Chapter 28

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanovic)

how it afects classical dynamics, and the ways it mimics quantumrdyna

ics. ﬁ)

Why - in a monograph on deterministic and quantum chaos t disgussing
noise? First, in physical settings any dynamics takes pgednst a noisy back-
ground, and whatever prediction we might have, we have tolcterobustness to
noise. Second, as we show in this chapter, to the leading orawise strength,
the semiclassical Hamilton-Jacobi formalism applies takiye stochastic flows
in toto. As classical noisy dynamics is more intuitive tharagtum dynamics,
understanding féects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectiticiure emerges here not
as a deep principle of mechanics, but an artifact of the fepdpproximation to
quanturinoisy dynamics, not respected by higher order correctidig same is
true of semiclassical quantum dynamics; higher correstamnot respect canon-
ical invariance. Third, the variational principle derivedre turns out to be a pow-
erful tool for determining periodic orbits, see chapter 2&d, last but not least,
upon some reflection, the whole enterprize of replacingrdatestic trajectories
by deterministic evolution operators, chapters 16 to 28pesefatally flowed; if we
have given up infinite precision in specifying initial cotidns, why do we alow
ourselves the infinite precision in the specification of atioh laws, i.e., define
the evolution operator by means of the Dirac delta funcign- f(x))? It will be
comforting to learn that the deterministic evolution ogers survive unscathed,
as the leading approximation to the noisy ones in the limiweék noise.

Tms cHAPTER (Which reader can safely skip on the first reading) is aboigeo

We start by deriving the continuity equation for purely detmistic, noiseless
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flow, and then incorporate noise in stagedtudiion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulatioochiastic path integrals.

28.1 Deterministic transport

(E.A. Spiegel and P. Cvitanovi€)

The large body of accrued wisdom on the subject of flows cdlléd dynamics
is about physical flows of media with continuous densities.tli® other hand, the
flows in state spaces of dynamical systems frequently reguore abstract tools.
To sharpen our intuition about those, it is helpful to owdlthe more tangible fluid
dynamical vision.

Consider first the simplest property of a fluid flow callethterial invariant
A material invariantl (x) is a property attached to each pointhat is preserved
by the flow,1(x) = 1(f(x)); for example, at poink(t) = f!(x)) a green particle
(more formally: apassive scalgris embedded into the fluid. AgX) is invariant,
its total time derivative vanishe$(x) = 0. Written in terms of partial derivatives
this is theconservation equatiofor the material invariant

8l +v-al =0. (28.1)

Let thedensityof representative points hg€x,t). The manner in which the flow
redistributesl (X) is governed by a partial fierential equation whose form is rel-
atively simple because the representative points arearaitiated nor destroyed.
This conservation property is expressed in the integrééstant

(9tdep| :—f do fyvipl ,
\Y ov

whereV is an arbitrary volume in the state spak€ 9V is its surfacen’is its out-
ward normal, and repeated indices are summed over throtigfibe divergence
theorem turns the surface integral into a volume integral,

f [8t(p|) + ai(Vip|)] dx=0,
\

whereg; is the partial derivative operator with respectqo Since the integration
is over an arbitrary volume, we conclude that

di(ol) + di(plvi) = 0. (28.2)
The choicd = 1 yields thecontinuity equatiorior the density:

A + di(ovi) = 0. (28.3)
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CHAPTER 28. NOISE 552

We have used here the language of fluid mechanics to easestraization,
but, as we already saw in (16.25), our previous derivatiothefcontinuity equa-
tion, any deterministic state space flow satisfies the coityirequation.

28.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly greelecnles, embedded
in a denser gas of light molecules. Assume that the densityaoér moleculep

compared to the background gas density is low, so we canciegken-green col-
lisions. Each green molecule, jostled by frequent collisivith the background
gas, executes its own Brownian motion. The molecules artharecreated nor
destroyed, so their number within an arbitrary volumehanges with time only
by the current density; flow through its surfacéV (with i its outward normal):

O f dxp = - do fijj . (28.4)
% oV
The divergence theorem turns this into the conservationféaxracer density:
o + i ji = 0. (28.5)

The tracer density is defined as the average density of a ‘material particle,” av
eraged over a subvolume large enough to contain many greehsfdl many
more background) molecules, but small compared to the reecpic observa-
tional scales. What ig? If the density is constant, on the average as many
molecules leave the material particle volume as they efjteoia reasonable phe-
nomenological assumption is that taeeragecurrent density rfot the individual
particle current densitgy; in (28.3)) is driven by the density gradient

. op
i=-D—. 28.6
Ji % ( )

This is theFick law, with the difusion constanD a phenomenological parame-
ter. For simplicity here we assume thatis a scalar; in generdd — Djj(x,t)

is a space- and time-dependent tensor. Substitutingjtimg (28.5) yields the
diffusion equation

9 hxt) = & (x 1) (28.7)
ot T g\ Y '

This linear equation has an exact solution in terms of aiairiltirac delta density
distribution,p(x, 0) = §(x — Xo),

X-x0)2 %
I e ! . (28.8)

Xt)= —— et =— "~ g1
P (4xDt)¥/? (4nDt)%/?
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The average distance covered in titmebeys the Einstein ffusion formula

((x- x0)2>t = f dxp(X, t)(X — Xo)% = 2dDt. (28.9)

28.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics whichirisly Brownian,
with no deterministic “drift.” Consider next a determincstlow X = v(x) per-
turbed by a stochastic ter#t),

%= V(X) + £(1) . (28.10)

We shall refer to equations of this type lasngevin equationsAssume thag(t)’'s
fluctuate aroundX = v(x)] with a Gaussian probability density

St d/2 =y
P&, 6t) = (ﬁ) g @t (28.11)

and are uncorrelated in time (white noise)
(E@)E()) = 2dDs(t —t). (28.12)

The normalization factors in (28.8) and (28.11jteli, asp(¢, 5t) is a probabil-
ity density for velocityé, andp(x,t) is a probability density for positiox. The
material particle now drifts along the trajectoxt), so the velocity diusion fol-
lows (28.8) for infinitesimal tim&t only. AsD — 0, the distribution tends to the
(noiseless, deterministic) Dirac delta function.

The phenomenological Fick law current (28.6) is now a sumaaf tompo-
nents, the material particle center-of-mass determinitift v(x) and the weak
noise term

9p

i=ovi—D ,
Ji = pvi %

(28.13)
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CHAPTER 28. NOISE 554
Substituting thisj into (28.5) yields thd-okker-Planck equation
A + 8i(ovi) = D 6%p. (28.14)

The left hand sidedop/dt = 9 + 8 - (oV), is deterministic, with the continuity
equation (28.3) recovered in the weak noise liDit— 0. The right hand side
describes the fliusive transport in or out of the material particle volume thi¢
density is lower than in the immediate neighborhood, thallearvature is posi-
tive, 3’0 > 0, and the density grows. Conversely, for negative cureadiffusion
lowers the local density, thus smoothing the variabilitypoiVhere is the density
going globally?

If the system is bound, the probability density vanisheBaantly fast outside
the central regiong(x,t) — 0 as|x| — oo, and the total probability is conserved

fdx,o(x,t) =1.

Any initial density p(x, 0) is smoothed by dliusion and with time tends to the
invariant density

po() = fim p(x.1). (28.15)

an eigenfunctiop(x, t) = % pg(X) of the time-independent Fokker-Planck equa-
tion

(6ivi - D&% + s,) p = 0, (28.16)

with vanishing eigenvalugy = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunatiof the Fokker-Planck
eqguation tends to natural measure (16.17) of the correspgigterministic flow,
the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of prdliglfrom the
region under study, the leading eigenvalue is contracting; 0, and the density
of the system tends to zero. In this case the leading eigesmglof the time-
independent Fokker-Planck equation (28.16) can be irgwgrby saying that a
finite density can be maintained by pumping back probabititg the system at
a constant ratg = —sp. The value ofy for which any initial probability density
converges to a finite equilibrium density is called #seape rateln the noiseless
limit this coincides with the deterministic escape rate. {5].

We have introduced noise phenomenologically, and used #akwoise as-
sumption in retaining only the first derivative pfin formulating the Fick law
(28.6) and including noise additively in (28.13). A full thrg of stochastic ODEs
is much subtler, but this will do for our purposes.
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28.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study thelution of the
probability distribution by rewriting it as

o(x.1) = e RxD (28.17)
The time evolution oRis given by
AR+ VIR + (OR)? = DoV + DO°R.

Consider now the weak noise limit and drop the terms propoai to D. The
remaining equation

AR+ H(x dR) = 0

is known as the Hamilton-Jacobi equation . The functocan be interpreted as
the Hamilton’s principal function, corresponding to therilionian

H(x p) = puX) + p*/2,
with the Hamilton’s equations of motion

= OpH=vVv+p
p = —dxH=-ATp, (28.18)

whereA is the stability matrix (4.3)

ovi(X)
an

A9 =
The noise Lagrangian is then
N 1. 2
L(x,X)=x-p—-H= > [X=v(X)]* . (28.19)

We have come the full circle - the Lagrangian is the exponériuo assumed
Gaussian distribution (28.11) for noigé = [X — V(X)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two pointgsand x. Which noisy
path is the most probable path that connects them in titriehe probability of a
given path® is given by the probability of the noise sequeig¢ which generates
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the path. This probability is proportional to the producttieé noise probability
functions (28.11) along the path, and the total probabitityreachingx from xg
in timet is given by the sum over all paths, or the stochastic patlyiaté\Wiener
integral)

ot \ V2 e
P(X X, 1)  ~ Zﬂp(g(fj),ar,-)zfﬂdg,- (ﬁ) e a0
P j

. %Zexp(—% [ thgZ(T)), (28.20)
P

whereéri = 7j — 7j, and the normalization constant is

1. o7 \%2
z=m[1(z5) -

The most probable path is the one maximizing the integradiénthe exponential.
If we express the noise (28.10) as

£(1) = X(t) - v(x(®)) »

the probability is maximized by the variational principle

min f t dr[X() — V(X(r))]? = min f t L(X(7), X(r))dr .
0 0

By the standard arguments, for a giverx’ andt the probability is maximized by
a solution of Hamilton's equations (28.18) that connecisttto pointsxy — X’
in timet.

Résum é

When a deterministic trajectory is smeared out under theenite of Gaussian
noise of strengttD, the deterministic dynamics is recovered in the weak noise
limit D — 0. The dfect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Commentary

Remark 28.1 Literature. The theory of stochastic processes is a vast subject, Sganni
over centuries and over disciplines ranging from pure natitées to impure finance.
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We enjoyed reading van Kampen classic [28.1], especiadlydilings against those who
blunder carelessly into nonlinear landscapes. Having cittednthis careless chapter to
print, we shall no doubt be cast to a special place on the ishgflvan Kampen’s sinners
(and not for the first time, either). A more specialized marmagd like Risken’s [28.2] will

do just as well. The standard Langevin equation is a stoichegtiation for a Brownian
particle, in which one replaces the Newton'’s equation focédy two counter-balancing
forces: random acceleratioét) which tend to smear out a particle trajectory, and a
damping term which drives the velocity to zero. Here we deryt‘Langevin equation’

a more general family of stochastidi@irential equations (28.10) with additive weak noise
limit.

If a flow is linear (in Hamiltonian case, with harmonic osaibr potential) with an
attractive fixed pointL}, describes a version of the Ornstein-Uhlenbeck proces2(28.
(introduced already by Laplace in 1810, see ref. [28.21]aus$aians are often redis-
covered, so Onsager-Machlup seminal paper [28.18], whiallies the same attractive
linear fixed pointis in literature often credited for beirgtfirst to introduce a variational
method - the “principle of least dissipation” - based on tlagtangian of form (28.19).
They, in turn, credit Rayleigh [28.19] with introducing theast dissipation principle in
hydrodynamics. Onsager-Machlup paper deals only with &fset of linearly damped
thermodynamic variables, and not with a nonlinear flow ortaible periodic orbits. In
our exposition the setting is much more general: we studyuhtons over a state space
varying velocity fieldv(x). Schulman’s monograph [28.11] contains a very readabite su
mary of Kac’s [28.12] exposition of Wiener’s integral ovéoshastic paths.
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Exercises

28.1

. Whoordered +r ?

Derive the Gaussian integral

1 f‘x’ 2
— dx ez = +a, a>0.
Vo J-

assuming only that you know to integrate the exponen-
tial functione™. Hint, hint: x? is a radius-squared of
something.r is related to the area or circumference of
something.

28.2. D-dimensional Gaussian integrals. Show that the
Gaussian integral iD-dimensions is given by
1 d 71¢T_M71_¢ ¢-J 1 \p
Wfd pe? * |detM|2 e1Z8"2'1)
whereM is a real positive definited x d] matrix, i.e.,
a matrix with strictly positive eigenvalues, J are D-
dimensional vectors, and is the transpose of.
28.3. Convolution of Gaussians. Show that the Fourier
transform of convolution
[F g9 = [ ay fx-y)g0)
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