
Chapter 39

Quantum scattering

Scattering is easier than gathering.

—Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

S
o far the trace formulas have been derived assuming that the system under

consideration is bound. As we shall now see, we are in luck - the semiclas-

sics of bound systems is all we need to understand the semiclassics for open,

scattering systems as well. We start by a brief review of the quantum theory of

elastic scattering of a point particle from a (repulsive) potential, and then develop

the connection to the standard Gutzwiller theory for bound systems. We do this

in two steps - first, a heuristic derivation which helps us understand in what sense

density of states is “density,” and then we sketch a general derivation of the cen-

tral result of the spectral theory of quantum scattering, the Krein-Friedel-Lloyd

formula. The end result is that we establish a connection between the scatter-

ing resonances (both positions and widths) of an open quantum system and the

poles of the trace of the Green’s function, which we learned to analyze in earlier

chapters.

39.1 Density of states

For a scattering problem the density of states (35.16) appear ill defined since for-

mulas such as (38.6) involve integration over infinite spatial extent. What we will

now show is that a quantity that makes sense physically is the difference of two

densities - the first with the scatterer present and the second with the scatterer

absent.

In non-relativistic dynamics the relative motion can be separated from the

center-of-mass motion. Therefore the elastic scattering of two particles can be

treated as the scattering of one particle from a static potential V(q). We will study
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CHAPTER 39. QUANTUM SCATTERING 709

the scattering of a point-particle of (reduced) mass m by a short-range potential

V(q), excluding inter alia the Coulomb potential. (The Coulomb potential decays

slowly as a function of q so that various asymptotic approximations which apply

to general potentials fail for it.) Although we can choose the spatial coordinate

frame freely, it is advisable to place its origin somewhere near the geometrical

center of the potential. The scattering problem is solved, if a scattering solution

to the time-independent Schrödinger equation (36.2)

(

− ~
2

2m

∂2

∂q2
+ V(q)

)

φ~k(q) = Eφ~k(q) (39.1)

can be constructed. Here E is the energy, ~p = ~~k the initial momentum of the

particle, and ~k the corresponding wave vector.

When the argument r = |q| of the wave function is large compared to the typ-

ical size a of the scattering region, the Schrödinger equation effectively becomes

a free particle equation because of the short-range nature of the potential. In the

asymptotic domain r ≫ a, the solution φ~k(q) of (39.1) can be written as superpo-

sition of ingoing and outgoing solutions of the free particle Schrödinger equation

for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions) ,

where in 1-dimensional problems φ(−)(q), φ(+)(q) are the “left,” “right” moving

plane waves, and in higher-dimensional scattering problems the “incoming,” “out-

going” radial waves, with the constant matrices A, B fixed by the boundary con-

ditions. What are the boundary conditions? The scatterer can modify only the

outgoing waves (see figure 39.1), since the incoming ones, by definition, have yet

to encounter the scattering region. This defines the quantum mechanical scattering

matrix, or the S matrix

φm(r) = φ(−)
m (r) + S mm′φ

(+)
m′ (r) . (39.2)

All scattering effects are incorporated in the deviation of S from the unit matrix,

the transition matrix T

S = 1 − iT . (39.3)

For concreteness, we have specialized to two dimensions, although the final for-

mula is true for arbitrary dimensions. The indices m and m′ are the angular mo-

menta quantum numbers for the incoming and outgoing state of the scattering

wave function, labeling the S -matrix elements S mm′ . More generally, given a set

of quantum numbers β, γ, the S matrix is a collection S βγ of transition amplitudes

β → γ normalized such that |S βγ |2 is the probability of the β → γ transition. The

total probability that the ingoing state β ends up in some outgoing state must add

up to unity

∑

γ

|S βγ |2 = 1 , (39.4)
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CHAPTER 39. QUANTUM SCATTERING 710

Figure 39.1: (a) Incoming spherical waves run-

ning into an obstacle. (b) Superposition of outgo-

ing spherical waves scattered from an obstacle.

(a) (b)

so the S matrix is unitary: S†S = SS† = 1.

We have already encountered a solution to the 2-dimensional problem; free

particle propagation Green’s function (37.48) is a radial solution, given in terms

of the Hankel function

G0(r, 0, E) = −
im

2~2
H

(+)

0
(kr) ,

where we have used S 0(r, 0, E)/~ = kr for the action. The mth angular mo-

mentum eigenfunction is proportional to φ
(±)
m (q) ∝ H

(±)
m (kr), and given a potential

V(q) we can in principle compute the infinity of matrix elements S mm′ . We will

not need much information about H
(t)
m (kr), other than that for large r its asymptotic

form is

H± ∝ e±ikr

In general, the potential V(q) is not radially symmetric and (39.1) has to be

solved numerically, by explicit integration, or by diagonalizing a large matrix in

a specific basis. To simplify things a bit, we assume for the time being that a ra-

dially symmetric scatterer is centered at the origin; the final formula will be true

for arbitrary asymmetric potentials. Then the solutions of the Schrödinger equa-

tion (36.2) are separable, φm(q) = φ(r)eimθ , r = |q|, the scattering matrix cannot

mix different angular momentum eigenstates, and S is diagonal in the radial basis

(39.2) with matrix elements given by

S m(k) = e2iδm(k). (39.5)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means

that an incoming state of the form H
(−)
m (kr)eimθ gets scattered into an outgoing state

of the form S m(k)H
(+)
m (kr)eimθ , where H

(∓)
m (z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in a infinite cylindrical well

of radius R, and will later take R → ∞. Angular momentum is still conserved so

that each eigenstate of this (now bound) problem corresponds to some value of m.

For large r ≫ a each eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(

S m(k)H
(+)
m (kr) + H

(−)
m (kr)

)

≈ · · · cos(kr + δm(k) − χm) , (39.6)
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CHAPTER 39. QUANTUM SCATTERING 711

Figure 39.2: The “difference” of two bounded refer-

ence systems, one with and one without the scattering

system.

b b

-

where · · · is a common prefactor, and χm = mπ/2+π/4 is an annoying phase factor

from the asymptotic expansion of the Hankel functions that will play no role in

what follows.

The state (39.6) must satisfy the external boundary condition that it vanish at

r = R. This implies the quantization condition

knR + δm(kn) − χm = π (n + 12) .

We now ask for the difference in the eigenvalues of two consecutive states of

fixed m. Since R is large, the density of states is high, and the phase δm(k) does

not change much over such a small interval. Therefore, to leading order we can

include the effect of the change of the phase on state n+1 by Taylor expanding. is

kn+1R + δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ π + π(n + 12) .

Taking the difference of the two equations we obtain ∆k ≈ π(R + δ′m(k))−1. This

is the eigenvalue spacing which we now interpret as the inverse of the density of

states within m angular momentum sbuspace

dm(k) ≈
1

π

(

R + δ′m(k)
)

.

The R term is essentially the 1 − d Weyl term (38.8), appropriate to 1 − d radial

quantization. For large R, the dominant behavior is given by the size of the circular

enclosure with a correction in terms of the derivative of the scattering phase shift,

approximation accurate to order 1/R. However, not all is well: the area under

consideration tends to infinity. We regularize this by subtracting from the result

from the free particle density of states d0(k), for the same size container, but this

time without any scatterer, figure 39.2. We also sum over all m values so that

d(k) − d0(k) =
1

π

∑

m

δ′m(k) =
1

2πi

∑

m

d

dk
log S m

=
1

2πi
Tr

(

S †
dS

dk

)

. (39.7)

The first line follows from the definition of the phase shifts (39.5) while the second

line follows from the unitarity of S so that S −1 = S †. We can now take the limit

R→ ∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since for the left hand side we al-

ready have the semiclassical theory for the trace of the difference of Green’s func-

tions,

d(k) − d0(k) = − 1

2πk
Im (tr (G(k) −G0(k)) . (39.8)
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CHAPTER 39. QUANTUM SCATTERING 712

There are a number of generalizations. This can be done in any number of

dimensions. It is also more common to do this as a function of energy and not

wave number k. However, as the asymptotic dynamics is free wave dynamics

labeled by the wavenumber k, we have adapted k as the natural variable in the

above discussion.

Finally, we state without proof that the relation (39.7) applies even when there

is no circular symmetry. The proof is more difficult since one cannot appeal to the

phase shifts δm but must work directly with a non-diagonal S matrix.

39.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection between the

scattering matrix and the trace of the quantum Green’s function (more formally

between the difference of the Green’s function with and without the scattering

center.) We now show how this connection can be derived in a more rigorous

manner. We will also work in terms of the energy E rather than the wavenumber

k, since this is the more usual exposition. Suppose particles interact via forces of

sufficiently short range, so that in the remote past they were in a free particle state

labeled β, and in the distant future they will likewise be free, in a state labeled γ.

In the Heisenberg picture the S -matrix is defined as S = Ω−Ω
†
+ in terms of the

Møller operators

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ , (39.9)

where H is the full Hamiltonian, whereas H0 is the free Hamiltonian. In the

interaction picture the S -matrix is given by

S = Ω
†
+Ω− = lim

t→∞
eiH0t/~e−2iHt/~eiH0t/~

= T exp

(

−i

∫ +∞

−∞
dtH′(t)

)

, (39.10)

where H′ = V = H −H0 is the interaction Hamiltonian and T is the time-ordering

operator. In stationary scattering theory the S matrix has the following spectral

representation

S =

∫ ∞

0

dE S (E)δ(H0 − E)

S (E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iǫ)−1V , (39.11)

such that

Tr

[

S †(E)
d

dE
S (E)

]

= Tr

[

1

H0 − E − iǫ
− 1

H − E − iǫ
− (ǫ ↔ −ǫ)

]

. (39.12)
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CHAPTER 39. QUANTUM SCATTERING 713

The manipulations leading to (39.12) are justified if the operators Q±(E) can be appendix A45

linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formula which is the

central result of this chapter. The Krein-Lloyd formula provides the connection

between the trace of the Green’s function and the poles of the scattering matrix,

implicit in all of the trace formulas for open quantum systems which will be pre-

sented in the subsequent chapters.

39.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is

provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral

density which we now derive. This derivation builds on the results of the last

section and extends the discussion of the opening section.

In chapter 37 we linked the spectral density (see (35.16)) of a bounded system

d(E) ≡
∑

n

δ(En − E) (39.13)

via the identity

δ(En − E) = − lim
ǫ→0

1

π
Im

1

E − En + iǫ

= − lim
ǫ→0

1

π
Im〈En|

1

E − H + iǫ
|En〉

=
1

2π i
lim
ǫ→0

〈

En

∣

∣

∣

∣

∣

1

E − H − iǫ
−

1

E − H + iǫ

∣

∣

∣

∣

∣

En

〉

(39.14)

to the trace of the Green’s function (38.1.1). Furthermore, in the semiclassical

approximation, the trace of the Green’s function is given by the Gutzwiller trace

formula (38.11) in terms of a smooth Weyl term and an oscillating contribution of

periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is

completed, if we can find a connection between the spectral density d(E) and the

scattering matrix S . We will see that (39.12) provides the clue. Note that the right

hand side of (39.12) has nearly the structure of (39.14) when the latter is inserted

into (39.13). The principal difference between these two types of equations is that

the S matrix refers to outgoing scattering wave functions which are not normal-

izable and which have a continuous spectrum, whereas the spectral density d(E)

refers to a bound system with normalizable wave functions with a discrete spec-

trum. Furthermore, the bound system is characterized by a hermitian operator,

the Hamiltonian H, whereas the scattering system is characterized by a unitary

operator, the S -matrix. How can we reconcile these completely different classes

of wave functions, operators and spectra? The trick is to put our scattering system
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CHAPTER 39. QUANTUM SCATTERING 714

into a finite box as in the opening section. We choose a spherical conatiner with

radius R and with its center at the center of our finite scattering system. Our scat-

tering potential V(~r) will be unaltered within the box, whereas at the box walls we

will choose an infinitely high potential, with the Dirichlet boundary conditions at

the outside of the box:

φ(~r)|r=R = 0 . (39.15)

In this way, for any finite value of the radius R of the box, we have mapped our

scattering system into a bound system with a spectral density d(E; R) over dis-

crete eigenenergies En(R). It is therefore important that our scattering potential

was chosen to be short-ranged to start with. (Which explains why the Coulomb

potential requires special care.) The hope is that in the limit R → ∞ we will

recover the scattering system. But some care is required in implementing this.

The smooth Weyl term d̄(E; R) belonging to our box with the enclosed potential V

diverges for a spherical 2-dimensional box of radius R quadratically, as πR2/(4π)

or as R3 in the 3-dimensional case. This problem can easily be cured if the spec-

tral density of an empty reference box of the same size (radius R) is subtracted

(see figure 39.2). Then all the divergences linked to the increasing radius R in

the limit R → ∞ drop out of the difference. Furthermore, in the limit R → ∞
the energy-eigenfunctions of the box are only normalizable as a delta distribution,

similarly to a plane wave. So we seem to recover a continous spectrum. Still the

problem remains that the wave functions do not discriminate between incoming

and outgoing waves, whereas this symmetry, namely the hermiticity, is broken in

the scattering problem. The last problem can be tackled if we replace the spec-

tral density over discrete delta distributions by a smoothed spectral density with a

small finite imaginary part η in the energy E:

d(E + iη; R) ≡
1

i 2π

∑

n

{

1

E − En(R) − iη
−

1

E − En(R) + iη

}

. (39.16)

Note that d(E + iη; R) , d(E − iη; R) = −d(E + iη; R). By the introduction of the

positive finite imaginary part η the time-dependent behavior of the wave function

has effectively been altered from an oscillating one to a decaying one and the

hermiticity of the Hamiltonian is removed. Finally the limit η→ 0 can be carried

out, respecting the order of the limiting procedures. First, the limit R → ∞ has

to be performed for a finite value of η, only then the limit η → 0 is allowed. In

practice, one can try to work with a finite value of R, but then it will turn out (see

below) that the scattering system is only recovered if R
√
η≫ 1.

Let us summarize the relation between the smoothed spectral densities d(E +

iη; R) of the boxed potential and d(0)(E + iη; R) of the empty reference system and

the S matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(

d(E+iη; R) − d(0)(E+iη; R)
)

=
1

2πi
Tr

[

S †(E)
d

dE
S (E)

]

=
1

2πi
Tr

d

dE
ln S (E) =

1

2πi

d

dE
ln det S (E) . (39.17)
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This is the Krein-Friedel-Lloyd formula. It replaces the scattering problem by

the difference of two bounded reference billiards of the same radius R which fi-

nally will be taken to infinity. The first billiard contains the scattering region or

potentials, whereas the other does not (see figure 39.2). Here d(E + iη; R) and

d(0)(E + iη; R) are the smoothed spectral densities in the presence or in the ab-

sence of the scatterers, respectively. In the semiclassical approximation, they are

replaced by a Weyl term (38.10) and an oscillating sum over periodic orbits. As in

(38.2), the trace formula (39.17) can be integrated to give a relation between the

smoothed staircase functions and the determinant of the S -matrix:

lim
η→+0

lim
R→∞

(

N(E+iη; R) − N(0)(E+iη; R)
)

=
1

2πi
ln det S (E) . (39.18)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the energy ar-

gument E+ iη can be replaced by the wavenumber argument k+ iη′. These expres-

sions only make sense for wavenumbers on or above the real k-axis. In particular,

if k is chosen to be real, η′ must be greater than zero. Otherwise, the exact left

hand sides (39.18) and (39.17) would give discontinuous staircase or even delta

function sums, respectively, whereas the right hand sides are continuous to start

with, since they can be expressed by continuous phase shifts. Thus the order of

the two limits in (39.18) and (39.17) is essential.

The necessity of the +iη prescription can also be understood by purely phe-

nomenological considerations in the semiclassical approximation: Without the iη

term there is no reason why one should be able to neglect spurious periodic or-

bits which are there solely because of the introduction of the confining boundary.

The subtraction of the second (empty) reference system removes those spurious

periodic orbits which never encounter the scattering region – in addition to the re-

moval of the divergent Weyl term contributions in the limit R→ ∞. The periodic

orbits that encounter both the scattering region and the external wall would still

survive the first limit R → ∞, if they were not exponentially suppressed by the

+iη term because of their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the length L(R) of a spurious periodic orbit grows linearly with the

radius R. The bound Rη′ ≫ 1 is an essential precondition on the suppression of

the unwanted spurious contributions of the container if the Krein-Friedel-Lloyd

formulas (39.17) and (39.18) are evaluated at a finite value of R. exercise 39.1

Finally, the semiclassical approximation can also help us in the interpretation

of the Weyl term contributions for scattering problems. In scattering problems the

Weyl term appears with a negative sign. The reason is the subtraction of the empty

container from the container with the potential. If the potential is a dispersing bil-

liard system (or a finite collection of dispersing billiards), we expect an excluded

volume (or the sum of excluded volumes) relative to the empty container. In other

words, the Weyl term contribution of the empty container is larger than of the

filled one and therefore a negative net contribution is left over. Second, if the
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scattering potential is a collection of a finite number of non-overlapping scatter-

ing regions, the Krein-Friedel-Lloyd formulas show that the corresponding Weyl

contributions are completely independent of the position of the single scatterers,

as long as these do not overlap.

39.4 Wigner time delay

The term d
dE

ln det S in the density formula (39.17) is dimensionally time. This

suggests another, physically important interpretation of such formulas for scatter-

ing systems, the Wigner delay, defined as

d(k) =
d

dk
Argdet (S(k))

= −i
d

dk
log det (S(k)

= −i tr

(

S†(k)
dS

dk
(k)

)

(39.19)

and can be shown to equal the total delay of a wave packet in a scattering system.

We now review this fact.

A related quantity is the total scattering phase shift Θ(k) defined as

det S(k) = e+iΘ(k) ,

so that d(k) = d
dk
Θ(k).

The time delay may be both positive and negative, reflecting attractive re-

spectively repulsive features of the scattering system. To elucidate the connection

between the scattering determinant and the time delay we study a plane wave:

The phase of a wave packet will have the form:

φ = ~k · ~x − ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if scattering

is present. The center of the wave packet will be determined by the principle of

stationary phase:

0 = dφ = d~k · ~x − dω t + dΘ .

Hence the packet is located at

~x =
∂ω

∂~k
t −
∂Θ

∂~k
.

The first term is just the group velocity times the given time t. Thus the packet is

retarded by a length given by the derivative of the phase shift with respect to the
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wave vector ~k. The arrival of the wave packet at the position ~x will therefore be

delayed. This time delay can similarly be found as

τ(ω) =
∂Θ(ω)

∂ω
.

To show this we introduce the slowness of the phase ~s = ~k/ω for which ~s ·~vg = 1,

where ~vg is the group velocity to get

d~k · ~x = ~s · ~x dω =
x

vg

dω ,

since we may assume ~x is parallel to the group velocity (consistent with the

above). Hence the arrival time becomes

t =
x

vg

+
∂Θ(ω)

∂ω
.

If the scattering matrix is not diagonal, one interprets

∆ti j = Re

(

−i S −1
i j

∂S i j

∂ω

)

= Re

(

∂Θi j

∂ω

)

as the delay in the jth scattering channel after an injection in the ith. The proba-

bility for appearing in channel j goes as |S i j|2 and therefore the average delay for

the incoming states in channel i is

〈∆ti〉 =
∑

j

|S i j |2∆ti j = Re (−i
∑

j

S ∗i j

∂S i j

∂ω
) = Re (−i S† · ∂S

∂ω
)ii

= −i

(

S† · ∂S
∂ω

)

ii

,

where we have used the derivative, ∂/∂ω, of the unitarity relation S · S† = 1 valid

for real frequencies. This discussion can in particular be made for wave packets

related to partial waves and superpositions of these like an incoming plane wave

corresponding to free motion. The total Wigner delay therefore corresponds to the

sum over all channel delays (39.19).

Commentary

Remark 39.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [39.1],

sections 3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s thesis [39.15]

(appendix) discusses the Levison Theorem.

It helps to start with a toy example or simplified example instead of the general the-

orem, namely for the radially symmetric potential in a symmetric cavity. Have a look at

the book of K. Huang, chapter 10 (on the ”second virial coefficient”), or Beth and Uhlen-

beck [39.5], or Friedel [39.7]. These results for the correction to the density of states are

particular cases of the Krein formula [39.3]. The Krein-Friedel-Lloyd formula (39.17)
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was derived in refs. [39.3, 39.7, 39.8, 39.9], see also refs. [39.11, 39.14, 39.15, 39.17,

39.18]. The original papers are by Krein and Birman [39.3, 39.4] but beware, they are

mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [39.16]. Page

16 discusses the Beth-Uhlenbeck formula [39.5], the predecessor of the more general

Krein formula for spherical cases.

Remark 39.2 Weyl term for empty container. For a discussion of why the Weyl term

contribution of the empty container is larger than of the filled one and therefore a negative

net contribution is left over, see ref. [39.15].

Remark 39.3 Wigner time delay. Wigner time delay and the Wigner-Smith time

delay matrix, are powerful concepts for a statistical description of scattering. The diagonal

elements Qaa of the lifetime matrix Q = −iS−1∂S/∂ω, where S is the [2N×2N] scattering

matrix, are interpreted in terms of the time spent in the scattering region by a wave packet

incident in one channel. As shown by Smith [39.26], they are the sum over all ouput

channels (both in reflection and transmission) of ∆tab = Re [(−i/S ab)(∂S ab/∂ω)] weighted

by the probability of emerging from that channel. The sum of the Qaa over all 2N channels

is the Wigner time delay τW =
∑

a Qaa, which is the trace of the lifetime matrix and is

proportional to the density of states.

Exercises

39.1. Spurious orbits under the Krein-Friedel-Lloyd con-

truction. Draw examples for the three types of period

orbits under the Krein-Friedel-Lloyd construction: (a)

the genuine periodic orbits of the scattering region, (b)

spurious periodic orbits which can be removed by the

subtraction of the reference system, (c) spurious peri-

odic orbits which cannot be removed by this subtraction.

What is the role of the double limit η→ 0, container size

b→ ∞?

39.2. The one-disk scattering wave function. Derive the

one-disk scattering wave function.

(Andreas Wirzba)

39.3. Quantum two-disk scattering. Compute the quasi-

classical spectral determinant

Z(ε) =
∏

p, j,l















1 −
tp

Λ
j+2l
p















j+1

for the two disk problem. Use the geometry

a a

R

The full quantum mechanical version of this problem

can be solved by finding the zeros in k for the deter-

minant of the matrix

Mm,n = δm,n+
(−1)n

2

Jm(ka)

H
(1)
n (ka)

(

H
(1)
m−n(kR) + (−1)nH

(1)
m+n(kR)

)

,

where Jn is the nth Bessel function and H
(1)
n is the Han-

kel function of the first kind. Find the zeros of the de-

terminant closest to the origin by solving det M(k) = 0.

(Hints: note the structure M = I + A to approximate the

determinant; or read Chaos 2, 79 (1992))
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39.4. Pinball topological index. Upgrade your pinball sim-

ulator so that it computes the topological index for each

orbit it finds.
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