
Appendix A6

Transport of vector fields

Man who says it cannot be done should not interrupt man

doing it.

—Sayings of Vattay Gábor

I
n this appendix we show that the multidimensional Lyapunov exponents and

relaxation exponents (dynamo rates) of vector fields can be expressed in terms

of leading eigenvalues of appropriate evolution operators.

A6.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-dimensional

maps in sect. 20.5. For higher-dimensional flows only the Jacobian matrices are

multiplicative, not individual eigenvalues, and the construction of the evolution

operator for evaluation of the Lyapunov spectra requires the extension of evolution

equations to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (A6.4) whose spectral

determinant (A6.8) yields the leading Lyapunov exponent of a d-dimensional flow

(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangent space of the

flow, suggested by the standard numerical methods for evaluation of Lyapunov

exponents: start at x0 with an initial infinitesimal tangent space vector in the d-

dimensional tangent space η(0) ∈ TMx, and let the flow transport it along the

trajectory x(t) = f t(x0).

The dynamics in the tangent bundle (x, δx) ∈ TM is governed by the system

of equations of variations (4.2):

ẋ = v(x) , η̇ = A(x) η .
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Here A(x) is (4.3), the stability matrix (velocity gradients matrix) of the flow. We

write the solution as

x(t) = f t(x0) , η(t) = Jt(x0) η0 , (A6.1)

with the tangent space vector η transported by the Jacobian matrix Jt(x0) = ∂x(t)/∂x0

(4.5).

As explained in sect. 4.1, the growth rate of this vector is multiplicative along

the trajectory and can be represented as η(t) = |η(t)|/|η(0)| u(t) where u(t) is a

“unit” vector in some norm ||.||. For asymptotic times and for almost every initial

(x0, η(0)), this factor converges to the leading eigenvalue of the linearized stability

matrix of the flow.

We implement this multiplicative evaluation of Floquet multipliers by adjoin-

ing the d-dimensional transverse tangent space η ∈ TMx; η(x) · v(x) = 0 to the

(d+1)-dimensional dynamical evolution space x ∈ M ⊂ Rd+1. In order to deter-

mine the length of the vector η we introduce a homogeneous differentiable scalar

function g(η) = ||η||. It has the property g(Λη) = |Λ| g(η) for any Λ. An example

is the projection of a vector to its dth component
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Any vector η(0) ∈ TMx can now be represented by the product η = Λu, where

u is a “unit” vector in the sense that its norm is ||u|| = 1, and the factor

Λt(x0, u0) = g(η(t)) = g(Jt(x0)u0) (A6.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multi-

plicative along the trajectory:

Λt′+t(x0, u0) = Λt′(x(t), u(t))Λt(x0, u0).

The u evolution constrained to ETg,x, the space of unit transverse tangent vectors, exercise A6.1

is given by rescaling of (A6.1):

u′ = Rt(x, u) =
1

Λt(x, u)
Jt(x)u . (A6.3)

Eqs. (A6.1), (A6.2) and (A6.3) enable us to define a multiplicative evolution

operator on the extended space U × ETg,x

Lt(x′, u′; x, u) = δ
(

x′ − f t(x)
) δ

(

u′ − Rt(x, u)
)

|Λt(x, u)|β−1
, (A6.4)

where β is a variable.
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To evaluate the expectation value of log |Λt(x, u)| which is the Lyapunov ex-

ponent we again have to take the proper derivative of the leading eigenvalue of

(A6.4). In order to derive the trace formula for the operator (A6.4) we need to

evaluate TrLt =
∫

dxduLt(u, x; u, x). The
∫

dx integral yields a weighted sum

over prime periodic orbits p and their repetitions r:

TrLt =
∑

p

Tp

∞
∑

r=1

δ
(

t − rTp

)

| det (1 − Mr
p) |
∆p,r,

∆p,r =

∫

g

du
δ
(

u − RTpr(xp, u)
)

|ΛTpr(xp, u)|β−1
, (A6.5)

where Mp is the prime cycle p transverse stability matrix. As we shall see below,

∆p,r is intrinsic to cycle p, and independent of any particular periodic point xp.

We note next that if the trajectory f t(x) is periodic with period T , the tangent

space contains d periodic solutions

e(i)(x(T + t)) = e(i)(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e(1), e(2), · · · , e(d)} of the transverse sta-

bility matrix, with “stretching” factors (A6.2) given by its eigenvalues

Mp(x)e(i)(x) = Λp,i e(i)(x) , i = 1, ..., d. (no summation on i)

The
∫

du integral in (A6.5) picks up contributions from these periodic solutions.

In order to compute the stability of the ith eigen-direction solution, it is convenient

to expand the variation around the eigenvector e(i) in the stability matrix eigenbasis

δu =
∑

δuℓ e(ℓ) . The variation of the map (A6.3) at a complete period t = T is

then given by

δRT (e(i)) =
Mδu

g(Me(i))
−

Me(i)

g(Me(i))2

(

∂g(e(i))

∂u
Mδu

)

=
∑

k,i

Λp,k

Λp,i

(

e(k) − e(i) ∂g(e(i))

∂uk

)

δuk . (A6.6)

The δui component does not contribute to this sum since g(e(i) + duie
(i)) = 1 + dui

implies ∂g(e(i))/∂ui = 1. Indeed, infinitesimal variations δu must satisfy

g(u + δu) = g(u) = 1 =⇒

d
∑

ℓ=1

δuℓ
∂g(u)

∂uℓ
= 0 ,

so the allowed variations are of form

δu =
∑

k,i

(

e(k) − e(i) ∂g(e(i))

∂uk

)

ck , |ck | ≪ 1 ,
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and in the neighborhood of the e(i) eigenvector the
∫

du integral can be expressed

as
∫

g

du =

∫

∏

k,i

dck .

Inserting these variations into the
∫

du integral we obtain

∫

g

du δ
(

e(i) + δu − RT (e(i)) − δRT (e(i)) + . . .
)

=

∫

∏

k,i

dck δ((1 − Λk/Λi)ck + . . .)

=
∏

k,i

1

|1 − Λk/Λi|
,

and the
∫

du trace (A6.5) becomes

∆p,r =

d
∑

i=1

1

| Λr
p,i
|β−1

∏

k,i

1

| 1 − Λr
p,k
/Λr

p,i
|
. (A6.7)

The corresponding spectral determinant is obtained by observing that the Laplace

transform of the trace (21.19) is a logarithmic derivative TrL(s) = − d
ds

log F(s)

of the spectral determinant:

F(β, s) = exp

















−
∑

p,r

esTpr

r | det (1 − Mr
p) |
∆p,r(β)

















. (A6.8)

This determinant is the central result of this section. Its zeros correspond to the

eigenvalues of the evolution operator (A6.4), and can be evaluated by the cycle

expansion methods.

The leading zero of (A6.8) is called “pressure” (or free energy)

P(β) = s0(β). (A6.9)

The average Lyapunov exponent is then given by the first derivative of the pressure

at β = 1:

λ = P′(1). (A6.10)

The simplest application of (A6.8) is to 2-dimensional hyperbolic Hamiltonian

maps. The Floquet multipliers are related by Λ1 = 1/Λ2 = Λ, and the spectral

determinant is given by

F(β, z) = exp

















−
∑

p,r

zrnp

r | Λr
p |

1

(1 − 1/Λr
p)2
∆p,r(β)

















∆p,r(β) =
| Λr

p |
1−β

1 − 1/Λ2r
p

+
| Λr

p |
β−3

1 − 1/Λ2r
p

. (A6.11)
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The dynamics (A6.3) can be restricted to a u unit eigenvector neighborhood

corresponding to the largest eigenvalue of the Jacobi matrix. On this neighbor-

hood the largest eigenvalue of the Jacobi matrix is the only fixed point, and the

spectral determinant obtained by keeping only the largest term the ∆p,r sum in

(A6.7) is also entire.

In case of maps it is practical to introduce the logarithm of the leading zero

and to call it “pressure”

P(β) = log z0(β).

The average of the Lyapunov exponent of the map is then given by the first deriva-

tive of the pressure at β = 1:

λ = P′(1).

By factorizing the determinant (A6.11) into products of zeta functions we can

conclude that the leading zero of the (A6.4) can also be recovered from the leading

zeta function

1/ζ0(β, z) = exp

















−
∑

p,r

zrnp

r|Λr
p|
β

















. (A6.12)

This zeta function plays a key role in thermodynamic applications, see appendix A38.

A6.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the mag-

netic field of the Sun which is “frozen” in the fluid motion. A passively evolving

vector field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (A6.13)

where u(x, t) represents the velocity field of the fluid. The strength of the vector

field can grow or decay during its time evolution. The amplification of the vector

field in such a process is called the ”dynamo effect.” In a strongly chaotic fluid

motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (A6.14)

where ν is called the fast dynamo rate. The goal of this section is to show that

periodic orbit theory can be developed for such a highly non-trivial system as

well.

We can write the solution of (A6.13) formally, as shown by Cauchy. Let x(t, a)

be the position of the fluid particle that was at the point a at t = 0. Then the field

evolves according to

V(x, t) = J(a, t)V(a, 0) , (A6.15)
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where J(a, t) = ∂(x)/∂(a) is the Jacobian matrix of the transformation that moves

the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions of the

fluid particles into their positions at time t. Its inverse, a = f −t(x), maps particles

at time t and position x back to their initial positions. Then we can write (A6.15)

Vi(x, t) =
∑

j

∫

d3a Lt
i j(x, a)V j(a, 0) , (A6.16)

with

Lt
i j(x, a) = δ(a − f −t(x))

∂xi

∂a j

. (A6.17)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t with

Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the fast

dynamo rate, ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contribu-

tions, with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞
∑

r=1

tr Mr
p

∣

∣

∣

∣

det
(

1 − M−r
p

)

∣

∣

∣

∣

δ(t − rTp). (A6.18)

We can construct the corresponding spectral determinant as usual

F(s) = exp





















−
∑

p

∞
∑

r=1

1

r

tr Mr
p

∣

∣

∣

∣
det

(

1 − M−r
p

)

∣

∣

∣

∣

esrTp





















. (A6.19)

Note that in this formuli we have omitted a term arising from the Jacobian trans-

formation along the orbit which would give 1 + tr Mr
p in the numerator rather

than just the trace of Mr
p. Since the extra term corresponds to advection along the

orbit, and this does not evolve the magnetic field, we have chosen to ignore it. It

is also interesting to note that the negative powers of the Jacobian occur in the

denominator, since we have f −t in (A6.17).

In order to simplify F(s), we factor the denominator cycle stability determi-

nants into products of expanding and contracting eigenvalues. For a 3-dimensional

fluid flow with cycles possessing one expanding eigenvalue Λp (with |Λp| > 1),

and one contracting eigenvalue λp (with |λp| < 1) the determinant may be ex-

panded as follows:

∣

∣

∣

∣

det
(

1 − M−r
p

)

∣

∣

∣

∣

−1
= |(1 −Λ−r

p )(1 − λ−r
p )|−1 = |λp|

r

∞
∑

j=0

∞
∑

k=0

Λ
− jr
p λ

kr
p . (A6.20)

With this decomposition we can rewrite the exponent in (A6.19) as

∑

p

∞
∑

r=1

1

r

(λr
p + Λ

r
p)esrTp

∣

∣

∣

∣

det
(

1 − M−r
p

)

∣

∣

∣

∣

=
∑

p

∞
∑

j,k=0

∞
∑

r=1

1

r

(

|λp|Λ
− j
p λ

k
pesTp

)r
(λr

p+Λ
r
p) , (A6.21)
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which has the form of the expansion of a logarithm:

∑

p

∑

j,k

[

log
(

1 − esTp |λp|Λ
1− j
p λ

k
p

)

+ log
(

1 − esTp |λp|Λ
− j
p λ

1+k
p

)]

. (A6.22)

The spectral determinant is therefore of the form,

F(s) = Fe(s)Fc(s) , (A6.23)

where

Fe(s) =
∏

p

∞
∏

j,k=0

(

1 − t
( jk)
p Λp

)

, (A6.24)

Fc(s) =
∏

p

∞
∏

j,k=0

(

1 − t
( jk)
p λp

)

, (A6.25)

with

t
( jk)
p = esTp |λp|

λk
p

Λ
j
p

. (A6.26)

The two factors present in F(s) correspond to the expanding and contracting ex-

ponents. (Had we not neglected a term in (A6.19), there would be a third factor

corresponding to the translation.)

For 2-dimensional Hamiltonian volume preserving systems, λ = 1/Λ and

(A6.24) reduces to

Fe(s) =
∏

p

∞
∏

k=0













1 −
tp

Λk−1
p













k+1

, tp =
esTp

| Λp |
. (A6.27)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of the

product (A6.25)) is given by

1/ζdyn(s) =
∏

p

(

1 − σpesTp

)

. (A6.28)

This is a curious formula — the zeta function depends only on the return times,

not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ

|(1 − Λ)(1 − 1/Λ)|
= σ +

2

|(1 − Λ)(1 − 1/Λ)|
,

when substituted into (A6.23), leads to a relation between the vector and scalar

advection spectral determinants:

Fdyn(s) = F2
0(s)/ζdyn(s) . (A6.29)

The spectral determinants in this equation are entire for hyperbolic (axiom A)

systems, since both of them correspond to multiplicative operators.
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In the case of a flow governed by a map, we can adapt the formulas (A6.27)

and (A6.28) for the dynamo determinants by simply making the substitution

znp = esTp , (A6.30)

where np is the integer order of the cycle. Then we find the spectral determinant

Fe(z) given by equation (A6.27) but with

tp =
znp

|Λp|
(A6.31)

for the weights, and

1/ζdyn(z) = Πp

(

1 − σpznp

)

(A6.32)

for the zeta-function

For maps with finite Markov partition the inverse zeta function (A6.32) re-

duces to a polynomial for z since curvature terms in the cycle expansion vanish.

For example, for maps with complete binary partition, and with the fixed point

stabilities of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (A6.33)

For such maps the dynamo spectral determinant is simply the square of the scalar

advection spectral determinant, and therefore all its zeros are double. In other

words, for flows governed by such discrete maps, the fast dynamo rate equals the

scalar advection rate.

In contrast, for 3-dimensional flows, the dynamo effect is distinct from the

scalar advection. For example, for flows with finite symbolic dynamical gram-

mars, (A6.29) implies that the dynamo zeta function is a ratio of two entire deter-

minants:

1/ζdyn(s) = Fdyn(s)/F2
0(s) . (A6.34)

This relation implies that for flows the zeta function has double poles at the zeros

of the scalar advection spectral determinant, with zeros of the dynamo spectral

determinant no longer coinciding with the zeros of the scalar advection spectral

determinant; Usually the leading zero of the dynamo spectral determinant is larger exercise A6.2

than the scalar advection rate, and the rate of decay of the magnetic field is no

longer governed by the scalar advection.

Commentary

Remark A6.1 Lyapunov exponents. Sect. A6.1 is based on ref. [A6.1].

Remark A6.2 Dynamo zeta. The dynamo zeta (A6.32) has been introduced by Aurell

and Gilbert [A6.3] and reviewed in ref. [A6.4]. Our exposition follows ref. [16.22].
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Exercises

A6.1. Stretching factor. Prove the multiplicative property

of the stretching factor (A6.2). Why should we extend

the phase space with the tangent space?

A6.2. Dynamo rate. Suppose that the fluid dynamics is

highly dissipative and can be well approximated by the

piecewise linear map

f (x) =

{

1 + ax if x < 0,
1 − bx if x > 0,

(A6.35)

on an appropriate surface of section (a, b > 2). Suppose

also that the return time is constant Ta for x < 0 and Tb

for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1 − esTa + esTb . (A6.36)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1 − esTa/a − esTb/b. (A6.37)

Calculate the dynamo and the escape rates analytically

if b = a2 and Tb = 2Ta. Do the calculation for the case

when you reverse the signs of the slopes of the map.

What is the difference?
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