Chapter 20

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

amical zeta functions (19.15) are really only a shorthartdtian - the zeros

of the individual factors areot the zeros of the zeta function, and conver-
gence of such objects is far from obvious. Now we shall giveammgy to the
dynamical zeta functions and spectral determinants byredipg them as cycle
expansions, series representations ordered by incretpotpgical cycle length,
with products in (19.9), (19.15) expanded as sums pseudocycles, products of
tp's. The zeros of correctly truncated cycle expansions yietddesired eigenval-
ues, and the expectation values of observables are givehebgytle averaging
formulas obtained from the partial derivatives of dynarhipeta functions (or
spectral determinants).

THE EuLER PRODUCT representations of spectral determinants (19.9) and dyn-

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluated?tatt by computing
the lengths and Floquet multipliers of the shortest cyclEsis always requires
numerical work, such as the Newton method searches forgiersmlutions; we
shall assume that the numerics is under control, andaifheathort cycles up to

a given (topological) length have been found. Examples efddita required for
application of periodic orbit formulas are the lists of gglgiven in table 29.3 and
exercise 13.14. Itis important not to misgy short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cyclegelothan the shortest
omitted does not improve the accuracy (more precisely, avgs it, but painfully
slowly).
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CHAPTER 20. CYCLE EXPANSIONS 379

Expand the dynamical zeta function (19.15) as a formal paeges,

1/¢ = l_[ 1-tp)=1- Z, (_l)k+1tp1tp2 - p (20.1)
p

{P1p2--- Pk}

where the prime on the sum indicates that the sum is overstihdt non-repeating
combinations of prime cycles. As we shall frequently usénsims, let us denote
byt, = (—1)k+1tpltp2 ...tp, an element of the set of all distinct products of the
prime cycle weights,. The formal power series (20.1) is now compactly written
as

1Y =1- Z ty. (20.2)

Fork > 1, t, are weights ofpseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequema@, ... px along segmentpy,
P2,..., px. >,/ denotes the restricted sum, for which any given prime cyxle
contributes at most once to a given pseudocycle wejght

The pseudocycle weight, i.e., the product of weights (19daf@rime cycles
comprising the pseudocycle,

1
t = (—1)k+1me8Aﬂ—sTnz”n : (20.3)

depends on the pseudocycle topological lengthintegrated observablg,, pe-
riod T,, and stabilityA;

nﬂ- = np1++npk, Tﬂ:TP1++Tpk

Throughout this text, the terms “periodic orbit” and “cythre used interchange-
ably; while “periodic orbit” is more precise, “cycle” (whichas many other uses
in mathematics) is easier on the ear than “pseudo-perwmndit:" While in Soviet
times acronyms were a rage (and in France they remain so)hyavgay from
acronyms such as UPOs (Unstable Periodic Orbits).

20.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a systenmildeddy a com-
plete binary symbolic dynamics. In this case the Euler pcodl9.15) is given

by

1/ = (1-1o)(1—t1)(1 - to1)(1 — toor)(1 — to11) (20.5)
(1 - toooD) (1 - too1D)(1 — to111)(1 — toooon) (1 — tooo11)
(1 - to0100)(1 — too11)(L — to101)(L — to1119) . ..
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CHAPTER 20. CYCLE EXPANSIONS 380

(see table 15.1), and the first few terms of the expansio)2ddered by increas-
ing total pseudocycle length are:

1/ = 1-to—1ty—1to1—toor— to11 — tooor— toor1—tor11— ...
+loty + toto1 + toata + toloor + tolora + tooats + to1ats
—totorty — ... (20.6)

We refer to such series representation of a dynamical zeietiéin or a spectral
determinant, expanded as a sum over pseudocycles, anceadrdgrincreasing
cycle length and instability, asaycle expansion.

The next step is the key step: regroup the terms into the damiiundamental
contributionst; and the decreasingurvature correctionscy, eachc, split into
prime cyclesp of length n,=n grouped together with pseudocycles whose full
itineraries build up the itinerary gb. For the binary case this regrouping is given

by

1/¢ 1—-1to -ty — [(tor — tato)] — [(too1 — to1to) + (to11 — toats)]

—[(tooo1 — totooa) + (to111 — to1ats)

+(too11 — tooats — toto11 + totoats)] — ...

= 1->ti- > & (20.7)
f n

All terms in this expansion up to lengtiy = 6 are given in table 20.1. We refer
to such regrouped series @g vature expansions. .

Such separation into “fundamental” and “curvature” paftsyele expansions
is possibleonly for dynamical systems whose symbolic dynamics has finitmgra
mar. The fundamental cyclds, t; have no shorter approximants; they are the
“building blocks” of the dynamics in the sense that all longebits can be approx-
imately pieced together from them. The fundamental part@fcie expansion is
given by the sum of the products of all non-intersecting ®opthe associated
transition graph. The terms grouped in brackets are theatur® corrections; thesection 15.3
terms grouped in parenthesis are combinations of longdesyand correspond-section 20.4
ing sequences of “shadowing” pseudocycles. If all orbits @eighted equally
(tp = Z™), such combinations cancel exactly, and the dynamicalfpetztion re-
duces to the topological polynomial (15.27). If the flow isiiouous and smooth,
orbits of similar symbolic dynamics will traverse the saneggmborhoods and will
have similar weights, and the weights in such combinatioiisahmost cancel.
The utility of cycle expansions of dynamical zeta functiamsl spectral determin-
ants, in contrast to direct averages over periodic orbith & the trace formulas
discussed in sect. 22.5, lies precisely in this organimaitibo nearly canceling
combinations: cycle expansions are dominated by shoresyalith long cycles
giving exponentially decaying corrections.

In the case where we know of no finite grammar symbolic dynantiat
would help us organize the cycles, the best thing to usestiabdity cutoff which

recycle - 30aug2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 20. CYCLE EXPANSIONS 381

Table 20.1: The binary curvature expansion (20.7) up to length 6, listeslich way that
the sum of terms along thgth horizontal line is the curvatuig, associated with a prime
cycle p, or a combination of prime cycles such as th@101+ tioo110pair.

- to

- tl

-110 + 111p

-T100 + T10l0

-tion + tioly

- 1000 + 10000

-ti000  +ti00l2 + t101fo - tatioto

- t1011 + t101t1

-T10000  + T100dlo

-ti0001  +ticoffo  +tioodts - folzoots

-ti0010  + t1oot10

-t10201  + tioatio

-ti0011  +lioido  +tioits - fotaoafs

-ti0121 +tioaals

- 100000 + t1000d0

-t100001 + ti000ffo + tiooodr - totzoootz

-ti00010 + tio01do + tioootio - totiootio

-t100011 +tioo1fo  + tioooitr - fotzooits

-t100101 - tioo110 +tiooid1  + tr011d0
+ tioliop1  + troot101 - toliotio1 - tatiotioo

-t101110 +tio1adr  + tiorafio - tatioatio

-t100111  +tioo1ds  +tip11ato - totzoidfs

-t101111  + tip111a

we shall discuss in sect. 20.5. The idea is to truncate thke @qansion by
including only the pseudocycles such thap, - -- Ap| < Amax With the cutdf
Amaxequal to or greater than the most unstablgin the data set.

20.2 Construction of cycle expansions

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatederically by first

computing the weights, = tp(3, s) of all prime cyclesp of topological length

np < N for given fixedg ands. Denote by subscript)theith prime cycle com-

puted, ordered by the topological lengify < n.1). The dynamical zeta function
1/¢n truncated to th@p < N cycles is computed recursively, by multiplying

1/¢) = 1/¢i-1y(1 - t2"0), (20.8)

and truncating the expansion at each step to a finite polyalamz®, n < N. The
result is theNth order polynomial approximation

N
/N =1- Z . (20.9)
n=1

In other words, a cycle expansion is a Taylor expansion irdtiramy variablez
raised to the topological cycle length. If both the numbecyiles and their in-
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CHAPTER 20. CYCLE EXPANSIONS 382

dividual weights grow not faster than exponentially witke ttycle length, and we
multiply the weight of each cycle by a factorz™, the cycle expansion converges
for sufficiently small|Z.

If the dynamics is given by iterated mapping, the leading z&fr(20.9) as
function of z yields the leading eigenvalue of the appropriate evolutiparator.
For continuous time flowsz is a dummy variable that we set ;o= 1, and the
leading eigenvalue of the evolution operator is given byl¢laeling zero of (20.9)
as function ofs.

20.2.2 Evaluation of traces, spectral determinants
Due to the lack of factorization of the full pseudocycle wig
det(1 - Mp,p,) # det(1— My, ) det(1 - Mp,) .

the cycle expansions for the spectral determinant (19€9¥amewhat less trans-
parent than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectratrdigtant by
computing recursively the trace formula (18.10) truncati®all prime cyclesp
and their repeats such thgir < N:

. R
1-2Lly -2l " & na-ay,)
N
zL
tr = C.2", Ch=trL". 20.10
=T Z{ 0 " (20.10)

This is done numerically: the periodic orbit data set cdmsidf the list of the

cycle periodsT, the cycle Floquet multiplierd.p 1, Apo, ..., Apd, and the cycle
averages of the observabg for all prime cyclesp such than, < N. The coef-

ficient of Z%" is then evaluated numerically for the gives) §) parameter values.
Now that we have an expansion for the trace formula (18.9)@mer series, we
compute theNth order approximation to the spectral determinant (19.3),

N
det(1-zL)ly=1- Z Q" Qn = nth cumulant (20.11)
n=1

as follows. The logarithmic derivative relation (19.4) lgie

2L d
(tr 1= ZL) det(1-z£) = —zd—zdet (1-zL)
(C1z+CoZZ +-- )1 -Qz—QZ—--) = Quz+2QZ +3Q:Z---
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CHAPTER 20. CYCLE EXPANSIONS 383

Table 20.2: 3-disk repeller escape rates computed from the cycle expamsf the spectral
determinant (19.6) and the dynamical zeta function (19.4%function of the maximal
cycle lengthN. The first column indicates the disk-disk center separatodisk radius
ratio R:a, the second column gives the maximal cycle length used, fanthird the esti-
mate of the classical escape rate from the fundamental dospaictral determinant cycle
expansion. As for larger disk-disk separations the dynarnsanore uniform, the con-
vergence is better foR:a = 6 than forRia = 3. For comparison, the fourth column
lists a few estimates from from the fundamental domain dyinahzeta function cycle
expansion (20.7), and the fifth from the full 3-disk cycle arpion (20.36). The conver-
gence of the fundamental domain dynamical zeta functioigrgfecantly slower than the
convergence of the corresponding spectral determinadtirenfull (unfactorized) 3-disk
dynamical zeta function has still poorer convergence..([Rdsenqvist.)

Ra N . det(s— A) 1/¢(9) 1/4(93-disk
0.39 0.407
0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383 0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192
0.41
0.72
0.675
0.67797
0.677921
0.6779227
0.6779226894
0.6779226896002
0.677922689599532
0.67792268959953606

=Y

QOONOUITRWNHFOOONOUINWNH

[

so thenth order term of the spectral determinant cycle (or in thisegdahe cumu-
lant) expansion is given recursively by the trace formulpagsion cofficients

Qu=:(CrCoaQ—CiQu1) . Qi=Ci. (2012)

Given the trace formula (20.10) truncatedz¥ we now also have the spectral
determinant truncated .

The same program can also be reused to compute the dynamitiadlinction
cycle expansion (20.9), by replacifg (1— A[i)’j) in (20.10) by the product of
expanding eigenvaluesj = []eA)e (See sect. 19.3).

The calculation of the leading eigenvalue of a given comtirsuflow evolution
operator is now straightforward. After the prime cycles #melpseudocycles have
been grouped into subsets of equal topological length, uhenady variable can be
set equal tz = 1. Withz = 1, expansion (20.11) is the cycle expansion for
(19.6), the spectral determinant det{ A) . We varys in cycle weights, and
determine the eigenvalwg by finding s = s, for which (20.11) vanishes. As an
example, the convergence of a leading eigenvalue for a ryigerholic system is
illustrated in table 20.2 by the listing of pinball escapgraestimates computed
from truncations of (20.7) and (20.11) tai@irent maximal cycle lengths. chapter 23
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CHAPTER 20. CYCLE EXPANSIONS

Figure 20.1: Examples of the comples plane
scans: contour plots of the logarithm of the ab-
solute values of (a) /£(s), (b) spectral determin-
ant det6 — A) for the 3-disk system, separation 5
a: R=6,A; subspace are evaluated numerically
The eigenvalues of the evolution operatfrare
given by the centers of elliptic neighborhoods of
the rapidly narrowing rings. While the dynamical
zeta function is analytic on a strip lan> -1, the
spectral determinant is entire and reveals furthe
families of zeros. (P.E. Rosenqvist)

0}

384

.0

The pleasant surprise is that the fifa®ents in these cycle expansions can be
proven to fall df exponentially or even faster, due to analyticity of det(A) or chapter 23
1/Z(s) for svalues well beyond those for which the corresponding tracefila
diverges.

20.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

J‘ The cycle expansions of spectral determinants yield thensgjues of the
evolution operator beyond the leading one. A convenient iwwasearch for these
is by plotting either the absolute magnitudedat (s— A)| or the phase of spectral
determinants and dynamical zeta functions as functionseo€bmplex variables.
The eye is guided to the zeros of spectral determinants andnaizal zeta func-
tions by means of compleg plane contour plots, with efierent intervals of the
absolute value of the function under investigation assigiifferent colors; zeros
emerge as centers of elliptic neighborhoods of rapidly givancolors. Detailed
scans of the whole area of the compleglane under investigation and searches
for the zeros of spectral determinants, figure 20.1, reveadmicated patterns of
resonances even for something so simple as the 3-disk gamieaksll.  With

a good starting guess (such as a location of a zero suggegtdt lromplexs
scan of figure 20.1), a zerg4(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorith&d4(), with themth
Newton estimate given by

1/¢(sm)
- : 20.13
T (20.13)

-1
Sme1 = Sm— (((sm)é%{l(an)) = Sm

The denominatoKT), required for the Newton iteration is given below, by the
cycle expansion (20.22). We need to evaluate it anyhoWT gsenters our cycle
averaging formulas.
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CHAPTER 20. CYCLE EXPANSIONS 385

BA

F(B.s))=0 line

Figure 20.2: The eigenvalue condition is satisfied on
the curveF = 0 the (3, s) plane. The expectation value
of the observable (17.12) is given by the slope of the
curve.

20.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that weehgiven so far -
the level sum (22.18), the dynamical zeta function (208 dpectral determinant
(20.11):

(n)

1= Yt, t=t@sp), n=n, (20.14)

0 = 1-3"t.  t=t@ASp) (20.15)

0 = 1-> Qn.  Qu=Qu(s ), (20.16)
n=1

is an implicit equation for the eigenvalie= s(8) of form F(B, s(8)) = 0. The
eigenvalues = () as a function of3 is sketched in figure 20.2; the eigenvalue
condition is satisfied on the cunfe = 0. The cycle averaging formulas for the
slope and the curvature sfg) are obtained as in (17.12) by taking derivatives of
the eigenvalue condition. Evaluated aldhg- 0, the first derivative leads to

d
0 = @F(ﬂ, s(B))

OF ds oF
AN &__& 20.17
o8 9B asLs@ = B s (20.17)

and the second derivative B{(3, s(8)) = 0 yields

2 2 2 2 42
s _ _|0FF | LAsF | [ds\T R OF (20.18)
dp? 032 dgopos \d) as? |’ ds
Denoting by
oF oF
A = ) T = _’ >

) % B.5=5(8)
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0°F

e (20.19)

(A=),

B.5=5(B)

respectively the mean cycle expectation valuéd,ahe mean cycle period, and the
second derivative df computed fo= (3, s(8)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observable (1)7 42d its variance:

_ P
@ = 3 (20.20)
(@-@y) = <T1_>F<(A‘<A>)2>F' (20.21)

These formulas are the central result of the periodic ot@bty. As we shall
now show, for each choice of the eigenvalue condition fuomdti(3, s) in (22.18),
(20.2) and (20.11), the above quantities have explicitecggpansions.

20.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (20.15), the eyaeraging formulas
(20.17), (20.21) require evaluation of the derivatives whamical zeta function
at a given eigenvalue. Substituting the cycle expansior2§Z0r dynamical zeta
function we obtain

01 ’
<A>{ = —%Z = Aﬂtﬂ (2022)
01 ’
<T>§ = a_sz = Z Tate, <n>§ = _Za_ZZ = Z 7l s

where the subscript i - ), stands for the dynamical zeta function average over
prime cyclesA,, T,, andn, are evaluated on pseudocycles (20.4), and pseudocy-
cle weightst, = t,(z B, S(3)) are evaluated at the eigenvalg@). In most appli-
cations = 0, ands(B) of interest is typically the leading eigenvalsg= s5(0) of

the evolution generatar.

For bounded flows the leading eigenvalue (the escape rateshes s(0) = 0,
the exponenBA,; — sT, in (20.3) vanishes, so the cycle expansions take a simple
form

Ap1+Ap2"'+Apk

, 20.23
|AP1 e Apk| ( )

(A= (-1t

and similarly for(T),, (n),. For example, for the complete binary symbolic dy-
namics the mean cycle peridd), is given by

(20.24)

m - Do T (To Toumy

—_— + —
Aol A1l \lAod  [AoA4l
( Toor  Toi+ To) +( Tour  Toi+ Tl) N
|Aood  [Ao1Aol Aol |Ao1A4l
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CHAPTER 20. CYCLE EXPANSIONS 387

Note that the cycle expansions for averages are groupedhatsame shadowing
combinations as the dynamical zeta function cycle expan&6.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value efdhservabléa)
follow by substitution into (20.21). Assuming zero mearftdf@@) = 0, the cycle
expansion (20.11) for the varian¢éA - <A>)2>( is given by

, (Apy + Apy -+ Ag)’
<A2>§ — Z (_l)k+1 Ao Ao . (20.25)

20.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a p&tlgisimple structure,
with the shadowing apparent already by a term-by-term ictspe of table 20.2.
For “nice” hyperbolic systems the shadowing ensures expitaleconvergence
of the dynamical zeta function cycle expansions. This, Mads not the best
achievable convergence. As has been explained in chaptéor28uch systems
the spectral determinant constructed from the same cyttehisse is entire, and
its cycle expansion converges faster than exponentiailpractice, the best con-
vergence is attained by the spectral determinant cycleresxpa (20.16) and its
derivatives. Thej/ds, d/9B derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycleaggion contributions
(20.12) and (20.10).

The cycle averaging formulas are exact, and highly converype nice hyper-
bolic dynamical systems. An example of its utility is the leyexpansion formula
for the Lyapunov exponent of example 20.1. Further apptioatof cycle expan-
sions will be discussed in chapter 22.

20.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation vabrga flow, in con-
tinuous time, and sometimes it might be easier to compute itdiscrete time,
from a Poincaré return map. Return times (3.1) might varghgi and it is not at
all clear that the continuous and discrete time averagesetated in any simple
way. The relationship turns on to be both elegantly simpié, tatally general.  exercise 20.14

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or thegavirst return time.
For example, if we have evaluated a billiard expectatioruerdh) in terms of
continuous time, and would like to also have the correspan@iveragea)yscr
measured in discrete time, given by the number of reflectaghbilliard walls,
the two averages are related by

@dscr= @ (M), /() , (20.26)

recycle - 30aug2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 20. CYCLE EXPANSIONS 388

where(n), the average of the number of bouncgsalong the cyclep is given by
is (20.22).

Example 20.1 Cycle expansion formula for Lyapunov exponents:

In sect. 17.3 we defined the Lyapunov exponent for a 1 — dimensional mapping,
related it to the leading eigenvalue of an evolution operator and promised to evaluate
it. Now we are finally in position to deliver on our promise.

The cycle averaging formula (20.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

1 , log|Ap,| + -+ log|Ap|
A= — —1)+t P P 20.27
o 2 Y A A (20.27)

For a repeller, the 1/|Ap| weights are replaced by normalized measure (22.10) exp(/np)/IApl,
where vy is the escape rate.

We state without proof that for 2 dimensional Hamiltonian flows such as our
game of pinball there is only one expanding eigenvalue a@®2{ applies as it
stands. However, in dimensions higher than one, a corrézleion of Lyapunov
exponents requires a bit of sophistication.

20.4 Cycle expansions for finite alphabets

,
J A finite transition graph like the one given in figure 14.6 (8laicompact
encoding of the transition matrix for a given subshift. laisparse matrix, and
the associated determinant (15.20) can be written down &pyeiction: it is the
sum of all possible partitions of the graph into products afi4intersecting loops,
with each loop carrying a minus sign:

det (1- T) = 1 - to — too11 — tooo1 — tooo11 + totoo11 + too1itooor (20.28)

The simplest application of this determinant is to the ex@tun of the topological
entropy; if we set, = z'", wheren, is the length of thep-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.28) is exact for the finite graph figures {d), as well
as for the associated finite-dimensional transfer operatt@xample 17.4. For
the associated (infinite dimensional) evolution operatas, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/ = 1-1to—1too11— tooo1+ toooitoo11
—(tooo11— totoo11+ . .. curvatures).. (20.29)
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The cycle, 0001 and)011 are théundamental cycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles, i@tth@ basic building
blocks of the dynamics.All other cycles appear togetheh vtheir shadows (for
example, théyoo11—totoo11 cOMbination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bdtly and the pseudocycle combination
tasp = tatp in (20.2) have the same weighk*™, so all curvature combinations
tap — tatp Vanish exactly, and the topological polynomial (15.2ffgs a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functionsuoedto polynomi-
als, we are assured that there are just a few fundamentascgald that all long
cycles can be grouped into curvature combinations. For pl@rthe fundamental
cycles in exercise 9.6 are the three 2-cycles which bouncle drad forth between
two disks and the two 3-cycles which visit every disk. It idyoafter these fun-
damental cycles have been included that a cycle expansierpiscted to start
converging smoothly, i.e., only far larger than the lengths of the fundamental
cycles are the curvatures (in expansion (20.7)), a measure of the deviations be-
tween long orbits and their short cycle approximants, etqueto fall df rapidly
with n.

20.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovit)

Most dynamical systems of interest have no finite grammagtsany order in
Z a cycle expansion may contain unmatched terms which do noeéitly into
the almost cancelling curvature corrections. Similarly;, intermittent systems
that we shall discuss in chapter 24, curvature correctiomsnageneral not small,
so again the cycle expansions may converge slowly. For systleras schemes
which collect the pseudocycle terms according to somermiteother than the
topology of the flow may converge more quickly than exparsibased on the
topological length.

All chaotic systems exhibit some degree of shadowing, amaba ¢runcation
criterion should do its best to respect the shadowing at l@agroximately. If
a long cycle is shadowed by two or more shorter cycles and t¢ive il smooth,
the period and the action will be additive in sense that thiogeof the longer
cycle is approximately the sum of the shorter cycle perio8snilarly, stability
is multiplicative, so shadowing is approximately preseéry including all terms
with pseudocycle stability

Ap, -+ Ap| < Amax (20.30)
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and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which ajppeirly respect
shadowing are truncations by the pseudocycle period (@rgctand the stability
ordering that we shall discuss here. In these schemes a dyalareta function or
a spectral determinant is expanded keeping all terms foclwthie period, action
or stability for a combination of cycles (pseudocycle) ssl¢han a given cufb

The two settings in which the stability ordering may be pralide to the
ordering by topological cycle length are the cases of bachgrar and of inter-
mittency.

20.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of thatstspace generates the
“optimal” symbolic dynamics. Stability ordering does netjuire understanding
dynamics in such detail: if you can find the cycles, you cansiahbility ordered
cycle expansions. Stability truncation is thus easier folément for a generic dy-
namical system than the curvature expansions (20.7) wkigton finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctaajefor near re-
currences. The long trajectory method for detecting cygesferentially finds the
least unstable cycles, regardless of their topologicajtlenAnother practical ad-
vantage of the method (in contrast to Newton method searchtst it only finds
cycles in a given connected ergodic component of state spgaring isolated
cycles or other ergodic regions elsewhere in the state space

Why should stability ordered cycle expansion of a dynamith function
converge better than the rude trace formula (22.9)? Thevaguhas essentially
already been laid out in sect. 15.6: in truncations thateesphadowing most of
the pseudocycles appear in shadowing combinations anty waacel, while only
the relatively small subsetfacted by the longer and longer pruning rules is not
shadowed. So the error is typically of the order gl smaller by factoe than
the trace formula (22.9) error, wheheis the entropy and typical cycle length
for cycles of stabilityA.

20.5.2 Smoothing

,
J The breaking of exact shadowing cancellations deservésgiucomment.
Partial shadowing which may be present can be (partiallyfored by smoothing
the stability ordered cycle expansions by replacing the Weight for each term
with pseudocycle stabilith = Ap, ---Ap, by f(A)/A. Here, f(A) is @ mono-
tonically decreasing function fronfi(0) = 1 to f(Amax) = 0. No smoothing
corresponds to a step function.
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A typical “shadowing error” induced by the cufads due to two pseudocycles
of stability A separated by\A, and whose contribution is of opposite signs. Ig-
noring possible weighting factors the magnitude of the lteguterm is of order
1/A - 1/(A + AA) ~ AA/A?. With smoothing there is an extra term of the form
f/(A)AA/A, which we want to minimise. A reasonable guess might be tp kee
f’(A)/A constant and as small as possible, that is

w12

max

The results of a stability ordered expansion (20.30) shaludys be tested
for robustness by varying the cifd\max. If this introduces significant variations,
smoothing is probably necessary.

20.5.3 Stability ordering for intermittent flows

,
J Longer but less unstable cycles can give larger contribstim a cycle
expansion than short but highly unstable cycles. In suckatdn truncation by
length may require an exponentially large number of verytalie cycles before
a significant longer cycle is first included in the expansidhis situation is best
illustrated by intermittent maps that we shall study in detachapter 24, the
simplest of which is the Farey map

_[fo=x/(1-X 0<x<1/2
f(X)_{fl=(1—><)/x 1/2<x<1 , (20.31)

a map which will reappear in the intermittency chapter 24.

For this map the symbolic dynamics is of complete binary tygelack of
shadowing is not due to lack of a finite grammar, but rathehihtermittency
caused by the existence of the marginal fixed pgint 0, for which the stability
equalsAg = 1. This fixed point does not participate directly in the dymneswand is
omitted from cycle expansions. Its presence is felt in thbities of neighboring
cycles withn consecutive repeats of the symbol 0’'s whose stability &dltsnly as
A ~ n?, in contrast to the most unstable cycles withonsecutive 1's which are
exponentially unstabléAon| ~ [( V5 + 1)/2]2".

The symbolic dynamics is of complete binary type. A quickra the style
of sect. 15.7.2 leads to a total of 74,248,450 prime cycldsrafth 30 or less, not
including the marginal poinky = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the leasabtestycle omitted
has stability of roughlyA;ge ~ 307 = 900, and so amounts to al% correc-
tion. The situation may be much worse than this estimateestggbecause the
next, 161 cycle contributes a similar amount, and could easily redgdhe error.
Adding up all such omitted terms, we arrive at an estimatedref about 3%,

recycle - 30aug2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 20. CYCLE EXPANSIONS

392

) . . 1
Figure 20.3: Comparison of cycle expansion trun-

cation schemes for the Farey map (20.31); the 0.5
deviation of the truncated cycles expansion for
11/¢n(0)] from the exact flow conservation value 0.2
1/£(0) = 0 is a measure of the accuracy of the

. . . . R _ C—l(g) 0.1
truncation. The jagged line is logarithm of the sta

bility ordering truncation error; the smooth line is 0.05
smoothed according to sect. 20.5.2; the diamonds
indicate the error due the topological length trun- 0.02

cation, with the maximal cycle lengtN shown.

0.01

They are placed along the stability cfitaxis at
points determined by the condition that the total
number of cycles is the same for both truncation
schemes.

10 100 1000 10000

Amax

for a cycle-length truncated cycle expansion based on nhare 16 pseudocycle
terms! On the other hand, truncating by stability at 8ayax = 3000, only 409
prime cycles sfiice to attain the same accuracy of about 3% error, figure 20.3.

As the Farey map maps the unit interval onto itself, the legdiigenvalue
of the Perron-Frobenius operator should egaak 0, so 17(0) = 0. Deviation
from this exact result serves as an indication of the comrerg of a given cycle
expansion. The errors offikerent truncation schemes are indicated in figure 20.3.
We see that topological length truncation schemes are ésglgl bad in this case;
stability length truncations are somewhat better, but sither bad. In simple

cases like this one, where intermittency is

caused by assimglrginal fixed point,

the convergence can be improved by going to infinite alplsabet

20.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

,
J A Dirichlet series is defined as
f(9 =) ae®
=1

wheres, a; are complex numbers, and;} i
of real numbersty; < A < --- < Aj < -+

(20.32)

s a monotonically increasing series
A classical example of a Dirichlet

series is the Riemann zeta function for whigh= 1, 1; = Inj. In the present
context, formal series over individual pseudocycles swc{8.2) ordered by the
increasing pseudocycle periods are often Dirichlet serlesr example, for the

pseudocycle weight (20.3), the Dirichlet s
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cles by increasing periods, = Tp, + Tp, + ... + Tp,, with the codficients

B (Ap +Apy+.+Ap)

" [ApAp-. Apd

A

7/

whered, is a degeneracy factor, in the case tapseudocycles have the same
weight.

If the series}; |a;| diverges, the Dirichlet series is absolutely convergent fo
Res > o4 and conditionally convergent for Re> o, whereo, is theabscissa
of absolute convergence

N
. 1
oa = lim sup— In ; lajl., (20.33)

ando is theabscissa of conditional convergence

N

Ya.

=1

o¢ = |\!im supi In (20.34)

AN

We shall encounter another example of a Dirichlet seriels@rsemiclassical quan-
tization, the quantum chaos part@faosBook.org.

Résumé

A cycle expansion is a series representation of a dynamical zeta functionetra
formula or a spectral determinant, with products in (19.l83panded as sums
over pseudocycles, products of the prime cycle weightis

If a flow is hyperbolic and has a topology of a Smale horseshailshift of
finite type), the dynamical zeta functions are holomorpttie, spectral determin-
ants are entire, and the spectrum of the evolution operatdiscrete. The sit-
uation is considerably more reassuring than what prangti® of quantum chaos
fear; there is no “abscissa of absolute convergence” andentidpy barier,” the
exponential proliferation of cycles is no problem, spdafieterminants are entire
and converge everywhere, and the topology dictates thecetafi cycles to be
used in cycle expansion truncations.

In that case, the basic observation is that the motion in mjce systems of
few degrees of freedom is in this case organized around &samental cycles,
with the cycle expansion of the Euler product

Y=1- "t - &
f n
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regrouped into dominarfundamental contributionsts and decreasingurvature
correctionscy. The fundamental cycles have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that atiger orbits can be
approximately pieced together from them. A typical curvatcontribution toc,

is adifference of a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tap — talh = tap(1 — taty/tap)

The orbits that follow the same symbolic dynamics, suctabs and a “pseudocy-
cle” {a}{b}, lie close to each other, have similar weights, and for lorgel longer
orbits the curvature corrections falffaapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, vature expansions
converge very well.

Once a set of the shortest cycles has been found, and thepsbels, sta-
bilities and integrated observable computed, the cycleagieg formulas such as
the ones associated with the dynamical zeta function

@ = (A /(T
(9 1 4 (9 1 ’
Wy = —gpz = ) A (=502 = ) Tale

yield the expectation value (the chaotic, ergodic average the non—wandering
set) of the observabla(x).

Commentary

Remark 20.1 Pseudocycle expansions. Bowen’s introduction of shadowingpseudoorbits [1.28]
was a significant contribution to Smale’s theory. Exprassieseudoorbits” seems to

have been introduced in the Parry and Pollicott’s 1983 pf@ri6]. Following them

M. Berry [20.9] had used the expression “pseudoorbits” | 1986 paper on Riemann

zeta and quantum chaos. Cycle and curvature expansionsnafrdgal zeta functions

and spectral determinants were introduced in refs. [2RQ®]. Some literature [19.12]

refers to the pseudoorbits as “composite orbits,” and teitoée expansions as “Dirichlet

series” (see also remark 20.6 and sect. 20.6).

Remark 20.2 Cumulant expansion. To a statistical mechanician the curvature ex-
pansions are very reminiscent of cumulant expansions. elthd@0.12) is the standard
Plemelj-Smithies cumulant formula for the Fredholm deteant.The diference is that

in cycle expansions eadf, codficient is expressed as a sum over exponentially many
cycles.
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Remark 20.3 Exponential growth of the number of cycles.  Going fromN, ~ N"
periodic points of lengtim to M,, prime cycles reduces the number of computations from
N, to M, ~ N™1/n. Use of discrete symmetries (chapter 21) reduces the nuailg
level terms by another factor. While the reformulation af theory from the trace (18.28)
to the cycle expansion (20.7) thus does not eliminate thereptial growth in the number
of cycles, in practice only the shortest cycles are used,fanthem the computational
labor saving can be significant.

Remark 20.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table 20.1 leads to the temptation of associating curvatioréndividual cycles, such as
€o001 = tooo1 — totooz. Such combinations tend to be numerically small (see fompta
ref. [20.3], table 1). However, splitting, into individual cycle curvatures is not possible
in general [20.12]; the first example of such ambiguity in ltieary cycle expansion is
given by thetioo101 t1001100 <> 1 symmetric pair of 6-cycles; the countertetgmtois in
table 20.1 is shared by the two cycles.

Remark 20.5 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [20.13] in a study of chaotic dynamics for tfg?f'/2 potential. The
presentation here runs along the lines of Dettmann and B®[#0.14] for the Lorentz
gas which is hyperbolic but the symbolic dynamics is highiyrned, and Dettmann and
Cvitanovi€ [20.15] for a family of intermittent maps. Indhapplications discussed in
the above papers, the stability ordering yields a consldelinprovement over the topo-
logical length ordering. In quantum chaos applicationdegxpansion cancelations are
affected by the phases of pseudocycles (their actions), hganiml ordering rather than
stability is frequently employed.

Remark 20.6 Are cycle expansions Dirichlet series?

Even though some literature [19.12] refers to cycle exparsas “Dirichlet series,”
they are not Dirichlet series. Cycle expansions collectrgioumtions of individual cycles
into groups that correspond to the d@gents in cumulant expansions of spectral det-
erminants, and the convergence of cycle expansions isallattrby general properties
of spectral determinants. Dirichlet series order cycleghmir periods or actions, and
are only conditionally convergent in regions of interesheTabscissa of absolute con-
vergence is in this context called the “entropy barrier'ntary to the frequently voiced
anxieties, this number does not necessarily has much tottidlva actual convergence of
the theory.
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Exercises

20.1. Cycle expansions.  Write programs that implement (b) Show that
binary symbolic dynamics cycle expansions for (a) dyn- .
amical zeta functions, (b) spectral determinants. Com- Ngy..ey = £2

20.2.

bined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in problem that
follow. (c) (hard) Compute the dynamical zeta function for
this system

and determine a rule for the sign.

Escape rate for al — dimensional repeller. (continu-

ation of exercise 19.1 - easy, but long) Fl=1-tg—ty — (tor — toty) — - --

Consider again the quadratic map (19.31)
F(x) = Ax(1L— %) You might no?e that the convergence as funct_ion
of the truncation cycle length is slow. Try to fix
on the unit interval, for definitiveness take eith&r= that by treating the\o = 4 cycle separately. (con-
9/2 or A = 6. Describing the itinerary of any trajectory tinued as exercise 20.13)
by the binary alphabgD, 1} (0’ if the iterate is in the _ _ ) _
first half of the interval and '1’ if is in the second half),20-4- Pinball escape rate, semi-analytical. Estimate the

we have a repeller with a complete binary symbolic dy-  3-disk pinball escape rate fét : a = 6 by substitut-
ing analytical cycle stabilities and periods (exerciser13.

namics.
and exercise 13.8) into the appropriate binary cycle ex-
(a) Sketch the graph df and determine its two fixed pansion. Compare with the numerical estimate exer-
pointsO andl, together with their stabilities. cise 17.3.

(b) Sketch the two branches d¢f'. Determine all . .
the prime cycles up to topological length 4 using20.5. Pinball escape rate, from numerical cycles. Com-
pute the escape rate f&® : a = 6 3-disk pinball by

our pocket calculator and backwards iteration of oo . o
yourp substituting list of numerically computed cycle stabili-

f (see sect. 13.2.1). . . . . .
i ) ] ties of exercise 13.5 into the binary cycle expansion.
(c) Determine the leading zero of the zeta function

(19.15) using the weights = Z%/|Ap| whereA, 20.6. Pinball resonances, in the complex plane. Plot the

is the stability of thep cycle. logarithm of the absolute value of the dynamical zeta

(d) Show that forA = 9/2 the escape rate of the function andor the spectral determinant cycle expansion
repeller is 0361509 .. using the spectral deter- (20.5) as contour plots in the complexlane. Do you
minant, with the same cycle weight. If you have find zeros other than the one corresponding to the com-
takenA = 6, the escape rate is in88149298 . ., plex one? Do you see evidence for a finite radius of
as shown in solution 20.2. Compare the coef- ~ convergence for either cycle expansion?

ficients of the spectral determinant and the zeta0 7 C ind the 3-disk q | . . f
function cycle expansions. Which expansion cor‘?— T oungng the 3-dis psudocycies. (contmuatlon.o
exercise 15.12.) Verify that the number of terms in the

erges faster?
verg 3-disk pinball curvature expansion (20.35) is given by
(Per Rosenqvist)
. 1-372-258
20.3. Escape rate for the Ulam map. (Medium; repeat of ]_[ (1+ tp) = 1 372 27
exercise 13.1) We will try to compute the escape rate for p Bl
the Ulam map (11.5) 26+ 122+ 27
= 1 + 322 + 223 + (-Ff-’-ZS)
f(X) = 4x(1 - X), 1-32-2
= 1+3Z2+22+62+127

using the method of cycle expansions. The answer

: +202° + 487" + 842 + 1848 + . .
should be zero, as nothing escapes.

(@) Compute a few of the stabilities for this map. This means that, for example; has a total of 20 terms,
Show thatAg = 4,A1 = -2, A1 = —4, Agor = -8 in agreement with the explicit 3-disk cycle expansion
andA011 = 8. (2036)
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20.8.

20.9.
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3—disk unfactorized zeta cycle expansions. Check
that the curvature expansion (20.2) for the 3-disk pin-
ball, assuming no symmetries between disks, is given

by

(1 - Zt12)(1 - 2ty3)(1 — Ztos)

(1- 2129 (1 - Zt1z2)(1 - Zt1219)

(1 - 2123 (1 — 21309 (1 — 212109 - -
= 1- 2ty — Ptyz— Ztay — 2(t1o3 + t132)
—2'[(t1213— trot13) + (tr2zo— tiotzs)
+(t1323 — tastza)] (20.35)
—2[(t12103— tiotipg) + -+ ] — -+

1/¢

The symmetrically arranged 3-disk pinball cycle expan-
sion of the Euler product (20.2) (see table 15.5 and fig-
ure 9.5) is given by:
1/¢ = (1- 2t12)°(1 - 2t129°(1 - Z11219°
(1- 2t12129%(1 - Pt121219°
(1-2t21329°. ..
= 1-3Zt - 22t123— 32 (t1213— t5,)
—62° (t12123— ti2t129)
~2° (6t121213+ 3t121323+ 5, — Ytrotiziz— t,9)

7 2
—62" (t1212123+ t1212313+ t1213103+ 151123

(20.36)

—3t12t12123— t123t1219)
~32 (2t12121213+ 12121313+ 2t12121323

+2 112123103+ 2112123213+ 12132123
2 2
+ 3t],t1013+ tiot]ys — 6l1ot101013
2
— 3tiot121303— 4t1oati2123— t1p19) — <+

Remark 20.7 Unsymmetrized cycle expansions.

The above 3-disk cycle expansions might be useful for

cross-checking purposes, but, as we shall see in chap-
ter 21, they are not recommended for actual computa-

tions, as the factorized zeta functions yield much better

convergence.

4—disk unfactorized dynamical zeta function cycle
expansions.  For the symmetrically arranged 4-disk
pinball the symmetry group is 4, of order 8. The de-
generate cycles can have multiplicities 2, 4 or 8 (see ta-

ble 15.3):
1/ = (1-7Zt)"(1-Ztig)*(1 - Pt1z9)®

(1 - Z't1219%(1 - 21210 (1 — Zt1230)°

(1 — Z4t1243)4(1 — Zstlglz::)s(l — z5t12124)820.11.

(1 - 2t12130%(1 - 2t12149°
(1- 2t12319°(1 - Pt12419° - -

and the cycle expansion is given by

17 =

(20.37)

1- 22(4t12 + 2t13) — 8z 1123

20.10.
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~Z (81213 + 4tio1a+ 2tioaa+ Atiag
—6@2 - @3 — 8t1t13)

—82(t12103+ 12104+ tio134+ tio143+ ti2a13
+112413— 4t1ot123 — 2113t123)

~425(2Sg + Sy + 3, + 3t iz + tyate,
—81t1ot1213— 4t1oti14

—21t12t1234— 4t12t1243

—Atyatiz13— 2tiatizia— tiatioas
~2tat1pa3— Ttipg) — -

where in the cogicient to 2 the abbreviationSs and

S, stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4, re-
spectively; the orbits are listed in table 15.5.

Tail resummations. A simple illustration of such
tail resummation is the function for the Ulam map
(11.5) for which the cycle structure is exceptionally sim-
ple: the eigenvalue of they = O fixed point is 4, while
the eigenvalue of any othaercycle is+2". Typical cycle
weights used in thermodynamic averaging are 47z,
ti =t=2"zt, =t" for p # 0. The simplicity of the cy-
cle eigenvalues enables us to evaluate/tfienction by
a simple trick: we note that if the value of amycycle
eigenvalue werd", (19.21) would yield 1/ = 1 - 2t.
There is only one cycle, thg, fixed point, that has a
different weight (1 tg), so we factor it out, multiply the
rest by (1-t)/(1 - t), and obtain a rationdl! function

(1-20(1-t)
(1-1

Consider how we would have detected the pole at

1/t without the above trick. As th@ fixed point is iso-
lated in its stability, we would have kept the facto(3)

in (20.7) unexpanded, and noted that all curvature com-
binations in (20.7) which include thgfactor are unbal-
anced, so that the cycle expansion is an infinite series:

1-ty) = (1-to)(1-t—t2—t3—t*—.. )(20.39)
p
p

1/4(2) = (20.38)

(we shall return to such infinite series in chapter 24).
The geometric series in the brackets sums up to (20.38).
Had we expanded the & ty) factor, we would have
noted that the ratio of the successive curvatures is ex-
actly c,,1/¢, = t; summing we would recover the ratio-
nal ¢ function (20.38).

Escape rate for the Rossler flow.  (continuation of
exercise 13.10) Try to compute the escape rate for the
Rossler flow (2.17) using the method of cycle expan-
sions. The answer should be zero, as nothing escapes
Ideally you should already have computed the cycles
and have an approximate grammar, but failing that you
can cheat a bit and peak into exercise 13.10.
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20.13. Ulam map is conjugate to the tent map.
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20.12. State space volume contraction, recycled. (contin-

uation of exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.3(d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across

each recurrence to a given Poincaré section. Evaluated
on a given short cycle, the average is crisp and a2-14.

trarily accurate. Recomput@ - vy by means of cycle
expansion, study its convergence/t tonvergence of
mindless time-averaging is now replaced by exponential
convergence in the cycle length.

(contin-
uation of exercise 20.Brepeat of exercise 6.4 and ex-
ercise 13.2; requires real smarts, unless you look it up)
Explain the magically simple form of cycle stabilities of
exercise 20.3 by constructing an explicit smooth conju-

398

gacy (6.1)
g'(yo) = ho f' o h™(yo)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

Continuous vs. discrete mean return time.  Show
that the expectation valu@) time-averaged over con-
tinuous time flow is related to the corresponding average
(a)gscrmeasured in discrete time (e.g. , Poincaré section
returns) by (20.26):

<a>dscr: (&) <T>g / <n>g .

(Hint: consider the form of their cycle expansions.) The
mean discrete periogh), averaged over cycles, and the
mean continuous time periofl'), need to be evalu-
ated only once, thereafter one can compute eithgr
or {(@)gscr Whichever is more convenient.

(20.40)
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