
Appendix A4

Linear stability

Mopping up operations are the activities that engage most

scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolu-

tions

T
he subject of linear algebra generates innumerable tomes of its own, and is

way beyond what we can exhaustively cover. Here we recapitulate a few

essential concepts that ChaosBook relies on. The punch line is Eq. (A4.25):

Hamilton-Cayley equation
∏

(M − λi1) = 0 associates with each distinct root

λi of a matrix M a projection onto ith vector subspace

Pi =
∏

j,i

M − λ j1

λi − λ j

.

A4.1 Linear algebra

In this section we collect a few basic definitions. The reader might prefer going

straight to sect. A4.2.

Vector space. A set V of elements x, y, z, . . . is called a vector (or linear) space

over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under

addition, with identity element 0;

843



APPENDIX A4. LINEAR STABILITY 844

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

(a + b)x = ax + bx

a(bx) = (ab)x

1 x = x , 0 x = 0 . (A4.1)

Here the field F is either R, the field of reals numbers, or C, the field of complex

numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of

V0, or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.

The number of basis elements d is the dimension of the vector space V.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n, F), the

row of basis vectors transforms by right multiplication as e( j) =
∑

k(g−1) j
k e(k),

and the column of xa’s transforms by left multiplication as x′ = gx. Under

left multiplication the column (row transposed) of basis vectors e(k) transforms

as e( j) = (g†) j
ke(k), where the dual rep g† = (g−1)⊤ is the transpose of the inverse

of g. This observation motivates introduction of a dual representation space V̄ ,

the space on which GL(n, F) acts via the dual rep g†.

Definition. If V is a vector representation space, then the dual space V̄ is the set

of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},

the set of d linear forms e(k) such that

e( j) · e(k) = δkj ,

where δk
j

is the Kronecker symbol, δk
j
= 1 if j = k, and zero otherwise. The

components of dual representation space vectors ȳ ∈ V̄ will here be distinguished

by upper indices

(y1, y2, . . . , yn) . (A4.2)

They transform under GL(n, F) as

y′a = (g†)a
byb . (A4.3)

For GL(n, F) no complex conjugation is implied by the † notation; that interpre-

tation applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation,

g can be distinguished from g† by keeping track of the relative ordering of the

indices,

(g)b
a → ga

b , (g†)b
a → gb

a . (A4.4)
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Algebra. A set of r elements tα of a vector space T forms an algebra if, in

addition to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any

two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =

r−1
∑

γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (A4.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ

tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβ
γ are called the structure constants. They form a matrix

rep of the algebra,

(tα)β
γ ≡ ταβ

γ , (A4.6)

whose dimension is the dimension r of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one

obtains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)
c
a = (tα)

b
a(tβ)

c
b , tα ∈ V ⊗ V̄ , (A4.7)

and the Lie product

(tα · tβ)
c
a = (tα)

b
a(tβ)

c
b − (tα)

b
c(tβ)

a
b , tα ∈ V ⊗ V̄ (A4.8)

which defines a Lie algebra.

A4.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (A4.9)

Given a nonsingular matrix M, with all λi , 0, acting on d-dimensional vectors

x, we would like to determine eigenvectors e(i) of M on which M acts by scalar

multiplication by eigenvalue λi

M e(i) = λie
(i) . (A4.10)

If λi , λ j, e(i) and e( j) are linearly independent. There are at most d distinct

eigenvalues and eigenspaces, which we assume have been computed by some

method, and ordered by their real parts, Re λi ≥ Re λi+1.
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If all eigenvalues are distinct e( j) are d linearly independent vectors which can

be used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (A4.11)

From (A4.10) it follows that

(M − λi1) e( j) = (λ j − λi) e( j) ,

matrix (M − λi1) annihilates e(i), the product of all such factors annihilates any

vector, and the matrix M satisfies its characteristic equation (A4.9),

d
∏

i=1

(M − λi1) = 0 . (A4.12)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term

from this product, we find that the remainder projects x onto the corresponding

eigenspace:
∏

j,i

(M − λ j1)x =
∏

j,i

(λi − λ j)xie
(i) .

Dividing through by the (λi − λ j) factors yields the projection operators

Pi =
∏

j,i

M − λ j1

λi − λ j

, (A4.13)

which are orthogonal and complete:

PiP j = δi jP j , (no sum on j) ,

r
∑

i=1

Pi = 1 . (A4.14)

It follows from the characteristic equation (A4.12) that λi is the eigenvalue of M

on Pi subspace:

M Pi = λiPi (no sum on i) . (A4.15)

Using M =M 1 and completeness relation (A4.14) we can rewrite M as

M = λ1P1 + λ2P2 + · · · + λdPd . (A4.16)

Any matrix function f (M) takes the scalar value f (λi) on the Pi subspace, f (M) Pi =

f (λi) Pi , and is thus easily evaluated through its spectral decomposition

f (M) =
∑

i

f (λi)Pi . (A4.17)

This, of course, is the reason why anyone but a fool works with irreducible reps:

they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (A4.10) every column of Pi is proportional to a right eigenvector e(i), and

its every row to a left eigenvector e(i). In general, neither set is orthogonal, but by

the idempotence condition (A4.14), they are mutually orthogonal,

e(i) · e
( j) = c δ

j

i
. (A4.18)

The non-zero constant c is convention dependent and not worth fixing, unless you

feel nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is

convenient to collect all left and right eigenvectors into a single matrix as follows.
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Fundamental matrix (take 1). As the system is a linear, a superposition of any

two solutions to x(t) = Jt x(0) is also a solution. One can take any d independent

initial states, x(1)(0), x(2)(0), . . . , x(d)(0), assemble them as columns of a matrix

Φ(0), and formally write the solution for an arbitrary initial condition projected

onto this basis,

x(t) = Φ(t)Φ(0)−1 x(0) (A4.19)

where Φ(t) = [x(1)(t), x(2)(t), · · · , x(d)(t)]. Φ(t) is called the fundamental matrix of

the system, and the Jacobian matrix Jt = Φ(t)Φ(0)−1 can thus be fashioned out of

d trajectories {x( j)(t)}. Numerically this works for sufficiently short times.

Fundamental matrix (take 2). The set of solutions x(t) = Jt(x0)x0 for a system

of homogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and dimen-

sion d forms a d-dimensional vector space. A basis {e(1)(t), . . . , e(d)(t)} for this

vector space is called a fundamental system. Every solution x(t) can be written as

x(t) =

d
∑

i=1

ci e(i)(t) .

The [d×d] matrix F−1
i j
= e

( j)

i
whose columns are the right eigenvectors of Jt

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (A4.20)

is the inverse of a fundamental matrix.

Jacobian matrix. The Jacobian matrix Jt(x0) is the linear approximation to a

differentiable function f t(x0), describing the orientation of a tangent plane to the

function at a given point and the amount of local rotation and shearing caused

by the transformation. The inverse of the Jacobian matrix of a function is the

Jacobian matrix of the inverse function. If f is a map from d-dimensional space

to itself, the Jacobian matrix is a square matrix, whose determinant we refer to as

the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t0 to

the basis at time t1,

Jt1−t0 (x0) = F(t1)F(t0)−1 . (A4.21)

Then the matrix form of (A4.18) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian

matrix is the identity. exercise A4.1

Example A4.1 Fundamental matrix. If A is constant in time, the system (4.2) is

autonomous, and the solution is

x(t) = eA t x(0) ,

where exp(A t) is defined by the Taylor series for exp(x). As the system is linear, the sum

of any two solutions is also a solution. Therefore, given d independent initial conditions,
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x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition based on

its projection on to this set,

x(t) = F(t) F(0)−1x(0) = eAt x(0) ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system. (J. Halcrow)
exercise A4.1

Example A4.2 Complex eigenvalues. As A has only real entries, it will in general

have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not

surprising, but also the corresponding eigenvectors can be either real or complex. All

coordinates used in defining a dynamical flow are real numbers, so what is the meaning

of a complex eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block A′ ⊂ A form

a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω}, the corresponding complex eigen-

vectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} → {Re e(k), Im e(k)}.

In this 2-dimensional real representation, A′ → N, the block N is a sum of the rescaling-

×identity and the generator of SO(2) rotations

N =

[

µ −ω
ω µ

]

= µ

[

1 0
0 1

]

+ ω

[

0 −1
1 0

]

.

Trajectories of ẋ = N x, given by x(t) = Jt x(0), where

Jt = etN = etµ

[

cos ωt − sin ωt
sin ωt cos ωt

]

, (A4.22)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period T and the

radial expansion /contraction multiplier along the e( j) eigen-direction per a turn of the

spiral:

T = 2π/ω , Λradial = eTµ . (A4.23)

We learn that the typical turnover time scale in the neighborhood of the equilibrium

(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000 T, or 10−2T).

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-

values are distinct with probability 1, that is not true in presence of symmetries,

or spacial parameter values (bifurcation points). What can one say about situation

where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1? Hamilton-

Cayley (A4.12) now takes form

r
∏

α=1

(M − λα1)dα = 0 ,
∑

α

dα = d . (A4.24)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (A4.24) can

be replaced by the minimal polynomial,

r
∏

α=1

(M − λα1) = 0 , (A4.25)
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where the product includes each distinct eigenvalue only once. Matrix M acts

multiplicatively

M e(α,k) = λie
(α,k) , (A4.26)

on a dα-dimensional subspace spanned by a linearly independent set of basis

eigenvectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion we

continue in appendix A7.2.1. Luckily, if the degeneracy is due to a finite or com-

pact symmetry group, relevant M matrices can always be brought to such Hermi-

tian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy

case, so we only illustrate the key idea in example A4.3.

Example A4.3 Decomposition of 2-dimensional vector spaces: Enumeration of

every possible kind of linear algebra eigenvalue / eigenvector combination is beyond

what we can reasonably undertake here. However, enumerating solutions for the sim-

plest case, a general [2×2] non-singular matrix

A =

[

A11 A12

A21 A22

]

.

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-

trices. The eigenvalues

λ1,2 =
1

2
tr A ±

1

2

√

(tr A)2 − 4 det A (A4.27)

are the roots of the characteristic (secular) equation (A4.9):

det (A − λ 1) = (λ1 − λ)(λ2 − λ)

= λ2 − tr A λ + det A = 0 .

For any linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has

one of the following forms:

B =

[

λ 0
0 µ

]

, B =

[

λ 1
0 λ

]

, B =

[

µ −ω
ω µ

]

.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-

values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows

that

eBt =

[

eλt 0
0 eµt

]

, eBt = eλt
[

1 t
0 1

]

, eBt = eat

[

cos bt − sin bt
sin bt cos bt

]

,

where the corresponding Jacobian matrix is eAt = UeBtU−1. What we have done is

classify all [2×2] matrices as belonging to one of three classes of geometrical transfor-

mations. The first case is scaling, the second is a shear, and the third is a combination

of rotation and scaling. The generalization of these normal forms to Rd is called the

Jordan normal form.
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Distinct eigenvalues case has already been described in sect. 4.8, and in the full

generality for arbitrary dimension in sect. 5.1. The left/right eigenvectors are (up to

overall multiplicate factors) the rows/columns of projection operators

P1 =
A − λ21

λ1 − λ2

, P2 =
A − λ11

λ2 − λ1

, λ1 , λ2 . (A4.28)

Complex eigenvalues pair case is discussed in example A4.2.

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) A can be

brought to diagonal form. This is the easy case whose discussion in any dimension

we continue in appendix A7.2.1. (b) A can be brought to Jordan form, with zeros

everywhere except for the diagonal, and some 1’s directly above it; for a [2×2] matrix

the Jordan form is

A =

[

λ 1
0 λ

]

, e(1) =

[

1
0

]

, v(2) =

[

0
1

]

.

v(2) helps span the 2-dimensional space, (A − λ)2v(2) = 0, but is not an eigenvector, as

Av(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one eigenvector

per block. Noting that

Am =

[

λm mλm−1

0 λm

]

,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etA

(

u

v

)

= etλ

(

u + tv

v

)

(A4.29)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring

the extra term into the exponent).

(J. Halcrow)

Example A4.4 Projection operator decomposition in 2 dimensions: Let’s illus-

trate how the distinct eigenvalues case works with the [2×2] matrix

M =

[

4 1
3 2

]

.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (A4.27):

det (M − λ1) = λ2 − 6 λ + 5 = (5 − λ)(1 − λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by

explicit calculation:

[

4 1
3 2

]2

− 6

[

4 1
3 2

]

+ 5

[

1 0
0 1

]

=

[

0 0
0 0

]

.

Associated with each root λi is the projection operator (A4.28)

P1 =
1

4
(M − 1) =

1

4

[

3 1
3 1

]

(A4.30)

P2 =
1

4
(M − 5 · 1) =

1

4

[

1 −1
−3 3

]

. (A4.31)
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Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given

by di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the charac-

teristic equation it follows that Pi satisfies the eigenvalue equation M Pi = λiPi . Two

consequences are immediate. First, we can easily evaluate any function of M by spec-

tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1 − 3)P2 =

[

58591 19531
58593 19529

]

.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,

and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {

[

1
1

]

,

[

1
−3

]

}

{e(1), e(2)} = {

[

3
1

]

,

[

1
−1

]

} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an orthog-

onal basis. The left-right eigenvector dot products e( j) · e(k), however, are orthogonal

as in (A4.18), by inspection. (Continued in example 15.2.)

Example A4.5 Computing matrix exponentials. If A is diagonal (the system is

uncoupled), then etA is given by

exp































λ1t
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. . .

λdt
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eλ2t

. . .

eλd t

































.

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigenvalues

of A and F is the matrix of corresponding eigenvectors, the result is simple: An =

(FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor series for ex

gives eAt = FeDtF−1. But A may not have d linearly independent eigenvectors, forcing

us to take a different, Jordan route, explained in example A4.3.

A4.2.1 Floquet theory

When dealing with periodic orbits, some of the quantities already introduced in

chapter 4 inherit names from the Floquet theory of differential equations with

time-periodic coefficients. Consider the equation of variations (4.2) evaluated on

a periodic orbit p of period T , at point x(t) ∈ Mp,

δ̇x = A(t) δx , A(t) = A(t + T) ,

with A(t) = A(x(t)). The periodicity of the stability matrix implies that if δx(t)

is a solution, then also δx(t + T) satisfies the same equation: moreover the two

solutions are related by (4.5)

δx(t + T) = Jp(x) δx(t) , x ∈ Mp . (A4.32)
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Table A4.1: The first 27 least stable Floquet exponents λ = µ ± iω of equilibrium EQ5 for plane

Couette flow, Re = 400. The exponents are ordered by the decreasing real part. The two zero expo-

nents, to the numerical precision of our computation, arise from the two translational symmetries.

For details, see ref. [13.43].

j µ
( j)

EQ5
ω

( j)

EQ5
s1s2 s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A

5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA

8,9 0.009654012 0.04551274 AA S
10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S

16 -0.006178861 A S A
17,18 -0.007785718 0.1372092 AA S

19 -0.01064716 S AA
20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

Even though the Jacobian matrix Jp(x) depends upon x (the ‘starting’ point of the

periodic orbit), we shall show in sect. 5.3 that its eigenvalues do not, so we may

write the eigenvalue equation as

Jp(x) e( j)(x) = Λ j e( j)(x) , (A4.33)

where Λ j are independent of x, and we refer to eigenvectors e( j) as ‘covariant

vectors’, or, for periodic orbits, as ‘Floquet vectors’.

Expand δx in the (A4.33) eigenbasis, δx(t) =
∑

δx j(t) e( j) , e( j) = e( j)(x(0)) .

Taking into account (A4.32), we get that δx j(t) is multiplied byΛ j per each period

δx(t + T) =
∑

j

δx j(t + T) e( j) =
∑

j

Λ j δx j(t) e( j) .

We can absorb this exponential growth / contraction by rewriting the coefficients

δx j(t) as δx j(t) = exp(λ( j)t) u j(t) , u j(0) = δx j(0) . Thus each solution of the

equation of variations (4.2) may be expressed in the Floquet form,

δx(t) =
∑

j

eλ
( j)t u j(t) e( j) , u j(t + T) = u j(t) , (A4.34)

with u j(t) periodic with period T . The exp(λ( j)t) factor is not an eigenvalue of the

Jacobian matrix Jt, it is only an interpolation between x and f T (x). The continu-

ous time t in (A4.34) does not imply that eigenvalues of the Jacobian matrix enjoy

any multiplicative property for t , rT : exponents λ( j) refer to a full traversal of

the periodic orbit. Indeed, while u j(t) describes the variation of δx(t) with respect

to the stationary eigen-frame fixed by eigenvectors at the point x(0), the object of

dynamical significance is the co-moving eigen-frame defined below in (5.9).
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Figure A4.1: Eigenvalues of the plane Couette flow

equilibrium EQ8, plotted according to their isotropy

groups: • + + +, the S -invariant subspace, ◮ + − −,

◭ −+−, and N −−+, where ± symbols stand for sym-

metric/antisymmetric under symmetry operation s1, s2,

and s3 respectively, defined in ref. [13.42]. For ta-

bles of numerical values of stability eigenvalues see

Channelflow.org.
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A4.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King

I got forty red white and blue shoe strings

And a thousand telephones that don’t ring

Do you know where I can get rid of these things?

— Bob Dylan, Highway 61 Revisited

Table A4.1, taken from ref. [13.43], is an example of how to tabulate the

leading Floquet eigenvalues of the stability matrix of an equilibrium or relati-

ve equilibrium. The isotropy subgroup G
( j)

EQ
of the corresponding eigenfunction

should be indicated. If the isotropy is trivial, G
( j)

EQ
= {e}, it is omitted from the

table. The isotropy subgroup GEQ of the solution itself needs to be noted, and for

relative equilibrium (12.19) the velocity c along the group orbit. In addition, if the

least stable (i.e., the most unstable) eigenvalue is complex, it is helpful to state the

period of the spiral-out motion (or spiral-in, if stable), TEQ = 2π/ω
(1)

EQ
.

Table A4.2, taken from ref. [?], is an example of how to tabulate the leading

Floquet exponents of the monodromy matrix of an periodic orbit or relative pe-

riodic orbit. For a periodic orbit one states the period Tp, Λp =
∏

Λp,e, and the

isotropy group Gp of the orbit; for a relative periodic orbit (12.23) one states in

addition the shift parameters φ = (φ1, φ2, · · · φN). Λp, the product of expanding

Floquet multipliers (5.6) is useful, as 1/|Λp| is the geometric weight of cycle p

in a cycle expansion (remember that each complex eigenvalue contributes twice).

We often do care about σ
( j)
p = Λp, j/|Λp, j| ∈ {+1,−1}, the sign of the jth Floquet

multiplier, or, if Λp, j is complex, its phase Tpω
( j)
p .

Surveying this multitude of equilibrium and Floquet exponents is aided by a

plot of the complex exponent plane (µ, ω). An example are the eigenvalues of

equilibrium EQ8 from ref. [13.42], plotted in figure A4.1. To decide how many

of the these are “physical” in the PDE case (where number of exponents is always

infinite, in principle), it is useful to look at the ( j, µ( j)) plot. However, intelligent

choice of the j-axis units can be tricky for high-dimensional problems. For Kura-

moto-Sivashinsky system the correct choice are the wave-numbers which, due to

the O(2) symmetry, come in pairs. For plane Couette flow the good choice is not

known as yet; one needs to group O(2)×O(2) wave-numbers, as well as take care

of the wall-normal node counting.
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Table A4.2: The first 13 least stable Floquet exponents λ = µ ± iω of periodic orbit p = P59.77

for plane Couette flow, Re = 400, together with the symmetries of corresponding eigenvectors. The

eigenvalues are ordered by the decreasing real part. The one zero eigenvalue, to the numerical pre-

cision of our computation, arises from the spanwise translational SO(2) symmetry of this periodic

orbit. For details, see ref. [?].

j σ
( j)
p µ

( j)
p ω

( j)
p G

( j)
p

1,2 0.07212161 0.04074989 D1

3 1 0.06209526 ?
4 -1 0.06162059

5,6 0.02073075 0.07355143
7 -1 0.009925378

8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

A4.4 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more than the

incompressibility, or the phase space volume conservation alluded to in sect. 8.1.

The evolution equations for any p, q dependent quantity Q = Q(q, p) are given by

(19.28).

In terms of the Poisson brackets, the time-evolution equation for Q = Q(q, p)

is given by (19.30). We now recast the symplectic condition (8.9) in a form con-

venient for using the symplectic constraints on M. Writing x(t) = x′ = [p′, q′]

and the Jacobian matrix and its inverse

M =















∂q′

∂q

∂q′

∂p
∂p′

∂q

∂p′

∂p















, M−1 =















∂q

∂q′
∂q

∂p′

∂p

∂q′
∂p

∂p′















, (A4.35)

we can spell out the symplectic invariance condition (8.9):

∂q′
k

∂qi

∂p′
k

∂q j

−
∂p′

k

∂qi

∂q′
k

∂q j

= 0

∂q′
k

∂pi

∂p′
k

∂p j

−
∂p′

k

∂pi

∂q′
k

∂p j

= 0

∂q′
k

∂qi

∂p′
k

∂p j

−
∂p′

k

∂qi

∂q′
k

∂p j

= δi j . (A4.36)

From (8.26) we obtain

∂qi

∂q′
j

=
∂p′

j

∂pi

,
∂pi

∂p′
j

=
∂q′

j

∂qi

,
∂qi

∂p′
j

= −
∂q′

j

∂pi

,
∂pi

∂q′
j

= −
∂p′

j

∂qi

. (A4.37)

Taken together, (A4.37) and (A4.36) imply that the flow conserves the {p, q} Pois-
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son brackets

{qi, q j} =
∂qi

∂p′
k

∂q j

∂q′
k

−
∂q j

∂p′
k

∂qi

∂q′
k

= 0

{pi, p j} = 0 , {pi, q j} = δi j , (A4.38)

i.e., the transformations induced by a Hamiltonian flow are canonical, preserving

the form of the equations of motion. The first two relations are symmetric under

i, j interchange and yield D(D − 1)/2 constraints each; the last relation yields D2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1) elements of M

are linearly independent, as it behooves group elements of the symplectic group

S p(2D).

A4.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrix J of the flow (4.5), but the monodromy matrix M,

which enters the trace formula. This matrix gives the time dependence of a dis-

placement perpendicular to the flow on the energy manifold. Indeed, we discover

some trivial parts in the Jacobian matrix J. An initial displacement in the direc-

tion of the flow x = ω∇H(x) transfers according to δx(t) = xt(t)δt with δt time

independent. The projection of any displacement on δx on ∇H(x) is constant, i.e.,

∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy matrix

directly choosing a suitable local coordinate system on the orbit x(t) in form of

the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (A4.39)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (A4.40)

Note that the properties a) – c) are only fulfilled for J̃ and L̃ if U itself is symplec-

tic.

Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two

trivial eigenvalues 1 of the transformed matrix in (A4.39) at any time t. Setting

U = (xt
⊤, xE

⊤, x1
⊤, . . . , x2d−2

⊤) gives

J̃ =









































1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...
... M

0 ∗









































; L̃ =









































0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...
... l

0 ∗









































, (A4.41)
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The matrix M is now the monodromy matrix and the equation of motion are given

by

Ṁ = l M. (A4.42)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the

energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written

down explicitly, i.e.,

U(t) = (xt, x1, xE , x2) =





























ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2





























(A4.43)

with x⊤ = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and

symplectic at every phase space point x, except the equilibrium points ẋ = 0. The

matrix elements for l are given (A4.45). One distinguishes 4 classes of eigenvalues

of M.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±µ±iω with µ and ω real. This is the most general case,

possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e., M is a [2×2] matrix, the eigenvalues are determined

by

λ =
tr (M) ±

√

tr (M)2 − 4

2
, (A4.44)

i.e., tr (M) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (A4.43) are

l̃11 =
1

q
[(h2

x − h2
y − h2

u + h2
v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (A4.45)

with hi, hi j is the derivative of the Hamiltonian H with respect to the phase space

coordinates and q = |∇H|2.
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Exercises

A4.1. Real representation of complex eigenvalues. (Ver-

ification of example A4.2.) λk, λk+1 eigenvalues form a

complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}.

Show that

(a) corresponding projection operators are complex

conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1

2
(R + iQ) ,

where R = Pk +Pk+1 and Q are matrices with real

elements.

(c)

[

Pk Pk+1

]

=
1

2

[

1 i
1 −i

]

[

R Q
]

.

(d) · · ·+ λkPk + λ
∗
k
Pk+1 + · · · complex eigenvalue pair

in the spectral decomposition (A4.16) is now re-

placed by a real [2×2] matrix

· · · +

[

µ −ω
ω µ

]

[

R Q
]

+ · · ·

or whatever you find the clearest way to write this

real representation.

Chapter A4 solutions: Linear stability

Solution A4.1 - Real representation of complex eigenvalues.

1

2

[

1 1
−i i

] [

λ 0
0 λ∗

] [

1 i
1 −i

]

=

[

µ −ω
ω µ

]

.

(P. Cvitanović)
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