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2. GENERATING FUNCTIONALS 

A. Propagators and vertices 
A particle (an elementary excitation of a theory) is speci

fied by a list of attributes; its name, its state (spin up, in

going, ... ), its spacetime location, etc. To develop the form-
-----~~ -----~ 

alism of field theory, one does not need any specific part of 

this information, so we hide it in a single collective index: 

i = {q,a,a, µ,x , .... } 
µ 

q particle type 
a colour 
a spin 
µ Minkowski indices 
X spacetime coordinates 

µ 
(2. 1) 

A particle is an interesting particle only if it can do 

something. The simplest thing it can do is to change its posi

tion, its spin or some other attribute. The probability (ampli

tude) that this happens is described by the (bare) propagators: 

(2.2) 
j 

Beyond this, many things can happen; a particle can split in

to two, or three, or many other particles. The probability (am

plitude) that this happens is described by (bare) vertices: 

-~ .i 
__J.___ 
j k 

R, 

yijkt = i+ k 
j 

y ijktm = 

A particle can also be created (or removed 

This is described by a source (or a sink): 

(2.3) 

from the system). 

(2.4) 
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The concept of a particle makes sense only if its persist

ence probability (2.2) is appreciable, i.e. if (2.3), the prob

ability of its disintegration, is relatively small. In that 

case the interactions (2.3) may be treated as small corrections, 

and the perturbation.theory applies. If the "particle" de

scribed by attributes (2.1) has a negligible persistence proba

bility, the theory should be reformulated in terms of another 

set of "elementary excitations" which are a better approxima

tion to the physical spectrum of the theory (an easy thing to 

say). 

How many identical particles (particles with all the same 

labels) can coexist? We shall consider two extremes: infinity 

(bosons) or at most one (fermions). Other more perverse possi

bilities cannot be excluded. Assumption of additivity of proba

bilities/amplitudes then implies that the bosonic propagators 

and vertices must be symmetric under interchange of indices 

llij = llji, Y ijk = Y jik = Y ikj = (The argument is similar to the 

one we shall use for fermions in chapter 4). For the time be

ing, we assume that the vertices (2.3) are symmetric. 

B. Green functions 

A typical experiment consists of a setup of the initial 

particle configuration, followed by a measurement of the final 

configuration. The theoretical prediction is expressed in terms 

of the Green functions. For example, if we are considering an 

experiment in which particles i and j interact, and the outcome 

is particles k, i, and m, we draw the corresponding Green func

tions 

(2.5) 

(remember that labels i, j, stand for all variables and in-

dices which specify a particle.) 

A Green function is a sum of the probabilities (amplitudes) 
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associated with all possible ways in which the final state can 

be reached. This is represented by an infinite sum of Feynman 

diagrams: 

Each Feynman diagram corresponds to a sum (or an integral). For 

example, diagram 

e 
a 

represents the probability that 1) a particle whose type, loca

tion, etc. is described by the collective index a reached any 

state labeled £; 2) that£ splits into any two particles labeled 

c and£, and so forth. The intermediate states are summed over 

the entire range of possible index values 

= ""'l',.y/',./',.y/',. 

b 
~d f ab bed cf de efg gh ,c, ,e, ,g 

Here the summation signs imply sums over discrete indices (such 

as spin) and integrals over continuous indices (such as position). 

In the future we shall drop the. explicit summation signs, and 

use instead Einstein's repeated index convention; if an index 

appears twice in a term, it is summed (integrated) over. 

Exercise 2.B.1 
stands 

Continuous indices. For QCD the collective index i 
for: 
xV 
µ=1,2, .... ,d 
j=l,2, ... ,N 

spacetime coordinates, 
Minkowski indices, 
gluon colours. 
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If the propagator.is denoted by Dti(x,y) and the three
gluon vertex by yt~~(x,y,z), write down the complete ex
pression for the above self-energy diagram~ 

C. Dyson-Schwinger equations 

A Green function consists of an infinity of Feynman dia

grams. For a theory to be manageable, it is essential that 

these diagrams can be generated systematically, in order of 

their relative importance. 

Consider (for simplicity) a theory with only cubic and 

quartic verticest. Take a Green function and follow a particle 

into the blob. Two things can happen; either the particle sur

vives 

or it interacts at least once: 

More precisely, entering the diagram via leg 1, we either reach 

leg 2, or leg 3, , or hit a three-vertex, or a four-vertex, 

etc. Adding up all the possibilities, we end up with the Dyson

Schwinger equations: 

+ + (2 .6) 

t 
Remember that the different particle types are covered by a single collect-
ive index, so QCD is also this type . 

.l. 
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Iteration of the Dyson-Schwinger (DS) equations yields all 

Feynman diagrams contributing to a given process, ordered by 

the number of vertices (the order in perturbation theory). 

A few words about the diagrammatic notation; a diagrammatic 

equation like (2.6) contains precisely the same information as 

its algebraic transcription 

G .. k' = Ii. ,G. k+6.kG. 0 + ••• +6 .. G k' 
lJ .. x, lx. J•• l J .. x- lJ •• x, 

Indices can always be omitted. An internal line implies a sum

mation/integration over the correspc,nding indices, and for ex

ternal lines the equivalent points on each diagram represent 

the same index in all terms of a diagrammatic equation. The ad

vantages of the diagrammatic notation are obvious to all those 

who prefer the comic strip editions of "The greatest story ever 

told" to the unwieldy, fully indexed versiont. Two of the prin

cipal benefits are that it eliminates "dummy indices" and that 

it does not force Feynman integrals into one-dimensional format 

(both being means whereby identical integrals can be made to 

look totally different). 

D. Combinatoric factors 

For a three-leg Green function the DS equations yield 

V' {,; 
= (disconnected) + + 

= (disconnected) + 2 -< + (more vertices) 

It is rather unnatural that an expansion of a three-leg Green 

function does not start with the bare three-vertex, but twice 

t C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, N.Y., 1980). 
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the bare three-vertex. This is easily fixed-up by including 

compensating combinatorial factors into DS equations: 

To illustrate how the DS equations generate the perturba

tion expansion, we expand a two-leg Green function up to one 

loop: 

The one-loop tadpole is given by 

= -
2
1 •• ~ + (more loops) = -

2
1 
-Q 

~ 

+(more loops) 

+(more loops) 

(2 .8) 

Substituting the tadpole into the above, we finally obtain the 

self-energy expansion up to two vertices with all the correct 

combinatoric factors: 

--@- 1 11"'1 1° 1 
----- = ,_.... + 2.-0,.+ 2 ~+ 2 ...l... + 

4
--0 0--. + (more loops) 

~ (2.9) 

This expansion looks like the usual cjl 3 + cp" theory, but it is 

not only that: the combinatoric factors are correct for any 

theory with cubic and quartic vertices, such as QCD with its 

full particle content. 
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Exercise 2.D.1 Feyrunan diagrams in .the collective index notation look 
like diagrams for scalar field theories. Nevertheless, they do 
contain the perturbative expansion for theories with arbitrary 
particle content. As an example, consider a QED-type theory 
with an "in" particle (electron) 1 and 11 out 11 particle (positron) 
and a scalar particle (photon). The collective index (2.1) now 
ranges over an array of three sub-collective indices 

electron 
positron 
photon 

Index a stands for the charged particle's position and spin, 
and indexµ stands for all labels characterizing the neutral 
particle. The "in" - "out" labels can be eliminated by taking 
~ to be an upper index for "in 11 particles,. and a lower index 
for 11 out 11 particles. Diagrammatically they are distinguished 
by drawing arrows pointing away from upper indices and down 
into lower indices: 

t,a a _.....1:, 
b 

bA yµa a I> 
Show that if the sources and fields are replaced by J= 
(na, nb, Jµ), <j, = (ij;a, ijib, Aµ), the combinatoric factors in 
(2.9) cancel, and the vertices such as the electron-positron

photon vertex have no combinatoric weight: 

Exercise 2.D.2 Write the Dyson-Schwinger equations for QED-like 
theories. (We say "QED-like" because electrons are fermions. 
We shall return to the fermion DS equations later.) 

Exercise 2.D.3 Determine the one-loop self-energy diagrams (2.9) for 
QED-like theories. 

E. Generating functionals 

The structure of the DS equations is very general; still, 

at present we have to write them separately for two-leg Green 

function, three-leg Green function, and so on. To state rela

tions between Green functions in a more compact way we intro

duce generating functionals. A generating functional is the 

vacuum (legless) Green function for a theory with sources (2.4): 

00 

Z [J] = L 
m=O 

, (2.10) 
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(as J. is a function which depends on both discrete and con-,. 
tinuous indices, Z[J] is. a functional). The coefficients in 

this expansion are the usual Green functions. They can be re

trieved from the generating functional by differentiation: 

d d d 
G,,k=dJ dJ dJ Z[J]I , 

J.J • • k 
i J J=O 

etc. (2. 11) 

The DS equations (2.7) can be written as 

(2. 12) 

The bare propagators and vertices can themselves be collect

ed in a functional called the action: 

(2.13) 

(2.14) 

Now the Dyson-Schwinger equations can be stated in an even 

more elegant way: 

where 

dS[d]_dS[cj,] 
dcj,i dJ = dcj,i L,=~ 

dJ 

(2. 15) 

The action (or the Lagrangian) is just another way of defining 

the propagators and vertices for a given theory. Giving the 

Lagrangian or listing the Feynman rules is one and the same 

thing. 
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Exercise 2.E.1 Functional derivatives. For continuous indices the 
Kronecker deltas are replaced by Dirac deltas. For example, 
check that in d-dimensions 

dJ (x) 
dJ(y) 

d o (x-y) , 

is the correct definition of the derivative in (2.11). 

Exercise 2.E.2 Feyrunan rules. Consider .~ 3 theory given by the Lagrangian 
density 

.C(x) =½ 3µcjl(x),lcji(x) -½ m2 cjl(x) 2
- i! cjl(x) 3 

S = J ddx.C (x) . 

Read off the bare propagators and vertices (the Feyrunan rules) 
from the 

Hint: 

Lagrangian. 
d d y =-

ij .. k d~. d~. 
l J 

d e· 

•• d~ s[~l1 , 
"'k ~=O 

and the derivatives are in this case functional derivatives. 

Exercise 2.E.3. Zero-dimensional field theory. Consider a ~3 theory 
defined by trivial Feynman rules 

0---0=1 ',A._=g. 

The value of a graph with k vertices is gk, and k-th order 
contribution to Green function is basically the number of 
contributing diagrams. More precisely, if 

Z[J] = L G(m)gk Jm 
k,m k m! 

the Green function 

G (m) = L C 
k G G 

is the sum of combinatoric factors of all diagrams with m 
legs and k vertices. Use the Dyson-Schwinger equation (2.7) 
to show that for a free field theory 

Diagrammatically 

G(m) = (m-1) ! ! 
0 

=0 

m even 

m odd 

= .,__, = 1 

='(.+X+~= 3, etc. 

The zero-dimensional field theory is about the only field 
theory which is easily computable to all orders. We shall 
use it often to illustrate in a concrete way various field
theoretic relations. 
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F. Connected Green functions 

Generating functionals are a powerful tool for stating re

lations between Green functions. For example, we can use them 

to derive relations between the full and the connected Green 

functions: 

Pick out a leg and follow it into a full Green function. 

This separates all associated Feynman diagrams into two parts 

- the part that is connected to the initial leg, and the re

mainder: 

d 
dJi 

Z[J) = dW[J) 
dJ. 

l 

Z[J) (2.16) 

The generating functional for the connected Green functions 

is defined in the same way as (2.10), the generating functional 

for the full Green functions: 

T 

1 IA +-
3! 

+ ...... . (2.17) 

The differential equation (2.16) is easily solved 

Z [J) = eW[J) (2.18) 

A disconnected Feynman diagram such as 

i~h 

"m 

represents a product of two independent processes; one could 

take place on the moon, and the other in Aarhus. The physical

ly interesting processes are described by the connected Green 

functions. To obtain a systematic perturbation series which 
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includes only the connected Feynman diagrams, we use the identi

tyt 

_._1 _ ~ Z [J] = dW[J] 
Z[J] dJ. dJ. 

l l 

+~ 
dJ. 

l 

(2. 19) 

to rewrite the DS equations (2.15) in terms of the connected 

Green functions: 

O = dS [dW[J] + ..£..,] + J 
d<P. dJ dJ i 

l 

(2. 20) 

This is very elegant, but possibly not too transparent. To get 

a feeling for these equations, take_the cp 3 + <P" DS equations 

(2.12) and substitute Z[J] = exp(W[J]). The result is, in the 

functional notation 

dW[J] 
dJ. llij 

l 

+ dW[J] dW[J] dW[Jl) 
dJk dJ,q, dJm , 

and in the longleggedy notation 

~= ~ +l~ +l ~ 2 2 

+½~ +l ~ 2 

+l ~ 6 

(2. 21) 

After reaching a vertex, one continues into diagrams that are 
-- -

either mutually disconnected, or connected - that is the reason 

that there are extra terms in the connected DS equations, com

pared with the full Green functions equations (2.12). 

t 1· • 1 more exp 1.c1.t y 
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Exercise 2. F .1 Use DS equations (2. 21) to compute self-energy to one 
loop. How does the result differ from (2.9)? 

Exercise 2.F.2 Expand some full Green functions in terms of the con
nected ones: 

~ ={-@-+ .... }@) 

)( •+~ + ,~ + n 
+ ~ + (10 tenns) 

Hint: iterating (2.19) is probably the fastest way. 

G. Free field theory 

The connected generating functional for a free field theory 

is trivial: there are no interactions, so the only connected 

Feynman diagram is the propagator: 

1 w,[Jl =-
2 

J.6 .. J. 
l lJ J 

(2. 22) 

For the free field theory (2.18) gives an explicit expression 

for the generating functional: 

(2. 23) 

H. One-particle irreducible Green functions 

A one-particle irreducible (1PI) diagram cannot be cut into 

two disconnected parts by cutting a single internal line. An 

arbitrary connected diagram has in general a number of such lines. 

The connected and the 1PI Green functions can be related by our 

usual diagrammatic trick: 

Pick out a leg of a connected diagram. This pulls out a 1PI 
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piece, which ends in O, 1, 2, ... lines whose cutting would dis

connect the diagram. Those lines continue into further connected 

pieces: 

Here the "field" cp is defined by 

= cp = dW[J) 
i dJ. 

l 

We draw the 1PI Green functions as cross-hatched blobs 

r .. k= A . 
lJ •• i~ 

j ·~~ ~ k. 

(2. 24) 

(2. 25) 

Unlike the full and the connected Green functions, the 1PI ones 

do not have propagators on external legs - the external indices 

always belong to a vertex of an 1PI diagram. This is indicated 

by drawing dots on the edges of 1PI Green functions. Any con

nected diagram belongs to one and only one term in the expansion 

(2.24). For example, going into connected diagram 
' / .• , /' 

• 1/, If 
I • 

we pull out a 1PI bit 

-0 
followed by connected bits 

Multiplying both sides of (2.24) by the inverse of the bare 

propagator we obtain 

o = J. + r . + ( - L'I - i + 1T l .. cp . + ½ r .. kcpkcp . + •••• 

l l lJ J lJ J 
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(For reasons which should soon be clear, it is conv.enient to 

defi.ne the two-leg r as f .. =~/',- 1 + 1r .. , where 1T·. is the 1PI two-
lJ ij .lJ lJ 

leg Green function, or the proper self-energy.) 

Collecting all 1PI Green functions into the effective ac

tion functional 

(2.26) 

we can write (2.24), the relation between the connected and the 

1PI Green functions, as: 

O=J +dr[cjl] 
i dc/l. ' 

l 

(2 .27) 

This, together with (2.25), can be summarized by a Legendre trans

formation 

W[J] = r[cp] + cjl.J .. 
l l 

(2 .28) 

(2.27) guarantees that W is independent of cp, and (2.25) guaran

tees that r is independent of J: 

dW[J] = 
dc/l 0, 

dr[cp] = 
dJ 

0 . 

This is elegant, but how does it help us to get 1PI Green func

tions? The point is that we are not interested in extracting 1PI 

Green functions from the connected ones; what we need are the 

1PI Dyson-Schwinger equations, i.e. the systematics of generating 

1PI diagrams (and only 1PI diagrams). To achieve this, we must 

first eliminate J-derivatives in favour of cp-derivatives (cf. 

(2.25)): 

..£.. = dc/lj ..£.. = d
2
W[J] 

dJ. dJ. dc/l. dJ.dJ. 
l l J l J 

(2.29) 
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This accounts for all self-energy insertions. The. right-hand 

side can be expressed .in terms of 1PI Green functions by taking 

a derivativ~ of (2.27): 
----- -- - ------

(2 .30) 

In order to understand this relation diagrammatically, we sepa

rate out the bare propagator in (2.26) by defining the "inter

action" part of r: 

Now 

r[<j,] =- ½<J>.L'l-:- 1 <j,.+ f
1

[<j,] . (2.31) 
l l] J 

(2.30) can be written as 

d2W[J] = L'lij + L'lik 
d2f I[<j,] 

1'19,j + .•.. 
dJ.dJ. d<j,kd<j,i 

l J 

♦=-+---+-...-+ ••• 

1 W[J]" = --~--
L'l- 1 

- r [<Pl" I . 

(2. 32) 

Diagrammatically W" is a complete propagator which sums up all 

proper self-energies. 

We can use (2.25) and (2.27) to eliminate source-dependent 

functionals in favour of field-dependent functionals, and (2.29) 

to replace J-derivatives by <j,-derivatives, in order to rewrite 

(2.20) as the 1PI Dyson-Schwinger equation: 

dr[<j,J 
d<j,. 

J. 

(2.33) 

The form of this equation is one of the reasons why the 

generating functional for 1PI Green functions is called the 

effective action. If the derivatives are dropped, the effective 

action reduces to the classical action. The role of the deriva

tives is to generate loops, i.e. quantum corrections (or sta

tistical fluctuations). We shall return to this in our discussion 

I 
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of path integrals. 

DS equations (2.33) are again so elegant that one is proba

bly at a loss as to what to do with them. To get a feeling for 

their utility, we write them out for the cjl 3 + cjl 4 example (2.21): 

= - + l. 
2 

_ -/J.-1"' + .i "' "' + ! "' "' "' + .i "' d
2
W[J] 

- .. 'j'. 2Y .. k"'k"'' 5Y- 'k'"''"'k"'' 2Y .. k'"'' dJ dJ 1J J 1J J 1J x. x. J 1J x. x. k j 

d2W[J] d2W[J] d2W[J] d 3r[cjl] 
dJ ,dJ dJkdJ dJ ,dJ- dcjl dcjl dcjl 

Jm nx,crmncr 

(2.34) 

Such equations are used iteratively. For example, to obtain the 

DS equation for the proper self-energyt, take a derivative of 

(2.34): 

Exercise 2.H.1 Use (2.32) to show that 

---- ~ 

+l. 
2 

+.!.~. 
6
~(2.35) 

(2.36) 

---- ~~--~ 

This is a useful identity for-deriving relations such as (2.34) 
and (2.35). 

Exercise 2.H.2 Take successive derivatives of (2.30) to show that the 
connected Green functions can be expanded in terms of 1PI Green 
functions as 

tHere the slash stands for inverse propagator; diagrammatically it is a two
leg vertex. Other vertices are denoted by dots, and a line connecting two 
vertices is always a propagator, so that ll;jlljk = i-f'-k = i-k = oik• 

i 
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Exercise 2.H.3 Jens J. Jensen, a serious young student of field theory, 
is getting set to compute the two-loop QCD beta-function. He 
has drawn up a list of gluon corrections to the three-gluon 
vertex. Use the 1PI Dyson-Schwinger equations to check this 
list and make Jens aware of 7 (seven) errors before he rushes 

:ices"'~ roja •rceah':;,s•x;=:t' A 
~ = +½ 9 +½ ~ +½ ~ 

I. Vacuum bubbles 

1 +-
2 ~ +½ ~ +½ ~ 
1 +-
2 A +½ ~ +½ ~ 

+½A +½ A +½ A 
+½ A +½ A +½ A 

1 +-
4 

1 
+-

4 

~ +¼ A 
~ +¼ ~ 

+½ A +½ A 
+½A +½ A 
+½ ~ +½ A 
+ A + A 

+ ~ 

1 +-
4 

1 +-
4 

1 +-
2 

1 +-
2 

1 +-
2 

+ 

The Green function formalism we have developed so far is 

tailored to scattering problems; all the Green functions we 

I 
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have considered had external legs. processes without external 

parti.cles (the corresponding legless diagrams are called. vacuum 

bubbles) are also physically interesting. For example, if a 

particle is propagating through a hot·, dense soup t, a particle

particle scattering experiment w·ould be a hopeless and messy 

undertaking. Such systems are probed by varying bulk parameters, 

such as temperature. Indeed, the generating functionals do- not· -

depend only on the single-particle sources Ji, but on all inter

action parameters 

(2. 38) 

Any of these, or any combination of these, can be varied. Dia'

grammatically we view an n-vertex as an n-particle source. For 

example, if we rescale y .. k ➔ gy .. k and vary infinitesimally 
l.J.. J.J •• 

the coupling constant g, we "touch" each y .. k vertex in a 
J. J •• 

Green function: 

d 1 g -Z[J) =-·. 
dg k! 

(2.39) 

We can use such generalizations of the Dyson-Schwinger 

equations (from varying single-particle sources Ji to varying 

many-particle sources y .. k ,) to compute hosts of physically 
l.J • ·" 

significant quantities. One such quantity is the expectation 

value of the action. We rescale the entire action (2.13) 

+ • • • I (2.40) 

and vary n (depending on the context, n could be the Planck 

constant, coupling constant, inverse temperature or something 

else): 

n ..2:.. z[JJ = - l (- 1-~ dfi n 2~ 

t . t b 'f' minestrone, o e speci ic. 

+-1-
3! 

+-1-
4! + ••• ) 

(2. 41) 
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To normalize the expectation value properly, we divide by Z[J]: 

(2. 42) 

That this is really an expectation value will perhaps be easier 

to grasp in the path-integral formalism, cf. (3.11) in the next 

chapter. Anyway, we can use (2.19) to rewrite the above in terms 

of connected Green functions: 

<.l S[<l>J>=-lidW[J] .l s[dW[J] +~] 
li dl'i li dJ . dJ . 

l l 

1 ~- 1 :-: +- +-
3 ! 4 ! 

- 1 
+½@O +-1 ~ +l -fi 3! 4 

1 (tJ +-1- ~ +-1 
2 3! 4! 

(2.43) 

(the diagrammatic expansion is for the q, 3 + q, 4 theories) . Even 

better, we can use (2.25) and (2.29) together with the identity 

(follows from (2.28)) 

(2. 44) 

to relate the <s[<1>J> to the effective action: 

(2. 45) 

The above expansions can be used to compute the perturbative 
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expansions for the connected and 1PI. vacuum bubbles (see exer

cises). Their physical significance will become clearer in the 

next chapter. 

Exercise 2.I.1 Loop expansion. Show that with action (2.40) the ex
pans;L<;m in powers of 1'i is the loop expansion., i.e. that each 
lo0p."iI1 a Feynman diagram carries a factor l'i. Hence the loop 
expansion offers a systematic way of coillputing·quaritum correc~ 
tions (or thermal fluctuations in statistical mechanics). Hint: 
each propagator carries a factor n, while each vertex carries 
rc 1 . 

Exercise 2.I.2 Free energy W[O]. Compute 

.!_ [O] = Oii inli _1_ e 
!'i. W 2 !'i. • + 12 + ... 

for t 3 + t 4 theory. Hint: use (2.43) and the DS equations (2.21). 

Exercise 2.I.3 Gibbs free energy r[o]. Compute 

1 r[O] = Oii inli + {_.!__ e +-
8
1 O(J } 

!'i. 2 Ii 12 

+ {2
1
4 © + /6 Cl])+½ </JJ +½ €i} + /6@+ is©}n 

+ ... (2. 46) 

for t 3 + t 4 theory. Hint: use (2.45) and the DS equations (2.34). 
Note that the one-particle reducible diagrams from w[O] are in
deed missing. The vacuum-bubble combinatoric weights are not al
ways obvious - equation (2.45) provides the fastest way of com
puting them, as far as I know. 

Exercise 2.I.4 Show that for the zero-dimensional t 3 theory (continua
tion of exercise 2.E.3) 

G(m) = (m- 1 + 3g ~)G(m-2) 
dg 

Hint: use (2.39) together with the Dyson-Schwinger equations 
(2.12). 
Show also that 

Hence all Green functions 
vacuum bubbles. Show that 

d 2( 5 
gdgz = g TI 

(0) 
can be computed from Z = G , the 
these satisfy 

9 d 3 2 d
2 

) 
+ 4 g dg + 4 g dg2 Z 

Compute the first few terms of the expansion in powers of g. 
The complete solution is given in exercise 3.C.1. 

• 
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Exercise 2.I.5 Zero-dimensional field theory. Show that the connected 
v:acuum bubbles W = w[OJ satisfy 

d 2[ 5 9 dW 3 2 (d
2

W (dW)
2
)] ~ = g 12 + 4 ~ + 4 g dg2 + dg 

Use this equation to derive recursion relations for .connected 
m-leg Green functions. Compute the exact propagator D = Ge (2

) 

2 25 4 390 6 
D = l + g + 8 g + 32- g + ..... 

and check that this agrees with 

D =½-0-+½..£_ =1 
2 

D4 = ½-<lt-+½<,- + t-oo-
+ ro2- + i5to-+½-/!r-
+" ,,J;) +"-~+"-~ +"-.tt =£1 

4 ~ 8 4 4 8 

Hint: establish first that 

-£:w[J] =i+J+(Ja~ + 3~)w[J] 

That relates Gc(m) to the vacuum bubbles w. 

Exercise 2.I.6 Zero-dimensional $ 3 theory. 
(2.34) and the previous results to 
with different numbers of legs: 

Combine the DS equation 
relate lPI Green functions 

d g g(_ d 
al [ ~ l = 2 - ~ + 2\~ a~ + 

satisfy 

I • • • • • • 

Compute the proper self-energy 
1 2 4 35 6 ,r=-g+g+-g+ 
2 8 

and the proper three-vertex r = r ( 3 
) 

r = g + g 3 + Sg 5 + 3Sg7 + 

r =A 
r:=½A+A +A +A 

+½~ +½A +½A =S • 

Compare TI with the preceeding exercise, D = (1 - ,r)- 1
. 

Exercise 2.I.7 Check (2.44). 

I 
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J. Summary of the generating functional formalism 

Full Green functions: 

Connected Green functions: G(c) 
ij .. k 

1PI Green functions: 
rij .. k ~ .. k 

J .... 

Full++ connected relation: 

_1 _ ....£__ Z [J] = dW[J] + ....£__ 
Z[J] dJ. dJ. dJ. l l l 

Connected++ 1PI relations: 

<P = dW[J] 
i dJ. 

l 

O=J +dr[q,] 
0 i dq,. 

l 

✓:~ 

---~=::·:~·;-f)-® 

Dyson-Schwinger equations: 

full 

connected 

1PI 

dS [dW[J] + dJd] + Jl. = 0 I 

dq,i dJ 

dr[q,] = dS [<P +w''[JJ.£.] 
dq, i dq, i dq, 

generating 
functionals 

Z[J]= 

W[J]= 

r[cJ>l= 

+ ••••• 

By now we are thoroughly fed up with longleggedy beasties, and 

the diagrammatic manipulations: 
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A ========~ B 

1. 

3. B 4. 
A 

·-~A "· 5'. 

( CONTINUED l'IEXT WEE\'.) 

Let us now see whether the crow's vision of Quefithe is any more 

fun than the mole's version. 

i 
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