
Appendix M

Noise/quantum corrections

(G. Vattay)

T G   is only a good approximation to the quantum
mechanics when~ is small. Can we improve the trace formula by adding
quantum corrections to the semiclassical terms? A similar question can

be posed when the classical deterministic dynamics is disturbed by some way
Gaussian white noise with strengthD. The deterministic dynamics then can be
considered as the weak noise limitD → 0. The effect of the noise can be taken
into account by adding noise corrections to the classical trace formula. A formal
analogy exists between the noise and the quantum problem. This analogy allows
us to treat the noise and quantum corrections together.

M.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more con-
venient to visualize the results there. Where it is necessary we will discuss the
difference between noise and quantum cases.

First, we would like to introduce periodic orbits from an unusual point of
view, which can convince you, that chaotic and integrable systems are in fact
not as different from each other, than we might think. If we start orbitsin the
neighborhood of a periodic orbit and look at the picture on the Poincaré section
we can see a regular picture. For stable periodic orbits the points form small
ellipses around the center and for unstable orbits they formhyperbolas (See Fig.
M.1).

Figure M.1: Poincaré section close to a stable and an unstable periodicorbit
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The motion close to a periodic orbits is regular in both cases. This is due to
the fact, that we can linearize the Hamiltonian close to an orbit, and linear systems
are always integrable. The linearized Hamilton’s equations close to the periodic
orbit (qp(t) + q, pp(t) + p) look like

q̇ = +∂2
pqH(qp(t), pp(t))q+ ∂2

ppH(qp(t), pp(t))p, (M.1)

ṗ = −∂2
qqH(qp(t), pp(t))q− ∂2

qpH(qp(t), pp(t))p, (M.2)

where the new coordinatesq andp are relative to a periodic orbit. This linearized
equation can be regarded as ad dimensional oscillator with time periodic frequen-
cies. These equations are representing the equation of motion in a redundant way
since more than one combination ofq, p and t determines the same point of the
phase space. This can be cured by an extra restriction on the variables, a con-
straint the variables should fulfill. This constraint can bederived from the time
independence or stationarity of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (M.3)

Using the linearized form of this constraint we can eliminate one of the linearized
equations. It is very useful, although technically difficult, to do one more transfor-
mation and to introduce a coordinate, which is parallel withthe Hamiltonian flow
(x‖) and others which are orthogonal. In the orthogonal directions we again get
linear equations. These equations withx‖ dependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillators in the new coordinates
with constant frequencies. This result has first been derived by Poincaré for equi-
librium points and later it was extended for periodic orbitsby V.I. Arnol’d and
co-workers. In the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2

p2
‖ + U(x‖) +

d−1
∑

n=1

1
2

(p2
n ± ω2

nx2
n), (M.4)

which is the general form of the Hamiltonian in the neighborhood of a periodic
orbit. The± sign denotes, that for stable modes the oscillator potential is posi-
tive while for an unstable mode it is negative. For the unstable modes,ω is the
Lyapunov exponent of the orbit

ωn = lnΛp,n/Tp, (M.5)

whereΛp,n is the expanding eigenvalue of the Jacobi matrix. For the stable direc-
tions the eigenvalues of the Jacobi matrix are connected withω as

Λp,n = e−iωnTp. (M.6)
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The Hamiltonian close to the periodic orbit is integrable and can be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld quantization for
the oscillators gives the energy spectra

En = ~ωn

(

jn +
1
2

)

for stable modes, (M.7)

En = −i~ωn

(

jn +
1
2

)

for unstable modes,

where jn = 0, 1, .... It is convenient to introduce the indexsn = 1 for stable and
sn = −i for unstable directions. The parallel mode can be quantizedimplicitly
trough the classical action function of the mode:

1
2π

∮

p‖dx‖ =
1
2π

S‖(Em) = ~
(

m+
mpπ

2

)

, (M.8)

wheremp is the topological index of the motion in the parallel direction. This
latter condition can be rewritten by a very useful trick intothe equivalent form

(1− eiS‖(Em)/~−impπ/2) = 0. (M.9)

The eigen-energies of a semiclassically quantized periodic orbit are all the possi-
ble energies

E = Em +

d−1
∑

n=1

En. (M.10)

This relation allows us to change in (M.9)Em with the full energy minus the
oscillator energiesEm = E−

∑

n En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

∆p(E) =
∏

j1,..., jd−1

(1− eiS‖(E−
∑

n ~snωn( jn+1/2))/~−impπ/2). (M.11)

If we Taylor expand the action aroundE to first order

S‖(E + ǫ) ≈ S‖(E) + T(E)ǫ, (M.12)

whereT(E) is the period of the orbit, and use the relations ofω and the eigenvalues
of the Jacobi matrix, we get the expression of the Selberg product

∆p(E) =
∏

j1,..., jd−1

















1− eiSp(E)/~−impπ/2

∏

nΛ
(1/2+ jn)
p,n

















. (M.13)
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If we use the right convention for the square root we get exactly thed dimensional
expression of the Selberg product formula we derived from the Gutzwiller trace
formula in ? . Just here we derived it in a different way! The function∆p(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a function
which is zero, whenever the energy coincides with the BS quantized energy of one
of the periodic orbits, we have to take the product of these determinants:

∆(E) =
∏

p

∆p(E). (M.14)

The miracle of the semiclassical zeta function is, that if wetake infinitely many
periodic orbits, the infinite product will have zeroes not atthese energies, but close
to the eigen=energies of the whole system !

So we learned, that both stable and unstable orbits are integrable systems and
can be individually quantized semiclassically by the old Bohr-Sommerfeld rules.
So we almost completed the program of Sommerfeld to quantizegeneral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximation (M.12). Sommerfeld
would never do this ! At that point we loose some important precision compared
to the BS rules and we get somewhat worse results than a semiclassical formula
is able to do. We will come back to this point later when we discuss the quantum
corrections.To complete the program of full scale Bohr-Sommerfeld quantization
of chaotic systems we have to go beyond the linear approximation around the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel andnormal coordi-
nates can be written as the ‘harmonic’ plus ‘anaharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (M.15)

where the anaharmonic part can be written as a sum of homogeneous polynomials
of xn andpn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∑

k=3

Hk(x‖, xn, pn) (M.16)

Hk(x‖, xn, pn) =
∑

∑

ln+mn=k

Hk
ln,mn

(x‖)x
ln
n pmn

n (M.17)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view, since
it is non integrable. However, Birkhoff in 19273 introduced the concept of nor-
mal form, which helps us out from this problem by giving successive integrable
approximation to a non-integrable problem. Let’s learn a bit more about it!

3It is really a pity, that in 1926 Schrödinger introduced thewave mechanics and blocked the
development of Sommerfeld’s concept.
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M.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium point of
a Hamiltonian. Equilibrium point is where the potential hasa minimum∇U = 0
and small perturbations lead to oscillatory motion. We can linearize the prob-
lem and by introducing normal coordinatesxn and conjugate momentumspn the
quadratic part of the Hamiltonian will be a set of oscillators

H0(xn, pn) =
d

∑

n=1

1
2

(p2
n + ω

2
nx2

n). (M.18)

The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (M.19)

whereHA is the anaharmonic part of the potential in the new coordinates. The
anaharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =
∞
∑

j=3

H j(xn, pn), (M.20)

H j(xn, pn) =
∑

|l|+|m|= j

h j
lmxl pm, (M.21)

whereh j
lm are real constants and we used the multi-indicesl := (l1, ..., ld) with

definitions

|l| =
∑

ln, x
l := xl1

1 xl2
2 ...x

ld
d .

Birkhoff showed, that that by successive canonical transformationsone can in-
troduce new momentums and coordinates such, that in the new coordinates the
anaharmonic part of the Hamiltonian up to any givenn polynomial will depend
only on the variable combination

τn =
1
2

(p2
n + ω

2
nx2

n), (M.22)

wherexn and pn are the new coordinates and momentums, butωn is the original
frequency. This is called the Birkhoff normal form of degreeN:

H(xn, pn) =
N

∑

j=2

H j(τ1, ..., τd), (M.23)
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whereH j are homogeneous degreej polynomials ofτ-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the remainder, which consists of
polynomials of degree higher thanN. We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find a setof integersmn such
that the linear combination

d
∑

n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in1966 and we
call the object Birkhoff-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized and canbe carried out up to
high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to degree
N. For a non-integrable system the high order terms behave quite wildly and the
series is not convergent. Therefore we have to use this tool carefully. Now, we
learned how to approximate a non-integrable system with a sequence of integrable
systems and we can go back and carry out the BS quantization.

M.3 Bohr-Sommerfeld quantization of periodic orbits

There is some difference between equilibrium points and periodic orbits. The
Hamiltonian (M.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an oscillator Hamiltonian, but this
would make the problem extremely difficult. Therefore, we carry out the canonical
transformations dictated by the Birkhoff procedure only in the orthogonal direc-
tions. Thex‖ coordinate plays the role of a parameter. After the transformation up
to orderN the Hamiltonian (M.17) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1)+
N

∑

j=2

U j(x‖, τ1, ..., τd−1),(M.24)

whereU j is a jth order homogeneous polynomial ofτ-s with x‖ dependent co-
efficients. The orthogonal part can be BS quantized by quantizing the individual
oscillators, replacingτ-s as we did in (M.8). This leads to a one dimensional
effective potential indexed byj1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1
2

p2
‖ + U(x‖) +

d−1
∑

n=1

~snωn( jn + 1/2)+ (M.25)

+

N
∑

k=2

Uk(x‖, ~s1ω1( j1 + 1/2), ~s2ω2( j2 + 1/2), ..., ~sd−1ωd−1( jd−1 + 1/2)),
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where jn can be any non-negative integer. The term with indexk is proportional
with ~k due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given set ofj-s

Sp(E, j1, ..., jd−1) =
∮

p‖dx‖ = (M.26)

=

∮

dx‖

√

√

√

E −
d−1
∑

n=1

~snωn( jn + 1/2)− U(x‖, j1, ..., jd−1) = 2π~(m+mp/2),

whereU contains all thex‖ dependent terms of the Hamiltonian. The spectral
determinant becomes

∆p(E) =
∏

j1,..., jd−1

(1− eiSp(E, j1,..., jd−1)/~−mpπ/2). (M.27)

This expression completes the Sommerfeld method and tells us how to quan-
tize chaotic or general Hamiltonian systems. Unfortunately, quantum mechanics
postponed this nice formula until our book.

This formula has been derived with the help of the semiclassical Bohr-Sommerfeld
quantization rule and the classical normal form theory. Indeed, if we expandSp

in the exponent in the powers of~

Sp =

N
∑

k=0

~
kSk,

we get more than just a constant and a linear term. This formula already gives
us corrections to the semiclassical zeta function in all powers of ~. There is a
very attracting feature of this semiclassical expansion.~ in Sp shows up only
in the combination~snωn( jn + 1/2). A term proportional with~k can only be a
homogeneous expression of the oscillator energiessnωn( jn + 1/2). For example
in two dimensions there is only one possibility of the functional form of the order
k term

Sk = ck(E) · ωk
n( j + 1/2)k,

whereck(E) is the only function to be determined.

The corrections derived sofar aredoublysemiclassical, since they give semi-
classical corrections to the semiclassical approximation. What can quantum me-
chanics add to this ? As we have stressed in the previous section, the exact quan-
tum mechanics is not invariant under canonical transformations. In other context,
this phenomenon is called the operator ordering problem. Since the operators ˆx
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and p̂ do not commute, we run into problems, when we would like to write down
operators for classical quantities likex2p2. On the classical level the four possible
orderingsxpxp, ppxx, pxpxand xxppare equivalent, but they are different in
the quantum case. The expression for the energy (M.26) is notexact. We have to
go back to the level of the Schrödinger equation if we would like to get the exact
expression.

M.4 Quantum calculation of ~ corrections

The Gutzwiller trace formula has originally been derived from the saddle point
approximation of the Feynman path integral form of the propagator. The exact
trace is a path-sum for all closed paths of the system

TrG(x, x′, t) =
∫

dxG(x, x, t) =
∫

DxeiS(x,t)/~, (M.28)

where
∫

Dx denotes the discretization and summation for all paths of time length
t in the limit of the infinite refinement andS(x, t) is the classical action calculated
along the path. The trace in the saddle point calculation is asum for classical
periodic orbits and zero length orbits, since these are the extrema of the action
δS(x, t) = 0 for closed paths:

TrG(x, x′, t) = g0(t) +
∑

p∈PO

∫

DξpeiS(ξp+xp(t),t)/~, (M.29)

whereg0(t) is the zero length orbit contribution. We introduced the new coordi-
nateξp with respect to the periodic orbitxp(t), x = ξp + xp(t). Now, each path
sum

∫

Dξp is computed in the vicinity of periodic orbits. Since the saddle points
are taken in the configuration space, only spatially distinct periodic orbits, the so
called prime periodic orbits, appear in the summation. Sofar nothing new has
been invented. If we continue the standard textbook calculation scheme, we have
to Taylor expand the action inξp and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Then we can compute the
path integrals with the help of Gaussian integrals. The key point here is that we
don’t compute the path sum directly. We use the correspondence between path
integrals and partial differential equations. This idea comes from Maslov [M.5]
and a good summary is in ref. [M.6]. We search for that Schrödinger equation,
which leads to the path sum

∫

DξpeiS(ξp+xp(t),t)/~, (M.30)
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where the action around the periodic orbit is in a multi-dimensional Taylor ex-
panded form:

S(x, t) =
∞
∑

n

sn(t)(x− xp(t))n/n!. (M.31)

The symboln = (n1, n2, ..., nd) denotes the multi index ind dimensions,n! =
∏d

i=1 ni ! the multi factorial and (x − xp(t))n =
∏d

i=1(xi − xp,i(t))ni , respectively.
The expansion coefficients of the action can be determined from the Hamilton-
Jacobi equation

∂tS +
1
2

(∇S)2 + U = 0 , (M.32)

in which the potential is expanded in a multidimensional Taylor series around the
orbit

U(x) =
∑

n

un(t)(x− xp(t))n/n!. (M.33)

The Schrödinger equation

i~∂tψ = Ĥψ = −~
2

2
∆ψ + Uψ, (M.34)

with this potential also can be expanded around the periodicorbit. Using the WKB
ansatz

ψ = ϕeiS/~, (M.35)

we can construct a Schrödinger equation corresponding to agiven order of the
Taylor expansion of the classical action. The Schrödingerequation induces the
Hamilton-Jacobi equation (M.32) for the phase and the transport equation of Maslov
and Fjedoriuk [M.7] for the amplitude:

∂tϕ + ∇ϕ∇S +
1
2
ϕ∆S −

i~
2
∆ϕ = 0. (M.36)

This is the partial differential equation, solved in the neighborhood of a peri-
odic orbit with the expanded action (M.31), which belongs tothe local path-sum
(M.30).

If we know the Green’s functionGp(ξ, ξ′, t) corresponding to the local equa-
tion (M.36), then the local path sum can be converted back into a trace:

∫

Dξpei/~
∑

n Sn(xp(t),t)ξn
p/n! = TrGp(ξ, ξ′, t). (M.37)
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The saddle point expansion of the trace in terms of local traces then becomes

TrG(x, x′, t) = TrGW(x, x′, t) +
∑

p

TrGp(ξ, ξ′, t), (M.38)

whereGW(x, x′, t) denotes formally the Green’s function expanded around zero
length (non moving) periodic orbits, known as the Weyl term [M.8]. Each Green’s
function can be Fourier-Laplace transformed independently and by definition we
get in the energy domain:

TrG(x, x′,E) = g0(E) +
∑

p

TrGp(ξ, ξ′,E). (M.39)

Note that we do not need here to take further saddle points in time, since we
are dealing with exact time and energy domain Green’s functions. indexGreen’s
function!energy dependent

The spectral determinant is a function which has zeroes at the eigen-energies
En of the Hamilton operator̂H. Formally it is

∆(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the energy
domain Green’s function:

TrG(x, x′,E) =
∑

n

1
E − En

=
d

dE
log∆(E). (M.40)

We can define the spectral determinant∆p(E) also for the local operators and we
can write

TrGp(ξ, ξ′,E) =
d

dE
log∆p(E). (M.41)

Using (M.39) we can express the full spectral determinant asa product for the
sub-determinants

∆(E) = eW(E)
∏

p

∆p(E),

whereW(E) =
∫ E

g0(E′)dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done easily. We
have to consider the stationary eigenvalue problem of the local Schrödinger prob-
lem and keep in mind, that we are in a coordinate system movingtogether with
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the periodic orbit. If the classical energy of the periodic orbit coincides with an
eigen-energyE of the local Schrödinger equation around the periodic orbit, then
the corresponding stationary eigenfunction fulfills

ψp(ξ, t + Tp) =
∫

dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~ψp(ξ, t), (M.42)

whereTp is the period of the prime orbitp. If the classical energy of the periodic
orbit is not an eigen=energy of the local Schrödinger equation, the non-stationary
eigenfunctions fulfill

ψl
p(ξ, t +Tp) =

∫

dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~λl
p(E)ψl

p(t),(M.43)

wherel = (l1, l2, ...) is a multi-index of the possible quantum numbers of the local
Schrödinger equation. If the eigenvaluesλl

p(E) are known the local functional
determinant can be written as

∆p(E) =
∏

l

(1− λl
p(E)), (M.44)

since∆p(E) is zero at the eigen=energies of the local Schrödinger problem. We
can insert the ansatz (M.35) and reformulate (M.43) as

e
i
~
S(t+Tp)ϕl

p(t + Tp) = e−iETp/~λl
p(E)e

i
~
S(t)ϕl

p(t). (M.45)

The phase change is given by the action integral for one period S(t + Tp)−S(t) =
∫ Tp

0
L(t)dt. Using this and the identity for the actionSp(E) of the periodic orbit

Sp(E) =
∮

pdq=
∫ Tp

0
L(t)dt + ETp, (M.46)

we get

e
i
~
Sp(E)ϕl

p(t + Tp) = λl
p(E)ϕl

p(t). (M.47)

Introducing the eigen-equation for the amplitude

ϕl
p(t + Tp) = Rl,p(E)ϕl

p(t), (M.48)

the local spectral determinant can be expressed as a productfor the quantum num-
bers of the local problem:

∆p(E) =
∏

l

(1− Rl,p(E)e
i
~
Sp(E)). (M.49)
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Since~ is a small parameter we can develop a perturbation series forthe am-
plitudesϕl

p(t) =
∑∞

m=0

(

i~
2

)m
ϕ

l(m)
p (t) which can be inserted into the equation (M.36)

and we get an iterative scheme starting with the semiclassical solutionϕl(0):

∂tϕ
l(0) + ∇ϕl(0)∇S +

1
2
ϕl(0)∆S = 0, (M.50)

∂tϕ
l(m+1) + ∇ϕl(m+1)∇S +

1
2
ϕl(m+1)∆S = ∆ϕl(m).

The eigenvalue can also be expanded in powers ofi~/2:

Rl,p(E) = exp















∞
∑

m=0

(

i~
2

)m

C(m)
l,p















(M.51)

= exp(C(0)
l,p) {1 +

i~
2

C(1)
l,p +

(

i~
2

)2 (

1
2

(C(1)
l,p)2 +C(2)

l,p

)

+ ... . (M.52)

The eigenvalue equation (M.48) in~ expanded form reads as

ϕ
l(0)
p (t + Tp) = exp(C(0)

l,p)ϕl(0)
p (t),

ϕ
l(1)
p (t + Tp) = exp(C(0)

l,p)[ϕl(1)
p (t) +C(1)

l,pϕ
l(0)
p (t)],

ϕ
l(2)
p (t + Tp) = exp(C(0)

l,p)[ϕl(2)
p (t) +C(1)

l,pϕ
l(1)
p (t) + (C(2)

l,p +
1
2

(C(1)
l,p)2)ϕl(0)

p (t)],(M.53)

and so on. These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for allt.

It is very convenient to expand the functionsϕl(m)
p (x, t) in Taylor series around

the periodic orbit and to solve the equations (M.51) in this basis [M.10], since
only a couple of coefficients should be computed to derive the first corrections.
This technical part we are going to publish elsewhere [M.9].One can derive in
general the zero order termC(0)

l = iπνp +
∑d−1

i=1

(

l i + 1
2

)

up,i , whereup,i = logΛp,i

are the logarithms of the eigenvalues of the monodromy matrix Mp andνp is the
topological index of the periodic orbit. The first correction is given by the integral

C(1)
l,p =

∫ Tp

0
dt
∆ϕ

l(0)
p (t)

ϕ
l(0)
p (t)

.

When the theory is applied for billiard systems, the wave function should
fulfill the Dirichlet boundary condition on hard walls, e.g.it should vanish on the
wall. The wave function determined from (M.36) behaves discontinuously when
the trajectoryxp(t) hits the wall. For the simplicity we consider a two dimensional
billiard system here. The wave function on the wall before the bounce (t−0 ) is
given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0)eiS(x,y(x),t−0)/~, (M.54)
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wherey(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functionon the wall after the
bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS(x,y(x),t+0)/~. (M.55)

The sum of these wave functions should vanish on the hard wall. This implies that
the incoming and the outgoing amplitudes and the phases are related as

S(x, y(x), t−0) = S(x, y(x), t+0), (M.56)

and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (M.57)

The minus sign can be interpreted as the topological phase coming from the hard
wall.

Now we can reexpress the spectral determinant with the localeigenvalues:

∆(E) = eW(E)
∏

p

∏

l

(1− Rl,p(E)e
i
~
Sp(E)). (M.58)

This expression is the quantum generalization of the semiclassical Selberg-product
formula [M.11]. A similar decomposition has been found for quantum Baker
maps in ref. [M.12]. The functions

ζ−1
l (E) =

∏

p

(1− Rl,p(E)e
i
~
Sp(E)) (M.59)

are the generalizations of the Ruelle type [34.23] zeta functions. The trace formula
can be recovered from (M.40):

TrG(E) = g0(E)+
1
i~

∑

p,l

(Tp(E)− i~
d logRl,p(E)

dE
)

Rl,p(E)e
i
~
Sp(E)

1− Rl,p(E)e
i
~
Sp(E)

.(M.60)

We can rewrite the denominator as a sum of a geometric series and we get

TrG(E) = g0(E) +
1
i~

∑

p,r,l

(Tp(E) − i~
d logRl,p(E)

dE
)(Rl,p(E))re

i
~
rSp(E).(M.61)

The new indexr can be interpreted as the repetition number of the prime orbit
p. This expression is the generalization of the semiclassical trace formula for
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the exact quantum mechanics. We would like to stress here, that the perturbation
calculus introduced above is just one way to compute the eigenvalues of the local
Schrödinger problems. Non-perturbative methods can be used to calculate the
local eigenvalues for stable, unstable and marginal orbits. Therefore, our trace
formula is not limited to integrable or hyperbolic systems,it can describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-leading

term−i~d logRl,p(E)/dE and using the semiclassical eigenvalueR(0)
l,p(E) = eCl(0)

p =

e−iνpπe−
∑

i (li+1/2)up,i . Summation for the indexesl i yields the celebrated semiclas-
sical amplitude

∑

l

(R(0)
l,p(E))r =

e−ir νpπ

| det (1 − Mr
p) |1/2

. (M.62)

To have an impression about the improvement caused by the quantum cor-
rections we have developed a numerical code [M.13] which calculates the first
correctionC(1)

p,l for general two dimensional billiard systems . The first correction
depends only on some basic data of the periodic orbit such as the lengths of the
free flights between bounces, the angles of incidence and thefirst three Taylor ex-
pansion coefficientsY2,Y3,Y4 of the wall in the point of incidence. To check that
our new local method gives the same result as the direct calculation of the Feyn-
man integral, we computed the first~ correctionC(1)

p,0 for the periodic orbits of the
3-disk scattering system [M.14] where the quantum corrections have been We
have found agreement up to the fifth decimal digit, while our method generates
these numbers with any desired precision. Unfortunately, the l , 0 coefficients
cannot be compared to ref. [M.15], since thel dependence was not realized there
due to the lack of general formulas (M.58) and (M.59). However, the l depen-
dence can be checked on the 2 disk scattering system [M.16]. On the standard
example [M.14, M.15, M.16, M.18], when the distance of the centers (R) is 6
times the disk radius (a), we got

C(1)
l =

1
√

2E
(−0.625l3 − 0.3125l2 + 1.4375l + 0.625).

For l = 0 and 1 this has been confirmed by A. Wirzba [M.17], who was ableto
computeC(1)

0 from his exact quantum calculation. Our method makes it possi-
ble to utilize the symmetry reduction of Cvitanović and Eckhardt and to repeat
the fundamental domain cycle expansion calculation of ref.[M.18] with the first
quantum correction. We computed the correction to the leading 226 prime peri-
odic orbits with 10 or less bounces in the fundamental domain. Table I. shows the
numerical values of the exact quantum calculation [M.16], the semiclassical cycle
expansion [M.10] and our corrected calculation. One can see, that the error of the
corrected calculation vs. the error of the semiclassical calculation decreases with
the wave-number. Besides the improved results, a fast convergence up to six dec-
imal digits can be observed, which is just three decimal digits in the full domain
calculation [M.15].
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Figure M.2: A typical bounce on a billiard wall. The wall can be characterized by the local
expansiony(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ....

Table M.1: Real part of the resonances (Rek) of the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versus exact quantum calculation and the error of
the semiclassicalδSC divided by the error of the first correctionδCorr . The magnitude of the error in
the imaginary part of the resonances remains unchanged.

Quantum Semiclassical First correction δSC/δCorr
0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0
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