
Chapter 20

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

T E  representations of spectral determinants (19.9) and dyn-
amical zeta functions (19.15) are really only a shorthand notation - the zeros
of the individual factors arenot the zeros of the zeta function, and conver-

gence of such objects is far from obvious. Now we shall give meaning to the
dynamical zeta functions and spectral determinants by expanding them as cycle
expansions, series representations ordered by increasingtopological cycle length,
with products in (19.9), (19.15) expanded as sums overpseudocycles, products of
tp’s. The zeros of correctly truncated cycle expansions yieldthe desired eigenval-
ues, and the expectation values of observables are given by the cycle averaging
formulas obtained from the partial derivatives of dynamical zeta functions (or
spectral determinants).

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluated? We start by computing
the lengths and Floquet multipliers of the shortest cycles.This always requires
numerical work, such as the Newton method searches for periodic solutions; we
shall assume that the numerics is under control, and thatall short cycles up to
a given (topological) length have been found. Examples of the data required for
application of periodic orbit formulas are the lists of cycles given in table 29.3 and
exercise 13.14. It is important not to missany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cycles longer than the shortest
omitted does not improve the accuracy (more precisely, improves it, but painfully
slowly).
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CHAPTER 20. CYCLE EXPANSIONS 379

Expand the dynamical zeta function (19.15) as a formal powerseries,

1/ζ =
∏

p

(1− tp) = 1−
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk (20.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weightstp. The formal power series (20.1) is now compactly written
as

1/ζ = 1−
∑′

π

tπ . (20.2)

For k > 1, tπ are weights ofpseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequencep1p2 . . . pk along segmentsp1,
p2, . . ., pk.

∑′ denotes the restricted sum, for which any given prime cyclep
contributes at most once to a given pseudocycle weighttπ.

The pseudocycle weight, i.e., the product of weights (19.10) of prime cycles
comprising the pseudocycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπznπ , (20.3)

depends on the pseudocycle topological lengthnπ, integrated observableAπ, pe-
riod Tπ, and stabilityΛπ

nπ = np1 + . . . + npk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , Λπ = Λp1Λp2 · · ·Λpk . (20.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used interchange-
ably; while “periodic orbit” is more precise, “cycle” (which has many other uses
in mathematics) is easier on the ear than “pseudo-periodic-orbit.” While in Soviet
times acronyms were a rage (and in France they remain so), we shy away from
acronyms such as UPOs (Unstable Periodic Orbits).

20.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a com-
plete binary symbolic dynamics. In this case the Euler product (19.15) is given
by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011) (20.5)

(1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

(1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .
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CHAPTER 20. CYCLE EXPANSIONS 380

(see table 15.1), and the first few terms of the expansion (20.2) ordered by increas-
ing total pseudocycle length are:

1/ζ = 1− t0 − t1 − t01− t001− t011− t0001− t0011− t0111− . . .
+t0t1 + t0t01+ t01t1 + t0t001+ t0t011+ t001t1 + t011t1
−t0t01t1 − . . . (20.6)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as acycle expansion.

The next step is the key step: regroup the terms into the dominantfundamental
contributionst f and the decreasingcurvature corrections ˆcn, each ˆcn split into
prime cyclesp of length np=n grouped together with pseudocycles whose full
itineraries build up the itinerary ofp. For the binary case this regrouping is given
by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)] − [(t001− t01t0) + (t011− t01t1)]

−[(t0001− t0t001) + (t0111− t011t1)

+(t0011− t001t1 − t0t011+ t0t01t1)] − . . .
= 1−

∑

f

t f −
∑

n

ĉn . (20.7)

All terms in this expansion up to lengthnp = 6 are given in table 20.1. We refer
to such regrouped series ascurvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finite gram-
mar. The fundamental cyclest0, t1 have no shorter approximants; they are the
“building blocks” of the dynamics in the sense that all longer orbits can be approx-
imately pieced together from them. The fundamental part of acycle expansion is
given by the sum of the products of all non-intersecting loops of the associated
transition graph. The terms grouped in brackets are the curvature corrections; thesection 15.3

section 20.4terms grouped in parenthesis are combinations of longer cycles and correspond-
ing sequences of “shadowing” pseudocycles. If all orbits are weighted equally
(tp = znp ), such combinations cancel exactly, and the dynamical zetafunction re-
duces to the topological polynomial (15.27). If the flow is continuous and smooth,
orbits of similar symbolic dynamics will traverse the same neighborhoods and will
have similar weights, and the weights in such combinations will almost cancel.
The utility of cycle expansions of dynamical zeta functionsand spectral determin-
ants, in contrast to direct averages over periodic orbits such as the trace formulas
discussed in sect. 22.5, lies precisely in this organization into nearly canceling
combinations: cycle expansions are dominated by short cycles, with long cycles
giving exponentially decaying corrections.

In the case where we know of no finite grammar symbolic dynamics that
would help us organize the cycles, the best thing to use is astability cutoff which
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CHAPTER 20. CYCLE EXPANSIONS 381

Table 20.1: The binary curvature expansion (20.7) up to length 6, listedin such way that
the sum of terms along thepth horizontal line is the curvature ˆcp associated with a prime
cycle p, or a combination of prime cycles such as thet100101+ t100110pair.
- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

we shall discuss in sect. 20.5. The idea is to truncate the cycle expansion by
including only the pseudocycles such that|Λp1 · · ·Λpk | ≤ Λmax, with the cutoff
Λmax equal to or greater than the most unstableΛp in the data set.

20.2 Construction of cycle expansions

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatednumerically by first
computing the weightstp = tp(β, s) of all prime cyclesp of topological length
np ≤ N for given fixedβ and s. Denote by subscript (i) the ith prime cycle com-
puted, ordered by the topological lengthn(i) ≤ n(i+1). The dynamical zeta function
1/ζN truncated to thenp ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1− t(i)z
n(i)) , (20.8)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is theNth order polynomial approximation

1/ζN = 1−
N

∑

n=1

cnzn . (20.9)

In other words, a cycle expansion is a Taylor expansion in thedummy variablez
raised to the topological cycle length. If both the number ofcycles and their in-
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CHAPTER 20. CYCLE EXPANSIONS 382

dividual weights grow not faster than exponentially with the cycle length, and we
multiply the weight of each cyclep by a factorznp , the cycle expansion converges
for sufficiently small|z|.

If the dynamics is given by iterated mapping, the leading zero of (20.9) as
function of z yields the leading eigenvalue of the appropriate evolutionoperator.
For continuous time flows,z is a dummy variable that we set toz = 1, and the
leading eigenvalue of the evolution operator is given by theleading zero of (20.9)
as function ofs.

20.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det
(

1− Mp1p2

)

, det
(

1− Mp1

)

det
(

1− Mp2

)

,

the cycle expansions for the spectral determinant (19.9) are somewhat less trans-
parent than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (18.10) truncatedto all prime cyclesp
and their repeats such thatnpr ≤ N:

tr
zL

1− zL

∣

∣

∣

∣

∣

(i)
= tr

zL
1− zL

∣

∣

∣

∣

∣

(i−1)
+ n(i)

n(i)r≤N
∑

r=1

e(β·A(i)−sT(i))r
∣

∣

∣

∣

∏

(

1− Λr
(i), j

)

∣

∣

∣

∣

zn(i)r

tr
zL

1− zL

∣

∣

∣

∣

∣

N
=

N
∑

n=1

Cnzn , Cn = trLn . (20.10)

This is done numerically: the periodic orbit data set consists of the list of the
cycle periodsTp, the cycle Floquet multipliersΛp,1,Λp,2, . . . ,Λp,d, and the cycle
averages of the observableAp for all prime cyclesp such thatnp ≤ N. The coef-
ficient of znpr is then evaluated numerically for the given (β, s) parameter values.
Now that we have an expansion for the trace formula (18.9) as apower series, we
compute theNth order approximation to the spectral determinant (19.3),

det (1− zL)|N = 1−
N

∑

n=1

Qnzn , Qn = nth cumulant, (20.11)

as follows. The logarithmic derivative relation (19.4) yields

(

tr
zL

1− zL

)

det (1− zL) = −z
d
dz

det (1− zL)

(C1z +C2z2 + · · ·)(1− Q1z − Q2z2 − · · ·) = Q1z + 2Q2z2 + 3Q3z3 · · ·
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CHAPTER 20. CYCLE EXPANSIONS 383

Table 20.2: 3-disk repeller escape rates computed from the cycle expansions of the spectral
determinant (19.6) and the dynamical zeta function (19.15), as function of the maximal
cycle lengthN. The first column indicates the disk-disk center separationto disk radius
ratio R:a, the second column gives the maximal cycle length used, and the third the esti-
mate of the classical escape rate from the fundamental domain spectral determinant cycle
expansion. As for larger disk-disk separations the dynamics is more uniform, the con-
vergence is better forR:a = 6 than forR:a = 3. For comparison, the fourth column
lists a few estimates from from the fundamental domain dynamical zeta function cycle
expansion (20.7), and the fifth from the full 3-disk cycle expansion (20.36). The conver-
gence of the fundamental domain dynamical zeta function is significantly slower than the
convergence of the corresponding spectral determinant, and the full (unfactorized) 3-disk
dynamical zeta function has still poorer convergence. (P.E. Rosenqvist.)

R:a N . det (s − A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606

so thenth order term of the spectral determinant cycle (or in this case, the cumu-
lant) expansion is given recursively by the trace formula expansion coefficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (20.12)

Given the trace formula (20.10) truncated tozN , we now also have the spectral
determinant truncated tozN .

The same program can also be reused to compute the dynamical zeta function
cycle expansion (20.9), by replacing

∏

(

1− Λr
(i), j

)

in (20.10) by the product of
expanding eigenvaluesΛ(i) =

∏

eΛ(i),e (see sect. 19.3).

The calculation of the leading eigenvalue of a given continuous flow evolution
operator is now straightforward. After the prime cycles andthe pseudocycles have
been grouped into subsets of equal topological length, the dummy variable can be
set equal toz = 1. With z = 1, expansion (20.11) is the cycle expansion for
(19.6), the spectral determinant det (s − A) . We vary s in cycle weights, and
determine the eigenvaluesα by finding s = sα for which (20.11) vanishes. As an
example, the convergence of a leading eigenvalue for a nice hyperbolic system is
illustrated in table 20.2 by the listing of pinball escape rate γ estimates computed
from truncations of (20.7) and (20.11) to different maximal cycle lengths. chapter 23
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CHAPTER 20. CYCLE EXPANSIONS 384

Figure 20.1: Examples of the complexs plane
scans: contour plots of the logarithm of the ab-
solute values of (a) 1/ζ(s), (b) spectral determin-
ant det (s − A) for the 3-disk system, separation
a : R = 6, A1 subspace are evaluated numerically.
The eigenvalues of the evolution operatorL are
given by the centers of elliptic neighborhoods of
the rapidly narrowing rings. While the dynamical
zeta function is analytic on a strip Ims ≥ −1, the
spectral determinant is entire and reveals further
families of zeros. (P.E. Rosenqvist)

The pleasant surprise is that the coefficients in these cycle expansions can be
proven to fall off exponentially or even faster, due to analyticity of det (s − A) or chapter 23

1/ζ(s) for s values well beyond those for which the corresponding trace formula
diverges.

20.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues of the
evolution operator beyond the leading one. A convenient wayto search for these
is by plotting either the absolute magnitude ln|det (s−A)| or the phase of spectral
determinants and dynamical zeta functions as functions of the complex variables.
The eye is guided to the zeros of spectral determinants and dynamical zeta func-
tions by means of complexs plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different colors; zeros
emerge as centers of elliptic neighborhoods of rapidly changing colors. Detailed
scans of the whole area of the complexs plane under investigation and searches
for the zeros of spectral determinants, figure 20.1, reveal complicated patterns of
resonances even for something so simple as the 3-disk game ofpinball. With
a good starting guess (such as a location of a zero suggested by the complexs
scan of figure 20.1), a zero 1/ζ(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (13.4), with themth
Newton estimate given by

sm+1 = sm −
(

ζ(sm)
∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)
〈T〉ζ

. (20.13)

The denominator〈T〉ζ required for the Newton iteration is given below, by the
cycle expansion (20.22). We need to evaluate it anyhow, as〈T〉ζ enters our cycle
averaging formulas.
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CHAPTER 20. CYCLE EXPANSIONS 385

Figure 20.2: The eigenvalue condition is satisfied on
the curveF = 0 the (β, s) plane. The expectation value
of the observable (17.12) is given by the slope of the
curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

20.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far -
the level sum (22.18), the dynamical zeta function (20.2), the spectral determinant
(20.11):

1 =

(n)
∑

i

ti , ti = ti(β, s(β)) , ni = n , (20.14)

0 = 1−
∑′

π

tπ , tπ = tπ(z, β, s(β)) (20.15)

0 = 1−
∞
∑

n=1

Qn , Qn = Qn(β, s(β)) , (20.16)

is an implicit equation for the eigenvalues = s(β) of form F(β, s(β)) = 0. The
eigenvalues = s(β) as a function ofβ is sketched in figure 20.2; the eigenvalue
condition is satisfied on the curveF = 0. The cycle averaging formulas for the
slope and the curvature ofs(β) are obtained as in (17.12) by taking derivatives of
the eigenvalue condition. Evaluated alongF = 0, the first derivative leads to

0 =
d

dβ
F(β, s(β))

=
∂F
∂β
+

ds
dβ
∂F
∂s

∣

∣

∣

∣

∣

s=s(β)
=⇒ ds

dβ
= −∂F
∂β
/
∂F
∂s
, (20.17)

and the second derivative ofF(β, s(β)) = 0 yields

d2s

dβ2
= −















∂2F

∂β2
+ 2

ds
dβ
∂2F
∂β∂s

+

(

ds
dβ

)2
∂2F

∂s2















/
∂F
∂s
. (20.18)

Denoting by

〈A〉F = − ∂F
∂β

∣

∣

∣

∣

∣

β,s=s(β)
, 〈T〉F =

∂F
∂s

∣

∣

∣

∣

∣

β,s=s(β)
,
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〈

(A − 〈A〉)2
〉

F
=
∂2F

∂β2

∣

∣

∣

∣

∣

∣

β,s=s(β)

(20.19)

respectively the mean cycle expectation value ofA, the mean cycle period, and the
second derivative ofF computed forF(β, s(β)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observable (17.12), and its variance:

〈a〉 = 〈A〉F
〈T〉F

(20.20)

〈

(a − 〈a〉)2
〉

=
1
〈T〉F

〈

(A − 〈A〉)2
〉

F
. (20.21)

These formulas are the central result of the periodic orbit theory. As we shall
now show, for each choice of the eigenvalue condition function F(β, s) in (22.18),
(20.2) and (20.11), the above quantities have explicit cycle expansions.

20.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (20.15), the cycle averaging formulas
(20.17), (20.21) require evaluation of the derivatives of dynamical zeta function
at a given eigenvalue. Substituting the cycle expansion (20.2) for dynamical zeta
function we obtain

〈A〉ζ := − ∂
∂β

1
ζ
=

∑′
Aπtπ (20.22)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles,Aπ, Tπ, andnπ are evaluated on pseudocycles (20.4), and pseudocy-
cle weightstπ = tπ(z, β, s(β)) are evaluated at the eigenvalues(β). In most appli-
cationsβ = 0, ands(β) of interest is typically the leading eigenvalues0 = s0(0) of
the evolution generatorA.

For bounded flows the leading eigenvalue (the escape rate) vanishes,s(0) = 0,
the exponentβAπ − sTπ in (20.3) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (20.23)

and similarly for〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic dy-
namics the mean cycle period〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(

T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)

(20.24)

+

(

T001

|Λ001|
− T01+ T0

|Λ01Λ0|

)

+

(

T011

|Λ011|
− T01+ T1

|Λ01Λ1|

)

+ . . . .
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Note that the cycle expansions for averages are grouped intothe same shadowing
combinations as the dynamical zeta function cycle expansion (20.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable〈a〉
follow by substitution into (20.21). Assuming zero mean drift 〈a〉 = 0, the cycle
expansion (20.11) for the variance

〈

(A − 〈A〉)2
〉

ζ
is given by

〈

A2
〉

ζ
=

∑′
(−1)k+1

(

Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (20.25)

20.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,
with the shadowing apparent already by a term-by-term inspection of table 20.2.
For “nice” hyperbolic systems the shadowing ensures exponential convergence
of the dynamical zeta function cycle expansions. This, however, is not the best
achievable convergence. As has been explained in chapter 23, for such systems
the spectral determinant constructed from the same cycle data base is entire, and
its cycle expansion converges faster than exponentially. In practice, the best con-
vergence is attained by the spectral determinant cycle expansion (20.16) and its
derivatives. The∂/∂s, ∂/∂β derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycle expansion contributions
(20.12) and (20.10).

The cycle averaging formulas are exact, and highly convergent for nice hyper-
bolic dynamical systems. An example of its utility is the cycle expansion formula
for the Lyapunov exponent of example 20.1. Further applications of cycle expan-
sions will be discussed in chapter 22.

20.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow, in con-
tinuous time, and sometimes it might be easier to compute it in discrete time,
from a Poincaré return map. Return times (3.1) might vary wildly, and it is not at
all clear that the continuous and discrete time averages arerelated in any simple
way. The relationship turns on to be both elegantly simple, and totally general. exercise 20.14

The mean cycle period〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average〈a〉dscr
measured in discrete time, given by the number of reflectionsoff billiard walls,
the two averages are related by

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ , (20.26)
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where〈n〉ζ the average of the number of bouncesnp along the cyclep is given by
is (20.22).

Example 20.1 Cycle expansion formula for Lyapunov exponents:

In sect. 17.3 we defined the Lyapunov exponent for a 1− dimensional mapping,
related it to the leading eigenvalue of an evolution operator and promised to evaluate
it. Now we are finally in position to deliver on our promise.

The cycle averaging formula (20.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (20.27)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (22.10) exp(γnp)/|Λp|,
where γ is the escape rate.

We state without proof that for 2− dimensional Hamiltonian flows such as our
game of pinball there is only one expanding eigenvalue and (20.27) applies as it
stands. However, in dimensions higher than one, a correct calculation of Lyapunov
exponents requires a bit of sophistication.

20.4 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 14.6 (d) is a compact
encoding of the transition matrix for a given subshift. It isa sparse matrix, and
the associated determinant (15.20) can be written down by inspection: it is the
sum of all possible partitions of the graph into products of non-intersecting loops,
with each loop carrying a minus sign:

det (1− T ) = 1− t0 − t0011− t0001− t00011+ t0t0011+ t0011t0001 (20.28)

The simplest application of this determinant is to the evaluation of the topological
entropy; if we settp = znp , wherenp is the length of thep-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.28) is exact for the finite graph figure 14.6 (e), as well
as for the associated finite-dimensional transfer operatorof example 17.4. For
the associated (infinite dimensional) evolution operator,it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1− t0 − t0011− t0001+ t0001t0011

−(t00011− t0t0011+ . . . curvatures). . . (20.29)
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The cycles0, 0001 and0011 are thefundamental cycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles, and are the basic building
blocks of the dynamics.All other cycles appear together with their shadows (for
example, thet00011−t0t0011combination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bothtab and the pseudocycle combination
ta+b = tatb in (20.2) have the same weightzna+nb , so all curvature combinations
tab− tatb vanish exactly, and the topological polynomial (15.27) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polynomi-
als, we are assured that there are just a few fundamental cycles and that all long
cycles can be grouped into curvature combinations. For example, the fundamental
cycles in exercise 9.6 are the three 2-cycles which bounce back and forth between
two disks and the two 3-cycles which visit every disk. It is only after these fun-
damental cycles have been included that a cycle expansion isexpected to start
converging smoothly, i.e., only forn larger than the lengths of the fundamental
cycles are the curvatures ˆcn (in expansion (20.7)), a measure of the deviations be-
tween long orbits and their short cycle approximants, expected to fall off rapidly
with n.

20.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, soat any order in
z a cycle expansion may contain unmatched terms which do not fitneatly into
the almost cancelling curvature corrections. Similarly, for intermittent systems
that we shall discuss in chapter 24, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For such systems schemes
which collect the pseudocycle terms according to some criterion other than the
topology of the flow may converge more quickly than expansions based on the
topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing at least approximately. If
a long cycle is shadowed by two or more shorter cycles and the flow is smooth,
the period and the action will be additive in sense that the period of the longer
cycle is approximately the sum of the shorter cycle periods.Similarly, stability
is multiplicative, so shadowing is approximately preserved by including all terms
with pseudocycle stability

∣

∣

∣Λp1 · · ·Λpk

∣

∣

∣ ≤ Λmax (20.30)
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and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately respect
shadowing are truncations by the pseudocycle period (or action) and the stability
ordering that we shall discuss here. In these schemes a dynamical zeta function or
a spectral determinant is expanded keeping all terms for which the period, action
or stability for a combination of cycles (pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of inter-
mittency.

20.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the state space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can usestability ordered
cycle expansions. Stability truncation is thus easier to implement for a generic dy-
namical system than the curvature expansions (20.7) which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near re-
currences. The long trajectory method for detecting cyclespreferentially finds the
least unstable cycles, regardless of their topological length. Another practical ad-
vantage of the method (in contrast to Newton method searches) is that it only finds
cycles in a given connected ergodic component of state space, ignoring isolated
cycles or other ergodic regions elsewhere in the state space.

Why should stability ordered cycle expansion of a dynamicalzeta function
converge better than the rude trace formula (22.9)? The argument has essentially
already been laid out in sect. 15.6: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations and nearly cancel, while only
the relatively small subset affected by the longer and longer pruning rules is not
shadowed. So the error is typically of the order of 1/Λ, smaller by factorehT than
the trace formula (22.9) error, whereh is the entropy andT typical cycle length
for cycles of stabilityΛ.

20.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further comment.
Partial shadowing which may be present can be (partially) restored by smoothing
the stability ordered cycle expansions by replacing the 1/Λ weight for each term
with pseudocycle stabilityΛ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) is a mono-
tonically decreasing function fromf (0) = 1 to f (Λmax) = 0. No smoothing
corresponds to a step function.
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A typical “shadowing error” induced by the cutoff is due to two pseudocycles
of stabilityΛ separated by∆Λ, and whose contribution is of opposite signs. Ig-
noring possible weighting factors the magnitude of the resulting term is of order
1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is an extra term of the form
f ′(Λ)∆Λ/Λ, which we want to minimise. A reasonable guess might be to keep
f ′(Λ)/Λ constant and as small as possible, that is

f (Λ) = 1−
(

Λ

Λmax

)2

The results of a stability ordered expansion (20.30) shouldalways be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary.

20.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion.This situation is best
illustrated by intermittent maps that we shall study in detail in chapter 24, the
simplest of which is the Farey map

f (x) =

{

f0 = x/(1− x) 0 ≤ x ≤ 1/2
f1 = (1− x)/x 1/2 ≤ x ≤ 1 ,

(20.31)

a map which will reappear in the intermittency chapter 24.

For this map the symbolic dynamics is of complete binary type, so lack of
shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed pointx0 = 0, for which the stability
equalsΛ0 = 1. This fixed point does not participate directly in the dynamics and is
omitted from cycle expansions. Its presence is felt in the stabilities of neighboring
cycles withn consecutive repeats of the symbol 0’s whose stability fallsof only as
Λ ∼ n2, in contrast to the most unstable cycles withn consecutive 1’s which are
exponentially unstable,|Λ01n | ∼ [(

√
5+ 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count in the style
of sect. 15.7.2 leads to a total of 74,248,450 prime cycles oflength 30 or less, not
including the marginal pointx0 = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the least unstable cycle omitted
has stability of roughlyΛ1030 ∼ 302 = 900, and so amounts to a 0.1% correc-
tion. The situation may be much worse than this estimate suggests, because the
next, 1031 cycle contributes a similar amount, and could easily reinforce the error.
Adding up all such omitted terms, we arrive at an estimated error of about 3%,
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Figure 20.3: Comparison of cycle expansion trun-
cation schemes for the Farey map (20.31); the
deviation of the truncated cycles expansion for
|1/ζN (0)| from the exact flow conservation value
1/ζ(0) = 0 is a measure of the accuracy of the
truncation. The jagged line is logarithm of the sta-
bility ordering truncation error; the smooth line is
smoothed according to sect. 20.5.2; the diamonds
indicate the error due the topological length trun-
cation, with the maximal cycle lengthN shown.
They are placed along the stability cutoff axis at
points determined by the condition that the total
number of cycles is the same for both truncation
schemes.
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for a cycle-length truncated cycle expansion based on more than 109 pseudocycle
terms! On the other hand, truncating by stability at sayΛmax = 3000, only 409
prime cycles suffice to attain the same accuracy of about 3% error, figure 20.3.

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equals0 = 0, so 1/ζ(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given cycle
expansion. The errors of different truncation schemes are indicated in figure 20.3.
We see that topological length truncation schemes are hopelessly bad in this case;
stability length truncations are somewhat better, but still rather bad. In simple
cases like this one, where intermittency is caused by a single marginal fixed point,
the convergence can be improved by going to infinite alphabets.

20.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

A Dirichlet series is defined as

f (s) =
∞
∑

j=1

a je
−λ j s (20.32)

where s, a j are complex numbers, and{λ j} is a monotonically increasing series
of real numbersλ1 < λ2 < · · · < λ j < · · ·. A classical example of a Dirichlet
series is the Riemann zeta function for whicha j = 1, λ j = ln j. In the present
context, formal series over individual pseudocycles such as (20.2) ordered by the
increasing pseudocycle periods are often Dirichlet series. For example, for the
pseudocycle weight (20.3), the Dirichlet series is obtained by ordering pseudocy-
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cles by increasing periodsλπ = Tp1 + Tp2 + . . . + Tpk , with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )
∣

∣

∣Λp1Λp2 . . .Λpk

∣

∣

∣

dπ ,

wheredπ is a degeneracy factor, in the case thatdπ pseudocycles have the same
weight.

If the series
∑ |a j| diverges, the Dirichlet series is absolutely convergent for

Res > σa and conditionally convergent for Res > σc, whereσa is theabscissa
of absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N

∑

j=1

|a j| , (20.33)

andσc is theabscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

a j

∣

∣

∣

∣

∣

∣

∣

∣

. (20.34)

We shall encounter another example of a Dirichlet series in the semiclassical quan-
tization, the quantum chaos part ofChaosBook.org.

Résum é

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (19.15)expanded as sums
overpseudocycles, products of the prime cycle weightstp.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a subshift of
finite type), the dynamical zeta functions are holomorphic,the spectral determin-
ants are entire, and the spectrum of the evolution operator is discrete. The sit-
uation is considerably more reassuring than what practitioners of quantum chaos
fear; there is no “abscissa of absolute convergence” and no “entropy barier,” the
exponential proliferation of cycles is no problem, spectral determinants are entire
and converge everywhere, and the topology dictates the choice of cycles to be
used in cycle expansion truncations.

In that case, the basic observation is that the motion in dynamical systems of
few degrees of freedom is in this case organized around a fewfundamental cycles,
with the cycle expansion of the Euler product

1/ζ = 1−
∑

f

t f −
∑

n

ĉn,
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regrouped into dominantfundamental contributionst f and decreasingcurvature
corrections ˆcn. The fundamental cyclest f have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ˆcn

is adifference of a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tab − tatb = tab(1− tatb/tab)

The orbits that follow the same symbolic dynamics, such as{ab} and a “pseudocy-
cle” {a}{b}, lie close to each other, have similar weights, and for longer and longer
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, curvature expansions
converge very well.

Once a set of the shortest cycles has been found, and the cycleperiods, sta-
bilities and integrated observable computed, the cycle averaging formulas such as
the ones associated with the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = − ∂
∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–wandering
set) of the observablea(x).

Commentary

Remark 20.1 Pseudocycle expansions. Bowen’s introduction of shadowingǫ-pseudoorbits [1.28]
was a significant contribution to Smale’s theory. Expression “pseudoorbits” seems to
have been introduced in the Parry and Pollicott’s 1983 paper[20.16]. Following them
M. Berry [20.9] had used the expression “pseudoorbits” in his 1986 paper on Riemann
zeta and quantum chaos. Cycle and curvature expansions of dynamical zeta functions
and spectral determinants were introduced in refs. [20.10,20.2]. Some literature [19.12]
refers to the pseudoorbits as “composite orbits,” and to thecycle expansions as “Dirichlet
series” (see also remark 20.6 and sect. 20.6).

Remark 20.2 Cumulant expansion. To a statistical mechanician the curvature ex-
pansions are very reminiscent of cumulant expansions. Indeed, (20.12) is the standard
Plemelj-Smithies cumulant formula for the Fredholm determinant.The difference is that
in cycle expansions eachQn coefficient is expressed as a sum over exponentially many
cycles.
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Remark 20.3 Exponential growth of the number of cycles. Going from Nn ≈ Nn

periodic points of lengthn to Mn prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (chapter 21) reduces the numberof nth
level terms by another factor. While the reformulation of the theory from the trace (18.28)
to the cycle expansion (20.7) thus does not eliminate the exponential growth in the number
of cycles, in practice only the shortest cycles are used, andfor them the computational
labor saving can be significant.

Remark 20.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table 20.1 leads to the temptation of associating curvatures to individual cycles, such as
ĉ0001 = t0001− t0t001. Such combinations tend to be numerically small (see for example
ref. [20.3], table 1). However, splitting ˆcn into individual cycle curvatures is not possible
in general [20.12]; the first example of such ambiguity in thebinary cycle expansion is
given by thet100101, t1001100↔ 1 symmetric pair of 6-cycles; the countertermt001t011 in
table 20.1 is shared by the two cycles.

Remark 20.5 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [20.13] in a study of chaotic dynamics for the (x2y2)1/a potential. The
presentation here runs along the lines of Dettmann and Morriss [20.14] for the Lorentz
gas which is hyperbolic but the symbolic dynamics is highly pruned, and Dettmann and
Cvitanović [20.15] for a family of intermittent maps. In the applications discussed in
the above papers, the stability ordering yields a considerable improvement over the topo-
logical length ordering. In quantum chaos applications cycle expansion cancelations are
affected by the phases of pseudocycles (their actions), henceperiod ordering rather than
stability is frequently employed.

Remark 20.6 Are cycle expansions Dirichlet series?

Even though some literature [19.12] refers to cycle expansions as “Dirichlet series,”
they are not Dirichlet series. Cycle expansions collect contributions of individual cycles
into groups that correspond to the coefficients in cumulant expansions of spectral det-
erminants, and the convergence of cycle expansions is controlled by general properties
of spectral determinants. Dirichlet series order cycles bytheir periods or actions, and
are only conditionally convergent in regions of interest. The abscissa of absolute con-
vergence is in this context called the “entropy barrier”; contrary to the frequently voiced
anxieties, this number does not necessarily has much to do with the actual convergence of
the theory.
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Exercises

20.1. Cycle expansions. Write programs that implement
binary symbolic dynamics cycle expansions for (a) dyn-
amical zeta functions, (b) spectral determinants. Com-
bined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in problem that
follow.

20.2. Escape rate for a1− dimensional repeller. (continu-
ation of exercise 19.1 - easy, but long)
Consider again the quadratic map (19.31)

f (x) = Ax(1− x)

on the unit interval, for definitiveness take eitherA =
9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabet{0, 1} (’0’ if the iterate is in the
first half of the interval and ’1’ if is in the second half),
we have a repeller with a complete binary symbolic dy-
namics.

(a) Sketch the graph off and determine its two fixed
points0 and1, together with their stabilities.

(b) Sketch the two branches off −1. Determine all
the prime cycles up to topological length 4 using
your pocket calculator and backwards iteration of
f (see sect. 13.2.1).

(c) Determine the leading zero of the zeta function
(19.15) using the weightstp = znp/|Λp| whereΛp

is the stability of thep cycle.

(d) Show that forA = 9/2 the escape rate of the
repeller is 0.361509. . . using the spectral deter-
minant, with the same cycle weight. If you have
takenA = 6, the escape rate is in 0.83149298. . .,
as shown in solution 20.2. Compare the coef-
ficients of the spectral determinant and the zeta
function cycle expansions. Which expansion con-
verges faster?

(Per Rosenqvist)

20.3. Escape rate for the Ulam map. (Medium; repeat of
exercise 13.1) We will try to compute the escape rate for
the Ulam map (11.5)

f (x) = 4x(1− x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatΛ0 = 4,Λ1 = −2,Λ01 = −4,Λ001 = −8
andΛ011 = 8.

(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1− t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function
of the truncation cycle length is slow. Try to fix
that by treating theΛ0 = 4 cycle separately. (con-
tinued as exercise 20.13)

20.4. Pinball escape rate, semi-analytical. Estimate the
3-disk pinball escape rate forR : a = 6 by substitut-
ing analytical cycle stabilities and periods (exercise 13.7
and exercise 13.8) into the appropriate binary cycle ex-
pansion. Compare with the numerical estimate exer-
cise 17.3.

20.5. Pinball escape rate, from numerical cycles. Com-
pute the escape rate forR : a = 6 3-disk pinball by
substituting list of numerically computed cycle stabili-
ties of exercise 13.5 into the binary cycle expansion.

20.6. Pinball resonances, in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(20.5) as contour plots in the complexs plane. Do you
find zeros other than the one corresponding to the com-
plex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

20.7. Counting the 3-disk psudocycles. (continuation of
exercise 15.12.) Verify that the number of terms in the
3-disk pinball curvature expansion (20.35) is given by

∏

p

(

1+ tp

)

=
1− 3z4 − 2z6

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 +
z4(6+ 12z + 2z2)

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(20.36).
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20.8. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (20.2) for the 3-disk pin-
ball, assuming no symmetries between disks, is given
by

1/ζ = (1− z2t12)(1− z2t13)(1− z2t23)

(1− z3t123)(1− z3t132)(1− z4t1213)

(1− z4t1232)(1− z4t1323)(1− z5t12123) · · ·
= 1− z2t12− z2t23 − z2t31 − z3(t123+ t132)

−z4[(t1213− t12t13) + (t1232− t12t23)

+(t1323− t13t23)] (20.35)

−z5[(t12123− t12t123) + · · ·] − · · ·

The symmetrically arranged 3-disk pinball cycle expan-
sion of the Euler product (20.2) (see table 15.5 and fig-
ure 9.5) is given by:

1/ζ = (1− z2t12)3(1− z3t123)2(1− z4t1213)3

(1− z5t12123)6(1− z6t121213)6

(1− z6t121323)3 . . . (20.36)

= 1− 3z2 t12 − 2z3 t123− 3z4 (t1213− t212)

−6z5 (t12123− t12t123)

−z6 (6 t121213+ 3 t121323+ t312 − 9 t12t1213− t2123)

−6z7 (t1212123+ t1212313+ t1213123+ t212t123

−3 t12t12123− t123t1213)

−3z8 (2 t12121213+ t12121313+ 2 t12121323

+2 t12123123+ 2 t12123213+ t12132123

+ 3 t212t1213+ t12t
2
123− 6 t12t121213

− 3 t12t121323− 4 t123t12123− t21213) − · · ·

Remark 20.7 Unsymmetrized cycle expansions.
The above 3-disk cycle expansions might be useful for
cross-checking purposes, but, as we shall see in chap-
ter 21, they are not recommended for actual computa-
tions, as the factorized zeta functions yield much better
convergence.

20.9. 4–disk unfactorized dynamical zeta function cycle
expansions. For the symmetrically arranged 4-disk
pinball the symmetry group is C4v, of order 8. The de-
generate cycles can have multiplicities 2, 4 or 8 (see ta-
ble 15.3):

1/ζ = (1− z2t12)
4(1− z2t13)

2(1− z3t123)
8

(1− z4t1213)8(1− z4t1214)4(1− z4t1234)2

(1− z4t1243)
4(1− z5t12123)

8(1− z5t12124)
8

(1− z5t12134)8(1− z5t12143)8

(1− z5t12313)
8(1− z5t12413)

8 · · · (20.37)

and the cycle expansion is given by

1/ζ = 1− z2(4 t12+ 2 t13) − 8z3 t123

−z4(8 t1213+ 4 t1214+ 2 t1234+ 4 t1243

−6 t212− t213 − 8 t12t13)

−8z5(t12123+ t12124+ t12134+ t12143+ t12313

+t12413− 4 t12t123− 2 t13t123)

−4z6(2S 8 + S 4 + t312 + 3 t212 t13 + t12t
2
13

−8 t12t1213− 4 t12t1214

−2 t12t1234− 4 t12t1243

−4 t13t1213− 2 t13t1214− t13t1234

−2 t13t1243− 7 t2123) − · · ·

where in the coefficient to z6 the abbreviationsS 8 and
S 4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4, re-
spectively; the orbits are listed in table 15.5.

20.10. Tail resummations. A simple illustration of such
tail resummation is theζ function for the Ulam map
(11.5) for which the cycle structure is exceptionally sim-
ple: the eigenvalue of thex0 = 0 fixed point is 4, while
the eigenvalue of any othern-cycle is±2n. Typical cycle
weights used in thermodynamic averaging aret0 = 4τz,
t1 = t = 2τz, tp = tnp for p , 0. The simplicity of the cy-
cle eigenvalues enables us to evaluate theζ function by
a simple trick: we note that if the value of anyn-cycle
eigenvalue weretn, (19.21) would yield 1/ζ = 1 − 2t.
There is only one cycle, thex0 fixed point, that has a
different weight (1− t0), so we factor it out, multiply the
rest by (1− t)/(1− t), and obtain a rationalζ function

1/ζ(z) =
(1− 2t)(1− t0)

(1− t)
(20.38)

Consider how we would have detected the pole atz =
1/t without the above trick. As the0 fixed point is iso-
lated in its stability, we would have kept the factor (1−t0)
in (20.7) unexpanded, and noted that all curvature com-
binations in (20.7) which include thet0 factor are unbal-
anced, so that the cycle expansion is an infinite series:

∏

p

(

1− tp

)

= (1−t0)(1−t−t2−t3−t4−. . .)(20.39)

(we shall return to such infinite series in chapter 24).
The geometric series in the brackets sums up to (20.38).
Had we expanded the (1− t0) factor, we would have
noted that the ratio of the successive curvatures is ex-
actly cn+1/cn = t; summing we would recover the ratio-
nal ζ function (20.38).

20.11. Escape rate for the R̈ossler flow. (continuation of
exercise 13.10) Try to compute the escape rate for the
Rössler flow (2.17) using the method of cycle expan-
sions. The answer should be zero, as nothing escapes.
Ideally you should already have computed the cycles
and have an approximate grammar, but failing that you
can cheat a bit and peak into exercise 13.10.
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20.12. State space volume contraction, recycled. (contin-
uation of exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.3 (d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluated
on a given short cycle, the average is crisp and arbi-
trarily accurate. Recompute〈∂ · v〉 by means of cycle
expansion, study its convergence. 1/t convergence of
mindless time-averaging is now replaced by exponential
convergence in the cycle length.

20.13. Ulam map is conjugate to the tent map. (contin-
uation of exercise 20.3/ repeat of exercise 6.4 and ex-
ercise 13.2; requires real smarts, unless you look it up)
Explain the magically simple form of cycle stabilities of
exercise 20.3 by constructing an explicit smooth conju-

gacy (6.1)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

20.14. Continuous vs. discrete mean return time. Show
that the expectation value〈a〉 time-averaged over con-
tinuous time flow is related to the corresponding average
〈a〉dscrmeasured in discrete time (e.g. , Poincaré section
returns) by (20.26):

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ . (20.40)

(Hint: consider the form of their cycle expansions.) The
mean discrete period〈n〉ζ averaged over cycles, and the
mean continuous time period〈T〉ζ need to be evalu-
ated only once, thereafter one can compute either〈a〉
or 〈a〉dscr, whichever is more convenient.
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