
Chapter 40

Chaotic multiscattering

(A. Wirzba and P. Cvitanović)

W
e discuss here the semiclassics of scattering in open systems with a finite

number of non-overlapping finite scattering regions. Why is this inter-

esting at all? The semiclassics of scattering systems has five advantages

compared to the bound-state problems such as the helium quantization discussed

in chapter 41.

• For bound-state problem the semiclassical approximation does not respect

quantum-mechanical unitarity, and the semi-classical eigenenergies are not

real. Here we construct a manifestly unitary semiclassical scattering matrix.

• The Weyl-term contributions decouple from the multi-scattering system.

• The close relation to the classical escape processes discussed in chapter 1.

• For scattering systems the derivation of cycle expansions is more direct and

controlled than in the bound-state case: the semiclassical cycle expansion

is the saddle point approximation to the cumulant expansion of the determi-

nant of the exact quantum-mechanical multi-scattering matrix.

• The region of convergence of the semiclassical spectral function is larger

than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a point particle from finite

collection of non-overlapping scattering regions in terms of the standard textbook

scattering theory, and then develop the semiclassical scattering trace formulas and

spectral determinants for scattering off N disks in a plane.
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CHAPTER 40. CHAOTIC MULTISCATTERING 723

40.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point particle from finite collection

of N non-overlapping reflecting disks in a 2-dimensional plane. As the point par-

ticle moves freely between the static scatterers, the time-independent Schrödinger

equation outside the scattering regions is the Helmholtz equation:

(
~∇2

r +
~k2

)
ψ(~r ) = 0 , ~r outside the scattering regions. (40.1)

Here ψ(~r ) is the wave function of the point particle at spatial position ~r and E =

~
2~k2/2m is its energy written in terms of its mass m and the wave vector ~k of the

incident wave. For reflecting wall billiards the scattering problem is a boundary

value problem with Dirichlet boundary conditions:

ψ(~r) = 0 , ~r on the billiard perimeter (40.2)

As usual for scattering problems, we expand the wave function ψ(~r ) in the

(2-dimensional) angular momentum eigenfunctions basis

ψ(~r ) =

∞∑

m=−∞
ψk

m(~r )e−imΦk , (40.3)

where k and Φk are the length and angle of the wave vector, respectively. A plane

wave in two dimensions expaned in the angular momentum basis is

ei~k·~r
= eikr cos(Φr−Φk)

=

∞∑

m=−∞
Jm(kr)eim(Φr−Φk) , (40.4)

where r and Φr denote the distance and angle of the spatial vector ~r as measured

in the global 2-dimensional coordinate system.

The mth angular component Jm(kr)eimΦr of a plane wave is split into a super-

position of incoming and outgoing 2-dimensional spherical waves by decompos-

ing the ordinary Bessel function Jm(z) into the sum

Jm(z) =
1

2

(
H

(1)
m (z) + H

(2)
m (z)

)
(40.5)

of the Hankel functions H
(1)
m (z) and H

(2)
m (z) of the first and second kind. For |z| ≫ 1

the Hankel functions behave asymptotically as:

H
(2)
m (z) ∼

√
2

πz
e−i(z− π

2
m− π

4
) incoming,

H
(1)
m (z) ∼

√
2

πz
e+i(z− π

2
m− π

4
) outgoing. (40.6)
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CHAPTER 40. CHAOTIC MULTISCATTERING 724

Thus for r → ∞ and k fixed, the mth angular component Jm(kr)eimΦr of the plane

wave can be written as superposition of incoming and outgoing 2-dimensional

spherical waves:

Jm(kr)eimΦr ∼ 1
√

2πkr

[
e−i(kr− π

2
m− π

4
)
+ ei(kr− π

2
m− π

4
)
]

eimΦr . (40.7)

In terms of the asymptotic (angular momentum) components ψk
m of the wave

function ψ(~r ), the scattering matrix (39.3) is defined as

ψk
m ∼

1
√

2πkr

∞∑

m′=−∞

[
δmm′e

−i(kr− π
2

m′− π
4

)
+ S mm′e

i(kr− π
2

m′− π
4

)
]

eim′Φr . (40.8)

The matrix element S mm′ describes the scattering of an incoming wave with an-

gular momentum m into an outgoing wave with angular momentum m′. If there

are no scatterers, then S = 1 and the asymptotic expression of the plane wave ei~k·~r

in two dimensions is recovered from ψ(~r ).

40.1.1 1-disk scattering matrix

In general, S is nondiagonal and nonseparable. An exception is the 1-disk scat-

terer. If the origin of the coordinate system is placed at the center of the disk, by

(40.5) the mth angular component of the time-independent scattering wave func-

tion is a superposition of incoming and outgoing 2-dimensional spherical waves

exercise 39.2

ψk
m =

1

2

(
H

(2)
m (kr) + S mmH

(1)
m (kr)

)
eimΦr

=

(
Jm(kr) − i

2
TmmH

(1)
m (kr)

)
eimΦr .

The vanishing (40.2) of the wave function on the disk perimeter

0 = Jm(ka) − i

2
TmmH

(1)
m (ka)

yields the 1-disk scattering matrix in analytic form:

S
s
mm′(k) =

1 −
2Jm(kas )

H
(1)
m (kas )

 δmm′ = −
H

(2)
m (kas )

H
(1)
m (kas )

δmm′ , (40.9)

where a = as is radius of the disk and the suffix s indicates that we are dealing

with a disk whose label is s. We shall derive a semiclassical approximation to this

1-disk S-matrix in sect. 40.3.
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40.1.2 Multi-scattering matrix

Consider next a scattering region consisting of N non-overlapping disks labeled

s ∈ {1, 2, · · · ,N}, following the notational conventions of sect. 14.6. The strategy

is to construct the full T-matrix (39.3) from the exact 1-disk scattering matrix

(40.9) by a succession of coordinate rotations and translations such that at each

step the coordinate system is centered at the origin of a disk. Then the T-matrix

in S mm′ = δmm′ − i Tmm′ can be split into a product over three kinds of matrices,

Tmm′(k) =

N∑

s ,s′=1

∞∑

ls ,ls′=−∞
C

s

mls
(k)M−1(k)

s s′

ls ls ′
D

s′

ls′m′
(k) .

The outgoing spherical wave scattered by the disk s is obtained by shifting the

global coordinates origin distance Rs to the center of the disk s, and measuring

the angle Φs with respect to direction k of the outgoing spherical wave. As in

(40.9), the matrix Cs takes form

C
s

mls
=

2i

πas

Jm−ls
(kRs)

H
(1)

ls
(kas )

eimΦs . (40.10)

If we now describe the ingoing spherical wave in the disk s′ coordinate frame by

the matrix Ds′

D
s′

ls′m′
= −πas′ Jm′−ls′ (kRs′)Jls′ (kas′)e

−im′Φs′ , (40.11)

and apply the Bessel function addition theorem

Jm(y + z) =

∞∑

ℓ=−∞
Jm−ℓ(y)Jℓ(z),

we recover the T-matrix (40.9) for the single disk s = s′, M = 1 scattering. The

Bessel function sum is a statement of the completness of the spherical wave basis;

as we shift the origin from the disk s to the disk s′ by distance Rs′ , we have to

reexpand all basis functions in the new coordinate frame.

The labels m and m′ refer to the angular momentum quantum numbers of the

ingoing and outgoing waves in the global coordinate system, and ls , ls′ refer to the

(angular momentum) basis fixed at the sth and s′th scatterer, respectively. Thus,

Cs and Ds′ depend on the origin and orientation of the global coordinate system

of the 2-dimensional plane as well as on the internal coordinates of the scatterers.

As they can be made separable in the scatterer label s, they describe the single

scatterer aspects of what, in general, is a multi-scattering problem.

The matrix M is called the multi-scattering matrix. If the scattering problem

consists only of one scatterer, M is simply the unit matrix M
ss′

ls ls ′
= δs s′δls ls′ .

For scattering from more than one scatterer we separate out a “single traversal”

matrix A which transports the scattered wave from a scattering regionMs to the

scattering regionMs′ ,

M
ss′

ls ls′
= δs s′δls ls′ − A

ss′

ls ls ′
. (40.12)
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Figure 40.1: Global and local coordinates for a gen-

eral 3-disk problem.
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The matrix Ass′ reads:

A
ss′

ls ls ′
= −(1 − δs s′)

as

as′

Jls
(kas )

H
(1)

ls′
(kas′)

H
(1)

ls−ls ′
(kRss′) ei(lsαs ′s−ls ′ (αs s′−π)) . (40.13)

Here, as is the radius of the sth disk. Rs and Φs are the distance and angle,

respectively, of the ray from the origin in the 2-dimensional plane to the center of

disk s as measured in the global coordinate system. Furthermore, Rss′ = Rs′s is

the separation between the centers of the sth and s′th disk and αs′s of the ray from

the center of disk s to the center of disk s′ as measured in the local (body-fixed)

coordinate system of disk s (see figure 40.1).

Expanded as a geometrical series about the unit matrix 1, the inverse matrix

M−1 generates a multi-scattering series in powers of the single-traversal matrix A.

All genuine multi-scattering dynamics is contained in the matrix A; by construc-

tion A vanishes for a single-scatterer system.

40.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the spectral properties of the S-

matrix: resonances, time delays and phase shifts. The resonances are given by the

poles of the S-matrix in the lower complex wave number (k) plane; more precisely,

by the poles of the S on the second Riemann sheet of the complex energy plane.

As the S-matrix is unitary, it is also natural to focus on its total phase shift η(k)

defined by det S = exp2iη(k). The time-delay is proportional to the derivative of

the phase shift with respect to the wave number k.

As we are only interested in spectral properties of the scattering problem, it

suffices to study det S. This determinant is basis and coordinate-system indepen-

dent, whereas the S-matrix itself depends on the global coordinate system and on

the choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, it is not clear

whether the corresponding determinant exists at all. If T-matrix is trace-class, the

determinant does exist. What does this mean?
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40.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is called trace-class if and only if,

for any choice of orthonormal basis, the sum of the diagonal matrix elements

converges absolutely; it is called “Hilbert-Schmidt,” if the sum of the absolute

squared diagonal matrix elements converges. Once an operator is diagnosed as

trace-class, we are allowed to manipulate it as we manipulate finite-dimensional

matrices. We review the theory of trace-class operators in appendix A45; here we

will assume that the T-matrix (39.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det (1 − zA), as defined by the cumulant

expansion, exists and is an entire function of z. Furthermore, the determinant is

invariant under any unitary transformation.

The cumulant expansion is the analytical continuation (as Taylor expansion in

the book-keeping variable z) of the determinant

det (1 − zA) = exp[tr ln(1 − zA)] = exp

−
∞∑

n=1

zn

zn
tr (An)

 .

That means

det (1 − zA) :=

∞∑

m=0

zmQm(A) , (40.14)

where the cumulants Qm(A) satisfy the Plemelj-Smithies recursion formula (A45.20),

a generalization of Newton’s formula to determinants of infinite-dimensional ma-

trices,

Q0(A) = 1

Qm(A) = − 1

m

m∑

j=1

Qm− j(A) tr (A j) for m ≥ 1 , (40.15)

in terms of cumulants of order n < m and traces of order n ≤ m. Because of the

trace-class property of A, all cumulants and traces exist separately.

For the general case of N < ∞ non-overlapping scatterers, the T-matrix can be

shown to be trace-class, so the determinant of the S-matrix is well defined. What

does trace-class property mean for the corresponding matrices Cs , Ds and Ass′?

Manipulating the operators as though they were finite matrices, we can perform

the following transformations:

det S = det
(
1 − iCM−1D

)

= Det
(
1 − iM−1DC

)
= Det

(
M−1(M − iDC)

)

=
Det (M − iDC)

Det (M)
. . (40.16)
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In the first line of (40.16) the determinant is taken over small ℓ (the angular mo-

mentum with respect to the global system). In the remainder of (40.16) the deter-

minant is evaluated over the multiple indices Ls = (s, ls ). In order to signal this

difference we use the following notation: det . . . and tr . . . refer to the |ℓ〉 space,

Det . . . and Tr . . . refer to the multiple index space. The matrices in the multiple

index space are expanded in the complete basis {|Ls〉} = {|s, ℓs〉} which refers for

fixed index s to the origin of the sth scatterer and not any longer to the origin of

the 2-dimensional plane.

Let us explicitly extract the product of the determinants of the subsystems

from the determinant of the total system (40.16):

det S =
Det (M − iDC)

Det (M)

=
Det (M − iDC)

Det M

∏N
s=1 det Ss

∏N
s=1 det Ss

=


N∏

s=1

det Ss


Det (M − iDC)/

∏N
s=1 det Ss

Det M
. (40.17)

The final step in the reformulation of the determinant of the S-matrix of the N-

scatterer problem follows from the unitarity of the S-matrix. The unitarity of

S†(k∗) implies for the determinant

det (S(k∗)†) = 1/det S(k) , (40.18)

where this manipulation is allowed because the T-matrix is trace-class. The uni-

tarity condition should apply for the S-matrix of the total system, S, as for the

each of the single subsystems, Ss , s = 1, · · · ,N. In terms of the result of (40.17),

this implies

Det (M(k) − iD(k)C(k))
∏N

s=1 det Ss
= Det (M(k∗)†)

since all determinants in (40.17) exist separately and since the determinants det Ss

respect unitarity by themselves. Thus, we finally have

det S(k) =



N∏

s=1

(
det Ss(k)

)


Det M(k∗)†

Det M(k)
, (40.19)

where all determinants exist separately.

In summary: We assumed a scattering system of a finite number of non-

overlapping scatterers which can be of different shape and size, but are all of

finite extent. We assumed the trace-class character of the T-matrix belonging to

the total system and of the single-traversal matrix A and finally unitarity of the

S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering from a finite number of

scatterers of arbitrary shape and size? As long as each of N < ∞ single scatterers
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has a finite spatial extent, i.e., can be covered by a finite disk, the total system

has a finite spatial extent as well. Therefore, it too can be put insided a circular

domain of finite radius b, e.g., inside a single disk. If the impact parameter of the

point particle measured with respect to the origin of this disk is larger than the disk

size (actually larger than (e/2) × b), then the T matrix elements of the N-scatterer

problem become very small. If the wave number k is kept fixed, the modulus of

the diagonal matrix elements, |Tmm| with the angular momentum m > (e/2)kb, is

bounded by the corresponding quantity of the covering disk.

40.2.2 Quantum cycle expansions

In formula (40.19) the genuine multi-scattering terms are separated from the single-

scattering ones. We focus on the multi-scattering terms, i.e., on the ratio of the

determinants of the multi-scattering matrix M = 1 − A in (40.19), since they are

the origin of the periodic orbit sums in the semiclassical reduction. The reso-

nances of the multi-scattering system are given by the zeros of Det M(k) in the

lower complex wave number plane.

In order to set up the problem for the semiclassical reduction, we express the

determinant of the multi-scattering matrix in terms of the traces of the powers

of the matrix A, by means of the cumulant expansion (40.14). Because of the

finite number N ≥ 2 of scatterers tr (An) receives contributions corresponding to

all periodic itineraries s1s2s3 · · · sn−1sn of total symbol length n with an alphabet

si ∈ {1, 2, . . . ,N}. of N symbols,

tr As1s2 As2s3 · · ·Asn−1sn Asn sn (40.20)

=

+∞∑

ls1
=−∞

+∞∑

ls2
=−∞
· · ·

+∞∑

lsn =−∞
A

s1s2

ls1
ls2

A
s2s3

ls2
ls3

· · · Asn−1sn

lsn−1
lsn

A
sn s1

lsn ls1

.

Remember our notation that the trace tr (· · · ) refers only to the |l〉 space. By con-

struction A describes only scatterer-to-scatterer transitions, so the symbolic dy-

namics has to respect the no-self-reflection pruning rule: for admissible itineraries

the successive symbols have to be different. This rule is implemented by the factor

1 − δs s′ in (40.13).

The trace tr An is the sum of all itineraries of length n,

tr An
=

∑

{s1s2···sn }
tr As1s2As2s3 · · ·Asn−1sn Asn s1 . (40.21)

We will show for the N-disk problem that these periodic itineraries correspond

in the semiclassical limit, kasi
≫ 1, to geometrical periodic orbits with the same

symbolic dynamics.
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For periodic orbits with creeping sections the symbolic alphabet has to be

extended, see sect. 40.3.1. Furthermore, depending on the geometry, there might

be nontrivial pruning rules based on the so called ghost orbits, see sect. 40.4.1.

40.2.3 Symmetry reductions

The determinants over the multi-scattering matrices run over the multiple index L

of the multiple index space. This is the proper form for the symmetry reduction

(in the multiple index space), e.g., if the scatterer configuration is characterized

by a discrete symmetry group G, we have

Det M =
∏

α

(
det MDα

(k)
)dα ,

where the index α runs over all conjugate classes of the symmetry group G and

Dα is the αth representation of dimension dα. The symmetry reduction on the

exact quantum mechanical level is the same as for the classical evolution oper-

ators spectral determinant factorization (25.22) of sect. 25.4.2.

40.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. In order to be concrete, we

will consider the semiclassical reduction of the scattering of a single disk in plane.

Instead of calculating the semiclassical approximation to the determinant of

the one-disk system scattering matrix (40.9), we do so for

d(k) ≡ 1

2πi

d

dk
ln det S1(ka) =

1

2πi

d

dk
tr

(
ln S1(ka)

)
(40.22)

the so called time delay.

d(k) =
1

2πi

d

dk
tr

(
ln det S1(ka)

)
=

1

2πi

∑

m


H

(1)
m (ka)

H
(2)
m (ka)

d

dk

H
(2)
m (ka)

H
(1)
m (ka)



=
a

2πi

∑

m


H

(2)
m

′
(ka)

H
(2)
m (ka)

− H
(1)
m

′
(ka)

H
(1)
m (ka)

 . (40.23)

Here the prime denotes the derivative with respect to the argument of the Hankel

functions. Let us introduce the abbreviation

χν =
H

(2)
ν

′
(ka)

H
(2)
ν (ka)

− H
(1)
ν

′
(ka)

H
(1)
ν (ka)

. (40.24)
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We apply the Watson contour method to (40.23)

d(k) =
a j

2πi

+∞∑

m=−∞
χm =

a j

2πi

1

2i

∮

C

dν
e−iνπ

sin(νπ)
χν . (40.25)

Here the contour C encircles in a counter-clockwise manner a small semiinfinite

strip D which completely covers the real ν-axis but which only has a small finite

extent into the positive and negative imaginary ν direction. The contour C is then

split up in the path above and below the real ν-axis such that

d(k) =
a

4πi

{∫
+∞+iǫ

−∞+iǫ

dν
e−iνπ

sin(νπ)
χν −

∫
+∞−iǫ

−∞−iǫ

dν
e−iνπ

sin(νπ)
χν

}
.

Then, we perform the substitution ν→ −ν in the second integral so as to get

d(k) =
a

4π

{∫
+∞+iǫ

−∞+iǫ

dν
e−iνπ

sin(νπ)
χν + dν

e+iνπ

sin(νπ)
χ−ν

}

=
a

2πi

{
2

∫
+∞+iǫ

−∞+iǫ

dν
e2iνπ

1 − e2iνπ
χν +

∫
+∞

−∞
dν χν

}
, (40.26)

where we used the fact that χ−ν = χν. The contour in the last integral can be de-

formed to pass over the real ν-axis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassically, i.e., under the

assumption ka ≫ 1. As the two contributions in the last line of (40.26) differ by

the presence or absence of the Watson denominator, they will have to be handled

semiclassically in different ways: the first will be closed in the upper complex

plane and evaluated at the poles of χν, the second integral will be evaluated on the

real ν-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles of χν in the upper complex

plane are given by the zeros of H
(1)
ν (ka) which will be denoted by νℓ(ka) and by

the zeros of H
(2)
ν (ka) which we will denote by −ν̄ℓ(ka), ℓ = 1, 2, 3, · · · . In the Airy

approximation to the Hankel functions they are given by

νℓ(ka) = ka + iαℓ(ka) , (40.27)

−ν̄ℓ(ka) = −ka + i(αℓ(k
∗a))∗ = − (

νℓ(k
∗a)

)∗ , (40.28)

with

iαℓ(ka) = ei π
3

(
ka

6

)1/3

qℓ − e−i π
3

(
6

ka

)1/3 q2
ℓ

180
− 1

70ka

1 −
q3
ℓ

30



+ ei π
3

(
6

ka

) 5
3 1

3150


29qℓ

62
−

281q4
ℓ

180 · 63

 + · · · . (40.29)
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Here qℓ labels the zeros of the Airy integral

A(q) ≡
∫ ∞

0

dτ cos(qτ − τ3) = 3−1/3πAi(−3−1/3q) , (40.30)

with Ai(z) being the standard Airy function; approximately, qℓ ≈ 61/3[3π(ℓ −
1/4)]2/3/2. In order to keep the notation simple, we will abbreviate νℓ ≡ νℓ(ka)

and ν̄ℓ ≡ ν̄ℓ(ka). Thus the first term of (40.26) becomes finally

a

2πi

{
2

∫
+∞+iǫ

−∞+iǫ

dν
e2iνπ

1 − e2iνπ
χν

}
= 2a

∞∑

ℓ=1

(
e2iνℓπ

1 − e2iνℓπ
+

e−2iν̄ℓπ

1 − e−2iν̄ℓπ

)
.

In the second term of (40.26) we will insert the Debye approximations for the

Hankel functions:

H
(1/2)
ν (x) ∼

√
2

π
√

x2 − ν2
exp

(
±i

√
x2 − ν2 ∓ iν arccos

ν

x
∓ i

π

4

)
for |x| > ν

(40.31)

H
(1/2)
ν (x) ∼ ∓i

√
2

π
√
ν2 − x2

exp

(
−

√
ν2 − x2 + νArcCosh

ν

x

)
for |x| < ν .

Note that for ν > ka the contributions in χν cancel. Thus the second integral of

(40.26) becomes

a

2πi

∫
+∞

−∞
dν χν =

a

2πi

∫
+ka

−ka

dν
(−2i)

a

d

dk

( √
k2a2 − ν2 − ν arccos

ν

ka

)
+ · · ·

= − 1

kπ

∫ ka

−ka

dν
√

k2a2 − ν2 + · · · = −a2

2
k + · · · , (40.32)

where · · · takes care of the polynomial corrections in the Debye approximation

and the boundary correction terms in the ν integration.

In summary, the semiclassical approximation to d(k) reads

d(k) = 2a

∞∑

ℓ=1

(
e2iνℓπ

1 − e2iνℓπ
+

e−2iν̄ℓπ

1 − e−2iν̄ℓπ

)
− a2

2
k + · · · .

Using the definition of the time delay (40.22), we get the following expression for

det S1(ka):

ln det S1(ka) − lim
k0→0

ln det S1(k0a) (40.33)

= 2πia

∫ k

0

dk̃

−
ak̃

2
+ 2

∞∑

ℓ=1


ei2πνℓ(k̃a)

1 − ei2πνℓ(k̃a)
+

e−i2πν̄ℓ(k̃a)

1 − e−i2πν̄ℓ(k̃a)



 + · · ·

∼ −2πiN(k)+2

∞∑

ℓ=1

∫ k

0

dk̃
d

dk̃

{
− ln

(
1−ei2πνℓ(k̃a)

)
+ ln

(
1−e−i2πν̄ℓ(k̃a)

)}
+ · · · ,
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where in the last expression it has been used that semiclassically d
dk
νℓ(ka) ∼

d
dk
ν̄ℓ(ka) ∼ a and that the Weyl term for a single disk of radius a goes like

N(k) = πa2k2/(4π) + · · · (the next terms come from the boundary terms in the

ν-integration in (40.32)). Note that for the lower limit, k0 → 0, we have two

simplifications: First,

lim
k0→0

S 1
mm′(k0a) = lim

k0→0

−H
(2)
m (k0a)

H
(1)
m (k0a)

δmm′ = 1 × δmm′ ∀m,m′

→ lim
k0→0

det S1(k0a) = 1 .

Secondly, for k0 → 0, the two terms in the curly bracket of (40.33) cancel.

40.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the determinant S1(ka) is given

by

det S1(ka) ∼ e−i2πN(k)

∏∞
ℓ=1

(
1 − e−2iπν̄ℓ(ka)

)2

∏∞
ℓ=1

(
1 − e2iπνℓ(ka)

)2
, (40.34)

with

νℓ(ka) = ka + iαℓ(ka) = ka + e+iπ/3(ka/6)1/3qℓ + · · ·
ν̄ℓ(ka) = ka − i(αℓ(k

∗a))∗ = ka + e−iπ/3(ka/6)1/3qℓ + · · ·
= (νℓ(k

∗a))∗

and N(ka) = (πa2k2)/4π + · · · the leading term in the Weyl approximation for

the staircase function of the wavenumber eigenvalues in the disk interior. From

the point of view of the scattering particle, the interior domains of the disks are

excluded relatively to the free evolution without scattering obstacles. Therefore

the negative sign in front of the Weyl term. For the same reason, the subleading

boundary term has here a Neumann structure, although the disks have Dirichlet

boundary conditions.

Let us abbreviate the r.h.s. of (40.34) for a disk s as

det Ss(kas ) ∼
(
e−iπN(kas )

)2 Z̃
s

ℓ
(k∗as )

∗

Z̃
s

ℓ
(kas )

Z̃
s
r (k∗as )

∗

Z̃
s
r (kas )

, (40.35)

where Z̃
s

ℓ
(kas ) and Z̃

s
r (kas ) are the diffractional zeta functions (here and in the fol-

lowing we will label semiclassical zeta functions with diffractive corrections by a

tilde) for creeping orbits around the sth disk in the left-handed sense and the right-

handed sense, respectively (see figure 40.2). The two orientations of the creeping

orbits are the reason for the exponents 2 in (40.34). Equation (40.34) describes
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Figure 40.2: Right- and left-handed diffractive

creeping paths of increasing mode number ℓ for

a single disk.

l

l

the semiclassical approximation to the incoherent part (= the curly bracket on the

r.h.s.) of the exact expression (40.19) for the case that the scatterers are disks.

In the following we will discuss the semiclassical resonances in the 1-disk

scattering problem with Dirichlet boundary conditions, i.e. the so-called shape

resonances. The quantum mechanical resonances are the poles of the S -matrix in

the complex k-plane. As the 1-disk scattering problem is separable, the S -matrix

is already diagonalized in the angular momentum eigenbasis and takes the sim-

ple form (40.9). The exact quantummechanical poles of the scattering matrix are

therefore given by the zeros kres
n m of the Hankel functions H

(1)
m (ka) in the lower

complex k plane which can be labeled by two indices, m and n, where m denotes

the angular quantum number of the Hankel function and n is a radial quantum

number. As the Hankel functions have to vanish at specific k values, one cannot

use the usual Debye approximation as semiclassical approximation for the Hankel

function, since this approximation only works in case the Hankel function is dom-

inated by only one saddle. However, for the vanishing of the Hankel function, one

has to have the interplay of two saddles, thus an Airy approximation is needed as

in the case of the creeping poles discussed above. The Airy approximation of the

Hankel function H
(1)
ν (ka) of complex-valued index ν reads

H
(1)
ν (ka) ∼ 2

π
e−i π

3

(
6

ka

)1/3

A(q(1)) ,

with

q(1)
= e−i π

3

(
6

ka

)1/3

(ν − ka) + O
(
(ka)−1

)
.

Hence the zeros νℓ of the Hankel function in the complex ν plane follow from the

zeros qℓ of the Airy integral A(q) (see (40.30). Thus if we set νℓ = m (with m

integer), we have the following semiclassical condition on kres

m ∼ kresa + iαℓ(k
resa)

= ei π
3

(
kresa

6

)1/3

qℓ − e−i π
3

(
6

kresa

)1/3 q2
ℓ

180
− 1

70kresa

1 −
q3
ℓ

30



+ ei π
3

(
6

kresa

) 5
3 1

3150


29qℓ

62
−

281q4
ℓ

180 · 63

 + · · · ,

with l = 1, 2, 3, · · · . (40.36)
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Figure 40.3: The shape resonances of the 1-disk

system in the complex k plane in units of the disk

radius a. The boxes label the exact quantum me-

chanical resonances (given by the zeros of H
(1)
m (ka)

for m = 0, 1, 2), the crosses label the diffractional

semiclassical resonances (given by the zeros of

the creeping formula in the Airy approximation

(40.36) up to the order O([ka]1/3)).
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For a given index l this is equivalent to

0 ∼ 1 − e(ikres−αℓ)2πa ,

the de-Broglie condition on the wave function that encircles the disk. Thus the

semiclassical resonances of the 1-disk problem are given by the zeros of the fol-

lowing product

∞∏

l=1

(
1 − e(ik−αℓ )2πa

)
,

which is of course nothing else than Z̃1-disk(k), the semiclassical diffraction zeta

function of the 1-disk scattering problem, see (40.35). Note that this expression

includes just the pure creeping contribution and no genuine geometrical parts.

Because of

H
(1)
−m(ka) = (−1)mH

(1)
m (ka) ,

the zeros are doubly degenerate if m , 0, corresponding to right- and left handed

creeping turns. The case m = 0 is unphysical, since all zeros of the Hankel func-

tion H
(1)

0
(ka) have negative real value.

From figure 40.3 one notes that the creeping terms in the Airy orderO([ka]1/3),

which are used in the Keller construction, systematically underestimate the magni-

tude of the imaginary parts of the exact data. However, the creeping data become

better for increasing Re k and decreasing |Im k|, as they should as semiclassical

approximations.

In the upper panel of figure 40.4 one sees the change, when the next order

in the Airy approximation (40.36) is taken into account. The approximation is

nearly perfect, especially for the leading row of resonances. The second Airy

approximation using (40.36) up to order O([ka]−1) is perfect up to the drawing

scale of figure 40.4 (lower panel).

multscat - 25jul2006 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 40. CHAOTIC MULTISCATTERING 736

Figure 40.4: Same as in figure 40.3. However,

the subleading terms in the Airy approximation

(40.36) are taken into account up to the order

O([ka]−1/3) (upper panel) and up to order O([ka]−1)

(lower panel).
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40.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of a general periodic itinerary

(40.20) of length n is somewhat laborious, and we will only sketch the procedure

here. It follows, in fact, rather closely the methods developed for the semiclassical

reduction of the determinant of the 1-disk system.

The quantum cycle

tr As1s2 · · ·Asms1 =

∞∑

ls1
=−∞
· · ·

∞∑

lsm=−∞
A

s1s2

ls1
ls2

· · ·Asms1

lsm ls1

still has the structure of a “multi-trace” with respect to angular momentum.

Each of the sums
∑∞

lsi
=−∞ – as in the 1-disk case – is replaced by a Watson

contour resummation in terms of complex angular momentum νsi
. Then the paths

below the real νsi
-axes are transformed to paths above these axes, and the integrals

split into expressions with and without an explicit Watson sin(νsi
π) denominator.

1. In the sin(νsi
π) -independent integrals we replace all Hankel and Bessel

functions by Debye approximations. Then we evaluate the expression in

the saddle point approximation: either left or right specular reflection at

disk si or ghost tunneling through disk si result.

2. For the sin(νsi
π) -dependent integrals, we close the contour in the upper νsi

plane and evaluate the integral at the residua H
(1)
νsi

(kasi
)=0. Then we use

the Airy approximation for Jνsi
(kasi

) and H
(1)
νsi

(kasi
): left and right creeping

paths around disk si result.

In the above we have assumed that no grazing geometrical paths appear. If

they do show up, the analysis has to be extended to the case of coinciding saddles
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Figure 40.5: A 4-disk problem with three specular

reflections, one ghost tunneling, and distinct creeping

segments from which all associated creeping paths can

be constructed.
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

j

j j
1

j2 3 4

Itinerary:
j

1j j4

j
2 3

between the geometrical paths with π/2 angle reflection from the disk surface and

paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contact of the point particle

with the disk si:

1. either geometrical which in turn splits into three alternatives

(a) specular reflection to the right,

(b) specular reflection to the left,

(c) or ‘ghost tunneling’ where the latter induce the nontrivial pruning

rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns,

see figure 40.5. The specular reflection to the right is linked to left-handed creep-

ing paths with at least one knot. The specular reflection to the left matches a

right-handed creeping paths with at least one knot, whereas the shortest left- and

right-handed creeping paths in the ghost tunneling case are topologically trivial.

In fact, the topology of the creeping paths encodes the choice between the three

alternatives for the geometrical contact with the disk. This is the case for the

simple reason that creeping sections have to be positive definite in length: the

creeping amplitude has to decrease during the creeping process, as tangential rays

are constantly emitted. In mathematical terms, it means that the creeping angle

has to be positive. Thus, the positivity of the two creeping angles for the shortest

left and right turn uniquely specifies the topology of the creeping sections which

in turn specifies which of the three alternatives, either specular reflection to the

right or to the left or straight “ghost” tunneling through disk j, is realized for the

semiclassical geometrical path. Hence, the existence of a unique saddle point is

guaranteed.

In order to be concrete, we will restrict ourselves in the following to the scat-

tering from N < ∞ non-overlapping disks fixed in the 2-dimensional plane. The

semiclassical approximation of the periodic itinerary

tr As1s2 As2s3 · · ·Asn−1sn Asn s1

becomes a standard periodic orbit labeled by the symbol sequence s1s2 · · · sn . De-

pending on the geometry, the individual legs si−1 → si → si+1 result either from a
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Figure 40.6: (a) The ghost itinerary (1, 2, 3, 4). (b)

The parent itinerary (1, 3, 4).
4

31 2_

4

31

standard specular reflection at disk si or from a ghost path passing straight through

disk si. If furthermore creeping contributions are taken into account, the symbolic

dynamics has to be generalized from single-letter symbols {si} to triple-letter sym-

bols {si, σi × ℓi} with ℓi ≥ 1 integer valued and σi = 0,±1 1 By definition, the

value σi = 0 represents the non-creeping case, such that {si, 0 × ℓi} = {si, 0} = {si}
reduces to the old single-letter symbol. The magnitude of a nonzero ℓi corre-

sponds to creeping sections of mode number |ℓi|, whereas the sign σi = ±1 signals

whether the creeping path turns around the disk si in the positive or negative sense.

Additional full creeping turns around a disk si can be summed up as a geometrical

series; therefore they do not lead to the introduction of a further symbol.

40.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, say, disk si can be shown to

have the same weight as the corresponding itinerary without the si th symbol.

Thus, semiclassically, they cancel each other in the tr ln(1 −A) expansion, where

they are multiplied by the permutation factor n/r with the integer r counting the

repeats. For example, let (1, 2, 3, 4) be a non-repeated periodic itinerary with a

ghost section at disk 2 steming from the 4th-order trace tr A4. By convention,

an underlined disk index signals a ghost passage (as in figure 40.6a), with cor-

responding semiclassical ghost traversal matrices also underlined, Ai,i+1Ai+1,i+2.

Then its semiclassical, geometrical contribution to tr ln(1 − A) cancels exactly

against the one of its “parent” itinerary (1, 3, 4) (see figure 40.6b) resulting from

the 3rd-order trace:

−1

4

(
4 A1,2A2,3A3,4A4,1

)
− 1

3

(
3 A1,3A3,4A4,1

)

= (+1 − 1) A1,3A3,4A4,1
= 0 .

The prefactors −1/3 and −1/4 are due to the expansion of the logarithm, the fac-

tors 3 and 4 inside the brackets result from the cyclic permutation of the periodic

itineraries, and the cancellation stems from the rule

· · ·Ai,i+1Ai+1,i+2 · · · = · · ·
(
−Ai,i+2

)
· · · . (40.37)

The reader might study more complicated examples and convince herself that the

rule (40.37).is sufficient to cancel any primary or repeated periodic orbit with one

1Actually, these are double-letter symbols as σi and li are only counted as a product.
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or more ghost sections completely out of the expansion of tr ln(1 − A) and there-

fore also out of the cumulant expansion in the semiclassical limit: Any periodic

orbit of length m with n(< m) ghost sections is cancelled by the sum of all ‘par-

ent’ periodic orbits of length m − i (with 1 ≤ i ≤ n and i ghost sections removed)

weighted by their cyclic permutation factor and by the prefactor resulting from

the trace-log expansion. This is the way in which the nontrivial pruning for the

N-disk billiards can be derived from the exact quantum mechanical expressions

in the semiclassical limit. Note that there must exist at least one index i in any

given periodic itinerary which corresponds to a non-ghost section, since other-

wise the itinerary in the semiclassical limit could only be straight and therefore

nonperiodic. Furthermore, the series in the ghost cancelation has to stop at the

2nd-order trace, tr A2, as tr A itself vanishes identically in the full domain which

is considered here.

40.5 Heisenberg uncertainty

Where is the boundary ka ≈ 2m−1L̄/a coming from?

This boundary follows from a combination of the uncertainty principle with

ray optics and the non-vanishing value for the topological entropy of the 3-disk

repeller. When the wave number k is fixed, quantum mechanics can only resolve

the classical repelling set up to the critical topological order n.The quantum wave

packet which explores the repelling set has to disentangle 2n different sections

of size d ∼ a/2n on the “visible” part of the disk surface (which is of order a)

between any two successive disk collisions. Successive collisions are separated

spatially by the mean flight length L̄, and the flux spreads with a factor L̄/a. In

other words, the uncertainty principle bounds the maximal sensible truncation in

the cycle expansion order by the highest quantum resolution attainable for a given

wavenumber k.

Commentary

Remark 40.1 Sources. This chapter is based in its entirety on ref. [A45.1]; the

reader is referred to the full exposition for the proofs and discussion of details omitted

here. sect. 40.3 is based on appendix E of ref. [A45.1]. We follow Franz [39.19] in apply-

ing the Watson contour method [39.20] to (40.23). The Airy and Debye approximations

to the Hankel functions are given in ref. [39.21], the Airy expansion of the 1-disk zeros

can be found in ref. [39.22].For details see refs. [39.19, 39.22, 39.23, A45.1]. That the in-

terior domains of the disks are excluded relatively to the free evolution without scattering

obstacles was noted in refs. [39.24, 39.15].

The procedure for the semiclassical approximation of a general periodic itinerary

(40.20) of length n can be found in ref. [A45.1] for the case of the N-disk systems. The

reader interested in the details of the semiclassical reduction is advised to consult this

reference.

The ghost orbits were introduced in refs. [39.12, 39.24].
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Remark 40.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [39.14,

39.15] based on ref. [39.11] or ref. [39.1]) the transition from the quantum mechan-

ics to the semiclassics of scattering problems has been performed via the semiclassical

limit of the left hand sides of the Krein-Friedel-Lloyd sum for the (integrated) spectral

density [A45.6, A45.7, 39.8, 39.9]. See also ref. [39.13] for a modern discussion of the

Krein-Friedel-Lloyd formula and refs. [39.1, 39.17] for the connection of (39.17) to the

Wigner time delay.

The order of the two limits in (39.18) and (39.17) is essential, see e.g. Balian and

Bloch [39.11] who stress that smoothed level densities should be inserted into the Friedel

sums.

The necessity of the +iǫ in the semiclassical calculation can be understood by purely

phenomenological considerations: Without the iǫ term there is no reason why one should

be able to neglect spurious periodic orbits which solely are there because of the introduc-

tion of the confining boundary. The subtraction of the second (empty) reference system

helps just in the removal of those spurious periodic orbits which never encounter the scat-

tering region. The ones that do would still survive the first limit b → ∞, if they were not

damped out by the +iǫ term. exercise 39.1

Remark 40.3 T, Cs , Ds and As s′ matrices are trace-class In refs. [A45.1] it has

explicitly been shown that the T-matrix as well as the Cs , Ds and As s ′-matrices of the

scattering problem from N < ∞ non-overlapping finite disks are all trace-class. The

corresponding properties for the single-disk systems is particulary easy to prove.
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