
Appendix T

Projects

Y    to work through the essential steps in a project that combines
the techniques learned in the course with some application of interest to
you for other reasons. It is OK to share computer programs andsuch, but

otherwise each project should be distinct, not a group project. The essential steps
are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct transition graphs if appropri-
ate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like the
escape rate,

2. or check the flow conservation, compute something like theLyapunov
exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if the
system is closed

3. implement desymmetrization, factorization of zeta functions, if dy-
namics possesses a discrete symmetry
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4. compute a quantity like the escape rate as a leading zero ofa spectral
determinant or a dynamical zeta function.

5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conductance

7. compute some number of the classical and/or quantum eigenvalues, if
appropriate
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T.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter 25, tracking of a globally diffusing orbit by
the associated confined orbit restricted to the fundamentalcell, we consider a class
of simple 1− dimensional dynamical systems, chains of piecewise linear maps,
where all transport coefficients can be evaluated analytically. The translational
symmetry (25.10) relates the unbounded dynamics on the realline to the dynamics
restricted to a “fundamental cell” - in the present example the unit interval curled
up into a circle. An example of such map is the sawtooth map

f̂ (x) =



















Λx x ∈ [0, 1/4+ 1/4Λ]
−Λx + (Λ + 1)/2 x ∈ [1/4+ 1/4Λ, 3/4− 1/4Λ]
Λx + (1− Λ) x ∈ [3/4− 1/4Λ, 1]

. (T.1)

The corresponding circle mapf (x) is obtained by modulo the integer part. The
elementary cell mapf (x) is sketched in figure T.1. The map has the symmetry
property

f̂ (x̂) = − f̂ (−x̂) , (T.2)

so that the dynamics has no drift, and all odd derivatives of the generating function
(25.3) with respect toβ evaluated atβ = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.3)

The diffusion constant formula for 1− dimensional maps is

D =
1
2

〈

n̂2
〉

ζ

〈n〉ζ
(T.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1
ζ(0, z)

∣

∣

∣

∣

∣

z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.5)

the mean cycle displacement squared by

〈

n̂2
〉

ζ
=
∂2

∂β2

1
ζ(β, 1)

∣

∣

∣

∣

∣

∣

β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (T.6)
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Figure T.1: (a)-(f) The sawtooth map (T.1) for the
6 values of parametera for which the folding point
of the map aligns with the endpoint of one of the 7
intervals and yields a finite Markov partition (from
ref. [T.1]). The corresponding transition graphs
are given in figure T.2.

and the sum is over all distinct non-repeating combinationsof prime cycles. Most
of results expected in this projects require no more than pencil and paper compu-
tations.

Implementing the symmetry factorization (25.35) is convenient, but not es-
sential for this project, so if you find sect. 21.1.1 too long aread, skip the sym-
metrization.

T.1.1 The full shift

Take the map (T.1) and extend it to the real line. As in exampleof figure 25.3,
denote bya the critical value of the map (the maximum height in the unit cell)

a = f̂ (
1
4
+

1
4Λ

) =
Λ + 1

4
. (T.7)
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Describe the symbolic dynamics that you obtain whena is an integer, and derive
the formula for the diffusion constant:

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a − 1, a ∈ Z . (T.8)

If you are going strong, derive also the fromula for the half-integera = (2k+1)/2,
Λ = 4a + 1 case and email it to DasBuch@nbi.dk. You will need to partitionM2

into the left and right half,M2 =M8 ∪M9, as in the derivation of (25.21). exercise 25.1

T.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mappedonto unions of intervals. Consider for example the case in which
Λ = 4a − 1, where 1≤ a ≤ 2. A first partition is constructed from seven intervals,
which we label{M1,M4,M5,M2,M6,M7,M3}, with the alphabet ordered as
the intervals are laid out along the unit interval. In general the critical valuea will
not correspond to an interval border, but now we choosea such that the critical
point is mapped onto the right border ofM1, as in figure T.1 (a). The critical value
of f () is f (Λ+1

4Λ ) = a − 1 = (Λ − 3)/4. Equating this with the right border ofM1,
x = 1/Λ, we obtain a quadratic equation with the expanding solutionΛ = 4. We
have thatf (M4) = f (M5) =M1, so the transition matrix (14.1) is given by

φ′ = Tφ =

















































1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1
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(T.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (T.9) on the computer, but, as we saw inchapter 14, the
transition graph figure T.2 (b) corresponding to figure T.1 (a) offers more insight
into the dynamics. The dynamical zeta function

1/ζ = 1− (t1 + t2 + t3) − 2(t14+ t37)

1/ζ = 1− 3
z
Λ
− 4 coshβ

z2

Λ2
. (T.10)

follows from the loop expansion (15.15) of sect. 15.3.
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Figure T.2: (a) The sawtooth map (T.1) partition
tree for figure T.1 (a); while intervalsM1,M2,M3

map onto the whole unit interval,f (M1) =
f (M2) = f (M3) = M, intervalsM4,M5 map
ontoM1 only, f (M4) = f (M5) = M1, and sim-
ilarly for intervalsM6,M7. An initial point start-
ing out in the intervalM1, M2 or M3 can land
anywhere on the unit interval, so the subtrees orig-
inating from the corresponding nodes on the parti-
tion three are similar to the whole tree and can be
identified (as, for example, in figure 14.5), yield-
ing (b) the transition graph for the Markov parti-
tion of figure T.1 (a). (c) the transition graph in the
compact notation of (25.26). (a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

The material flow conservation sect. 22.3 and the symmetry factorization (25.35)
yield

0 =
1

ζ(0, 1)
=

(

1+
1
Λ

) (

1− 4
Λ

)

which indeed is satisfied by the given value ofΛ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dynamical
zeta function, and use the 1/ζ(0, 1) = 0 condition to fixΛ. For more complicated
transition matrices the factorization (25.35) is very helpful in reducing the order
of the polynomial condition that fixesΛ.

The diffusion constant follows from (25.36) and (T.4)

〈n〉ζ = −
(

1+
1
Λ

) (

− 4
Λ

)

,
〈

n̂2
〉

ζ
=

4
Λ2

D =
1
2

1
Λ + 1

=
1
10

Think up other non-integer values of the parameter for whichthe symbolic dy-
namics is given in terms of Markov partitions: in particularconsider the cases
illustrated in figure T.1 and determine for what value of the parametera each of
them is realized. Work out the transition graph, symmetrization factorization and
the diffusion constant, and check the material flow conservation foreach case. De-
rive the diffusion constants listed in table T.1. It is not clear why the final answers
tend to be so simple. Numerically, the case of figure T.1 (c) appears to yield the
maximal diffusion constant. Does it? Is there an argument that it should be so?

The seven cases considered here (see table T.1, figure T.1 and(T.8)) are the
7 simplest complete Markov partitions, the criterion beingthat the critical points
map onto partition boundary points. This is, for example, what happens for uni-
modal tent map; if the critical point is preperiodic to an unstable cycle, the gram-
mar is complete. The simplest example is the case in which thetent map critical
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figure T.1 Λ D
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Table T.1: The diffusion constant as function of the slopeΛ for thea = 1, 2 values of (T.8)
and the 6 Markov partitions of figure T.1

point is preperiodic to a unimodal map 3-cycle, in which casethe grammar is of
golden mean type, with00 substring prohibited (see figure 14.5). In case at
hand, the “critical” point is the junction of branches 4 and 5(symmetry automat-
ically takes care of the other critical point, at the junction of branches 6 and 7),
and for the cases considered the critical point maps into theendpoint of each of
the seven branches.

One can fill out parametera axis arbitrarily densely with such points - each of
the 7 primary intervals can be subdivided into 7 intervals obtained by 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on.

T.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈

x̂2
n

〉

. (T.11)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial ˆx and average for long times, or to
use many initial ˆx for shorter times? Or should one fit the distribution of ˆx2 with
a Gaussian and get theD this way? Try to plot dependence ofD onΛ; perhaps
blow up a small region to show that the dependance ofD on the parameterΛ is
fractal. Compare with figure 25.5 and figures in refs. [T.1, T.2, 25.9, 25.8, 25.10].

T.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence ofD on the map parameterΛ is rather unexpected - even though
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for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. An interpretation of this lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (T.1) for
a random “generic” value of the parameterΛ, for exampleΛ = 6. The idea is to
bracket this value ofΛ by the nearby ones, for which higher and higher iterates
of the critical valuea = (Λ + 1)/4 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition,and study
their convergence toward the value ofD for Λ = 6. Judging how difficult such
problem is already for a tent map (see sect. 15.5 and appendixD.1), this is too
ambitious for a week-long exam.
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T.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter 25, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider
in more detail the class of simple 1− dimensional dynamical systems, chains of
piecewise linear maps (25.9). The translational symmetry (25.10) relates the un-
bounded dynamics on the real line to the dynamics restrictedto a “fundamental
cell” - in the present example the unit interval curled up into a circle. The corre-
sponding circle mapf (x) is obtained by modulo the integer part. The elementary
cell map f (x) is sketched in figure 25.3. The map has the symmetry property

f̂ (x̂) = − f̂ (−x̂) , (T.12)

so that the dynamics has no drift, and all odd derivatives of the generating function
(25.3) with respect toβ evaluated atβ = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.13)

The diffusion constant formula for 1− dimensional maps is

D =
1
2

〈

n̂2
〉

ζ

〈n〉ζ
(T.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1
ζ(0, z)

∣

∣

∣

∣

∣

z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.15)

the mean cycle displacement squared by

〈

n̂2
〉

ζ
=
∂2

∂β2

1
ζ(β, 1)

∣

∣

∣

∣

∣

∣

β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (T.16)

and the sum is over all distinct non-repeating combinationsof prime cycles. Most
of results expected in this projects require no more than pencil and paper compu-
tations.

T.2.1 The full shift

Reproduce the formulas of sect. 25.2 for the diffusion constantD for Λ both even
and odd integer.
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figure 25.4 Λ D
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Table T.2: The diffusion constant as function of the slopeΛ for theΛ = 4, 6 values of
(25.20) and the 5 Markov partitions like the one indicated infigure 25.4.

T.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mappedonto unions of intervals.

Start by reproducing the formula (25.28) of sect. 25.2.2 forthe diffusion con-
stantD for the Markov partition, the case where the critical point is mapped onto
the right border ofI1+ .

Think up other non-integer values of the parameterΛ for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the remain-
ing four cases for which the critical point is mapped onto a border of a partition in
one iteration. Work out the transition graph symmetrization factorization and the
diffusion constant, and check the material flow conservation foreach case. Fill in
the diffusion constants missing in table T.2. It is not clear why the final answers
tend to be so simple. What value ofΛ appears to yield the maximal diffusion
constant?

The 7 cases considered here (see table T.2 and figure 25.4) arethe 7 simplest
complete Markov partitions in the 4≤ Λ ≤ 6 interval, the criterion being that the
critical points map onto partition boundary points. In caseat hand, the “critical”
point is the highest point of the left branch of the map (symmetry automatically
takes care of the other critical point, the lowest point of the left branch), and for
the cases considered the critical point maps into the endpoint of each of the seven
branches.

One can fill out parametera axis arbitrarily densely with such points - each of
the 6 primary intervals can be subdivided into 6 intervals obtained by 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on.

T.2.3 Diffusion coefficient, numerically

(optional:)
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Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈

x̂2
n

〉

. (T.17)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial ˆx and average for long times, or to
use many initial ˆx for shorter times? Or should one fit the distribution of ˆx2 with
a Gaussian and get theD this way? Try to plot dependence ofD onΛ; perhaps
blow up a small region to show that the dependance ofD on the parameterΛ is
fractal. Compare with figure 25.5 and figures in refs. [T.1, T.2, 25.9, 25.8, 25.10].

T.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence ofD on the map parameterΛ is rather unexpected - even though
for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. Figure 25.5 takenfrom ref. [25.9]
illustrates the fractal dependence of diffusion constant on the map parameter. An
interpretation of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (25.9) for
a random “generic” value of the parameterΛ, for exampleΛ = 4.5. The idea is
to bracket this value ofΛ by the nearby ones, for which higher and higher iter-
ates of the critical valuea = Λ/2 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition,and study
their convergence toward the value ofD for Λ = 4.5. Judging how difficult such
problem is already for a tent map (see sect. 15.5 and appendixD.1), this is too
ambitious for a week-long exam.
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