
Chapter 29

Relaxation for cyclists

C, i.e., solutions of the periodic orbit condition (13.1)

f t+T(x) = f t(x) , T > 0 (29.1)

are prerequisite to chapters 18 and 19 evaluation of spectraof classical evo-
lution operators.Chapter 13 offered an introductory, hands-on guide to ex-
traction of periodic orbits by means of the Newton-Raphson method. Here

we take a very different tack, drawing inspiration from variational principles of
classical mechanics, and path integrals of quantum mechanics.

In sect. 13.2.1 we converted orbits unstable forward in timeinto orbits stable
backwards in time. Indeed, all methods for finding unstable cycles are based on
the idea of constructing a new dynamical system such that (i) the position of the
cycle is the same for the original system and the transformedone, (ii ) the unstable
cycle in the original system is a stable cycle of the transformed system.

The Newton-Raphson method for determining a fixed pointx∗ for a mapx′ =
f (x) is an example. The method replaces iteration off (x) by iteration of the
Newton-Raphson map (13.5)

x′i = gi(x) = xi −
(

1
M(x) − 1

)

i j
( f (x) − x) j . (29.2)

A fixed point x∗ for a map f (x) is also a fixed point ofg(x), indeed a superstable
fixed point since∂gi(x∗)/∂x j = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chapter 13 that methods that start with initial guesses for
a number of points along a cycle are considerably more robustand safer than
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CHAPTER 29. RELAXATION FOR CYCLISTS 562

searches based on direct solution of the fixed-point condition (29.1). The relax-
ation (or variational) methods that we shall now describe take this multipoint ap-
proach to its logical extreme, and start by a guess of not a fewpoints along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desiredperiodic orbit
looks like globally, and then use variational methods to drive the initial guess
toward the exact solution. Sacrificing computer memory for robustness of the
method, we replace a guess that apoint is on the periodic orbit by a guess of
the entire orbit. And, sacrificing speed for safety, in sect. 29.1 we replace the
Newton-Raphsoniteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the true flow along a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic dy-
namics, or have already found a set of short cycles, you mightbe able to con-
struct an initial approximation to a longer cyclep as a sequence ofN points
(x̃(0)

1 , x̃
(0)
2 , · · · , x̃

(0)
N ) with the periodic boundary condition ˜xN+1 = x̃1. Suppose

you have an iterative method for improving your guess; afterk iterations the cost
function

F2(x̃(k)) =
N

∑

i

(

x̃(k)
i+1 − f (x̃(k)

i )
)2

(29.3)

or some other more cleverly constructed function (for classical mechanics - action)
is a measure of the deviation of thekth approximate cycle from the true cycle. This
observation motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, andone for bil-
liards. In sect. 29.1 we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing a differential flow for which
the desired fixed point is an attracting equilibrium point. Solving differential equa-
tions can be time intensive, so in sect. 29.2 we replace such flows by discrete iter-
ations. In sect. 29.3 we show that for 2D-dimensional billiard flows variation ofD
coordinates (whereD is the number of Hamiltonian degrees of freedom) suffices
to determine cycles in the full 2D-dimensional phase space.

29.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles isbased on the observa-
tion that a trajectory of a map such as the Hénon map (3.19),

xi+1 = 1− ax2
i + byi

yi+1 = xi , (29.4)
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CHAPTER 29. RELAXATION FOR CYCLISTS 563

Figure 29.1: “Potential” Vi(x) (29.7) for a typical
point along an initial guess trajectory. Forσi = +1
the flow is toward the local maximum ofVi(x), and for
σi = −1 toward the local minimum. A large devia-
tion of xi ’s is needed to destabilize a trajectory passing
through such local extremum ofVi(x), hence the basin
of attraction is expected to be large. −1 0 1 xi

−1

0

1

Vi(x)

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dτ
= vi , i = 1, . . . , n (29.5)

for any vector fieldvi = vi(x) which vanishes on the trajectory. Hereτ is a “ficti-
tious time” variable, unrelated to the dynamical time (in this example, the discrete
time of map iteration). As the simplest example, takevi to be the deviation of an
approximate trajectory from the exact 2-step recurrence form of the Hénon map
(3.20)

vi = xi+1 − 1+ ax2
i − bxi−1. (29.6)

For fixed xi−1, xi+1 there are two values ofxi satisfyingvi = 0. These solutions
are the two extremal points of a local “potential” function (no sum oni)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1)+

a
3

x3
i . (29.7)

Assuming that the two extremal points are real, one is a localminimum ofVi(x)
and the other is a local maximum. Now here is the idea; replace(29.5) by

dxi

dτ
= σivi , i = 1, . . . , n, (29.8)

whereσi = ±1.

The modified flow will be in the direction of the extremal pointgiven by the
local maximum ofVi(x) if σi = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we takeσi = −1. This is not quite what happens
in solving (29.8) - allxi andVi(x) change at each integration step - but this is the
observation that motivates the method. The differential equations (29.8) then drive
an approximate initial guess toward the exact trajectory. Asketch of the landscape
in which xi converges towards the proper fixed point is given in figure 29.1. As
the “potential” function (29.7) is not bounded for a large|xi |, the flow diverges for
initial guesses which are too distant from the true trajectory. However, the basin
of attraction of initial guesses that converge to a given cycle is nevertheless very
large, with the spread in acceptable initial guesses for figure 29.1 of order 1, in
contrast to the exponential precision required of initial guesses by the Newton-
Raphson method.
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CHAPTER 29. RELAXATION FOR CYCLISTS 564

Figure 29.2: The repeller for the Hénon map ata =
1.8, b = 0.3 .
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Example 29.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (29.4), in principle at most 2n orbits. We start by
choosing an initial guess trajectory (x1, x2, · · · , xn) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 15.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/

√
a. Figure 29.1 gives some indication of a typical basin of

attraction of the method (see also figure 29.3).

The calculation is carried out by solving the set of n ordinary differential equa-
tions (29.8) using a simple Runge-Kutta method with a relatively large step size (h =
0.1) until |v| becomes smaller than a given value ε (in a typical calculation ε ∼ 10−7).
Empirically, in the case that an orbit corresponding to the desired itinerary does not ex-
ist, the initial guess escapes to infinity since the “potential” Vi(x) grows without bound.

exercise 29.3

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 29.1. The number of unstable periodic
orbits for periods n ≤ 28 is given in table 29.2. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 15.1, we see that the pruning is quite
extensive, with the number of periodic points of period n growing as e0.4645·n = (1.592)n

rather than as 2n.

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 29.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.9, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions. remark 29.2

In practice, the relaxation flow (29.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the above Hénon map ex-
ample is that instead of searching for an unstable periodic orbit of a map, one
searches for a stable attractor of a vector field. More generally, consider ad-
dimensional mapx′ = f (x) with a hyperbolic fixed pointx∗. Any fixed pointx∗ is
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Table 29.1: All prime cycles up to period 10 for the Hénon map,a = 1.4 andb = 0.3. The
columns list the periodnp, the itinerary (defined in remark 29.4), a periodic point (yp, xp), and
the cycle Lyapunov exponentλp = ln |Λp|/np. While most of the cycles haveλp ≈ 0.5, several
significantly do not. The0 periodic point is very unstable, isolated and transient fixed point, with
no other cycles returning close to it. At period 13 one finds a pair of cycles with exceptionally
low Lyapunov exponents. The cycles are close for most of the trajectory, differing only in the one
symbol corresponding to two periodic points straddle the (partition) fold of the attractor. As the
system is not hyperbolic, there is no known lower bound on cycle Lyapunov exponents, and the
Hénon’s strange “attractor” might some day turn out to be nothing but a transient on the way to a
periodic attractor of some long period.

n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 29.2: The number of unstable periodic orbits of the Hénon map fora = 1.4, b = 0.3, of
all periodsn ≤ 28. Mn is the number of prime cycles of lengthn, andNn is the total number of
periodic points of periodn (including repeats of shorter prime cycles).

n Mn Nn
11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn
17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn
23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520
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Figure 29.3: Typical trajectories of the vector field
(29.9) for the stabilization of a hyperbolic fixed
point of the Ikeda map (29.11) located at (x, y) ≈
(0.53275, 0.24689). The circle indicates the position
of the fixed point. Note that the basin of attraction of
this fixed point is large, larger than the entire Ikeda at-
tractor. 0 1

−2

0

x

y

x
*
 

by construction an equilibrium point of the fictitious time flow

dx
dτ
= f (x) − x. (29.9)

If all eigenvalues of the Jacobian matrixJ(x∗) = D f (x∗) have real parts smaller
than unity, thenx∗ is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than unity,then one needs to
modify the vector field so that the corresponding directionsof the flow are turned
into stable directions in a neighborhood of the fixed point. In the spirit of (29.8),
modify the flow by

dx
dτ
= C ( f (x) − x) , (29.10)

whereC is a [d×d] invertible matrix. The aim is to turnx∗ into a stable equilibrium
point of the flow by an appropriate choice ofC. It can be shown that a set
of permutation/ reflection matrices with one and only one non-vanishing entry
±1 per row or column (ford-dimensional systems, there ared!2d such matrices)
suffices to stabilize any fixed point. In practice, one chooses a particular matrix
C, and the flow is integrated. For each choice ofC, one or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 29.2 Ikeda map: We illustrate the method with the determination of the
periodic orbits of the Ikeda map:

x′ = 1+ a(xcosw− ysinw)

y′ = a(xsinw+ ycosw) (29.11)

where w = b− c
1+ x2 + y2

,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow is
already stabilized with C = 1. Figure 29.3 depicts the flow of the vector field around the
fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (29.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
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Figure 29.4: Typical trajectories of the vector
field (29.10) for a hyperbolic fixed point (x, y) ≈
(−0.13529,−0.37559) of f 3, where f is the Ikeda
map (29.11). The circle indicates the position of
the fixed point. For the vector field corresponding
to (a) C = 1, x∗ is a hyperbolic equilibrium point
of the flow, while for (b) C =

(

1
0

0
−1

)

, x∗ is an at-
tracting equilibrium point. (a) −0.2 −0.1
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In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559)of the third iterate f 3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 29.4 (a), indicates a hyperbolic equilibrium point, while for
C =

(

1
0

0
−1

)

the flow of the vector field, figure 29.4 (b) indicates that x∗ is an attracting
equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cyclex = (x1, x2, . . . , xn) of a
d-dimensional mapx′ = f (x), we modify the multipoint shooting method of
sect. 13.3, and consider thend-dimensional vector field

dx
dτ
= C ( f (x) − x) , (29.12)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), andC is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2n diagonal matrices
with eigenvalues±1. Risking a bit of confusion, we denote byx, f (x) both the
d-dimensional vectors in (29.10), andnd-dimensional vectors in (29.12), as the
structure of the equations is the same.

29.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (29.2) is that it requires very
precise initial guesses. For example, thenth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly 2−n. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie in ad-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (29.8) of manually
turning instability into stability by a sign change, we now (i) abandon the Newton-
Raphson method altogether, (ii ) abandon the continuous fictitious time flow (29.9)
with its time-consuming integration, replacing it by a mapg with a larger basin
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of attraction (not restricted to a linear neighborhood of the fixed point). The idea
is to construct a very simple mapg, a linear transformation of the originalf , for
which the fixed point is stable. We replace the Jacobian matrix prefactor in (29.2)
(whose inversion can be time-consuming) by a constant matrix prefactor

x′ = g(x) = x+ ∆τC( f (x) − x), (29.13)

where∆τ is a positive real number, andC is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry±1 per row or column. A fixed
point of f is also a fixed point ofg. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that for small ∆τ → dτ the
map (29.13) is the Euler method for integrating the modified flow (29.10), with
the integration step∆τ.

The argument why a suitable choice of matrixC can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the construction
of the modified vector field in sect. 29.1. Indeed, the flow (29.8) is the simplest
example of this method, with the infinitesimal fictitious time increment∆τ→ dτ,
the infinitesimal coordinate correction (x − x′) → dxi , and the [n×n] diagonal
matrix C→ σi = ±1.

For a given fixed point off (x) we again chose aC such that the flow in the
expanding directions ofM(x∗) is turned into a contracting flow. The aim is to
stabilizex∗ by a suitable choice ofC. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing the matrix C (in general
different for each unstable fixed point) and varying initial conditions for the map
g. For example, for 2-dimensional dissipative maps it can be shown that the 3 remark 29.3

matrices

C ∈
{(

1
0

0
1

)

,

(

−1
0

0
1

)

,

(

1
0

0
−1

)}

suffice to stabilize all kinds of possible hyperbolic fixed points.

If ∆τ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed pointx∗ in the transformed system are smaller than one, and one has a stable
fixed point. However,∆τ should not be chosen too small: Since the convergence
is geometrical with a ratio 1− α∆τ (where the value of constantα depends on
the stability of the fixed point in the original system), small ∆τ can slow down
the speed of convergence. The critical value of∆τ, which just suffices to make
the fixed point stable, can be read off from the quadratic equations relating the
stability coefficients of the original system and those of the transformed system. In
practice, one can find the optimal∆τ by iterating the dynamical system stabilized
with a givenC and∆τ. In general, all starting points converge on the attractor
provided∆τ is small enough. If this is not the case, the trajectory either diverges
(if ∆τ is far too large) or it oscillates in a small section of the state space (if∆τ is
close to its stabilizing value).
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The search for the fixed points is now straightforward: A starting point cho-
sen in the global neighborhood of the fixed point iterated with the transformed
dynamical systemg converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a stabilized fixed point is a
rather extended connected area, by no means confined to a linear neighborhood.
At times the basin of attraction encompasses the complete state space of the attrac-
tor, so one can be sure to be within the attracting basin of a fixed point regardless
of where on the on the attractor on picks the initial condition.

The step size|g(x)−x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points witha high precision,
one therefore needs a large number of iterations for the trajectory which is already
in the linear neighborhood of the fixed point. To speed up the convergence of the
final part of the approach to a fixed point we recommend a combination of the
above approach with the Newton-Raphson method (29.2).

The fixed points of thenth iterate f n are periodic points of a cycle of period
n. If we consider the map

x′ = g(x) = x+ ∆τC( f n(x) − x) , (29.14)

the iterates ofg converge to a fixed point provided that∆τ is sufficiently small
andC is a [d×d] constant matrix chosen such that it stabilizes the flow. Asn
grows,∆τ has to be chosen smaller and smaller. In the case of the Ikeda map
example 29.2 the method works well forn ≤ 20. As in (29.12), the multipoint
shooting method is the method of preference for determininglonger cycles. Con-
siderx = (x1, x2, . . . , xn) and thend-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with periodn for thed-dimensionalf is equivalent to deter-
mining fixed points of the multipointdn-dimensionalf . The idea is to construct a
matrix C such that the fixed point off becomes stable for the map:

x′ = x+ ∆τC( f (x) − x),

whereC is now a [nd×nd] permutation/reflection matrix with only one non-zero
matrix element±1 per row or column. For any given matrixC, a certain fraction
of the cycles becomes stable and can be found by iterating thetransformed map
which is now and dimensional map.

From a practical point of view, the main advantage of this method compared to
the Newton-Raphson method is twofold: (i) the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, simplifying considerably
the implementation, and (ii ) empirical basins of attractions for individualC are
much larger than for the Newton-Raphson method. The price isa reduction in the
speed of convergence.
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Table 29.3: All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separationR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalueΛp, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles001011 and001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676
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29.3 Least action method

(P. Dahlqvist)

The methods of sects. 29.1 and 29.2 are somewhatad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in choosing
the cost function, such as (29.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis least
action principle. You yawn your way through it in every mechanics course–but as
we shall now see, it is a very hands-on numerical method for finding cycles.

Indeed, the simplest and numerically most robust method fordetermining cy-
cles of planar billiards is given by the principle of least action, or equivalently,
by extremizing the length of an approximate orbit that visits a given sequence of
disks. In contrast to the multipoint shooting method of sect. 13.3 which requires
variation of 2n phase space points, extremization of a cycle length requires varia-
tion of only n bounce positionssi .

The problem is to find the extremum values of cycle lengthL(s) wheres =
(s1, . . . , sn), that is find the roots of∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δsj + . . .

exercise 29.1

and useMi j (s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
scheme of sect. 13.2.2

si 7→ si −
∑

j

(

1
M(s)

)

i j
∂ jL(s) (29.15)

The extremization is achieved by recursive implementationof the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that the
final extremal length orbit does not penetrate a billiard wall. exercise 29.2

exercise 13.13

As an example, the short periods and stabilities of 3-disk cycles computed this
way are listed table 29.3.

Résum é

Unlike the Newton-Raphson method, variational methods arevery robust. As each
step around a cycle is short, they do not suffer from exponential instabilities, and
with rather coarse initial guesses one can determine cyclesof arbitrary length.
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Commentary

Remark 29.1 Piecewise linear maps. The Lozi map (3.21) is linear, and 100,000’s
of cycles can be easily computed by [2x2] matrix multiplication and inversion.

Remark 29.2 Relaxation method. The relaxation (or gradient) algorithm is one of
the methods for solving extremal problems [29.13]. The method described above was
introduced by Biham and Wenzel [29.1], who have also generalized it (in the case of the
Hénon map) to determination ofall 2n cycles of periodn, real or complex [29.2]. The
applicability and reliability of the method is discussed indetail by Grassberger, Kantz and
Moening [29.5], who give examples of the ways in which the method fails: (a) it might
reach a limit cycle rather than a equilibrium saddle point (that can be remedied by the com-
plex Biham-Wenzel algorithm [29.2]) (b) different symbol sequences can converge to the
same cycle (i.e., more refined initial conditions might be needed). Furthermore, Hansen
(ref. [29.7] and chapter 4. of ref. [12.20]) has pointed out that the method cannot find
certain cycles for specific values of the Hénon map parameters. In practice, the relaxation
method for determining periodic orbits of maps appears to beeffective almost always, but
not always. It is much slower than the multipoint shooting method of sect. 13.3, but also
much quicker to program, as it does not require evaluation ofstability matrices and their
inversion. If the complete set of cycles is required, the method has to be supplemented by
other methods.

Remark 29.3 Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect. 29.2 was introduced by Schmelcheret al [29.9]. The method was extended to
flows by means of the Poincaré surface of section technique in ref. [29.10]. It is also
possible to combine the Newton-Raphson method and (29.13) in the construction of a
transformed map [29.14]. In this approach, each step of the iteration scheme is a linear
superposition of a step of the stability transformed systemand a step of the Newton-
Raphson algorithm. Far from the linear neighborhood the weight is dominantly on the
globally acting stability transformation algorithm. Close to the fixed point, the steps of
the iteration are dominated by the Newton-Raphson procedure.

Remark 29.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repeller (a sufficiently large), such as the one given in figure 29.2, the
signsσi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamicssi ∈ {0, 1}:

si =

{

0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (29.16)

For arbitrary parameter values with a finite subshift symbolic dynamics or with arbitrar-
ily complicated pruning, the relation of sign sequences{σ1, σ2, · · · , σn} to the itineraries
{s1, s2, · · · , sn} can be much subtler; this is discussed in ref. [29.5].

Remark 29.5 Ikeda map. Ikeda map (29.11) was introduced in ref. [29.12] is a model
which exhibits complex dynamics observed in nonlinear optical ring cavities.
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Remark 29.6 Relaxation for continuous time flows. For ad-dimensional flow ˙x =
v(x), the method described above can be extended by consideringa Poincaré surface of
section. The Poincaré section yields a mapf with dimensiond-1, and the above discrete
iterative maps procedures can be carried out. A method that keeps the trial orbit contin-
uous throughout the calculation is the Newton descent, a variational method for finding
periodic orbits of continuous time flows, is described in refs. [29.15, 29.16].

Remark 29.7 Stability ordering. The parameter∆τ in (29.13) is a key quantity here. It
is related to the stability of the desired cycle in the transformed system: The more unstable
a fixed point is, the smaller∆τ has to be to stabilize it. With increasing cycle periods, the
unstable eigenvalue of the Jacobian matrix increases and therefore∆τ has to be reduced to
achieve stabilization of all fixed points. In many cases the least unstable cycles of a given
periodn are of physically most important [29.11]. In this context∆τ operates as a stabil-section 20.5

ity filter. It allows the selective stabilization of only those cycles which posses Lyapunov
exponents smaller than a cut-off value. If one starts the search for cycles within a given
periodn with a value∆τ ≈ O(10−1), and gradually lowers∆τ one obtains the sequence of
all unstable orbits of ordern sorted with increasing values of their Lyapunov exponents.
For the specific choice ofC the relation between∆τ and the stability coefficients of the
fixed points of the original system is strictly monotonous. Transformed dynamical sys-
tems with otherC’s do not obey such a strict behavior but show a rough orderingof the
sequence of Floquet multipliers of the fixed points stabilized in the course of decreasing
values for∆τ. As explained in sect. 20.5, stability ordered cycles are needed to order cycle
expansions of dynamical quantities of chaotic systems for which a symbolic dynamics is
not known. For such systems, an ordering of cycles with respect to their stability has been
proposed [20.14, 20.15, 20.13], and shown to yield good results in practical applications.

Remark 29.8 Action extremization method. The action extremization (sect. 29.3) as
a numerical method for finding cycles has been introduced independently by many people.
We have learned it from G. Russberg, and from M. Sieber’s and F. Steiner’s hyperbola
billiard computations [29.17, 29.18]. The convergence rate is really impressive, for the
Sinai billiard some 5000 cycles are computed within CPU seconds with rather bad initial
guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-preserving
twist maps (known in the condensed matter literature as the Frenkel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dynamical systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubry-Mather theorem [29.20]
on existence of quasi-periodic solutions are variational.It was quickly realized that the
variational methods can also yield reliable, high precision computations of long periodic
orbits of twist map models in 2 or more dimensions, needed forK.A.M. renormalization
studies [29.19].

A fictitious time gradient flow similar to the one discussed here in sect. 29.1 was in-
troduced by Anegent [29.21] for twist maps, and used by Gole [29.22] in his proof of
the Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M.
tori are notoriously restrictive compared to the numericalindications, and de la Llave,
Falcolini and Tompaidis [29.23, 29.24] have found the gradient flow formulation advanta-
geous both in studies of the analyticity domains of the K.A.M. stability, as well as proving
the Aubry-Mather theorem for extended systems (for a pedagogical introduction, see the
lattice dynamics section of ref. [29.25]).
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All of the twist-maps work is based on extremizing the discrete dynamics version of
the actionS (in this context sometimes called a “generating function”). However, in their
investigations in the complex plane, Falcolini and de la Llave [29.23] do find it useful to
minimize insteadSS̄, analogous to our cost function (29.3).
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Exercises

29.1. Evaluation of billiard cycles by minimization ∗.
Given a symbol sequence, you can construct a guess tra-
jectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines.
If this were a rubber band wrapped through 3 rings, it
would shrink into the physical trajectory, which mini-
mizes the action (in this case, the length) of the trajec-
tory.

Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to ex-
tremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, table 29.3.
(One such method is given in sect. 29.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
| f Tp(x) − x|?

29.2. Tracking cycles adiabatically∗. Once a cycle has been
found, orbits for different system parameters values may

be obtained by varying slowly (adiabatically) the param-
eters, and using the old orbit points as starting guesses
in the Newton method. Try this method out on the 3-
disk system. It works well forR : a sufficiently large.
For smaller values, some orbits change rather quickly
and require very small step sizes. In addition, for ra-
tios belowR : a = 2.04821419. . . families of cycles are
pruned, i.e. some of the minimal length trajectories are
blocked by intervening disks.

29.3. Cycles of the H́enon map. Apply the method of
sect. 29.1 to the Hénon map at the Hénon’s parameters
choicea = 1.4, b = 0.3, and compute all prime cycles
for at leastn ≤ 6. Estimate the topological entropy,
either from the definition (15.1), or as the zero of a trun-
cated topological zeta function (15.27). Do your cycles
agree with the cycles listed in table 29.1?
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