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6. FROM GHOULIES TO GHOSTIES 

A physical photon is massless and has only transverse de­

grees of freedom: still, in relativistic cal~ulations it is con­

venient to pretend that the photon is a vector particle. De­

coupling of the extra degree of freedom is guaranteed by Ward 

identities. We shall use the requirement of the decoupling of 

the extra degrees of freedom as the guiding principle for con­

structing the QCD action. In retrospect it will be clear that 

this diagrammatic derivation corresponds step by step to the 

textbook local gauge invariance arguments. Still, this kind of 

derivation has its charms - it shows rather explicitly how the 

ghosts eat up the unphysical gluon degrees of freedom, and how 

the Ward identities ~uarantee their decoupling. 

A. Massless vector particles 

A massive vector particle is characterized by its mass M 

and its polarization £~ (k) . There are >.. = 1, 2, ... ,d - 1 independ­

ent polarizations: in the rest frame k µ = (M ,O) , so a vector 

particle can point in d-1 directions. Another way to see this 

is to observe that kµ, the direction of propagation of a free 

spinning particle, reduces the symmetry from S0(1 ,d-1) to 

SO(d-1), the rotations in the transverse spacetime directions. 

In the rest frame a vector particle points in a direction 
+ 
£. The choice of the coordinates is quite arbitrary: one can 

choose any d-1 independent basis vectors eA (circular polari­

zations, for example) and express the polarization in this basis 

A­
£. =I:£ e 

1 A i :\ 
>..,i = 1,2, ... ,d-1 

To describe the polarizations covariantly, we add a fake d-th 

polarization£~ and set it equal to zero by the transversality 

condition 

A= 1,2 ... ,d-1; polarization 
, 
µ=1,2 ... ,d; Minkowski (6. 1) 

This reduces to £~ = 0 in the rest frame. Being explicitly co­

variant, the transversality condition also describes the d-1 



vector polarizations in any frame. 

The momentum of a physical massive particle satisfies the 

mass-shell condition: 

(6.2) 

If the particle is massless 

k2 = 0 (6 .3) 

it is not possible to bring it to a rest frame. The best we can 

do is to align it along the lightcone: kµ = (E,0,0, ... ,E). A 

physical massless spinning particle is always whizzing along a 

spatial direction k = ( 0, 0, ... , E) , and the symmetry is reduced 

from SO(1 ,d-1) to SO(d-2), the rotations in the transverse space 

directions. Hence a massless vector particle has d-2 polariza­

tions. The trouble is that there is no nice way of imposing the 

masslessness condition on the polarizations. We can, however, 

see that there is one degree of freedom less than in the massive 

case, because we can freely vary the polarizations along the 

longitudinal direction 

£ (k) ➔ £ (k) + k w (k) , µ µ µ (6.4) 

(w(k) arbitrary function) without violating the transversality 

condition (6 .1). (Remember that k 2 = 0). For somewhat obscure 

historical reasons, this kind of transformation is called a 

gauge transformationt. 

Under the gauge transformation (6.4) the transition ampli­

tudes pick up extra contributions from the longitudinal bits, 

or "gaugeons". We denote gaugeons diagrammatically by 

µ - -i µ 
•··•···· ...... --.. • - k2° k • (6.5) 

tThe term "gauge symmetry" was introduced by James Joyce in Ulysses (p.490 
of the Modern Library 1934 edition). Bloom is standing at the entrance of 
a whorehouse "feeling his occiput dubiously with the unparalleled embarass­
ment of a harassed pedlar gauging the symmetry of her peeled pears". 



- 73 -

(The diagrammatic rules are summarized in appendix D.) At first 

glance, gaugeons seem like bad news because they change the tran­

sition amplitudes. However, the only thing that matters are the 

physical S-matrix elements (5.23}, and they are unaffected by 

the gaugeons. In QED this follows from the trivial momentum­

conservation identity 

"J{ = (p + i - m} - (p - m) • (6.6) 

Diagrammatically (cf. appendix D} this is the Ward identity for 

the bare electron vertex: 

(6. 7) 

The slashed lines indi·o:ate factors of (p - m} . They vanish on the 

mass-shell by the Dirac equation 

(p - m) u (p) = 0 . (6 .8) 

It is easy to show (next exercise) that all QED diagrams with 

gaugeons lead to mass~shell vanishing contributions. The QCD 

Ward indenties are not so trivial - their derivation will be 

the main subject of this and the next chapter. 

Exercise 6.A.1 Derive by iterating (6.6) the QED Ward identity 

A=i{~ ~} 
Hints: 
1. For the full 

i ~ = 

Green functions, show 
! i 

Rewrite this for connected Green functions. 

2. Show that 

3. Finally, use the result of exercise 2.H.1 for the 1PI Green 
function. 

(6.9) 
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B. Photon propagator 

We have shown that QED gaugeons are innocuous; they do not 

affect the physical predictions of QED. One could even claim that 

the gaugeons are actually good news, as the gauge invariance (6.3) 

gives us great flexibility in defining the bare photon propagator 

<Aµ(x)Av(y)). Whatever your favorite way of deriving propagators 

may be (I like random walks of the preceeding chapter), the end 

result for the vector particles must be 

. polar. 
-;i.. 

D (k) =p :E 
µv A 

A 
E (k) E, (k) 

µ AV 
(6.10) 

The polarization tensors EA are Clebsch-Gordan coefficients which 
µ 

project the physical d-1 (or d-2) transverse polarizations out of 

the space of d-dimensional vectors. Explicit construction of 

Clebsch-Gordan coefficients is a tedious and unrewarding business. 

Fortunately we do not need them: we need only their sum in (6.10). 

For massive vector particles this is easy to evaluate. We 

write all rank-two tensors available and fix the constants by the 

mass-shell conditions (6.1) and (6.2): 

A 
:EE (k) E, (k) = Ag + Bk k 
11. µ I\V µv µ v 

kk =g - µ V 
µv ~ 

(6. 11) 

For massless vector particles there is no such unique choice. 

One's first impulse is to replace (6.11) by 

However, any gauge-transformed polarization (6.4) should lead to 

an equally good propagator, so we are lead to propagators of gen­

eral form 

~ 
i = D (k) = - k 2 (g + k f + f k ) µv µv µ v µ v I (6.12) 

where fv(k) is an arbitrary function. The most popular gauge 

choices of this type are listed in appendix C; which one is the 

most convenient depends on the application. More perverse gauges 
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t can be thought up, and are . Each gauge choice generates its 

gaugeons - and if the theory is to make any sense, we must in­

sist on their decoupling from physical processes. This is the 

principle from which we shall presently construct the QCD action. 

More precisely, the sacred principle is the gauge invariance, 

which in the language of Feynman diagrams comes in two guises: 

(a) external gauge invariance, or invariance under trans­

formation (6.4): 

£ ➔ £ + owk 
µ µ µ (6 .13) 

(b) internal gauge invariance, or invariance under varia-

tion of gauge-fixing parameters: 

D ➔ D + k of + of k 
µv µv µ v µ v 

(6.14) 

Exercise 6.B.l Gauge fixin~. Any not too pathological function fin the 
propagator (6.12) will do, as it must decouple anyway. One usual­
ly fixes fv(k) by some physically motivated condition. For inter­
actions of nearly static particles, Coulomb gauge is the natural 
choice. For highly relativistic situations the covariant, planar 
or lightcone gauges might be convenient, and so on. The gain is 
of purely computational nature - the physical results must be the 
same in all gauges. The Coulomb gauge condition 

3 i 
I: cl. A (x) = 0 (6 .15) 

i=l 1. 

is a typical example. This condition introduces a spacetime direc­
tion nµ = (1,0,0,0), so the most general form of f is 

fµ=Bkµ+Cnµ. 

The coefficients Band Care fixed by substituting f into the 
gauge condition on the propagator: 

O=(k•A Aµ)= (kv-(n•k)nv)<A"Aµ) 

= (kv-(n•k)nv)Dvµ 
+ + 

Here the three-vector k is expressed covariantly by (0,k) 
kµ-(n•k)nµ. Compute the propagators listed in appendix C by 
this method. Observe that it is sufficient to do one calcula­
tion; once the axial gauge propagator is known, the others 
are obtained by special choices of the vector nµ. 

t 
useful in some contexts. 
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Exercise 6.B.2 Physical polarizations. In (6.1) we have insisted on the 
transversality of the physical polarizations. This seems to be in 
conflict with imposing a noncovariant gauge condition such as 
(6.15). (a) Straighten out this confusion. (b) Communicate the 
resolution to the author. 

C. Colored quarks 

We start the construction of Quantum Chromodynamics by at­

tempting a simple generalization of QED: we replace the electron 
t by a set of quarks of n different "colors", and the photon by 

N gluons. A free quark or gluon propagates without changing color, 

so the spacetime propagators are the same as in QED, while the 

color factors are simply Kronecker deltas. However, a quark can 

change color by emitting a gluon, and the QED coupling constant 

e generalizes to quark-antiquark-gluon (qqG) coupling matrices 

Ti 

A a b 
= ig(T.) b (y11 ) 

l. a a.8 

a,b = 1, 2, ... ,n quark colors 

i, j = 1,2, ... ,N gluon colors 

In QED the strength of radiative corrections is measured by 

the fine structure constant a.= e 2 
/ (4TT). In QCD the corresponding 

quantity (color weight for 1-quark loop correction to the gluon 

propagator) is Tr(TiTj). If Ti is a hermitian matrix, this can 

be diagonalized 

tr (T. T . ) = a. cS . . , 
l. J l. l.J 

a.> O 
l. -

(no sum on i) . ( 6. 16) 

The ai is the "fine structure constant" with which the i-th color 

gluon couples. If Ti are not hermitian, we might be in trouble, 

because some ai could be negative (that is like taking imaginary 

e in QED). Henceforth we shall always take coup]ing matrices Ti 

to be hermitian. 

Thinking exercise 6.C.l: What could go wrong if qqG couplings were not 
hermitian? 

t 
Quarks have also been introduced by James Joyce: "tree quarks for Muster 
Mark", Finnegans Wake, II .iv. 
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D. Compton scattering 

we assume that the ~luons are massless vector particles, 

just like photons. They should be transverse, and the g~ugeons 

introduced by the longitudinal polarizations (6.4) ~ust not con­

tribute to the S-matrix. 

Let us check this by considering the simplest conceivable 

process: the Compton scattering in the lowest order. The contri­

buting (QED-like) Feynman diagrams are (the rules are summarized 

in appendix D) 

+ 
p 

= (ig) 2 u(p:s>[t'(Tjr js+~--ro (Titt+t(Tir t>-k--m (Tjti']u(p,s) 
b a b c (6 .17) 

(from now on we shall suppress the polarization and spinor wave 

functions£ ,u,u). 
µ 

The gaugeon insertions from (6.4) lead to extra contribu­

tions to the S-matrix: 

OJt=>-<+ ~ 
The bare ward identity (6.7) yields 

(6.18) 

The first two terms vanish on the mass-shell. The last two terms 

differ only in the color factors and yield 

(6.19) 

In QED Ti ➔ e, and this vanishes, ensuring the gauge invariance 

of the Compton scattering. What happens in QCD? 
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E. Colar algebra 

So far we have put no restrictions on the color couplings 

other than that Ti be hermitian. A gluon can change an initial 

quark of any color into a final quark of any color, so there 

are i = 1,2, ... ,n 2 gluon colors, and there should be n 2 linearly 

independent coupling matrices Ti. In other words, Ti form a com­

plete basis for expanding hermitian matricest 

n2 

l-f = L m. (T.) b , 
a i=l I. l. a 

realm. 
l. 

(6.20) 

The color factor i (T. T. - T. T.) in (6 .19) is also a hermitian 
l. J J l. 

matrix, so it can be expanded in the T. basis (repeated indices 
l. 

summed over) 

T.T. -T.T. =i C. _k Tk 
l. J J l. l.J 

(6 .21) 

k k 
with real constants C.. . This is a Lie algebra, and C.. are cal-

1.J l.J 
led structure constants. It is convenient to choose the genera-

tors Ti in such a way that the Killing-Cartan metric (6.16) is 

diagonal. We take all ai > 0 ( if any ai were vanishing, the cor­

responding gluons would not couple at all) . If ai * aj, the cor­

responding gluons couple with different strengths, and the gen­

erators Ti can be divided into mutually commuting subsectors 

(the Lie algebra is semi-simple). The interesting case is the 

simple Lie algebras, for which all gluons couple with the same 

strength. (6.16) becomes a normalization convention for Lie 

algebra generators 

tr (T. T . ) = ao . . 
l. J l.J 

(6.22) 

Physically~ is the (unrenormalized) "fine structure constant". 

With this normalization convention, the structure constants C k= ij 
Cijk are fully antisymmetric 

tThis is the completeness relation for U(n) generators. In general the color 
group can be any subgroup of U(n), in which case (6.20) should be replaced 
by the appropriate completeness relation. 
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C =- C 
jik ikj 

(6.23) 

So much for the color algebra. The important re·sul t is that 

(6.19) has no reason to vanish, so the QCD gaugeons do not (yet) 

decouple. 

Exercise 6.E.1 Evaluation of color weigpts. Instead of labeling the 
gluon colors by i = 1, 2, ... , N, it is often more convenient to 
label them by the colors (a,b), a,b = 1,2, ... n of the corres­
ponding quark-antiquark pairs. It is very easy to construct 
generators T~ explicitly; for example, U(n) is generated by 

( Tb)d = o bod ( 6 . 2 4) 
a c c a 

and SU(n) (the Lie 
by 

algebra of all traceless hermitian matrices) 

( Tb)d =obod _ _.!.. obod. 
a c c a n a c 

These explicit expressions for the generators enable us to 
compute the color weights associated with various QCD-graphs. 
For example, the color weight for the graph 

in U(n) 

(6.25) 

Colar weights have a very simple physical interpretation. The 
momentum space integral is the same for any choice of the ex­
ternal and internal quark and gluon colorings, and each color­
ing contributes the same amount. The color weight is the number 
of distinct colorings. In the example above the color weight is 
n, because the internal quark line can be colored inn ways. 
What is the SU(n) color weight for the above diagram? Compute 
the U(n) and SU(n) color weights for 

F. Three-gluon vertex 

We are in trouble; gaugeons do contribute to the Compton 

scattering. That is not acceptable, as they are unphysical. We 

shall now show that the theory can be repaired by introducing 

a 3-gluon vertex. The physical reason why 3-gluon couplings are 

needed is that gluons are charged (they carry quark-antiquark 

colors). A 3-gluon coupling is also suggested by the form of 
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the uncancelled term in (6.19). The Lie algebra (6.21) relates 

this to emission of a single gluon with coupling Ti, followed 

by splitting into two gluons with ~oupling strength iCijk" We 

·can cancel the extra terms in (6.18) by adding such diagram: 

=O (6. 26) 

The three terms have the same momentum space structure (diagram­

matics is explained in appendix D), so this is simply a diagram­

matic statement of the Lie algebra. 

Now we have to invent a 3-gluon vertex which will, upon a 

gaugeon insertion, yield the desired term 

= + (tenns vanishing on the mass-shell) . 

(6 .27) 

This is reminiscent of the bare quark vertex Ward identity (6.7). 

That identity is simply a statement of momentum conservation. 

For vectors, the momentum conservation can be diagrammatically 

stated as 

(6 .28) 

To get something that has a hope of becoming a 3-gluon vertex, 

we need two more Minkowski indices: the only candidates are gµv 

and kµkv. kµkv is no good (see exercise 6.G.1), so we try multi­

plying by gµv: 

( ·c ) . µvkp 
- 1 ijk J.g 2 

= 

= 

Contracting with kp gives 
2 

(6 .29) 

( - • C ) • µv (kp + kp) 1 ijk ig- 1 3 • 
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(6.30) 

where 

µ (6.31) 

As this is very reminiscent of (6.27), we are tempted to define 

a three-gluon vertex by 

This cannot be right. Gluons are bosons, and the vertex must be 

symmetric. So we symmetrize our guess: 

(6 .32) 

Does this satisfy the condition (6.27)? A simple computation 

yields 

A (6.33) 

This looks right, at least in the Feynman gauge. For gluons in 

the arbitrary gauge (6.12) we use the identity 

(6.34) 
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where 

(6.35) 

·--~·-·=- ··J··· (6. 36) 

to rewrite (6.33) as the bare 3-gluon vertex Ward identity: 
~ ! • 

~=~-~ 
. . 

+..-4····~-~---~ (6.37) 

Here ..... I>- stands for h v, and the wiggly lines are gluon propa­

gators (see appendix D for diagrammatics). This identity and 

the three-gluon vertex (6.32) are the main results of this 

section. 

With the three-gluon vertex, the Compton scattering is 

given by 

11= >--<+A + X (6 .38) 

rather than by (6.17). One can easily check that the gaugeons 

now decouple. The Ward identity (6.37) generates 3 extra terms 

beyond the desired (6.27), but they all vanish on the mass-shell 

by the transversality condition (6.1) and the mass-shell condi­

tion ( 6. 3) . 

Exercise 6.F.1 A three-gluon vertex has three Minkowski indices. Show 
that they cannot all be carried by the momentum vectors: yµvcr* 
ck~k~ki. Hint: the color factor is antisymmetric. 

Exercise 6.F.2 Scalar QED vertices. For scalar charged particles the 
only available vectors are Pµ and p~ and the photon vertex is 
given by 

t \µ • = - ie (p+p I)µ 
p' p 

The propagator is the usual scalar propagator 

e • I 
i 

Show that gaugeons do not decouple if (a) we add a (p-p 1 )µ 
part to the vertex (6.39), or 

(6.39) 

(6.40) 
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(b) the Compton amplitude is given by diagrams in (6.17). 
Save the day by devising a 2-photon vertex 

X =? 

which ensures the decoupling of gaugeons. 

Exercise 6.F.3 Derive the bare three-gluon vertex Ward identity (6.34). 
Check the gaugeon decoupling in (6.35). 

Exercise 6.F.4 (Continuation of exercise 6.D.1). Show that for SU(n) 
the color weight for the gluon self-energy diagram is 

~ =2n 

What is it for U(n)? U(n) is non-semisimple - how does that 
manifest itself? Is color weight reducible to (6.22)? Compute 

also U(n),xc~loA:s A 
Hints: Lie algebra (6.21) together with normalization (6.22) 
implies that 

1 
tr (T. T. Tk - TkT. T.) . 

a 1 J J 1 

Use this to eliminate the 3-gluon color factors. Resulting 
color weights can be evaluated by (6.24) and (6.25). 

"Birdtracks" are a convenient method for evaluating color 
weights. In this formalism the gluon projection operators (6.24) 
and (6.25) are replaced by diagrams: 

b C 

u (n): ~ •• < a d 

SU (n) : 

The number of quark colors, the normalization (6.16), and the 
structure constants are given by 

0 = o:=Tr l=n 

~=a~ 

A-¾{A-PJ 
For example, the above gluon self-energy is evaluated by sub­
stituting the diagrammatic gluon projection operators in 
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G. Ghosts 

So far so good - we have repaired the Compton scattering 

by introducing a 3-gluon vertex. However, the 3-gluon bare Ward 

identity is rather complicated; beyond the terms analogous to 

the spinor Ward identity (6.7) there are two extra terms with 

kµhv numerators. If a diagram has a number of 3-gluon vertices 

a kµ insertion will (after repeated applications of the Ward 

identity (6.37)) yield contributions like 

If such a gaugeon line ends up on a quark line, it will (by ap­

plications of the fermion Ward identity (6.7)) eventually yield 

mass-shell vanishing contributions. But if it loops onto itself, 

we are stuck with gaugeon contributions of the type 

.) ....... t-/ 
~-·· ···-~ 

.•• ··A"'···r~ 
which have no reason to vanish. The problem is that the physical 

gluon has only d-2 degrees of freedom, but with our Feynman rules, 

all d components contribute; there are too many degrees of freedom 

circulating along the loops. 

This disease has a drastic cure. We introduce a new particle, 

called a ghost, whose sole purpose is to (in the manner of ghoulies) 

eat up the longitudinal degrees of freedom. It couples to gluons 

just like the gaugeon 

= (6.41) 

(cf. appendix D), but each ghost loop carries a minus sign and 

thus cancels the corresponding gaugeon loop. As we have seen in 

chapter 4, such particles must obey Fermi statistics. The arrow 

on the ghost line keeps track of the hµ(k) factors in (6.41). We 

shall prove in the next chapter that ghosts indeed cure the 
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gaugeon loop problem. For that we shall also need the bare ghost 

vertex Ward identity, which, as always, is simply a statement of 

the momentum conservation, this time combined with the identity 

(6.36): 

··~... ·~ .. 

. 
}I. ............ = - ·::•···I-· ◄ .. 

. -~- .•· .-~· 

C. . [ - k hµ (k + k') - k 'hµ (k + k') ] = - C. . (k + k') 2 
• 

iJk µ µ iJk 
(6 .42) 

(Note that because of the color factor the "vertex" on the right­

hand side is antisymmetric - this is another indication that the 

ghosts must be treated as fermions.) 

In order to verify the correctness of the ghost prescription 

we shall have to go through some algebra. However, the physics of 

ghosts should already be clear; gaugeons are unphysical degrees 

of freedom, and the ghosts are here to cancel them. Neither 

"particle" has any physical meaning by itself. 

Exercise 6.G.1 Show that for axial gauges nµDµv = 0, so that the gaugeons 
decouple 

This means that the axial gauges are "ghost-free"; the Ward 
identities will turn out to be no more complicated than the 
QED ones. This is the reason that the axial gauges are often 
used in general diagrammatic gauge invariance arguments. Com­
putationally they are horrid. 

H. Four-gluon vertex 

( 6. 43) 

The next thing we have to check is the gauge invariance of 

the gluon-gluon Compton scattering: 

( 6. 44) 

Inserting a gaugeon, using the gluon Ward identity (6.37), and 

discarding the mass-shell vanishing contributions, we end up 

with 

• ?;( x··--O}t=->+< + n + (6 .45) 
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Replacing each 3-gluon vertex by (6.32) yields lots of terms 

O]'L=- ( K +5 tenrua)+( ~ +5 te=s) 

+( X +5 te=s) (6 .46) 

There is no reason for this to vanish. To rescue the theory we 

have to devise a 4-gluon vertex for which a gaugeon insertion 

X (6.47) 

precisely cancels (6.46). We do this by rewriting (6.46) in a 

form that resembles a gaugeon insertion into a 4-vertex. The 

tools that we have at our disposal are the momentum conservation 

(6.28) and the Lie algebra commutator (6.21), which, for 3-gluon 

couplings, is the Jacobi relation 

(6 .48) 

We can use the Jacobi identity to combine the (6.46) terms with 

the same Minkowski structure. For example, 

>+< -}+Z = ;( 

ig \lp ikµ4 ( ( - iC. . ) ( - iCmk n) - ( - iC. mk) ( - iC. n)) ( - i) 
lJID ;,., l JID;,., 

= ig\lpikµ4 ( - C. J ( - iC .k) ( - i) . 
lffi;,., ill] 

(6 .49) 

This reduces the number of terms in (6.46) to twelve: 

o!l= _ ·x + r + (10 tenns) • (6 .SO) 

By the mo~7 conservation (6.28) these add up to six terms 

Of'(= ~ + (5 tenns) • (6.51) 

Now the gaugeon contribution is of the desired form (6.47). If 
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we define the four-gluon vertex by 

the gluon-gluon scattering amplitude 

(6 .53) 

is gauge invariant. 

Definition of the four-gluon vertex (6.52), together with 

the bare four-gluon vertex Ward identity 

(6 .54) 

are the main results of this section. (The Ward identity follows 

from ( 6 . 4 5) ) . 

So far we have succeeded in making the quark-gluon and the 

gluon-gluon tree level scattering amplitudes gauge invariant, 

but at what a price: three new kinds of vertices and even ghosts. 

This looks like a story without end; next one might need a 5-

gluon vertex to fix up the five-leg Green functions, etc. Indeed, 

in theories like gravity, one would find 5-graviton vertex, 6-

graviton vertex, ...... For QCD the buck stops here - we shall 

prove that in the next chapter. To carry out the proof, we shall 

also need the following invariance condition for the four-gluon 

vertex: . . 

m+~+rR\+~ 
= 0 . (6 .55) 

This is simply a statement that Cijkcktm is an invariant tensor 

(exercise 6.H.2). 

Exercise 6.H.1 (Continuation of exercise 6.F.4). Compute the SU(n) 
color weight for the diagram 

~ 
Hint: the 4-gluon vertex (6.52) is really composed of pairs 
of 3-vertices, so.group-theoretically there are no 4-vertices. 
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Exercise 6.H.2 Prove the invariance of the 4-gluon vertex, (6.55). 
Hint: note that nothing in (6.55) depends on the momentum. 
Substituting (6.52) you will observe that each Minkowski 
factor gµvgop is multiplied by color factor 

~f•~-~·-f;t-\ + .:>~1·')'\ .. + >=\·-~,t\ -t \/\/.-./~ .. 

Prove (by using the Jacobi identity (6.48)) that this vanishes. 

I . QCD action 

As explained in chapter 2, Feynman rules can be compactly 

summarized by the action functional (2.13). Carrying this out 

for the QCD Feynman rules is a straightforward but somewhat tedi­

ous continuation of exercises 2.E.2 and 2.D.1. The compact in­

dices are replaced by the full set of explicit indices: 

(6.56) 

where A is the gluon field, wand w is the ghost and antighost 

fields, and q and q the quark and antiquark fields. 

The result is known to everybody: 

S[<j)] = i Jax.c 
£=£ +£ +£ +£ 

YM fix ghost quark 

£ =-.!.(Fi )2 
YM It µ\I 

(covariant gauges) 

£ = iiaµoijwj 
ghost µ (covariant gauges) 

oij = oija +<;J:,. k 
µ µ ikjA 

µ 

£ _ .- f)a b - a 
quark - iqa b q - rrqa q 

a a . a i 
Db = oba - ig(T. )bA µ µ i µ 

(6.57) 

Checking the equivalence between the above action and our 

Feynman rules is dullness embodied (though nothing compared to 

doing the same for the supergravity actions). The only non-
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trivial step is the inversion of the gluon propagator (this is 

needed for the quadratic part of the action (2.13)). The general 

case is unilluminating and we relegate it to the exercise 7.H.1; 

the problem can be understood by looking just at the covariant 

gauges. The covariant propagator (appendix C) can be decomposed 

into the transverse and longitudinal parts 

(6 .58) 

The inverse is simply 

(6 .59) 

However, if a= 0 the propagator is purely transverse, and it can­

not be inverted. There is nothing wrong in using a = 0 (Landau) 

gauge in evaluating Feynman diagrams, but non-invertibility is a 

problem for the path integral formulation: a zero eigenvalue for 

the propagator (6.58) means that the path integral (3.7) has no 

gaussian damping factor for integrations over longitudinal fields 

At a: wi (k)kµ. These troublesome directions are just our old gaugeons 

in a new guise, and the cure is gauge fixing. 

Multiplying (6.59) by the momentum conservation delta func­

tion and Ai (k)Ai (k'), summing over color and Minkowski indices, in-
µ \) 

tegrating over momenta and Fourier transforming, we obtain the 

quadratic part of lyM 

s = - ~ a A1 
- a A1 "Jax( • • )2 

transverse 4 µ v v µ 
(6 .60) 

and the gauge fixing term £fix in (6.57). The remainder of (6.57) 

is obtained in the same way. 

Exercise 6.I.1 Inverting gluon propagators. Under the gauge transforma­
tion (6.4) the polarization sum (6.10) transforms into 

£µ•£v ➔ eY•£v +kµ(W•£v) + (£µ•w)kv + (w•w)kµkv. 

Define functions h¥(k), B(k) by 

With transverse£µ, equation (6.1), the gluon propagator (6.10) 
can be written as 

ik2 Dµv (k) = (gµ\! - kµk v /k 2 ) -(hµk \! + kµh \!) /k 2 + Bkµk \! /k 2 

T 'I' 

kµh~ = 0 .. (6 .61) 
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This is nothing but a rewrite of (6.12) in terms of the transverse, 
mixed and longitudinal parts, convenient for inversion. Check that 
hT is the transverse part of the ghost vertex ( 6. 3 5) , h = k + hT. 
Show that the inverse propagator is given by 

(ik 2 D- 1

) = (g -k k /k 2
) +h h /(B-hT2 /k 2

) . (6.62) 
µV µV µ V µ V 

Show that the gauge fixing terms in the action are given by 

Covariant: £. = - -
1
-( cl Aµ) 2 

fix 2a µ 

Axial I:. = - _!_(n Aµ) 2 

fix 2a µ a 
1 µ 2 V 

Planar £.f. =--
2 2 (n A ) a (n A ) 

ix an µ a v a 

Coulomb I:.. =- -
1
-[(n 2 cl -n•cln )Aµ] 2 (6.63) 

fix 2a µ µ a 

Corresponding propagators are given in appendix C. Note that most 
of the popular gauges (Landau, axial, etc.) correspond to the singu­
lar a+ 0 and/or n 2 + 0 limits. Do you feel uncomfortable? Reflect 
briefly upon whether you are really enjoying this. 

Exercise 6.I.2 Construct (6.57) from our Feynman rules, or verify the 
Feynman rules from (6.57), whichever is more to your taste. Note 
that the ghost propagators and vertices differ in the two formu­
lations. Is that a problem? 
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J. Summary: 

bare vertices: 

3-gluon A~ A -~ + A -A+ f\ -A 
4-gluon X = -x-X-)=lo<-~-~-~ 
ghost-gluon .. 1 .. i ... ◄•··· =- ...... L ..... . 

bare vertex Ward identities: 

1 'I! 
• 

quark-gluon i =- I ~ i I a • ' • 
1 • I • • 

3-gluon 

.. ·••• 

4-gluon 

ghost-gluon 

•·. . •. .• 
,:, :i "·· 4 ····/· + , .... = 

~ ~ 
i, i 

invariance conditions: 

Jacobi identities 
.••. 

(and similarly with Minkowski factors) 

4-gluon 

The diagrammatic rules are explained in appendix D. 

(6 .64a) 

(6 .64b) 

(6 .64c) 

(6 .65a) 

(6 .65b) 

(6.65c) 

(6.65d) 

(6.66a) 

(6.66b) 
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