+m even

=0 otherwise
For example,

..1“
4 i
1 35
+12 }""‘48' etC.

Hint: use the combinatorial identity

k 2
a
'&'EEeJ /2 =(k-1)!!, k even .

J=0

Exercise 3.C.2 Counting QED diagrams. Consider a zero-dimensional
QED-like action

S=- YPp-3A% +gUAP + Y + YN + JA .
Show by Wick expansion that

G(e,p):z(k+e)!(k+p~1)1!
k k!

, k+p even,

where e is the number of electron lines traversing the dia-
gram, p is the number of photon legs, and k is the number of
vertices. For example:



D. Tree expansion

Let us take the path integral (3.9) very literally, and look
at it as an ordinary multidimensional integral. We take ¢. to be
real variables, and action a real function. The integral is
finite only if the action is large and negative (high price of
straying from the beaten path) almost everywhere, except for
some localized regions of the ¢-space. Highly idealized, the
action looks something like this (we have suppressed an in-

finity of other coordinates):

St 4T,

e

(3.14)

The path integral will be dominated by the value of the action

at the maximum (or maxima). ¢¢, the location of the maximum, is



- 39 -

determined by the extremum condition (cf. (3.9))

as[¢“] _ ,
35 +Ji-~0 . (3.15)

1

Hence the path integral is dominated by the solutions of the

classical equations of motion. That these are really the famil-
iar classical equations of motion can be seen by abandoning for

a moment the collective index notation and writing out the inte-

grations in the euclidean ¢° action explicitly:

Sl¢] =~ J [%Mx) (3% +m?) ¢ (%) +—<b (x)]

§Sl¢] _ 2 L2 g2y _ -
-32 4+ x] + x)=J(x) . 3.16
I )6 (x) +92 (x) =T (x) (3.16)
The classical equations of motion differ from the gquantum e-

quations of motion (the DS equations (2.33)) by the absence of
d/d¢ terms. To interpret the classical solutions diagrammatic-
ally, we split the action into a quadratic part and an inter-

action part, as in (2.13):

_a-1 I[¢ _
A13¢3+ d¢ + J 0,

65131 = J( J 95%;%9—-1-) . (3.17)

Unlike the quantum DS equations (2.21), the classical equations

involve no loop terms. The iteration of the classical equations

results in the tree eannsion:

(3.18)

This expression for the expectation value of a field is classic-

al or deterministic in the sense that it involves no summations
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over virtual excitations, so it does not "feel" the probabilist-
ic (quantum) aspects of the theory. It is also a way of getting

at non-perturbative effects (such as spontaneous symmetry break-
ing): ¢° represents an infinite resummation which replaces

the false vacuum (<¢> + 0) by the true ground state (<¢-¢C>==D).

E. Legendre transformations

The classical approximation to a path integral is the wvalue
of the integrand at its extremum (3.15) (up to an irrelevant
overall normalization factor):

C
ZC[J'J:-:eSMC]+¢iJi ’

B C C
W_[3] =S[9°1 + 95T, . (3.19)

The 1PI generating functional I'[¢] satisfies extremum condition
(2.27), analogous to the classical equations of motion (3.15).
Indeed, the diagrammatic relation (2.24) between the connected
and the 1PI Green function is a tree expansion of the connected
Green functions, with all gquantum loops confined to 1PI Green
functions. Hence the 1PI generating functional I'[¢] can be in-
terpreted as an effective (or guantum) action, which satisfies
the classical equations of motion (3.15), and where all guantum
(or fluctuation) effects are incorporated into effective (proper)
vertices, i.e. 1PI Green functions. Equation (3.12) becomes a

relation between the connected and the 1PI Green functions:
WlJgl =T[¢] + $.J. . (3.20)
This is just the Legendre transformation (2.28).

F. Saddlepoint expansion

The classical (tree, Born) approximation to Green functions
is given by (3.19). The first quantum (or statistical fluctua-
tion) correction is obtained by approximating the bottom of the
potential (3.14) by a parabola, i.e. by keeping the quadratic
term in the Taylor expansion



r,.C
SLo1+6,3, =S[6°1 + 050, + (6, -6 S 4 5 )

2
+ (9, -¢°)‘§1¢S[c{";] (6, =0) +4 ... (3.21)

The linear term vanishes because we are expanding around an

extremum, and the quadratic term can be integrated by the Gaus-

sian integration (3.6):

S[¢°] + 5T,

Z[J] =e \/——dz—_ab_c]— . (3.22)
S
De‘( 3,46 )

To interpret the determinant diagrammatically, we use

Det M = et]':p’nM . (3.23)

Derivation:

6 (2n Det M) = &n Det (M+ 6M) - &n Det M
= n Det (1+ SM/M)
Ly IDet (14A) = (1+A,,) (1+4,,)....

-A_ A (1+A33)....-+...

21712
= 1+trA+0 (A?)
c
~ ¢n(1+trédM/M)
~ trdM/M
= trd (LnM)
= §(tr n M)

hence
fnDet M=tr 4nM .

This is obvious for diagonalizable matrices:

Zﬂ,n)\i tr n M

= = = e .
Det M E )xl el OED

Splitting S” into the bare propagator and the interactions with
the classical background field

———?——df[d;] - 07ty [6°

[¢C]....-?- éﬁ +

we can write the first approximation to Z[J] as

+ ceeeces (3.24)



7[J] meS[cbc] - +tr P,n(lmA'r[dJC]) +¢§Ji . VDeth

’

(the overall VDetA factor can be dropped). In this approxima-

tion the effective action is given by

F[¢c]xm8[¢°]~+-zu-tr(AY[¢°J)k . (3.25)

This is called the one-loop effective action, as its diagram-

matic expansion consists of all one-loop diagrams:

(3.26)

The higher loop contributions to the effective action can be
computed by the ordinary perturbation expansion, with ¢© play-
ing the role of a "background field", i.e. the field which de-
scribes the classical background configuration in which the
propagation and the interactions take place. This expansion 1s

carried out in the next exercise.

Exercise 3.F.1 The loop expansion for effective action. Introduce an
auxiliary source Kj in the saddlepoint expansion (3.21)

€144 d?s[¢"] C
2[3] = SLO ]+¢iJiI[d¢]e%¢i 391443 b5 +SSIo] + ¢5K4

das[g}C] = m = 4\ +
d¢id¢jd¢k

Now we can use the Wick expansion (3.13) to write the loop
expansion for J:

2
S[¢C]+¢§Ji~f%1n:£n(~ é%éligl)

1
_a’sle®] |,
d¢id¢j ]

d
C L 'y
X eSI[dK] e%Kl
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We can interpret this expansion as an ordinary perturbation
expansion for vacuum bubbles, with propagators and vertices
dependent on the classical background field ¢€. All possible

insertions of sources J; are summed up into tree insertions
by ¢€[J]. Compute the beginning of this expansion

wl[Jg] =s[¢€] + 4 tr en(AY[$C])

Compare with the results of exercise 2.I1.2. Write down the
beginning of the loop expansion for the effective action

rl¢l.

Exercise 3.F.2 Consider a QED-like theory from exercise 2.D.1. The
path integral can be written as

-— —1 —
203,70 = [ (anle P b 257,01

| _Toa=1 - =
2l7,ml, = [[a§1layle™V 47 - R¥wnbsim

- H
AU.B AU(Y )GB .

Z[ﬁ,n]A can be interpreted as the generating functional for
the free electrons propagating in the background field AGB'
Show that

~4n tr (1 - AK) +ﬁA ﬁn

(3.28)

Z— -
[n,n]A e

The trace part accounts for all virtual electron loops:

- n tr(1-AK) = 2 +}2-& +—;— (3.29)

while the source term describes the propagation of the electron
in the background A field:

- 1
nﬁl_mn Yt T

Exercise 3.F.3 Counting QED diagrams. (Continuation of exercise 3.C.2).
Integrate over "photon" fields to obtain

d - 1
-Rn(l—gajﬁ+n cin

2
1-937 I /2

cen (3.30)

Z[Jrﬁrn] = e

Show that the number of full electron propagator diagrams
without electron loops is

Dy = (k-1)1! , k even
D2=-&_
D‘i:m-}m‘-{-&’etc.

What 1s the number of the photon self-energy graphs with only
one electron loop? Furry's theorem says that all diagrams with
electron loops with odd numbers of photon legs vanish. They can
be eliminated from the loop expansion by replacement
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2n(1-gA) -f% tn(l-gA) + 4% ¢n(1+gl)

Show that the number of full electron propagators (electron
loops included) is

+1)11(k-1)!!
ka_(k }mlk’(,k 1) , Xk even .

Check that Du“”%? (this is not an integer, as disconnected

hs 1lik
graphs like 1@
y ——e

are included).

G. Point transformations

One of the main advantages of the path integral formalism

is the compactness 0of Ward identities. The key idea is simple.
In

23] = J[d@]eS[“’]”id’i

the left-hand side is independent of ¢, hence invariant under
infinitesimal point transformations

¢, > ¢. +EF. [9]

[¢]-f -+f’ ¢ ~+fijk¢3¢k~+ ..... . (3.31)

The Jacobian for this change of variables is (dropping terms of
order € and higher):

[dp] -» [do]det|§

AFi[o]] _ dr; [¢]
ij dcb:, [d¢]( E'T"dl. ) "’

1L

Collecting all terms up to order € we obtain

1101 = [0S 11t (0815 e 191)

.... dsi¢] dr;[¢]] S[¢1+T5¢;
0= [tas){(BL+ e, 01 - i St 416

Remembering the equivalence ¢; +>d/dJ; we can write this as

{(ﬁi " Ji)Fi[gf] - “A;jz %g]}Z[J] . (3.32)
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We have already, unknowingly, used a special case of this

identity. If F&D@l=fi= constant (a translation), then

dS | d B
(dcbl [a*s]"‘Ji)Z[J]—O . (2.15)

The Dyson-Schwinger equations are consequences of the trans-
lational i1nvariance of path integrals. A more interesting situ-

ation arises 1if (3.31i 1s a symmetry of the action

dSi¢]
d¢.

1

Fi[¢] =0 (3.33)

If this transformation also leaves invariant the measure [d¢],

then (3.32) reduces to a Ward identitz:

d )
JiFi[aj]Z[J] -0 . (3.34)

The Ward identities are immensely important. They tell us how
the symmetries of the action (classical theory) relate various

Green functions (quantum theory). About this - later.

Exercise 3.G.1 Derivative interactions. Throughout these notes we treat
) the sums over discrete indices and the integrals over con-
tinuous variables as the one and the same thing. However, for
derivative interactions we must be more careful. Consider a

one-dimensional example with action

s = [dt L£(t)

where the Lagrangian density includes derivatives:

Show that the correct definition of the path integral is
+ . .
z[3] = [[d¢] (Det K)* e” IdtJl(bl .

L(t) = ié’il{

Hint: the path integral must be invariant under variable

change
L3236 = 38 [z e (28
x+28 % 22, [q9] [d¢]Det(a$) .

H. Summary

The basic assumption of the statistical (quantum) mechanics
is that the physical processes can be described additively, as
sums of probabilities (amplitudes). Whether we describe these

sums by diagrams (generating functional formalism) or field con-

figurations (path integral formalism) is largely a matter of con-

venience. The two formalisms offer two ways of visualising
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the relation between the classical and the quantum physics.

In the path integral picture, the transition ratés are domi-
nated by the valleys of the potential, and the quantum effects
are the heavily penalized forays up the hillsides. In the sta-
tistical mechanics they are suppressed by small Boltzmann weights;
in quantum mechanics they are suppressed by destructive interfer-

ence of phases.

In the Feynman diagram picture, physical processes are domi-
nated by classical propagation (tree diagrams) and the quantum

effects are represented by internal loops (virtual excitations).

The two pictures are related by

_ _ 1 s[¢]
Gi5. .k _<¢i¢j”¢12 — zlo] J[d(b]d’iq’j‘ -4y 8 "'
A path integral is dominated by the extremal solutions of the

classical equations of motion

as[¢“1]
3o

1

+ J =0 .
1

The guantum effects can be included systematically by the loop

expansion of the effective (quantum) action:

F[6€] =S[6°] - 4tr an (1 - Ay[¢€]) +....

d?s;[¢c]

C —
Yij[fb ] = dd)idij

The classical symmetries of the action

asle] _
L0 = 0

imply the quantum symmetries, or Ward identities

d _
JiFi['—d“Eir]Z[J] =0 .



4. FERMIONS

A. Pauli principle

In chapter 2 we have assumed that the Green functions are
symmetric, i.e. that the particles we are describing are bose
particles. What happens if the Pauli principle is at work? The
Pauli principle is the gquantum mechanical version of Archimedes'
law. Archimedes' law says that two bodies cannot be in the same
place at the same time; the Pauli principle does not allow
existence of more than one particle in a given quantum-mechani-

cal state.

In the Green function formalism the state of a particle is
specified by its collective index (particle type, spin, posi-
tion ...). Take a source which produces a particle in a definite
quantum-mechanical state; i.e. a source which is nonvanishing

only for one value of the collective index:

If the Pauli principle is at work, the Green functions must
vanish any time two or more of their indices take the same

value:

Gy 4. .RJiJj =0 . (4.1)
The basic assumption of the whole scheme that we are expounding
here is that the amplitudes are additive. A linear superposition

of state is also a state, and it too must satisfy the Pauli
principle (here K, =§,, is a source for a particle in state }:

Gy iy (3 +K,) (3, +K) =0

-+
= (Gijk.. Gjik,.)Jin

Consequently, the Green functions must be antisymmetric under

interchange of fermionic indices:

G, . ==G, . = G, . = eee s (4.2)
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(In the compact index notation a multiplet can include both
bosons and fermions: for example, for QED (cf. equation (3.27))
¢; = (V,¥,A)) stands for electrons, positrons and photons. In such
cases we have to distinguish between the fermionic and the boson-

ic indices.)

From now on I will consider only the theories in which all
Green functions have even numbers of fermionic legs. Another way
of saying this is that we shall always assume that the action is

a commuting number.

Fermionic Green functions with even numbers of legs are anti-

cyclic:

+ first leg
SARABREERARA D ERARADLERANRT I (4.3)

In order to keep track of signs, the diagrammatic notation must
indicate which leg is the first leg. We do it by always drawing
the fermionic legs below the Green function blobs, and taking
the leftmost leg to be the first one. This fixes all relative

signs. The overall sign is physically irrelevant.

The perturbation expansion can be generated by the Dyson-
Schwinger eQuations} just as in the bosonic case. The diagrams
and the combinatoric factors are the same; the only difference
is the signs due to the antisymmetry of Green functions. For ex-
ample} the free fermion field theory DS equations are

(4.4)

FermionichrOPagators are antisymmetric, so the first and the
second legs must be distinguished. We do this diagrammatically
by drawing a little wart on the propagator:
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Exercise 4.A.1 - Can you prove that fermionic Green functions must have
an even number of legs?

Exercise 4.A.2 Can you prove that fermionic Green functions need not
have an even number of legs?

B. Anticommuting sources

In the bosonic'case; the discussion of the general proper-
ties of Green functions was greatly facilitated by the intro-
duction of generating functionals. In the fermionic case we can-
not simply add scalar source functions (2.4) and form the vacuum
Green function (2.10) , because this would yield zéro; identical-
ly:

| 1
. ® & @ - . - ey - Jy, = 0 g
Gi5k. .. 9i99% Gi5k...2 (JiJj‘ JjJi)Jk !

However, a simple trick provides a way out; we replace J; by

anticommuting sources:

[

0375 371

(4.6)

I
|
=
-

(4.7)

(Remember, our Green functions always have even numbers of legs.)

The signs due to sources are kept track of by drawing the
sources ordered along the bottom of the diagram. Green functions
can be retrieved from the generating functional by differenti-
ation, just as in the bosonic case (2.11). However, the deriva-
tives must also be anticommuting:

d d
=6.. -
dn, n] 1] nJ dn;
d- d d d
—mmw: — ST A — ® 4.‘8
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All the relations between the full, connected and 1PI gen-
erating functionals that we have derived for the bosonic case
take the same form for the fermionic generating functionals.
There is only one sign subtlety. As all the terms in (4.7). in-
volve even numbers of sources, all generating functionals are
commuting numbers} and the sources implicit in them lead to no
sign confusion. However; if a leqg is pulled out by differenti-
ation, the relative ordering of the implicit sources is impor-
tant for the sign determination. Diagrammatically we fix the
sign by requiring that all the implicit sources lie to the right
of the pulled legs:

T+ ... (4.9)

Exercise 4.B.1 Fermionic loops. (This exercise is a convoluted attempt
to prove the minus sign rule for fermions by diagrammatic means.)
The simplest interacting fermionic field theory has only a bi-
linear interaction term:

1
Splwl=Z¥ K%,
s miﬁ\j mmiﬁ’\j o

Here K could be an external background photon field&ﬁij==gAu(YP)ij,
as in (3.27). The DS equations corresponding to (4.4) are

i

(4.10a)

Construct the DS equation for pulling out a "photon" KA. This can
be done by differentiating Z[n] with respect to the coupling con-
stant; a 2-leg vertex gets pulled out. Pull the first fermion leg.
It either ends in the second leg, on a source, or on a 2-leg ver-
teX:

932 In]

According to our convention (4.9) all implicit sources lie to
the right of the explicit legs. The real trick consists of get-
ting the signs straight. The relative sign between the first and
second term is due to the antisymmetry of fermionic Green func-
tions. The overall sign is fixed by requiring consistency with
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the DS equations (4.10a). For example, if we substitute the
4-leg free fermionic Green function (4.4) into the above, we
obtain |

The sign of the connected term must be consistent with the
expansion (4.11):

Show by iterating (4.10b) that

| 1 1 1
» = .'{ 2 -y + S —— A . - -
Wwinl Str n(1-AK) 2ﬂi(ﬁ'1-ﬁ)ijnj (4.11)
Compare with (3.25). The difference between the bosonic and

the fermionic theories is that each fermionic loop carries a
factor -1.

Exercise 4.B.2 Derive the relations between the full, connected and
1PI fermionic generating functionals. Write down the Dyson-
Schwinger equations such as
(as[a
. (dwi[dn] n, Jeln] 412
without getting confused about fermionic signs.
C. Fermion arrows

In the literature, fermionic generating functionals are

never defined in terms of a single source, as in (4.7). We have

introduced them in this way to parallel the bosonic formalism.

However, usually a pair of sources is used; one for fermions,

and one for antifermions. We shall now rewrite the fermionic

generating functionals in this more conventional form.

We start by considering the most trivial fermionic theory;

we take the range of the collective index to be i =1,2. The

propagator is a (2x 2) antisymmetric matrix:

0. =-A

A 0

and the action (2.13) takes the form

Syl == 2y, A7 Ty

_ 1
=X v, -
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The (2x2) matrix A has eigenvalues fil., We can eliminate this

matrix by replacing ¢, ,y, by

V=5 ("’1 +w2);$ ”\é‘ (wl - wz) :

(this is reminiscent of the introduction of charged bosonic

fields, equation (3.12)). The propagator is now just a number:

S[$l¢] == a ”i Y .

Matrix A is invertible only if Det A40. For an antisym-
metric matrix this is possible only in even dimensions. A real

antisymmetric (2mx2m) matrix‘Ati can always. be brought to form

G lAG = 0 =M (4.13)

by means of a sympletic rotation GeSp(2m). (This is the fermion-

ic analogue of the diagonalization which leads to (3.6).) De-

fining
_ 1 i 1
Vi =z Vaica t Wy Jr V= 5 (‘pzi-z”‘pzi) (4.14)
we can write the free action as

S R K (4.15)

where the propagator is now an (mxm) matrix which in the diagona-

lized form looks like

In this way a 2m-dimensional fermionic field y;can always be re-
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placed by a pair of m-dimensional fields $;w..Diagrammatically_
we distinguish the upper and the lower indices by drawing arrows

flowing away from upper indices and into the lower indices:

A2
1

]

: (4.16)

One advantage of the fermion-antifermion formalism is that the
antisymmetric propagator (4.13) is replaced by (4.16) which
carries no funny signs. However;-itistill follows from the defi-
nition (4.14) that the fermion and the antifermion fields and

sources are anticommuting:

L LS

. -t (4.17)
J J

The fermionic generating functionals are now a double series in

terms of the fermion, antifermion sources:

n in-legs :

o » £ . ! kl nk"’n,‘}n*l n Qﬁnjnl
i ijk...2 n! m! ¢ *
m,N —— -

m out-legs

Exercise 4.C.1 Fermionic loops. Show that the connected generating
functional for fermion propagation in a background “photon"
field i1s given by:

1

Win,nl=  2n tr(1-8K) + F=g—zn . (4.19)

Compare with the bosonic case (3.28). The difference between
the bosonic and the fermionic theories is that each fermionic
loop carries a factor -1.

Exercise 4.C.2 Dyson-Schwinger equations. The fermionic ($¢)2 theory
DS equations for full Green functions are given diagrammatical-
ly by
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Show that the DS equations for directed fermions can be
written as

dgs [a 4 i\ -
B ————— ’ —wm“m + Z ’ — O o .
(dwi [dn dn] n ) [n,n] (4.20)

Exercise 4.C.3 OQED DS equations. The four vertex in the preceeding
exercise could be a phenomenological approximation to a boson
exchange (Fermi theory of weak interactions is of this type)

X L

(s this consistent with fermionic symmetry?). Add a boson
propagator to the theory and write the boson and fermion DS
equations for this theory.

D. Fermionic path integrals

We have seen in chapter 3 that a lot can be gained by de-

fining a "Fourier" transform which diagonalizes the differential

operators:
..;..9_.. zZinl-»v.2[y] (4.21)
dqi i ) )

For fermions the derivatives anticommute (4.8) so y; have to be
anticommuting numbers. Let us blindly imitate the bosonic case

and write down
20n] = j’[dwle”i“’i'm] .

What is this "integral"? Consider first the one-dimensional case.
The left-hand side must be independent of Yy and, in particular,

invariant under translations Y-y + 0:
[tav1y = [tav1w+or .

This works only if
tav1=0
‘I[dw]w4=0 .

We take J[dw1w=:1 (just a normalization convention). As Y2=y°=

... =0, there are no other integrals to be evaluated. The inte-
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gration operation must be anticommutative because Y6 = - 6y im-

plies
f[dﬂ)] Oy = "Sj[dw]w = “[ J [dwlw]e -
The generalization to many dimensions is
[tap, 10, =5, . (4.22)

Curiously, the fermionic "integration" is indistinguishable from
the fermionic "differentiation" (4.8). It is really no integration
at all; it is simply an operational rule which implements the de-
sired diagonalization (4.21):

d ,co1_[ra,8"% & o 4
2 an] wj[dw] i A - g 2

L

= [tavre, 201 (4.23)

(as usual, we assume that the number of fermionic dimensions 1is
even). Now, just as in the bosonic case (3.4), we can compute
ﬁ[w] from (4.20) by solving the fermionic Dyson-Schwinger
equation:

Zlnl] = j[d‘b]es[‘p] tnivy (4.24)

This is the path integral representation for the fermionic Green

functions.

Exercise 4.D.1 Can you think of a simple arqument which will give the
correct ie prescription for fermionic propagators, analogous
to (3.10) for the bosonic theory?

Exercise 4.D.2 Check (4.23).

E. Fermionic determinants

The simplest fermionic analogue to the bosonic gaussian in-

tegral (3.5) is the 2-dimensional integral
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J[dwldwz]e”iwiﬁzjwj:xj[dwldwzl(1*”%‘wlwz)

| =--} = DetA'"% ' (4.25)

where

In odd dimensions such integrals always vanish, as at least one

j[dwi] is unmatched. In even dimensions

, -]
j (aple iti¥s = peta~t . | (4.26)

Derivation (analogous to (3.6)): Aij"“ Asi, hence there exists
a sympletic rotation G such that Aj4 can be brought to form (4.13).
Sympletic rotations are volume preserving, so d(Gy) =d4y. This
rotation reduces the 2m dimensional integral to a product of m
two—-dimensional integrals (4.25): the result is

m 1 %

I 53— =Detd °. QED.
i=1"4

The important thing to note is that the fermionic "gaussian" in-
tegral yields inverse determinant, in contrast to the bosonic
integral (3.6). If you repeat the saddlepoint analysis of sect.

- 3.F and use n(detM) =tr(2nM) rule (3.23), you will find that in
the fermionic case the effective action (3.25) is given by

O

| | K
riy®l=siy°1-4 © er(dy[v°]) - . (4.27)
k=1
As we have already shown diagrammatically in exercises 4.B.1 and

4.C.1, each fermion loop carries a factor -1.

Exercise 4.E.1 Introduce a source term niyj in (4.26) and compute the
generating functional (cf. (3.7)) for the free fermionic field

theory.

Exercise 4.E.2 Show that for directed fermions, sect.4.C, the fermion-
ic gaussian integral is given by

J[d»pdi"p""]e""'M ‘“5@%‘5 : (4.28)
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F. Fermionic jacobians

The only possible redefinition of a one-dimensional fermion-
ic integration variable is

Yo' =ap+o .

The jacobian dy = Jdy' must be such that the integration rule
(4.22) is preserved

{

1= tayly = [ty 128 = 2
Hence the jacobian is J=dy’/dy, the inverse of the bosonic jacob-
ian. That is easy to understand if one remembers that the fermion-

ic "integration" is the same thing as the fermionic differentia-
tion:

-_d 4 d
Jtav = - e E

! | |
(W Wy A NG g d
dp, &, Ay, )a' TR T
As the fermionic differentiations anticommute, the term in the

brackets is fully antisymmetric; the determinant. The jacobian
in 2m dimensions is therefore

[rav1 = J[dw'ldet "a;'?) , (4.29)

the inverse of a bosonic jacobian.

Exercise 4.F.1 A trivial supersymmetry. Take one bose and two Fermi
dimensions. Using detA/detA =1, we can write

-1

1 mj[dAdESdm]e*zl S :

It is very easy to find a supersymmetry of this action. A shift
A->A+ eV Aw / € fermionic,

produces an extra term in the action: -Aew//i} This can be com-
pensated by a shift of the antifermionic field

Ww—=>w-€cA .

The action S[A,a,w] of this free field theory is therefore
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invariant under supersymmetric (Fermi-bose mixing) transformations

A-> A+ e/Aw
W w-€cA . (4.30)
Add sources B L
s[a,w,w]+IA+nw+wn

z5[3,n,n] = [[dAdwdw]e

and show that the supersymmetry induces a Ward identity of type
(3.34). Verify diagrammatically that the identity is satisfied.
This 1s quite trivial, and still, the QED Ward identities amount

to no more than this. In that case A is the photon field, /ﬁwlongi—
tudinal insertion kH, and w the QED ghost which nobody cares about
because it always decouples.

The main lesson of this exercise is this: if we (1) create fake
boson degrees of freedom and (2) remove them by ghosts, the theory
might have a hidden supersymmetry.

G. Summary

Fermions (or Grassmann numbers) are tricks for manipulating
antisymmetric Green functions. Green functions are still ordinary
numbers (real for statistical mechanics, complex for gquantum
mechanics), and there is no mystique in computing them (only ted-
ium) . The physical content of fermions is that they offer a way
of imposing constraints. One such constraint is Pauli principle
-~ electrons are fermions. The QCD ghosts which we will construct
in chapter 6 are another example: they eat up the unphysical longi-
tudinal gluon degrees of freedom. Physically, fermions are to be
counted as negative degrees of freedom (fermion loops carry minus

signs) which cancel the unphysical bose degrees of freedom.

Fermionic Green functions are antisymmetric under interchange

of indices. The fermionic sources and fields anticommute;

nlnj - n nl 4 lpiwj == iji !
.............q....... — 6 - 1N mgw
s . f 4
dﬁi J ij 3 dnl
4 d4__4a.d
dni dnj dnj d.r|i

The fermionic integrals are defined by

J[dwi]dwj = aij .

The entire machinery developed for bose fields applies to Ferml
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fields, modulo few irrelevant sign confusions and one relevant

sign; factor -1 for each fermionic loop.
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5. SPACETIME PROPAGATION

Until now the collective indices have stood for all parti-
cle labels; spacetime location, spin} particle type and so on.
To apply field theory to particle physics we have to describe
propagation of particles through the spacetime. I find it most
convenient to formulate the field theory in our spacetime as an
analytic continuation from a Euclidean world in which there is
no distinction between time and space. What do we mean by propa-

gation in such a space?

Our formulation is inevitably phenomenological: we have no
idea what the structure of our spacetime on distances much short-
er than nuclear sizes might be. The spacetime might be discrete
rather than continuous, or it might have geometry different from
the one we observe at the accessible distance scales. The formal-
ism we use should reflect this ignorance. We will deal with this
problem by subdividing the space into small cells and requiring
that our theory be insensitive to distances comparable to or

smaller than the cell sizes.

Our next problem is that we have no idea why there are
particles, and why or how they propagate. The most we can say
is that there is some probability that a particle hops from one
spacetime cell to another spacetime cell. At the beginning of
the century, the discovery of Brownian motion showed that matter
was not continuous but was made up of atoms. In particle physics
we have no indication of having reached the distance scales in
which any new spacetime structure is being sensed: hence for us
this hopping probability has no direct physical significance. It
is simply a phenomenological parameter: in the continuum limit

it will be replaced by the mass of the particle.

A. Free propagation

We assume for the time being that the state of a particle
is specified by its spacetime position, and that it has no further
labels (such as spin or color): izw(xl,xz,...,xd). What is it
like to be free? A free particle exists only in itself and for
itself; it neither sees nor feels the others: it is, in this
chilly sense, free. But if it is not at once paralyzed by the

vast possibilities opened to it; it soon becomes perplexed by



the problems of realizing any of them alone. Born free, it is

constrained by the very lack of constraint. Sitting in its cell,
it is faced by a choice of doing nothing (s = stopping probabili-
ty) or hopping into any of the 2d neighboring cells (h = hopping
probability) : 33

hop with
probability h

The number of neighboring cells defines, if you wish, the di-
mension of the spacetime. The hopping and stopping probabili-
ties are related by the probability conservation: 1 =s + 24dh.
Taking the hopping probability to be the same in all directions
means that we have assumed that the space is isotropic.

Our next assumption 1s that the spacetime is homogeneous,
i.e. that the hopping probability does not depend on the loca-
tion of the cell. (Otherwise the propagation is not free, but
is constrained by some external geometry.) This can either mean
that the spacetime is infinite, or that it is compact and period-
ic (a torus). That is again something beyond our ken - we proceed

in the hope that the predictions of our theory will be insensi-

tive to very large distances.

The isotropy and homogeneity assumptions imply that our
theory should be invariant under rotations and translations.
The requirement of insensitivity to the very short and very long
distances means that the theory must have nice ultraviolet and

infrared properties.

A particle can start in a spacetime cell i and hop along
until it stops in the cell j. The probability of this process

is hls, where L is the number of steps in the corresponding path:

T
) 31
7 :r

The total probability that a particle wanders from the i-th cell

and stops in the j-th cell is the sum of probabilities associated
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with all possible paths connecting the two cells:

A =s ¥ h™N. (L) . (5.1)
i I ij

Nij[L) is the number of all paths of length L connecting i and

j. Define a stepping matrix

Hy ‘
(S~-)ij Gi+nu,j . (5.2)

If a particle is introduced into the i-th cell by a source

the stepping matrix moves it into a neighboring cell:

{

U —
(S"J)k_(s,i+n i \ .

H i4n
H

The operator

d |
(h-s),.= £ h [(8") . +(s"), .1,

h = (h,h,...,h) (5.3)

generates all paths of length 1 with probability h:

1 1
(h-5)J =h ><1

1

i-th cell

(The examples are drawn in two dimensions). The paths of length
2 are generated by

and so on. Note that the k-th component of the vector (h-s)g

counts the number of paths of length L connecting the i-th and

the k-th spacetime cells. The total probability that the particle
stops in the k-th cell is given by
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6 ==—ex J . (5.4)

The value of the field+ ¢, at a spacetime point k measures the
probability of observing the particle introduced into the system
by the source J. The Euclidean free scalar particle propagator

(5.1) 1is given by

_{ s
Bij° (1"hf5)ij ' | (5.5}

or, in the continuum limit (do exercise 5.A.1) by

d ike (x-vy)
A(x,y)‘m‘[ dk e = ° . (5.6)
2m 2  k2+4m?

So far we have assumed that the particle hops to any neigh-
boring cell with the same probability. What happens if the parti-
cle hiding in the spacetime cell is not a small spherical object,
but something long and shapely? In that case, we have to intro-

duce spin labels to define the particle orientation: i= (x ,a).

U
Such a particle will hop and retain its orientation with some

probability, and hop and change its orientation with a different
probability. The hopping probability h 1s now replaced by a hop-

ping matrix ok

i (5.7)

TN
(h”)aB"' )
1+Ilp.

which describes the probability that a particle with the spin
label o hops one step in the direction y and flips its spin to

B. We do not want to give up the isotropy and homogeneity of
spacetime, so the hopping matrix can depend only on the relative
orientations of the two spins. In other words, the hopping matrix

must be an invariant tensor under spacetime translations and ro-

tations.

Interpreting ¢ as a field is consistent with the previous definition of a
free field, equations (2.22) and (2.25).
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How does one describe orientation of a particle? That de-

pends on the particle type. For example, if the particle orien-
tation can be specified by a d-dimensional vector, we need d
spin labels. We shall always assume that the range of the spin
index is finite. In the language of group theory this means

that we shall consider only the finite dimensional representa-
tions of the rotation group. Furthermore, we shall be interested
only in irreducible representations. The physical reason is that
reducible representations are resolved into irreducible com-
ponents by quantum corrections. For example, if a free propa-
gator contains both an isotropic part which propagates as a
scalar (5.5) and a non-isotropic remainder, one-loop corrections
will be in general different for the two parts.

If a particle of spin o is introduced into i-th cell by

means of a source

JkB ) (SaB(Sik d
the stepping matrix (5.2) generates the probabilities associated
with all paths of length one:

_1H [ cH H
(h-S5)J, o hBY(SkR+SR,k)JRY ’

The probabilities associated with all paths of length two are
given by (h-S)?J, and so on. Hence the propagator for a free
spinning particle is given by

1
A .. =s86.. +s X (h-S) = .
io,jB S 1j aB SL)O( )10:36
S )
u(.....::..............__ . (5.8)
1=(h-8) ;4,58

To make further headway, one has to be more specific about the
hopping probability hY. This would get us too deep into group
theory, and (if we started thinking about fermions), lead to

ulcers. We stop now.
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Exercise 5.A.1 Continuum propagator. Define the finite difference
operator by

* a , a
f&+50-fm—34

af (x) = n

where a is the lattice spacing. Show that

d ,
1y n@E! +s") =2a+a2s?
h U 17 j1

where 82==3u8u is the finite difference Laplacian. Show

that the Euclidean scalar lattice propagator (5.5) is given
by 2
ATl=q 202 52
1] S

The mass in the continuum propagator (5.6) is related to

the hopping parameter by «
m2=*1j1'"“§‘ . (5.9)
a

If the particle does not like hopping (h+0), the mass is
infinite and there is no propagation. If the particle does
not like stopping (s> 0), the mass is zero and the particle

zips all over the space.
Diagonalize 32 by Fourier transforming and derive (5.6).

B. A Teap of faith

We have constructed the Euclidean free-particle propagator
from a few basic notions such as addition of probabilities and
spacetime homogeneity and isotropy. At some point we have to
face two non-intuitive facts: our world is Minkowskian, not
Euclidean, and the theory of elementary particles 1s quantum
mechanics, not statistical mechanics. Usually somebody tells
you that the quantum mechanics is obtained from the classical
mechanics by replacing Poisson brackets by commutators (canonic-
al quantization). This gives me no intuition about gquantum
mechanics. With my present (lack of) understanding, I find it
easier to think of field theory in terms of probabilities, as
we have done up to now, and then make a leap of faith by saying:

our world is a Wick rotation of the Euclidean world,

x, =ix, . (5.10)
This gives us
1 O
1) special relativity a.=| 7 (5.11)
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S

2) quantum mechanics; Boltzmann weight e” is replaced by a

phase factor eiS/h,

For example, Euclidean action

Sl¢] = Iddl'%cb (x) (3% +m*)d (x) , (5.12)
is replaced by the Minkowski action

i i

R S[d)] :ﬁJddX%(b (x) (guvBPBV +m2)¢(X) ’ (5.13)
where the imaginary factor i is the jacobian fram the change of

variables (5.10).

3) correspondence principle; Planck constant K is the scale of

quantum fluctuations, and the classical mechanics is the

large action 1limit of the gquantum theory.

It is not good enoughf, but it will get us through the
night.

C. Scattering matrix

A run-of-the-mill particle scattering experiment looks some-
thing like this

Particles with sharply defined 4-momentum are accelerated over

kilometer distances, collide in regions of nuclear size and the

.t..

There 1s a little problem with interpreting measurements.
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resulting particles fly tens of meters to detectors. The theo-
retical predictions for such experiments are expressed in terms
of connected Green functions. If you think about it, you will
realize that the experiments measure the effective vertices, or

the 1PI Green functions.

If you really think about it, our formulation in terms of
sources 1s a brave idealization. In reality the entire experi-

ment 1s one large system

; (5.15)
particle = _ <«— experiment — >
preparation : W
' 'y particle

' detection

and approximating the experimental apparatus by sources makes
sense only when the interaction region can be well separated.
The particles which traverse the macroscopic distances between
the i1nteraction region and the experimental apparatus are clas-

sical, mass-shell particles with k? =m?®:

collision
region

- L
ﬂﬂﬂ;."

PBEN.

-

» ¥,

apparatus Z

We can measure the mass of these particles by measuring their

four-momenta. The theory predicts a mass-shift

(5.17)

This relates the bare mass (mass with all interactions turned
off) to the physical mass. The theory also predicts a wave-

function renormalization

Z,

= . (5.18)




If the particles also carry spin, there will be further mass-
shell constraints. They are expressed 1in terms of polarizations
e¥ (k) , spinor wave functions u,(k), etc.; we shall soon see such
objects. They are the reason why Z, is called the "wave function

renormalization constant?".

A connected Green function (2.17) has a propagator on each
external leg. These propagators develop poles if the correspond-
ing particles traverse macroscopic distances, and what is probed
in an experiment 1s not the entire Green function, but only its
mass-shell amputation

(k2 -m2)G'c
. 1 1

(k]_rkzr---) 2 _ 2 .
i | lk - o

The renormalization constants Z, survive all such amputations,
and cannot be disentangled from the measurements of the physical

coupling constants:

The resolution of this problem is to absorb Z, into the defini-

tions of the physical coupling constants by
gzzz Z]. go 4 (5.19)

where g, 1s the bare coupling constant (for a vertex with k legs),

and the vertex renormalizations 2, are computed from

(5.20)

(and so on for higher vertices). The wave function renormaliza-
tions contribute factors of Vﬁ; because they must be shared in a
sisterly fashion between the two ends of each propagator. So, the
quantities that are really measured in experiments, and therefore

called the S-matrix (scattering matrix) elements, are



- 70 -

k2 -m?
—— 6", k,,...) , (5.21)
i *‘/Zz i mass-shell

(for particles with spin we should also add polarization wave
functions on the external legs). Here the Zzi factors account
for the bits of renormalization constants absorbed by the ex-
perimental apparatus, and the bare masses and couplings are to

be re-expressed in terms of the physical ones by (5.17) and
(5.19).

This is called renormalization. It is not here because of
(possible) ultraviolet divergences, but because it is inevitable.
The only way to compare our theory with nature is to relate our
Green functions to physically measurable parameters, and then re-

express all predictions of the theory in terms of those para-

meters.

Renormalization should not be confused with reqularization.
Reqularization is a mathematical problem of defining infinite
sums in the intermediate steps of field theory calculations; re-
normalization is a unique, physically determined procedure of
expressing the physical predictions of a theory in terms of

rhysically measurable parameters.



6. FROM GHOULIES TO GHOSTIES

A physical photon is massless and has only transverse de-
grees of freedom; still} in relativistic calculations it is con-
venient to pretend that the photon is a vector particle. De-
coupling of the extra degree of freedom is guaranteed by Ward
identities. We shall use the requirement of the decoupling of
the extra degrees of freedom as the quiding principle for con-
structing the QCD action. In retrospect it will be clear that
this diagrammatic derivation corresponds step by step to the
textbook local gauge invariance arguments. Still, this kind of
derivation has its charms - it shows rather explicitly how the
ghosts eat up the unphysical gluon degrees of freedom, and how

the Ward identities guarantee their decoupling.

A. Massless vector particles

A massive vector particle is characterized by its mass M
and its polarization ea(k). There are A=1,2,...,d-1 independ-
ent polarizations; in the rest frame kH = (M,G) , SO a vector
particle can point in d-1 directions. Another way to see this
is to observe that k%, the direction of propagation of a free
spinning particle, reduces the symmetry from SO(1,d-1) to

SO(d-1), the rotations in the transverse spacetime directions.

In the rest frame a vector particle points in a direction
€. The choice of the coordinates is quite arbitrary; one can
choose any d-1 independent basis vectors e, (circular polari-
zations, for example) and express the polarization in this basis

8.32 E%é A’i=1’2,u¢¢;d“1 .

1 Y i A
To describe the polarizations covariantly, we add a fake d-th
polarization eg and set it equal to zero by the transversality
condition
A=1,2...,d-1; polarization

H%A&)=O,
H n=1,2...,4; Minkowski (6.1)

This reduces to eg==0 in the rest frame. Being explicitly co-

variant, the transversality condition also describes the d-1



~vector polarizations in any frame.

The momentum of a physical massive particle satisfies the
mass—-shell condition:

k?-M>=0 . (6.2)
If the particle is massless
k=0 (6.3)

it is not possible to bring it to a rest frame. The best we can
do is to align it along the lightcone: k" = (§,0,0,...,E). A
physical massless spinning particle is always whizzing along a
spatial direction ﬁ==(0,0,.,‘,E), and the symmetry is reduced
from SO(1,d-1) to SO(d-2), the rotations in the transverse space
directions. Hence a massless vector particle has d-2 polariza-
tions. The trouble is that there is no nice way of imposing the

masslessness condition on the polarizations. We can, however,

see that there is one degree of freedom less than in the massive

case, because we can freely vary the polarizations along the
longitudinal direction

€, (k) 2 € (k) +kuw(k) ' (6.4)

(w(k) arbitrary function) without violating the transversality
condition (6.1). (Remember that k% = 0). For somewhat obscure

historical reasons, this kind of transformation is called a
gauge transformation*.

Under the gauge transformation (6.4) the transition ampli-
tudes pick up extra contributions from the longitudinal bits,
or "gaugeons". We denote gaugeons diagrammatically by

s = —= kKM (6.5)

+The term "gauge symmetry" was introduced by James Joyce in Ulysses (p.490

of the Modern Library 1934 edition). Bloom is standing at the entrance of
a whorehouse "feeling his occiput dubiously with the unparalleled embarass-
ment of a harassed pedlar gauging the symmetry of her peeled pears".
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(The diagrammatic rules are summarized in appendix D.) At first
glance, gaugeons seem like bad news because they change the tran-
sition amplitudes. However, the only thing that matters are the
physical S-matrix elements (5.23), and they are unaffected by

the gaugeons. In QED this follows from the trivial momentum-

conservation identity

K=(p+K-m)- (p-m) . (6.6)

Diagrammatically (cf. appendix D) this is the Ward identity for

the bare electron vertex:

/,1\= /V'\ - /X . (6.7)

The slashed lines indicate factors of (p-m). They vanish on the

mass-shell by the Dirac equation

(p-m)u(p) =0 . (6.8)
It is easy to show (next exercise) that all QED diagrams with

gaugeons lead to mass-shell vanishing contributions. The QCD

Ward indenties are not so trivial - their derivation will be

the main subject of this and the next chapter.

Exercise 6.A.1 Derive by iterating (6.6) the QED Ward identity

(6.9)

Hints:

1. For the full Green functions, show o
. ¢ .

I

Rewrite this for connected Green functions.

2. Show that

3. Finally, use the result of exercise 2.H.1 for the 1PI Green
function.

—a
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B. Photon propagator

We have shown that QED gaugeons are innocuous;. they do not
affect the physical predictions of QED. One could even claim that
the gaugeons are actually good news, as the gauge invariance (6.3)
gives us great flexibility in defining the bare photon propagator
<Au(x)Av(y)>. Whatever your favorite way of deriving propagators

may be (I like random walks of the preceeding chapter), the end
result for the vector particles must be

polar.

_ A
DEJV (k) =TT i: EIJ (k) EA\) k) . (6.10)

The polarization tensors 83 are Clebsch-Gordan coefficients which

project the physical d-1 (or d-2) transverse polarizations out of
the space of d-dimensional vectors. Explicit construction of
Clebsch-Gordan coefficients is a tedious and unrewarding business.

Fortunately we do not need them: we need only their sum in (6.10).

For massive vector particles this is easy to evaluate. We

write all rank-two tensors available and fix the constants by the
mass-shell conditions (6.1) and (6.2):

A —
}ieu (k) €2y (k) = Agw + Bkukv

- Kykv

g, - K (6.11)

For massless vector particles there is no such unique choice.
One's first impulse is to replace (6.11) by

However, any gauge-transformed polarization (6.4) should lead to

an equally good propagator, so we are lead to propagators of gen-
eral form

- N
AN ---Duv(k) = kz(gu\)+kf +f k) , (6.12)

where f, (k) is an arbitrary function. The most popular gauge
choices of this type are listed in appendix C; which one is the

most convenient depends on the application. More perverse gauges



can be thought up, and aref. Each gauge choice generates its

gaugeons - and if the theory is to make any sense, we must in-
sist on their decoupling from physical processes. This 1is the

principle from which we shall presently construct the QCD action.

More precisely, the sacred principle is the gauge invariance,
which in the language of Feynman diagrams comes in two guises:
(a) external gauge invariance, or invariance under trans-

formation (6.4):

e =»¢ +d8wk . (6.13)
TRRET !

(b) internal gauge invariance, or invariance under varia-

tion of gauge-fixing parameters:

D -»D +k &6f +6f k. (6.14)
IRV uv BV VERY,

Exercise 6.B.1 Gauge fixing. Any not too pathological function f in the
propagatorﬂ(6.12) will do, as it must decouple anyway. One usual-
ly fixes f,,(k) by some physically motivated condition. For inter-
actions of nearly static particles, Coulomb gauge is the natural
choice. For highly relativistic situations the covariant, planar
or lightcone gauges might be convenient, and so on. The gain 1is
of purely computational nature - the physical results must be the
same in all gauges. The Coulomb gauge condition

3 i
)2 BiA (x) =0 (6.15)

i=1
is a typical example. This condition introduces a spacetime direc-
tion n¥= (1,0,0,0), so the most general form of f is

£¥ = k" + on .

The coefficients B and C are fixed by substituting f into the
gauge condition on the propagator:

0=<k2 A"> = (K’ =(n-k)n")<a’a">

=:(ky~(n*k)nv)Dvu .

= >
Here the three-vector k is expressed covariantly by (0,k) =

kH-(n<k)nH. Compute the propagators listed in appendix C by
this method. Observe that it is sufficient to do one calcula-
tion; once the axial gauge propagator is known, the others

are obtained by special choices of the vector n".

T

useful in some contexts.
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Exercise 6.B.2 . Physical polarizations. In (6.1) we have insisted on the
transversality of the physical polarizations. This seems to be in
conflict with imposing a noncovariant gauge condition such as
(6.15). (a) Straighten out this confusion. (b) Communicate the
resolution to the author.

C. Colored quarks

We start the construction of Quantum Chromodynamics by at-
tempting a simple generalization of QED: we replace the electron
by a set of quarksT of n different "colors", and the photon by
N gluons. A free quark or gluon propagates without changing color,
sO the spacetime propagators are the same as in QED, while the
color factors are simply Kronecker deltas. However, a quark can
change color by emitting a gluon, and the QED coupling constant

e generalizes to quark-antiquark-gluon (gqgG) coupling matrices

T.
M,1
. b, U
= 1g(T.

1
a,b=1,2,...,n quark colors
i,3=1,2,...,N gluon colors

In QED the strength of radiative corrections is measured by
the fine structure constant a =e?/(4m). In QCD the corresponding
quantity (color weight for 1-quark loop correction to the gluon
propagator) 1is Tr(TiTj); If T, 1s a hermitian matrix, this can

be diagonalized

tr(Ti‘I'j) :aisij ' ai?_O ; (no sum on i) . (6.16)
The a; is the "fine structure constant" with which the i-th color
gluon couples. If T, are not hermitian, we might be in trouble,
because some a,; could be negative (that is like taking imaginary
e in QED). Henceforth we shall always take coupling matrices T;

to be hermitian.

Thinking exercise 6.C.1: What could go wrong if q&G couplings were not
hermitian?

+

Quarks have also been introduced by James Joyce: "“tree quarks for Muster
Mark", Finnegans Wake, II.iv.
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D. Compton scattering

We assume that the gluons are massless vector particles,
just like photons. They should be transverse, and the gaugeons

introduced by the longitudinal polarizations (6.4) must not con-

tribute to the S-matrix.

Let us check this by considering the simplest conceivable
process: the Compton scattering in the lowest order. The contri-

buting (QED-like) Feynman diagrams are (the rules are summarized

in appendix D)

c . b €3 .
 i2= = ; 1 1 l
(lg) u(p,s')[ﬁ (T])b %) (Ti)aﬁf +¢(Tj_)b !5—?"!“ (TJ)C¢ ]U (P:S) (61 .
sz o1

(from now on we shall suppress the polarization and spinor wave

functions eu,u,ﬁ).

The gaugeon insertions from (6.4) lead to extra contribu-

tions to the S—-matrix:

The bare Ward identity (6.7) yields

sM = :,*{ -
- ;__{ + " (6.18)

The first two terms vanish on the mass-shell. The last two terms

differ only in the color factors and vield

- (7T, -TjTi)z( -iv") . (6.19)

In QED T; » e, and this vanishes, ensuring the gauge invariance

of the Compton scattering. What happens in QCD?



E. Color algebra

So far we have put no restrictions on the color couplings
other than that T; be hermitian. A gluon can change an initial
quark of any color into a final quark of any color, so there
are i=1,2,...,n° gluon colors, and there should be n? linearly

independent coupling matrices T;. In other words, T. form a com-

1
plete basis for expanding hermitian matricesT

1_12

a b
M:— iilmi (r,)>, realm, . (6.20)

The color factor i(TiTj-TjTi) in (6.19) is also a hermitian

matrix, so it can be expanded in the T, basis (repeated indices
summed over)

TT -TT =iC, .~ T (6.21)
1 7 1 1 117 k

. k
with real constants C.}ﬁ. This is a Lie algebra, and C,. are cal-

led structure constant;. It 1s convenient to choose th;jgenera—
tors T; 1n such a way that the Killing-Cartan metric (6.16) is
diagonal. We take all a;, >0 (if any aj were vanishiné, the cor-
responding gluons would not couple at all). If a, # a,, the cor-
responding gluons couple with different strengths, and the gen-
erators T; can be divided into mutually commuting subsectors
(the Lie algebra is semi-simple). The interesting case is the

simple Lie algebras, for which all gluons couple with the same

strength. (6.16) becomes a normalization convention for Lie

algebra generators

tr(T. T ) =al . . i=1,2...N¢<n? . (6.22)
1 ] 1] =

Physically a is the (unrenormalized) "fine structure constant".

With this normalization convention, the structure constants Ci;“=
Cijk are fully antisymmetric
— _ -

This 1s the completeness relation for U(n) generators. In general the color

group can be any subgroup of U(n), in which case (6.20) should be replaced
by the appropriate completeness relation.



= - = C . . (6..23)
Cijk Cjik 1k
So much for the color algebra. The important result is that

(6.19) has no reason to vanish, so the QCD gaugeons do not (yet)
decouple.

Exercise 6.E.1 Evaluation of color weights. Instead of labeling the

gluon colors by i=1,2,...,N, it is often more convenient to
label them by the colors (a,b), a,b=1,2,...n of the corres-

ponding quark-antiquark pairs. It is very easy to construct
generators Tg explicitly; for example, U(n) is generated by

d
() - 6562 628
C

and SU(n) (the Lie algebra of all traceless hermitian matrices)

by d
('rb) - sPsd _ 1 gPsd (6.25)
a o C a n a C

These explicit expressions for the generators enable us to
compute the color weights associated with various QOCD-graphs.
For example, the color weight for the graph

in U(n) gauge theory is

a b
d/p\ e/, b dce c b =

Color weights have a very simple physical interpretation. The
momentum space integral is the same for any choice of the ex-
ternal and internal guark and gluon colorings, and each color-
ing contributes the same amount. The color weight is the number
of distinct colorings. In the example above the color weight is
n, because the internal quark line can be colored in n ways.

What is the SU(n) color weight for the above diagram? Compute
the U(n) and SU(n) color weights for

o

F. Three-gluon vertex

We are in trouble; gaugeons do contribute to the Compton
scattering. That is not acceptable, as they are unphysical. We
shall now show that the theory can be repaired by introducing
a 3-gluon vertex. The physical reason why 3-gluon couplings are
needed is that gluons are charged (they carry quark-antiquark

colors). A 3-gluon coupling is also suggested by the form of
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the uncancelled term in (6.19). The Lie algebra (6.21) relates
followed

by splitting into two gluons with coupling strength icijk‘ We

this to emission of a single gluon with coupling T.,

‘'can cancel the extra terms in (6.18) by adding such diagram:

=0 (6.20)

The three terms have the same momentum space structure (diagram-
matics is explained in appendix D), so this is simply a diagram-

matic statement of the Lie algebra.

Now we have to invent a 3-gluon vertex which will, upon a

gaugeon insertion, yield the desired term

Y = { + (terms vanishing on the mass—-shell)

(6.27)

This i1s reminiscent of the bare quark vertex Ward identity (6.7).
That identity is simply a statement of momentum conservation.
For vectors, the momentum conservation can be diagrammatically

stated as

™
. »
*
- . bt
~ » |
- . -
» . .
-
-+ ® + -— 0
. -
™
- ” » »
» » b
» - -
» "
» ’u v
'-. »
.

i(-iC; ) (k) + Xk, +k3) =0 . (6.28)
To get something that has a hope of becoming a 3-gluon vertex,
we need two more Minkowski indices: the only candidates are gHV

and k"k". x*k" is no good (see exercise 6.G.1), so we try multi-

plying by guvt

il
+

(6.29)

_ . UV P
( lcijk)lg“ k:2

: . UV P P
(-lcijk)lg.. (k] +k7) .

Contracting with kz gives



;,( = Y T ( (6.30)

_ 2 _HV
u——[—"'\) = k*g" (6.31)

As this 1s very reminiscent of (6.27), we are tempted to define

where

a three—-gluon vertex by

AR

This cannot be right. Gluons are bosons, and the vertex must be

symmetric. So we symmetrize our guess:

YT
ijk MY

Vo, Kk k) = (=3C, ) (197272 (kyok, ) M2 + 597072 =k, )

(6.32)

+ighths (k ~k,)"2) .

Does this satisfy the condition (6.27)? A simple computation

NANATE

VO _ 2 2 ”2 “3 Ho “3
kuY (k,k, k ) ( 1Cljk) k k k k, k K,

yields

This looks right, at least in the Feynman gauge. For gluons in
the arbitrary gauge (6.12) we use the identity

I P Lo | N o B TN A N SRR TR T
k2(g +f'k” +k°f )(gok kok )

== (g"k? - k"h") (6.34)



where
h =k - k, (kM€Y - £'k") (6.35)
kuhuzkz . --»’—-4.--::_'_ u*o/*to (6,36)

to rewrite (6.33) as the bare 3-gluon vertex Ward identity:

M‘I""’w ) ./i/:\'\%m N"ﬂ:\/\
+ .—47‘\’\"'\- - Nm’*‘ (6.37)

Here «w-:p—= stands for hv, and the wiggly lines are gluon propa-

gators (see appendix D for diagrammatics). This identity and
the three-gluon vertex (6.32) are the main results of this
section.

With the three-gluon vertex, the Compton scattering is

=X

rather than by (6.17). One can easily check that the gaugeons

(6.38)

now decouple. The Ward identity (6.37) generates 3 extra terms
beyond the desired (6.27), but they all vanish on the mass-shell
by the transversality condition (6.1) and the mass-shell condi-
tion (6.3).

Exercise 6.F.1 A three-gluon vertex has three Minkowski indices. Show
that they cannot all be carried by the momentum vectors: yHVO %
ckgkgkg. Hint: the color factor is antisymmetric.

Exercise ©6.F.2 Scalar QED vertices. For scalar charged particles the
only available vectors are p, and pﬁ and the photon vertex is

given by
L
— 7\ H
=-jie(p+p’) (6.39)

!

p p
The propagator is the usual scalar propagator

e m—'éwj“:—“i* . (6.40)
ps -m
Show that gaugeons do not decouple if (a) we add a (pwp’)u
part to the vertex (6.39), or
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(b) the Compton amplitude is given by diagrams in (6.17).
Save the day by devising a Z-photon vertex

L

which ensures the decoupling of gaugeons.

Exercise 6.Fxé' Derive the bare three-gluon vertex Ward identity (6.34).
Check the gaugeon decoupling in (6.35).

Exercise 6.F.§* (Continuation of exercise 6.D.1). Show that for SU(n)
the color weight for the gluon self-energy diagram is

What is it for U(n)? U(n) is non-semisimple - how does that
manifest itself? Is color weight reducible to (6.22)? Compute
also U(n), SU(n) color weights for

A, A A

Hints: Lie algebra (6.21) together with normalization (6.22)
implies that

. _1 ~
( lcijk) = tr(TiTka TijTi) .

Use this to eliminate the 3-gluon color factors. Resulting
color welights can be evaluated by (6.24) and (6.25).

"Birdtracks" are a convenient method for evaluating color

weights. In this formalism the gluon projection operators (6.24)
and (6.25) are replaced by diagrams:

b C b C

.. byd_1 I N
U(n): (Ta)C 3 H rﬂ-\
a d a d

SU(n) : (Tg)dm *L}‘C
c n

The number of quark colors, the normalization (6.16), and the
structure constants are given by

O msz‘l‘r 1=n

M,Ovvxza AN
_1 _ }
a
For example, the above gluon self-energy is evaluated by sub-
stituting the diagrammatic gluon projection operators in

o -G



G. Ghosts

So far so good - we have repaired the Compton scattering
by introducing a 3-gluon vertex. However, the 3-gluon bare Ward

identity is rather complicated; beyond the terms analogous to
the spinor Ward identity (6.7) there are two extra terms with

k*hY numerators. If a diagram has a number of 3-gluon vertices

a k¥ insertion will (after repeated applications of the Ward

identity (6.37)) yield contributions like

If such a gaugeon line ends up on a quark line, it will (by ap-
plications of the fermion Ward identity (6.7)) eventually vyield
mass—-shell vanishing contributions. But if it loops onto itself,

we are stuck with gaugeon contributions of the type

,j u’

e rﬁ

which have no reason to vanish. The problem is that the physical

gluon has only d-2 degrees of freedom, but with our Feynman rules,

all d components contribute; there are too many degrees of freedom

circulating along the loops.

This disease has a drastic cure. We introduce a new particle,
called a ghost, whose sole purpose is to (in the manner of ghoulies)

eat up the longitudinal degrees of freedom. It couples to gluons

(cf. appendix D), but each ghost loop carries a minus sign and

just like the gaugeon

1

Y S A

Il

thus cancels the corresponding gaugeon loop. As we have seen 1n
chapter 4, such particles must obey Fermi statistics. The arrow
on the ghost line keeps track of the h¥ (k) factors in (6.41). We

shall prove in the next chapter that ghosts indeed cure the



gaugeon loop problem. For that we shall also need the bare ghost

vertex Ward identity, which, as always, 1s simply a statement of

the momentum conservation, this time combined with the identity

(6.36):.
L4

-
‘»v
’h
. »
» *
“ ib““ | nlul‘bllnt 4 A — .- »>»alle i‘ﬁa
4
%
- ‘0
Q. hd
*

.*"’ .
C. . {-—k h (k + k’) --k’h“(k-rk’)]:w c...(k+k"?2 . (6.42)
13k U H ijk

(Note that because of the color factor the "vertex" on the right-

hand side is antisymmetric - this is another indication that the

ghosts must be treated as fermions.)

In order to verify the correctness of the ghost prescription
we shall have to go through some algebra. However, the physics of
ghosts should already be clear; gaugeons are unphysical degrees

of freedom, and the ghosts are here to cancel them. Neither

"particle" has any physical meaning by itself.

Exercise 6.G.1 Show that for axial gauges nuDuv=xO, so that the gaugeons

decouple
«'H% =0 . (6.43)
*

This means that the axial gauges are "“ghost-free"; the Ward
identities will turn out to be no more complicated than the
QED ones. This is the reason that the axial gauges are often
used 1n general diagrammatic gauge invariance arguments. Com-

putationally they are horrid.

H. Four-gluon vertex

The next thing we have to check is the gauge invariance of

the gluon-gluon Compton scattering:

Inserting a gaugeon, using the gluon Ward identity (6.37), and

discarding the mass-shell vanishing contributions, we end up

with
Qf(f:wr;rwfmﬁiii +

(6.45)
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Replacing each 3-gluon vertex by (6.32) yields lots of terms

(6.46)

There is no reason for this to vanish. To rescue the theory we

have to devise a 4-gluon vertex for which a gaugeon insertion

(6.47)

precisely cancels (6.46). We do this by rewriting (6.46) in a
form that resembles a gaugeon insertion into a 4-vertex. The
tools that we have at our disposal are the momentum conservation

(6.28) and the Lie algebra commutator (6.21), which, for 3-gluon

couplings, is the Jacobi relation

C.. C C. C =C., C

ijm mk& —jmL kim ~jkm mfi (6.48)

We can use the Jacobi identity to combine the (6.46) terms with

the same Minkowskl structure. For example,

. VP U s s . L
ig "ik] (( 1Cijm)( iC ) (—1C, ) 1ijg))( i)

(-1) . (6.49)

)

VI ,
= ig plkt'( mcimﬂ.) (-1ij

This reduces the number of terms in (6.46) to twelve:

+ (10 terms) . (6.50)

By the momentum conservation (6.28) these add up to six terms
M= + (5 terms) . (6.51)

Now the gaugeon contribution is of the desired form (6.47). If



we define the four-gluon vertex by

XX A AR

the gluon-gluon scattering amplitude

D - -

is gauge 1nvariant.
Definition of the four—-gluon vertex (6.52), together with

the bare four-gluon vertex Ward identit

(6.54)

are the main results of this section. (The Ward identity follows
from (6.45)).

So far we have succeeded in making the quark-gluon and the
gluon-gluon tree level scattering amplitudes gauge 1invariant,
but at what a price: three new kinds of vertices and even ghosts.
This looks like a story without end; next one might need a 5-
gluon vertex to fix up the five-leg Green functions, etc. Indeed,
in theories like gravity, one would find 5-graviton vertex, 6-

graviton vertex,..... . For QCD the buck stops here - we shall

prove that in the next chapter. To carry out the proof, we shall

also need the following invariance condition for the four-gluon
vertex:

- O - (6 055)
This 1i1s simply a statement that.Clﬂéilm is an invariant tensor
(exercise 6.H.2).
Exercise 6.H.1 (Continuation of exercise 6.F.4). Compute the SU(n)

color weight for the diagram

B

Hint: the 4-gluon vertex (6.52) is really composed of pairs
of 3-vertices, so group-theoretically there are no 4-vertices.



Exercise 6.H.2 Prove the invariance of the 4-gluon vertex, (6.55).
~ Hint: note that nothing in (6.55) depends on the momentum.
Substituting (6.52) you will observe that each Minkowskl
factor Iuv9op is multiplied by color factor

.
. L 4
* S a
3 | puR S
- & "‘ - 5 "‘ ."“ L ¥ " “““‘ ’l
* o s L e . YT *
. R -4 + e y e N + DL rall + ‘ ‘ . )
P » PR § » . 8, a ¢ Y !
L | v R ! ! “ N ’t“ha‘ » ’ i:“’*bm w4
N » » . » - . * %
> » Y L b ] L LS
» . * - »
. »

:"t. *
. ’ :
»

Prove (by using the Jacobi identity (6.48)) that this vanishes.

I. QCD action

As explained in chapter 2, Feynman rules can be compactly
summarized by the action functional (2.13). Carrying this out
for the QCD Feynman rules is a straightforward but somewhat tedi-
ous continuation of exercises 2.E.2 and 2.D.1. The compact in-

dices are replaced by the full set of explicit indices:
i -1 1 -a
d)i - (AU (k) ;0™ (k) ,w" (k) ;qa (k) 1qaa (k) ) ’ (6 .56}

where A is the gluon field, w and w is the ghost and antighost

fields, and q and q the quark and antiquark fields.

The result is known to everybody:

Sl¢] = inxL
= + -+
. £YM £fix-k£ghost Lquark
. 1 » 2
=1L
Lo == 2(F2)
1 - i i, ipk
Fuv auA\) avAu gcijkAuA\)
| 2
0 __ 1 AHAl
fix a v (covariant gauges)
_ =l H 17 ] :
£ghost W 8~Du W (covariant gauges)
1 _ o1lJq
D]J 6 au gCiijﬁ
_ .= za b - a
'Cquark B lqambq anq
a a : a,l
= - . . 6.
Dbu abau lg(T:L)bAu (6.57)

Checking the equivalence between the above action and our
Feynman rules is dullness embodied (though nothing compared to

doing the same for the supergravity actions). The only non-
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trivial step is the inversion of the gluon propagator (this 1is
needed for the guadratic part of the action (2.13)). The general
case is unilluminating and we relegate it to the exercise 7.H.1;
the problem can be understood by looking just at the covariant
gauges. The covariant propagator (appendix C) can be decomposed

into the transverse and longitudinal parts

ik D"V = (g"V -k"k/k?) +ak"k /K2 . (6.58)
The inverse 1is simply

- kT2 MY = (@ - k'KU/K?) + 2 KKK (6 .59)

However, 1f a =0 the propagator is purely transverse, and it can-
not be inverted. There is nothing wrong in using a =0 (Landau)
gauge in evaluating Feynman diagrams, but non-invertibility is a
problem for the path integral formulation: a zero eigenvalue for
the propagator (6.58) means that the path integral (3.7) has no
gaussian damping factor for integrations over longitudinal fields
Aiaaﬂiknﬂ“ These troublesome directions are just our old gaugeons

in a new guise, and the cure is gauge fixing.

Multiplying (6.59) by the momentum conservation delta func-
tion and Z%fkufﬂk’), summing over color and Minkowski indices, in-
tegrating over momenta and Fourier transforming, we obtain the

quadratic part of [,

: . Y-
. ( i i
Stransverse 4J auAv avAp) (6.60}

and the gauge fixing term f¢;, in (6.57). The remainder of (6.57)

is obtained in the same way.

Exercise 6.I.1 Inverting gluon propagators. Under the gauge transforma-
tion (6.4) the polarization sum (6.10) transforms into

V
e“-ev~*eu~s -bk”(w*ev)-+(eu*m)kv-+(w-m)kukv.

Define functions h%(k), B(k) by

eHow = - hr_l/k2 ) wew = B/k?
4

With transverse €y equation (6.1), the gluon propagator (6.10)

can be written as
ik*D"Y (k) = (g"" - K"k /k?) - (kY + kMn ) /K 4 BRMR /K

kuh‘,i‘,mo . (6.61)



Exercise
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This is nothing but a rewrite of (6.12) in terms of the transverse,
mixed and longitudinal parts, convenient for inversion. Check that
hp is the transverse part of the ghost vertex (6.35), h=k +hqp.
Show that the inverse propagator 1is given by

R, | 2 2 4. 2
= -k k /k%) +h B-h-/k . 6.62
(ik“D )pv (guv kp v/ ) uhv/( T/ ) ( )
Show that the gauge fixing terms in the action are given by
.. _ 1 Hy 2
Covariant: £fixﬂm 2a(8uA )
. 1 H, 2
Axial Lflx*“ .Za(nuAa)
_ __ 1 Hy o2 v
Planar : Lfix 2an2(nuAa)a (nvAa)
Coulomb : L . =- Jh{(nza - Nnedn )Au]2 ) (6.63)
fix 2a U H a

Corresponding propagators are given in appendix C. Note that most

of the popular gauges (Landau, axial, etc.) correspond to the singu-
lar a>0 and/or n®~+0 limits. Do you feel uncomfortable? Reflect
briefly upon whether you are really enjoying this.

6.123 Construct (6.57) from our Feynman rules, or verify the

Feynman rules from (6.57), whichever is more to your taste. Note

that the ghost propagators and vertices differ in the two formu-
lations. Is that a problem?
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Summary:

bare vertlces-

e A2 KRS ACATACA
o X X

ghost-gluon ,........ e = eeeen .L,

bare vertex Ward identities:

’ '
M »

°
quark-gluon I = ’ - ’

3—-gluon ‘JJ.HI\\

4-gluon

ghost-gluon / + \ - - :
S
’ é ¢

The diagrammatic rules are explained in appendix D.

(6.64a)

Rt e

(6.64c)

(6.65a)

(6.65b)

(6.65¢)

(6.654)

(6.66a)

(6.66Db)



/. QCD WARD IDENTITIES

We tried to put a  little color into QED and we got into a
considerable mess. It seems as though one has to introduce a
new vertex or particle for each process one looks at - a dismal
prospect. Fortunately things are not that bad - we shall now
prove that with the QCD vertices constructed in the last chapter

the gaugeons decouple from all S-matrix elements. Regardless of
their later guises, the requisite identities are contained in

the original Gerard 't Hooft's paperf, so we shall call them

Ward identities.

A. Ward identities for full Green functions

In this section we shall prove that the gaugeons (6.5) de-

couple from any QCD mass-shell process;

The

enable us to follow the gaugeon into the Green functions. Because
of the bare 3-gluon Ward identity (6.37), the gaugeons "propagate®"

into the diagrams:

..].

G. 't Hooft, "Renormalization of massless Yang-Mills fields", Nucl. Phys.
B33(1971)173. These identities are also known as Lie - Engel - Schur - Wigner -
Eckhart - Schwinger - Stlckelberg - Feynman — Ward - Takahashi - Green - 't Hooft -
Veltman - Taylor - Slavnov - Lee - Zinn-Justin - Nielsen - Kluberg - Stexrn - Zuber -
Becchi -~ Rouet - Stora - Kugo-0Ojima - Feigenbaum - Witten - Polyakov - Parisi -
Wilson - Moffat identities.



suggests that the con-
venient starting point for the proof is not the external leg
gaugeon (7.1), but gaugeon insertion anywhere inside a Green

function:

(7.3)

The ghost DS equation (7.2b) yields the desired external gaugeon

insertion (7.1), together with an extra term

(7.4)

As ghosts are fermions, the ghost egquations are bound to cause
sign anxieties. The best thing to do is to relax and remember
that the only thing that matters is that each ghost loop carries
a minus sign.

The gluon DS equation (7.2a) yields

(We omit quarks for the time being - their inclusion is straight-
forward, cf. exercise 7.A.1). The last three terms are clearly
there to be hit by the bare Ward identities (6.37), (6.54), and
(6.42) :

(7.6)

(The second term cancels the extra bit in (7.4); this is the

reason why we started with (7.3) rather than (7.1).)

(7.7)




(7.8)

We turn back to DS equations to expand the surviving term in
(7.6):

The second term cancels against (7.7)} the third term vanishes
by (6.55), and to kill the last term we expand (7.8)

(7.10)

By the Jacobi identity (6.66) the second term cancels the last

term in (7.9)

(7.11)

All the messy terms have cancelled. We collect the survivors,
putting (7.4) on the left-hand side and (7.5) on the right-hand

side:

(7.12)

(we have included the guarks - cf. exercise 7.A.1). This is our
maln result; the Ward identities for the full Green functions.
In (7.1) we set out to prove that the left-hand side (a gaugeon
insertion) vanishes for any mass-shell process. All the terms on
the right-hand side vanish on the mass-shell; the first by the
polarization condition (6.1) and the remainder by the equations
of motion (6.2), so the gaugeons indeed decouple.

Exercise 7.A.1 Quark Ward identities. Derive (7.12) by keeping the
quark terms in DS equations and using the bare gquark Ward
identity (6.7).

Exercise 7.A.2 1Inevitability of ghosts. Try to check the gaugeon de-
coupling in the theory without ghosts (drop (7.2b) and the
ghost term in (7.2a)). Do the non-vanishing terms suggest in-
troduction of ghosts?




B. Examples of Ward identities

The Ward identities (7.12) can be rewritten in a more trans-

parent form by pulling out an anti-ghost leg and setting the re-
maining anti-ghost sources equal to zero:

(7.13)

What happens is that as the gaugeon eats its way into a Feynman
diagram, it leaves a ghost in its wake: we have indicated this

by a dotted line. In QED the ghost is not coupled and Ward ident-
ities are rather simple, as in (6.9). In QCD the ghost is coupled,

and the Ward identities are a more complicated affair. The simplest
example is the Ward identity for the gluon self-energy:

(7.14)

This takes a particularly simple form in covariant gauges, where

the ghost vertex (6.41) is hY =kH¥. Using the ghost DS equation
(7.2b) we can rewrite the above as

1
4
+
e
4

i

‘W".'ﬁﬁ .
= PO B WP | N
& » . '
"TERRREE e i e-&-fiiE . /.15
i'i-. nP” +Tgnd . @
" "ﬁ "

(we drop the vacuum bubbles). The double slash indicates the

transverse projection factor k%d“ﬁ-kﬁéﬂ As we are in the co-

variant gauges, the only invariant tensor with one index is kH,
SO

Because of the transverse projector in (7.15) such term does not

contribute, and we find that the longitudinal part of the gluon

propagator has no radiative corrections:



covariant
M gauges | (7.16)

Exercise 7.B.1 1-loop Ward identities. Check the gluon propagator at

one—-loop level is explicitly transverse. in the Feynman gauge.
Hints: Substitute diagrammatic vertices, bare Ward identities

and Jacobi identities into
& -
Poves — ....’._.: .?..._._.

i..",
Do not drop anything because it vanishes by dimensional regular-
ization (you are not supposed to know that yet; besides, it just
messes up the proof).

Exercise 7.B.2 Prove that the vacuum bubbles are gauge invariant:

Hint: decompose f into transverse and longitudinal parts: SEV =

iéiéklk“-féfg. The ghost vertex variations are ¢6hy =0, GhTm-k26fT.
A gauge variation of Z consists of two parts; variation of the

gluon propagators and variation of the ghost vertices:

propagator ghost vertex
variation variation

Exercise 7.B.3 Sign anxieties. It is pretty hard to keep track of signs

in QCD; there are signs due to the antisymmetry of Cijk'sf to the
fermionic nature of ghosts, to momentum arrows in gluon vertices,
to -i's in propagators. One useful sign check is obtained by re-
placing full Green functions by their lowest order (tree) contri-
butions. Check (7.13) by comparing its tree approximations to the
bare vertex Ward identities of chapter 6.

Exercise 7.B.4 Ward identities for the connected, 1PI Green functions (con-

T

tinuation of exercise 6.A.1). Use the relations between the full,

connected and 1PI Green functions developed in chapter 2 to rewrite

the Ward identities (7.12) and (7.13). Work this out for the 1PI
quark vertex, gluon self-energy, etc.

T upersymmetry!

The classics illustrated Ward identities (7.12) do every-

thing we promised they would do, but Jens J. JensenT is still

T

The inventor of 3-j coefficients.



unhappy: they look different from the Ward identities 1in Jens’
favourite textbook. What irritates Jens is the gaugeon insertion
on the left-hand side of (7.12):

(7.17)

The propagator going into the blob .---: = - ik"/k® is neither
a ghost not a gluon. Well, that is no sweat. After a brief two
weeks' reflection one observes that (6.61) implies

— i1H
Lk Y DM . (7.18)

We can use this identity to replace'wkﬂﬁf'by the gluon propaga-

tor. If we introduce diagrammatic notation for the "gauge fixing

functional™®
1 I S
EFJ.[A]:B“I’]%/](Z Au" (7.19)
(7.17) can be redrawn as
= (7.20)

Written in the generating functional notation, the terms contri-

buting to (7.12) are1L

Sy
i
VAN
3
| —

23
ER

0, |

EQ-I

| I———
=,
=

{
x

g
. T
£
Q.
|
o~
)
l

AxJ* (x)(igc,. }————d _ 9 3091 =
. 11k Az} (x) df, (x)

\ ‘%"' - ‘;:':_..‘ \
|at ) (ggci *k)-‘..d— 4 g =lxedd
3 J dgj (x) dgk (x) ‘\’0 :g:““c:

(7.21)

T

No contractual obligation by Nordita regarding correctness of signs or factors
of i is either expressed or implied in this or any other equation in this docu-
ment.
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This is as good a demonstration as any that one diagram 1is
better than 50 symbols. In a slightly more compact notation,
the Ward identities (7.12) are given functionally by

d d]

(JDii-%F,[mm

+ 1z, F[d‘?JDz[J] =0 . (7.22)
- dg d§ dg

a

Here D:=Dfl-5j is the covariant derivative from,(6.57), J,&,&,n,n
are respectively the gluon, ghost, antighost, quark, antiquark
sources, and we have dropped quarks - their inclusion is straigh-

forward.

As promised in chapter 3, the Ward identities are indeed of
the form

d _
JiFi[a--Jm]Z[J] =0 . (7.23)

The generators of the transformation &¢, =€F;[¢], equation (3.31),
can be read off (7.21)

cSAi = i—:Diju)J
U H

651:-8%?[A]
ad 1l

O
e
|
l
™
-
-3
Ll
o _p
€
;.Qu
oy
1

(7.24)

According to (3.33), the action is invariant under transforma-

tions generated by F;l[¢]:
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dsl¢]
do;

Fi[d)] =0 .

This is a supersymmetry, because it mixes bosonic gluons A and
fermionic ghosts w,w. It is far from obvious (it was introduced
by Becchi, Rouet and Stora in 1975) and it is very deep, or
trivial, depending on the time of the day. In either case, the
BRS symmetry is an elegant tool for proving the renormalizabil-
ity of QCD, a topic that belongs to the next tome of the ulti-
mate QCD review*, We stop here, deserting the long-leggety
beasties for chaos, which, after all, is the source of all

creation.

Exercise 7.C.1 BRS invariance. A discouraging aspect of hidden super-

symmetries like the BRS symmetry is that they are so hard to

discover. QCD suggests a systematic way to construct the gener-

ators, which goes something like this: *

1. Start with Lyy, which is invariant under JA = eDuw.

2. Problem; the gluon propagator is not invertible. Break the
invariance by adding £fix==“(a‘A)2/(2a). This generates

= - £¢3. .
3. Attempt to restore the symmetry by adding a new field with

variation GE:ze(aoA)/a
and action term
EghOSt = E(S*D)w .

4. This does not quite work because D is field-dependent, and
6Lghost generates an extra term

ﬁlClea "Dkgwgwj .
5. Save the day by varving w as well

£
Gwi = - _g-cijkijk'

Antisymmetry of Cijk forces you to take w fermionic.
Check all steps in the above argument.

Exercise 7,Q:2 wWard identities for the effective action. Use the methods
of chapter 2 to rewrite (7.22) in terms of 1PI functionals.
Hint: introduce extra sources for the non-linear terms in (7.24).

T

A.D. Kennedy, in preparation.
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APPENDIX A: 2-PARTICLE IRREDUCIBILITY

The virtue of the diagrammatic derivation of the 1PI Green
functions, section 2.G, is that one does not need to prove 1P-
irreducibility; it is built-in, by construction. To test the
power of the method, I do it here for 2-particle irreducible
Green functions} and am (almost) successful. This is a warming-

up exercise for computing QCD bound states. Besides, it is crowd-

ing my notebooks.

Introduce 2 kinds of sources: J = (J;,J;5)

1-particle sources

Ji=th~mi
2-particle sources Jij=i_—*—fj = in (A.1)

The connected Green functions are the same as usual

(c)
ijk...2

G2
|

SN T @ a3, W

L J

LY

as they are evaluated at Jj =J. ., =0. The generating functional is

J
a double expansion in J; andchj;

(A.2)

Removing a two-particle source can disconnect a connected

diagram:
dw[J] _
dJ. " - (A.3)
1]
Nota bene:
d 1 |
37 Ymn _E(Gimajn * 6in6jm) ! (a.4)

1]

do not forget symmetrizations!
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To define 2-particle irreducible graphs, we have to remove tad-
poles (connected to the rest of the diagram by 1 line) and self-
energy insertions (connected to the rest of the diagram by 2

lines), Hence introduce

0= (opm,)
fields: 6, =d§§‘?‘] = I—@

1

_d*W[J] _

.dJ
L]

(A.5)

propagators: Ekj

&

If we pull out a leg, it either ends on a source, or 2PI

diagram, or 2P-reducible diagram:

¢ixdggj]m r—¥+~—x—@+o—‘+-@~@+m

i

= + + +
¢i Aij(Jﬁ J5k¢k +Pj ﬂjk¢k ijépkg

1 1
* 2 ke %% * Uikan®kPom NETRE TS5 R ) "‘

The 2-particle irreducible (2PI) Green functions are drawn
as black blobs, with each external line coming into a separate

vertex:

y
~ ¢ _.da a4 a a4,
J‘)‘— T @, 3 @, '[¢]

k

I . (A.7)

ijk..%

Derivatives with respect to self-energies are denoted by the

corresponding pairs of lines coming into a white vertex:

d 4 d

) - D d_a ¢

1jkim..

(A.8)

$=0
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caution: 1) can be 2-particle reducible

example: a term like'

When

wvhen we remove the propagator, the remainder is 2-particle re-
ducible

2-particle reducible A

In the above expansion of dW/dJ;, the Ut

is 2PI. We sum up its 1iteration by defining

== A"? -+
Fij Aij u 1Tij ; (A.9)

and the expansion can be rewritten as the first duality relation:

dr'[¢]

0=J.+J

3 jk¢k ¥ dd)j

(A.10)
,t

extra term due to Z2-particle sources

The second duality relation is

(A.11)
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I do not know how to derive this diagrammaticallyf, but

algebraically it comes from the second Legendre transform:

Fl6] = WlT] m@ggJ] Jiw%&g[J] Tio (A.12)

1 17

by differentiating with respect to Dij . To go from connected to

2PI Green functions, use the chain rule:

d j 4 jk d | d a*wlg] d
= e ——— 4 —_— =2 ) — e —_—_—,—— ’ (A.13)
dJi dJi dd)j dJi dDjk i dqu c?le,_dedJk dDJk
+this has to be re-expressed
in terms of ¢.,D. .
1 17
To eliminate m*%%{: , use the identity
dJmn
= =0 . (A.14)
1
Substituting d4T'/dDy, for J, . and using the chain rule, we obtain
Om(D 4 . d°Wlg] _d \dri¢]
i3 dcbj dJidedJk cSlDjk dDmn
0 = (A.15)
Define 2-particle propagator as the inverse of P.ﬁnm:
(A.16)

==-~-!-(:M........M +><) (A.17)

symmetrized, 2-particle subspace

T

Here 1s where my derivation falls flat on its face.



in terms of ¢i'rﬁj functions:

(A.18)

(A.19)

This says that if we follow a line into a connected diagram, we

either encounter a 2PI piece, or a 2P-reducible piece.

To be able to evaluate

d d d
&, a5, - a
i ] k
in terms of 2PI bits, we also need to compute d/d¢. D,, ., and
d/dp.. D . They follow from the definition of D, ,  as the
ij k% mn ki mn
inverse of T :
k2 mn
d
do. Dkﬂ, mn
; £ mn
d
dDij Dh&% (A.20)

This is also sensible, as will be clear from the perturba-

tive expansion of the 2-particle propagator.

Finally, we need to relate d/dDij (2 diagrammatically ob-
scure thing) to d/dé¢; d/d¢j (an operation which yields 2PI Green
functions). This we obtain by differentiating the first duality
relation with respect to d/dJ and using the chain rule

Replacing Jij by the second duality rule and multiplying by in-

verse propagator, we obtain
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® & s,

driel _d°rlel | d°riel ..., d°’Tle]
db,, d¢.dp, d¢.dD k% mn dDmnd¢j

+ D, 1[¢] . (A.22)
1] s i k& +

This enables us to systematically get rid of d/dDij derivatives.

Now we can rewrite any relation between connected Green

functions in terms of 1PI functions by going from

d
dJ 4

J, 1T WlJ]

to dual wvariables and functions

d
d) 'Dlj'dq) F[¢]

1

using D, and d/dD,. in intermediate steps.

ij k& 17

Sundry expansions:

(A.23)

(A.24)

The last term shows that not only is T

ij kL not 2P-irreducible,

it is not even connected. That is a good thing; it is necessary

SO th,a.t.Dij , can be the inverse of Fij T i1t has to start as

A —
—_—



~+ (connected pieces) (A.25)

Perturbative expansions for 2PI graphs

Perturbative expansions isolate the quadratic part of the
action (bare propagator) and treat the rest as "interaction®

parts. In the general formalism, the bare propagator is hidden
in

(A.26)

Fij=~A;;fﬂ,, + :m++—®-

1]

It is convenient to also isolate the non-interacting part of the
two-particle propagator:

l{n-1n-1 . p-1n-1
= - D™-D™* +D™+D +
P_l; 5('ik Jji ‘il'jk) Ki;‘i k2

+

connected part

b (A.27)

We implement these reshufflings by defining an "interaction"

general functional

_ (1) 1 -1 1
(el =T""[¢] -5 ¢iAij¢j o tr gnD . (A.28)

Now we can expand the two-particle propagator in terms of

Kij xa?

VO —————ea

(A.29)
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APPENDIX B: Solution of "find 7 errors" (Exercise 2.H.3)

Pull a third leg out of the equation (2.35):

As we need T, only to g®> order, truncate all subdiagram expan-

sions

(where subscript k means all
terms of order gX)

' — ~+higher, drop
/ S* 411 such

— + @t

A+ A A
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Substituting such expansions, and keeping only g’ terms: (re-

member, & = 0)

The last expansion comes from pulling out a leg from &5 and
immediately dropping all terms higher than g' (the last 7 terms

in Dyson-Schwinger equation). Substituting, one obtains

the correct expansion:
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APPENDIX C: SOME POPULAR GAUGES

Covariant gauges: (Feynman a=1; Landau a=0):

—3 1V
D"V =— {g‘”— (1-a) X ] , h'=x" . (C.1)
k+ie k2

General axial gauges:

: Hy, V H_V 2 2 2 _H
pH = - ——Nl gV -RX_TXn jak tn k“k"1 , pr=XD_ (C.2)
k2+ie n (n-k) 2 - (k-n)

Usually nu==(0,0,0,1) picks out a spatial axis.

Axial or temporal gauges (a=0):

_i nukv-rkunv n?kukv 1y
D = [g -+ . ] , N D" " =0 . (C.3)
Hy k2+i€, | MV (H'k) (n"k) 2 H
General planar gauges:
4 npkv + kunv nzkukv L K2n
D = {g -—————— + (1-a) ] y, h = . (C.4)
SRV k2 +ie SRV (n"k) (n‘k) 2 (k’n)
LLightcone (a=0, n?=0) and planar (n?=-ak? % 0)
_3 nukv + kunv
Puv = K2 44 v ” W] (C.5)

General Coulomb gauges:

pHV = -i ‘ gV _nok(nukv +k'n") ~ak? -n?((n-k)* -n%k?) kuk\)-l
k2+iet (n-k) * - n%k? ((n-k)? - n%k?)? -

5 [ S ¥
R = p2dekin ko u _g L (cle)
(H‘k)2 _k2 H

Usually n*=(1,0,0,0) picks out the time direction so that
kM - (n-k)n* = (0,K) .



Coulomb gauge (a=0, n’=1):

: -k k
3 o (nl k) (kunv + nu.k\_)) 1 \’:I
D — = o = —_— ®

HY k2+ie[ HVY (n-k) 2 - k>

See (6.63) for the gauge-fixing terms [

fix

(C.7)
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APPENDIX D: FEYNMAN RULES FOR QCD

Progagators

gluons A =6 “’; (g‘”+f“f" +k”f\)) , (D.1a)
k
-1 v
— =, g Feynman gauge . (D.1b)
l:] k2
ghost e-a-e =8, = (D.2)
1] k2
| i
quark ;—-q—: = iz—_;n- (D.3)

(cf. appendix C for other gauges).

Vertices

Pyt |
J‘,’/—i\‘r = (—1gC )1[g;m (p—q)\,g (q*r)k+g\)k(r—p)u] , (D.4)

. 2 .
‘\}{\”1 (-9 Cijm mkﬁ)l(guogvp J pgvo)
Y

+(=9°Cp; Coaile, 9. -9,.9,)
et + (- gzcikmcmj 2)1 (gwgpo gupgvc) . (D.5)
3‘§5km (- igcijk) (-1ih") (D.6a)
ar = =1gC ) (-ip") (covariant gauges) (D.6b)
‘ (D.7)

All momenta flow outward. Ghost vertices for other gauges

are given in appendix C. The first factor iﬁithe color weight
d“k

(cf. exercises 6.E.1 and 6.F.4). A factor'szi for each loop.
T



Diagrammatic notation

One way to avoid the proliferation of color indices, Minkow-
ski indices, and other QCD factors is to introduce auxiliary

Feynman rules:

Auxiliary propagators:

i 3. . -1 ’ (D.8a)

s | u . 1 |
J 3 >=====< 1 (Slj R gCﬂJgBU (D,Bb)

P
p : _ +
J e .. u—y L 5 -1 (+p ) ::.f arrow alor}g p (D.9a)
U 13:p2 "M - 1f arrow against p
. | & : : .
- +
J @i venens ...D—__.l . . ............‘1'..... (ih (p)) , '}f arrow alox:xg p (D.gb)
U lj:pz U - 1f arrow against p
-1
6, , — + D.9c
The g\m( pu) ( )

o .——1L<p—o h <21i (D.10a)
3 i N
' .___/___‘ 61.] ( i) guv (D.10b)

H
’ 97;!—"1 §..(-1) (g -p p /p°)
Ny uv PPy’ P
Vv u
:*—{——0 + O—e.--c--... S——- (D,1OC)
j @-ccvvscnngffucacaracang i o 4
/ 0 4 (1) (D.10d)
78 N 0;5 (=19, 9, (D.10e)

| TP .......__...‘ ..... & - — .......“..,.......u. | (D.1 Of)
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Each line connecting two vertices (or an external source and a
vertex) carries factor -i/p®* for gluons and ghosts, and i/ (p-m)
for quarks. Dotted lines keep track of color indices; thin lines

keep track of Minkowski indices.

Auxiliarz vertices:

»
+ L

b&z (Ti )Z (- 1) (D.11a)

o (-1iC, j“k) i (D.11b})
3 K
L
(**1Cijk)lgpv (D.11c)
(- 1Cijk) :t.c;:;th;;WS (D.114)
(""lCijk)lgdprv (D.11e)
Signs
Cﬁjk indices are read anticlockwise around the vertex. Due

to the antisymmetry of Ctﬂﬁ

change sign under interchange of any two legs:

. » :
- » . -
- . bt
» - * :
- .
» . ‘ [ ]
» . E
® — 9, —
-. .; — » L") — —
» L - "
[ ] - I‘O
. - ° - n‘
) LY
l. ]
&

ﬁ - \[7 ,. (D.12)

Arrows for p and h' factors indicate the momentum flow and

the corresponding vertices

change sign under arrow reversal:

RPN P, S— (D.13)
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Jacobi identities, Lie algebra

They are all statements of (6.48) and (6.21), but decorated

with different Minkowski factors:

."
“
-
-»
™
»
-
.u*ht LN R W
L 3
»
3

»
#
E
-
=
.
-
-
»

»

»
Y *
¥ - ¥
- 5’ E

¢ -
‘II
» »™
» »*
[ 4 *
B E 3
»
E
n‘ “e LI .
- Y
..
™»
* —

Comments: It would be more consistent to treat propagators

(D.14)

as two-leg vertices, but it is traditional to denote them by
lines. This causes some unnecessary ugliness, such as slash
notation -wjfwaf for lines without propagators, and confusion
between e.---»#—* and e.-®wAAve which we tried to clarify in

equation (7.20).



et e e e e

Critics say:

. Seen in [Cvitanovic's] framework, field theory books
are like every other form in the universe: they are
generated by changing intervals of tension between a
dominant system and a competing system in a space-time
continuum that is dependent on the process of competition
between these two stabilities and not on any General
Concept of Space and Time ... [Cvitanovié's] method thus
valorizes the microcosm which illumipates macrocosmic form
by the high tendency of microcosmic patterns to repeat
themselves and so greatly limit structural varjagion in
the macrocosm ... But on another level, as ir the sagas,
the Song of Rolland, the J11iad, the Odyssey, the
NibeTungeniied, the Aeneid and Beowulf, the real dynamic
focus of the book is the:power of anger. :

Patricia Harris Stablefﬁ

A distinguished reviewer says:

IT IS NOT
EVEN WRONG
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