
Chapter 8

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-

tion that are symplectic and can be expressed in Hamilto-

nian form. The generic properties within the class of sym-

plectic vector fields are quite different from those within

the class of all smooth vector fields: the system always

has a first integral (“energy”) and a preserved volume, and

equilibrium points can never be asymptotically stable in

their energy level.

— John Guckenheimer

Y
ou might think that the strangeness of contracting flows, flows such as the

Rössler flow of figure 2.6 is of concern only to chemists or biomedical

engineers or the weathermen; physicists do Hamiltonian dynamics, right?

Now, that’s full of chaos, too! While it is easier to visualize aperiodic dynamics

when a flow is contracting onto a lower-dimensional attracting set, there are plenty

of examples of chaotic flows that do preserve the full symplectic invariance of

Hamiltonian dynamics. The whole story started with Poincaré’s restricted 3-body

problem, a realization that chaos rules also in general (non-Hamiltonian) flows

came much later.

Here we briefly review parts of classical dynamics that we will need later

on; symplectic invariance, canonical transformations, and stability of Hamiltonian

flows. If your eventual destination are applications such as chaos in quantum

and/or semiconductor systems, read this chapter. If you work in neuroscience

or fluid dynamics, skip this chapter, continue reading with the billiard dynamics

of chapter 9 which requires no incantations of symplectic pairs or loxodromic

quartets.

fast track:

chapter 9, p. 152
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CHAPTER 8. HAMILTONIAN DYNAMICS 136

8.1 Hamiltonian flows

“· · · to do this business right is a thing of far greater diffi-

culty than I was aware of.”

— Sir Isaac Newton, in a letter to Edmund Halley

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian appendix A4

H(q, p) together with the Hamilton’s equations of motion remark 2.1

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

, (8.1)

with the d = 2D phase-space coordinates x split into the configuration space

coordinates and the conjugate momenta of a Hamiltonian system with D degrees

of freedom (dof):

x = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (8.2)

The equations of motion (8.1) for a time-independent, D-dof Hamiltonian can be

written compactly as

ẋi = ωi jH, j(x) , H, j(x) =
∂

∂x j

H(x) , (8.3)

where x = (q, p) ∈ M is a phase-space point, and the a derivative of (·) with

respect to x j is denoted by comma-index notation (·), j,

ω =

[

0 I
−I 0

]

, (8.4)

is an antisymmetric [d×d] matrix, and I is the [D×D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the

state space point x = (q, p) is constant along the trajectory x(t),

d

dt
H(q(t), p(t)) =

∂H

∂qi

q̇i(t) +
∂H

∂pi

ṗi(t)

=
∂H

∂qi

∂H

∂pi

− ∂H

∂pi

∂H

∂qi

= 0 , (8.5)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamilto-

nian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the

whole story.

Example 8.1 Unforced undamped Duffing oscillator: When the damping term

is removed from the Duffing oscillator (2.21), the system can be written in Hamiltonian

form,

H(q, p) =
p2

2
− q2

2
+

q4

4
. (8.6)
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Figure 8.1: Phase plane of the unforced, undamped

Duffing oscillator. The trajectories lie on level sets of

the Hamiltonian (8.6).
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Figure 8.2: A typical collinear helium trajectory in

the [r1, r2] plane; the trajectory enters along the r1-axis

and then, like almost every other trajectory, after a few

bounces escapes to infinity, in this case along the r2-

axis. In this example the energy is set to H = E = −1,

and the trajectory is bounded by the kinetic energy = 0

line.
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This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).

The Hamilton’s equations (8.1) are

q̇ = p , ṗ = q − q3 . (8.7)

For 1-dof systems, the ‘surfaces’ of constant energy (8.5) are curves that stratify the

phase plane (q, p), and the dynamics is very simple: the curves of constant energy are

the trajectories, as shown in figure 8.1.

Thus all 1-dof systems are integrable, in the sense that the entire phase plane

is stratified by curves of constant energy, either periodic, as is the case for the

harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one example A2.1

more degree of freedom, and chaos breaks loose.

Example 8.2 Collinear helium: In the quantum chaos part of ChaosBook.org we

shall apply the periodic orbit theory to the quantization of helium. In particular, we will

study collinear helium, a doubly charged nucleus with two electrons arranged on a line,

an electron on each side of the nucleus. The Hamiltonian for this system is

H =
1

2
p2

1 +
1

2
p2

2 −
2

r1

− 2

r2

+
1

r1 + r2

. (8.8)

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy

conservation stratified by 3-dimensional constant energy hypersurfaces. In order to

visualize it, we often project the dynamics onto the 2-dimensional configuration plane,

the (r1, r2), ri ≥ 0 quadrant, figure 8.2. It looks messy, and, indeed, it will turn out to

be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré

section will be more informative than this rather arbitrary projection of the flow. The

difference is that in such projection we see the flow from an arbitrary perspective, with

trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic

coordinates, a pair along the marginal stability time and energy directions, and the rest

transverse, revealing the phase-space structure of the flow.
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CHAPTER 8. HAMILTONIAN DYNAMICS 138

Note an important property of Hamiltonian flows: if the Hamilton equations

(8.1) are rewritten in the 2D phase-space form ẋi = vi(x), the divergence of the

velocity field v vanishes, namely the flow is incompressible, ∇·v = ∂ivi = ωiH,i j =

0. The symplectic invariance requirements are actually more stringent than just

the phase-space volume conservation, as we shall see in sect. 8.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian

flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’

is a special but important case, a state space with symplectic structure, preserved

by the flow. For us the distinction is necessary, as ChaosBook covers dissipative,

mechanical, stochastic and quantum systems, all as one happy family.

8.2 Symplectic group

Either you’re used to this stuff... or you have to get used

to it.

—Maciej Zworski

A matrix transformation g is called symplectic,

g⊤ωg = ω , (8.9)

if it preserves the symplectic bilinear form 〈x̂|x〉 = x̂⊤ωx, where g⊤ denotes the

transpose of g, and ω is a non-singular [2D×2D] antisymmetric matrix which

satisfies remark 8.3

ω⊤ = −ω , ω2 = −1 . (8.10)

While these are defining requirements for any symplectic bilinear form, ω is often

conventionally taken to be of form (8.4).

Example 8.3 Symplectic form for D = 2: For two degrees of freedom the phase

space is 4-dimensional, x = (q1, q2, p1, p2) , and the symplectic 2-form is

ω =

























0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

























, (8.11)

The symplectic bilinear form 〈x(1)|x(2)〉 is the sum over the areas of the parallelepipeds

spanned pairwise by components of the two vectors,

〈x(1)|x(2)〉 = (x(1))⊤ω x(2) = (q
(1)

1
p

(2)

1
− q

(2)

1
p

(1)

1
) + (q

(1)

2
p

(2)

2
− q

(2)

2
p

(1)

2
) . (8.12)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,

|x(2) − x(1)|) that is preserved by the symplectic transformations.

If g is symplectic, so is its inverse g−1, and if g1 and g2 are symplectic, so

is their product g2g1. Symplectic matrices form a Lie group called the symplec-

tic group Sp(d). Use of the symplectic group necessitates a few remarks about
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Lie groups in general, a topic that we study in more depth in chapter 12. A Lie

group is a group whose elements g(φ) depend smoothly on a finite number N of

parameters φa. In calculations one has to write these matrices in a specific basis,

and for infinitesimal transformations they take form (repeated indices are summed

throughout this chapter, and the dot product refers to a sum over Lie algebra gen-

erators):

g(δφ) ≃ 1 + δφ · T , δφ ∈ RN , |δφ| ≪ 1 , (8.13)

where {T1,T2 · · · ,TN}, the generators of infinitesimal transformations, are a set

of N linearly independent [d×d] matrices which act linearly on the d-dimensional

phase spaceM. The infinitesimal statement of symplectic invariance follows by

substituting (8.13) into (8.9) and keeping the terms linear in δφ,

Ta
⊤ω + ωTa = 0 . (8.14)

This is the defining property for infinitesimal generators of symplectic transfor-

mations. Matrices that satisfy (8.14) are sometimes called Hamiltonian matrices.

A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-

tonian matrices form a linear vector space, the symplectic Lie algebra sp(d). By

the antisymmetry of ω,

(ωTa)⊤ = ωTa . (8.15)

is a symmetric matrix. Its number of independent elements gives the dimen-

sion (the number of independent continuous parameters) of the symplectic group

Sp(d),

N = d(d + 1)/2 = D(2D + 1) . (8.16)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-

phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is

N = 10.

It is easily checked that the exponential of a Hamiltonian matrix

g = eφ·T (8.17)

is a symplectic matrix; Lie group elements are related to the Lie algebra elements

by exponentiation.

8.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-

tions of motion can affect the dynamics. In the case at hand, the symplectic in-

variance will reduce the number of independent Floquet multipliers by a factor of

2 or 4.
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8.3.1 Canonical transformations

The evolution of Jt (4.5) is determined by the stability matrix A, (4.10):

d

dt
Jt(x) = A(x)Jt(x) , Ai j(x) = ωik H,k j(x) , (8.18)

where the symmetric matrix of second derivatives of the Hamiltonian, H,kn =

∂k∂nH, is called the Hessian matrix. From (8.18) and the symmetry of H,kn it

follows that for Hamiltonian flows (8.3)

A⊤ω + ωA = 0 . (8.19)

This is the defining property (8.14) for infinitesimal generators of symplectic (or

canonical) transformations.

Consider now a smooth nonlinear coordinate change form yi = hi(x) (see

sect. 2.3 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).

Under which conditions does K generate a Hamiltonian flow? In what follows we

will use the notation ∂ j̃ = ∂/∂y j, si, j = ∂hi/∂x j. By employing the chain rule we

have that

K, j = H,l̃sl̃, j (8.20)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue

of (8.1), ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi js j,lωlmsm,n ẋn (8.21)

The right hand side simplifies to ẋi (yielding Hamiltonian structure) only if

−ωi jsl, jωlmsm,n = δin (8.22)

or, in compact notation,

−ω(∂h)⊤ω(∂h) = 1 (8.23)

which is equivalent to the requirement (8.9) that ∂h is symplectic. h is then called

a canonical transformation. We care about canonical transformations for two

reasons. First (and this is a dark art), if the canonical transformation h is very example A2.1

cleverly chosen, the flow in new coordinates might be considerably simpler than

the original flow. Second, Hamiltonian flows themselves are a prime example of

canonical transformations.

Dream student Henriette Roux: “I hate these sm,n. Can’t you use a more sensible

notation?” A: “Be my guest.”

Example 8.4 Hamiltonian flows are canonical: For Hamiltonian flows it follows

from (8.19) that d
dt

(

J⊤ωJ
)

= 0, and since at the initial time J0(x0) = 1, Jacobian matrix

is a symplectic transformation (8.9). This equality is valid for all times, so a Hamilto-

nian flow f t(x) is a canonical transformation, with the linearization ∂x f t(x) a symplectic

transformation (8.9): For notational brevity here we have suppressed the dependence

on time and the initial point, J = Jt(x0). By elementary properties of determinants it fol-

lows from (8.9) that Hamiltonian flows are phase-space volume preserving, |det J| = 1 .

The initial condition (4.10) for J is J0 = 1, so one always has

det J = +1 . (8.24)
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Figure 8.3: Stability exponents of a Hamiltonian equi-

librium point, 2-dof.
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8.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point xq the stability matrix A is constant. Its eigenvalues

describe the linear stability of the equilibrium point. A is the matrix (8.19) with

real matrix elements, so its eigenvalues (the Floquet exponents of (5.1)) are either

real or come in complex pairs. In the case of Hamiltonian flows, it follows from

(8.19) that the characteristic polynomial of A for an equilibrium xq satisfies section 5.1

exercise 8.4

exercise 8.5
det (A − λ1) = det (ω−1(A − λ1)ω) = det (−ωAω − λ1)

= det (A⊤ + λ1) = det (A + λ1) . (8.25)

That is, the symplectic invariance implies in addition that if λ is an eigenvalue,

then −λ, λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet

exponents of an equilibrium point in a 2-dof system are displayed in figure 8.3.

It is worth noting that while the linear stability of equilibria in a Hamiltonian

system always respects this symmetry, the nonlinear stability can be completely

different.

8.4 Symplectic maps

So far we have considered only the continuous time Hamiltonian flows. As dis-

cussed in sect. 4.4 for finite time evolution mappings, and in sect. 4.5 the iterated

discrete time mappings, the stability of maps is characterized by eigenvalues of

their Jacobian matrices, or ‘multipliers.’ A multiplier Λ = Λ(x0, t) associated to

a trajectory is an eigenvalue of the Jacobian matrix J. As J is symplectic, (8.9)

implies that

J−1 = −ωJ⊤ω , (8.26)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (J⊤ − Λ1) = det (−ωJ⊤ω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1 − ΛJ)

= Λ2D det (J − Λ−11) . (8.27)
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Figure 8.4: Stability of a symplectic map in R4.
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Hence if Λ is an eigenvalue of J, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues

always come paired as Λ, 1/Λ. The Liouville conservation of phase-space vol-

umes (8.24) is an immediate consequence of this pairing up of eigenvalues. The

complex eigenvalues come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic quartets Λ,

1/Λ, Λ∗ and 1/Λ∗. These possibilities are illustrated in figure 8.4.

Example 8.5 Hamiltonian Hénon map, reversibility: By (4.45) the Hénon

map (3.17) for b = −1 value is the simplest 2-dimensional orientation preserving area-

preserving map, often studied to better understand topology and symmetries of Poincaré

sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and

absorb the a factor into x in order to bring the Hénon map for the b = −1 parameter

value into the form

xi+1 + xi−1 = a − x2
i , i = 1, ..., np , (8.28)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a − x2
n − yn

yn+1 = xn . (8.29)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix

(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee

that all roots of 0 = f n(x) − x (periodic points) are real. exercise 9.7

Example 8.6 2-dimensional symplectic maps: In the 2-dimensional case the

eigenvalues (5.5) depend only on tr Mt

Λ1,2 =
1

2

(

tr Mt ±
√

(tr Mt − 2)(tr Mt + 2)
)

. (8.30)

Greene’s residue criterion states that the orbit is (i) elliptic if the stability residue |tr Mt |−
2 ≤ 0, with complex eigenvalues Λ1 = eiθt, Λ2 = Λ

∗
1
= e−iθt. If |tr Mt | − 2 > 0, λ is real,

and the trajectory is either

(ii) hyperbolic Λ1 = eλt , Λ2 = e−λt , or (8.31)

(iii) inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (8.32)
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Figure 8.5: Phase portrait for the standard map

for (a) k = 0: symbols denote periodic orbits, full

lines represent quasiperiodic orbits. (b) k = 0.3,

k = 0.85 and k = 1.4: each plot consists of 20

random initial conditions, each iterated 400 times.

(a) (b)

Example 8.7 Standard map. Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (8.33)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.21) is

Mn(x0, y0) =

1
∏

k=n

[

1 + g′(xk) 1
g′(xk) 1

]

. (8.34)

The map preserves areas, det M = 1, and one can easily check that M is symplectic.

In particular, one can consider x on the unit circle, and y as the conjugate angular

momentum, with a function g periodic with period 1. The phase space of the map is

thus the cylinder S 1 × R (S 1 stands for the 1-torus, which is fancy way to say “circle”):

by taking (8.33) mod 1 the map can be reduced on the 2-torus S 2.

The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,

yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with

uniform velocity

xn+1 = xn + y0 = x0 + (n + 1)y0 mod 1 .

The choice of y0 determines the nature of the motion (in the sense of sect. 2.1.1): for

y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q the motion

is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic motion (see

figure 8.5 (a)).

Despite the simple structure of the standard map, a complete description of its

dynamics for arbitrary values of the nonlinear parameter k is fairly complex: this can

be appreciated by looking at phase portraits of the map for different k values: when

k is very small the phase space looks very much like a slightly distorted version of

figure 8.5 (a), while, when k is sufficiently large, single trajectories wander erratically on

a large fraction of the phase space, as in figure 8.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-

nian systems.

Note that the map (8.33) provides a stroboscopic view of the flow generated by

a (time-dependent) Hamiltonian

H(x, y; t) =
1

2
y2 +G(x)δ1(t) (8.35)

where δ1 denotes the periodic delta function

δ1(t) =

∞
∑

m=−∞
δ(t − m) (8.36)

and

G′(x) = −g(x) . (8.37)
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Important features of this map, including transition to global chaos (destruction

of the last invariant torus), may be tackled by detailed investigation of the stability of

periodic orbits. A family of periodic orbits of period Q already present in the k = 0

rotation maps can be labeled by its winding number P/Q The Greene residue describes

the stability of a P/Q-cycle:

RP/Q =
1

4

(

2 − tr MP/Q

)

. (8.38)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for

RP/Q < 0 inverse hyperbolic.

For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding

number P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such

orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half

hyperbolic. If we further vary k in such a way that the residue of the elliptic Q-cycle

goes through 1, a bifurcation takes place, and two or more periodic orbits of higher

period are generated.

8.5 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the

Hamiltonian system by f t(x), the volume of C after a time t is V(t) = f t(C), and

using (8.24) we derive the Liouville theorem:

V(t) =

∫

f t(C)

dx =

∫

C

∣

∣

∣

∣

∣

∣

det
∂ f t(x′)

∂x

∣

∣

∣

∣

∣

∣

dx′

∫

C

det (J)dx′ =

∫

C

dx′ = V(0) , (8.39)

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys us much more than

the ‘incompressibility,’ or the phase-space volume conservation. Consider the

symplectic product of two infinitesimal vectors

〈δx|δx̂〉 = δx⊤ωδx̂ = δpiδq̂i − δqiδp̂i

=

D
∑

i=1

{

oriented area in the (qi, pi) plane
}

. (8.40)

Time t later we have

〈δx′|δx̂′〉 = δx⊤J⊤ωJδx̂ = δx⊤ωδx̂ .

This has the following geometrical meaning. Imagine that there is a reference

phase-space point. Take two other points infinitesimally close, with the vectors δx

and δx̂ describing their displacements relative to the reference point. Under the
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dynamics, the three points are mapped to three new points which are still infinites-

imally close to one another. The meaning of the above expression is that the area

of the parallelepiped spanned by the three final points is the same as that spanned

by the initial points. The integral (Stokes theorem) version of this infinitesimal

area invariance states that for Hamiltonian flows the sum of D oriented areas Vi

bounded by D loops ΩVi, one per each (qi, pi) plane, is conserved:

∫

V
dp ∧ dq =

∮

ΩV
p · dq = invariant . (8.41)

One can show that also the 4, 6, · · · , 2D phase-space volumes are preserved.

The phase space is 2D-dimensional, but as there are D coordinate combinations

conserved by the flow, morally a Hamiltonian flow is D-dimensional. Hence for

Hamiltonian flows the key notion of dimensionality is D, the number of the de-

grees of freedom (dof), rather than the phase-space dimensionality d = 2D.

Dream student Henriette Roux: “Would it kill you to draw some pictures here?”

A: “Be my guest.”

in depth:

appendix A4.4, p. 854

Résumé

Physicists do Lagrangians and Hamiltonians. Many know of no world other

than the perfect world of quantum mechanics and quantum field theory in which

the energy and much else is conserved. From the dynamical point of view, a

Hamiltonian flow is just a flow, but a flow with a symmetry: the stability matrix

Ai j = ωik H,k j(x) of a Hamiltonian flow ẋi = ωi jH, j(x) satisfies A⊤ω+ωA = 0. Its

integral along the trajectory, the linearization of the flow J that we call the ‘Jaco-

bian matrix,’ is symplectic, and a Hamiltonian flow is thus a canonical transforma-

tion in the sense that the Hamiltonian time evolution x′ = f t(x) is a transformation

whose linearization (Jacobian matrix) J = ∂x′/∂x preserves the symplectic form,

J⊤ωJ = ω . This implies that A are in the symplectic algebra sp(2D), and that the

2D-dimensional Hamiltonian phase-space flow preserves D oriented infinitesimal

volumes, or Poincaré invariants. The Liouville phase-space volume conservation

is one consequence of this invariance.

While symplectic invariance enforces |Λ| = 1 for complex eigenvalue pairs

and precludes existence of attracting equilibria and limit cycles typical of dissipa-

tive flows, for hyperbolic equilibria and periodic orbits |Λ| > 1, and the pairing

requirement only enforces a particular value on the 1/Λ contracting direction.

Hence the description of chaotic dynamics as a sequence of saddle visitations is

the same for the Hamiltonian and dissipative systems. You might find symplec-

ticity beautiful. Once you understand that every time you have a symmetry, you chapter 12

should use it, you might curse the day [13.66] you learned to say ‘symplectic’.
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Commentary

In theory there is no difference between theory and prac-

tice. In practice there is.

—Anonymous

Remark 8.1 Hamiltonian dynamics, sources. If you are reading this book, in theory

you already know everything that is in this chapter. In practice you do not. Try this:

Put your right hand on your heart and say: “I understand why nature prefers symplectic

geometry.” Honest?

Where does the skew-symmetric ω come from? Newton f = ma law for a motion in

a potential is mq̈ = −∂V . Rewrite this as a pair of first order ODEs, q̇ = p/m , ṗ = −∂V ,

define the total energy H(q, p) = p2/2m+V(q) , and voila, the equation of motion take on

the symplectic form (8.3). What makes this important is the fact that the evolution in time

(and more generally any canonical transformation) preserves this symplectic structure, as

shown in sect. 8.3.1. Another way to put it: a gradient flow ẋ = −∂V(x) contracts a state

space volume into a fixed point. When that happens, V(x) is a ’Lyapunov function’, and

the equilibrium x = 0 is ‘Lyapunov asymptotically stable’. In contrast, the ‘−’ sign in the

symplectic action on (q, p) coordinates, ṗ = −∂V induces a rotation, and conservation of

phase-space areas: for a symplectic flow there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Ja-

cobi etc. formulation of mechanics, some of it excellent. In context of what we will

need here, we make a very subjective recommendation–we enjoyed reading Percival and

Richards [8.3] and Ozorio de Almeida [8.4]. Exposition of sect. 8.2 follows Dragt [8.15].

There are two conventions in literature for what the integer argument of Sp(· · · ) stands

for: either Sp(D) or Sp(d) (used, for example, in refs. [8.15, 8.17]), where D = dof, and

d = 2D. As explained in Chapter 13 of ref. [8.17], symplectic groups are the ‘nega-

tive dimensional,’ d → −d sisters of the orthogonal groups, so only the second notation

makes sense in the grander scheme of things. Mathematicians can even make sense of the

d =odd-dimensional case, see Proctor [8.18, 8.19], by dropping the requirement that ω is

non-degenerate, and defining a symplectic group Sp(M, ω) acting on a vector spaceM as

a subgroup of Gl(M) which preserves a skew-symmetric bilinear form ω of maximal pos-

sible rank. The odd symplectic groups Sp(2D + 1) are not semisimple. If you care about

group theory for its own sake (the dynamical systems symmetry reduction techniques of

chapter 12 are still too primitive to be applicable to Quantum Field Theory), chapter 14

of ref. [8.17] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’ as one some-

times does [8.15, 8.20] conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum

mechanics: the quantum Hamiltonian sandwiched between vectors taken from any com-

plete set of quantum states. We are not sure where this name comes from; Dragt cites

refs. [8.21, 8.22], and chapter 17 of his own book in progress [8.16]. Fulton and Har-

ris [8.21] use it. Certainly Van Loan [8.23] uses in 1981, and Taussky in 1972. Might go

all the way back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics equals a Hamiltonian plus a

bracket. Why don’t you just say it?” A: “It is true that in the tunnel vision of atomic

mechanicians the world is Hamiltonian. But it is much more wondrous than that. This

chapter starts with Newton 1687: force equals acceleration, and we always replace a

higher order time derivative with a set of first order equations. If there are constraints, or
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fully relativistic Quantum Field Theory is your thing, the tool of choice is to recast New-

ton equations as a Lagrangian 1788 variational principle. If you still live in material but

non-relativistic world and have not gotten beyond Heisenberg 1925, you will find Hamil-

ton’s 1827 principal function handy. The question is not whether the world is Hamiltonian

- it is not - but why is it so often profitably formulated this way. For Maupertuis 1744 vari-

ational principle was a proof of God’s existence; for Lagrange who made it mathematics,

it was just a trick. Our sect. 37.1.1 “Semiclassical evolution” is an attempt to get inside 17

year old Hamilton’s head, but it is quite certain that he did not get to it the way we think

about it today. He got to the ‘Hamiltonian’ by studying optics, where the symplectic struc-

ture emerges as the leading WKB approximation to wave optics; higher order corrections

destroy it again. In dynamical systems theory, the densities of trajectories are transported

by Liouville evolution operators, as explained here in sect. 19.6. Evolution in time is a

one-parameter Lie group, and Lie groups act on functions infinitesimally by derivatives.

If the evolution preserves additional symmetries, these derivatives have to respect them,

and so ‘brackets’ emerge as a statement of symplectic invariance of the flow. Dynamics

with a symplectic structure are just a special case of how dynamics moves densities of

trajectories around. Newton is deep, Poisson brackets are technology and thus they ap-

pear naturally only by the time we get to chapter 19. Any narrative is of necessity linear,

and putting Poisson ahead of Newton [8.1] would be a disservice to you, the student. But

if you insist: Dragt and Habib [8.24, 8.15] offer a concise discussion of symplectic Lie

operators and their relation to Poisson brackets. ”

Remark 8.2 Symplectic. The term symplectic –Greek for twining or plaiting together–

was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-

doctrinal: Greek ‘kanon,’ referring to a reed used for measurement, came to mean in

Latin a rule or a standard.

Remark 8.3 The sign convention of ω. The overall sign of ω, the symplectic invariant

in (8.3), is set by the convention that the Hamilton’s principal function (for energy con-

serving flows) is given by R(q, q′, t) =
∫ q′

q
pidqi −Et. With this sign convention the action

along a classical path is minimal, and the kinetic energy of a free particle is positive. Any

finite-dimensional symplectic vector space has a Darboux basis such that ω takes form

(8.9). Dragt [8.15] convention for phase-space variables is as in (8.2). He calls the dy-

namical trajectory x0 → x(x0, t) the ‘transfer map,’ something that we will avoid here, as

it conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Remark 8.4 Loxodromic quartets. For symplectic flows, real eigenvalues always

come paired as Λ, 1/Λ, and complex eigenvalues come either in Λ, Λ∗ pairs, |Λ| = 1, or

Λ, 1/Λ, Λ∗, 1/Λ∗ loxodromic quartets. As most maps studied in introductory nonlinear

dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are we to

run into such things in higher dimensions? According to a very extensive study of periodic

orbits of a driven billiard with a four dimensional phase space, carried in ref. [8.28], the

three kinds of eigenvalues occur with about the same likelihood.

Remark 8.5 Standard map. Standard maps model free rotors under the influence of

short periodic pulses, as can be physically implemented, for instance, by pulsed optical

lattices in cold atoms physics. On the theoretical side, standard maps illustrate a number

of important features: small k values provide an example of KAM perturbative regime

(see ref. [8.11]), while larger k’s illustrate deterministic chaotic transport [8.9, 8.10], and
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the transition to global chaos presents remarkable universality features [16.5, 8.12, 8.7].

The quantum counterpart of this model has been widely investigated, as the first example

where phenomena like quantum dynamical localization have been observed [8.13]. Sta-

bility residue was introduced by Greene [8.12]. For some hands-on experience of the

standard map, download Meiss simulation code [8.14].

newton - 18jan2012 ChaosBook.org version15.9, Jun 24 2017



EXERCISES 149

Exercises

8.1. Complex nonlinear Schrödinger equation. Con-

sider the complex nonlinear Schrödinger equation in one

spatial dimension [13.66]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β , 0.

(a) Show that the function ψ : R → C defining the

traveling wave solution φ(x, t) = ψ(x−ct) for c > 0

satisfies a second-order complex differential equa-

tion equivalent to a Hamiltonian system in R4 rel-

ative to the noncanonical symplectic form whose

matrix is given by

wc =

























0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

























.

(b) Analyze the equilibria of the resulting Ha-

miltonian system in R4 and determine their linear

stability properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and

determine a second order equation for a(s). Show

that the resulting equation is Hamiltonian and has

heteroclinic orbits for β < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear

Schrödinger equation.

(Luz V. Vela-Arevalo)

8.2. Symplectic vs. Hamiltonian matrices. In the

language of group theory, symplectic matrices form the

symplectic Lie group Sp(d), while the Hamiltonian ma-

trices form the symplectic Lie algebra sp(d), or the al-

gebra of generators of infinitesimal symplectic transfor-

mations. This exercise illustrates the relation between

the two:

(a) Show that if a constant matrix A satisfy the

Hamiltonian matrix condition (8.14), then J(t) =

exp(tA) , t ∈ R, satisfies the symplectic condition

(8.9), i.e., J(t) is a symplectic matrix.

(b) Show that if matrices Ta satisfy the Hamiltonian

matrix condition (8.14), then g(φ) = exp(φ · T) ,

φ ∈ RN , satisfies the symplectic condition (8.9),

i.e., g(φ) is a symplectic matrix.

(A few hints: (i) expand exp(A) , A = φ · T , as a power

series in A. Or, (ii) use the linearized evolution equation

(8.18). )

8.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that

the map φ : R2n → R
2n given by (q, p) 7→

(Aq, (A−1)⊤p) is a canonical transformation.

(b) If R is a rotation in R3, show that the map (q, p) 7→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

8.4. Determinants of symplectic matrices. Show that

the determinant of a symplectic matrix is +1, by going

through the following steps:

(a) use (8.27) to prove that for eigenvalue pairs each

member has the same multiplicity (the same holds

for quartet members),

(b) prove that the joint multiplicity of λ = ±1 is even,

(c) show that the multiplicities of λ = 1 and λ = −1

cannot be both odd. Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show that Q(1) = 0.

8.5. Cherry’s example. What follows refs. [8.25, 8.27] is

mostly a reading exercise, about a Hamiltonian system

that is linearly stable but nonlinearly unstable. Consider

the Hamiltonian system on R4 given by

H =
1

2
(q2

1+ p2
1)− (q2

2+ p2
2)+

1

2
p2(p2

1−q2
1)−q1q2 p1.

(a) Show that this system has an equilibrium at the

origin, which is linearly stable. (The linearized

system consists of two uncoupled oscillators with

frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of

solutions parameterize by a constant τ:

q1 = −
√

2
cos(t − τ)

t − τ , q2 =
cos 2(t − τ)

t − τ ,

p1 =
√

2
sin(t − τ)

t − τ , p2 =
sin 2(t − τ)

t − τ .

These solutions clearly blow up in a finite time;

however they start at t = 0 at a distance
√

3/τ

from the origin, so by choosing τ large, we can

find solutions starting arbitrarily close to the ori-

gin, yet going to infinity in a finite time, so the

origin is nonlinearly unstable.

(Luz V. Vela-Arevalo)
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