
Chapter 28

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanović)

T  (which reader can safely skip on the first reading) is about noise,
how it affects classical dynamics, and the ways it mimics quantum dynam-
ics.

Why - in a monograph on deterministic and quantum chaos - start discussing
noise? First, in physical settings any dynamics takes placeagainst a noisy back-
ground, and whatever prediction we might have, we have to check its robustness to
noise. Second, as we show in this chapter, to the leading order in noise strength,
the semiclassical Hamilton-Jacobi formalism applies to weakly stochastic flows
in toto. As classical noisy dynamics is more intuitive than quantum dynamics,
understanding effects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectic structure emerges here not
as a deep principle of mechanics, but an artifact of the leading approximation to
quantum/noisy dynamics, not respected by higher order corrections.The same is
true of semiclassical quantum dynamics; higher corrections do not respect canon-
ical invariance. Third, the variational principle derivedhere turns out to be a pow-
erful tool for determining periodic orbits, see chapter 29.And, last but not least,
upon some reflection, the whole enterprize of replacing deterministic trajectories
by deterministic evolution operators, chapters 16 to 20, seems fatally flowed; if we
have given up infinite precision in specifying initial conditions, why do we alow
ourselves the infinite precision in the specification of evolution laws, i.e., define
the evolution operator by means of the Dirac delta functionδ(y− f t(x))? It will be
comforting to learn that the deterministic evolution operators survive unscathed,
as the leading approximation to the noisy ones in the limit ofweak noise.

We start by deriving the continuity equation for purely deterministic, noiseless
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flow, and then incorporate noise in stages: diffusion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulation, stochastic path integrals.

28.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)

The large body of accrued wisdom on the subject of flows calledfluid dynamics
is about physical flows of media with continuous densities. On the other hand, the
flows in state spaces of dynamical systems frequently require more abstract tools.
To sharpen our intuition about those, it is helpful to outline the more tangible fluid
dynamical vision.

Consider first the simplest property of a fluid flow calledmaterial invariant.
A material invariantI (x) is a property attached to each pointx that is preserved
by the flow, I (x) = I ( f t(x)); for example, at pointx(t) = f t(x)) a green particle
(more formally: apassive scalar) is embedded into the fluid. AsI (x) is invariant,
its total time derivative vanishes,İ (x) = 0. Written in terms of partial derivatives
this is theconservation equationfor the material invariant

∂tI + v · ∂I = 0 . (28.1)

Let thedensityof representative points beρ(x, t). The manner in which the flow
redistributesI (x) is governed by a partial differential equation whose form is rel-
atively simple because the representative points are neither created nor destroyed.
This conservation property is expressed in the integral statement

∂t

∫

V
dxρI = −

∫

∂V
dσ n̂iviρI ,

whereV is an arbitrary volume in the state spaceM, ∂V is its surface, ˆn is its out-
ward normal, and repeated indices are summed over throughout. The divergence
theorem turns the surface integral into a volume integral,

∫

V

[

∂t(ρI ) + ∂i(viρI )
]

dx= 0 ,

where∂i is the partial derivative operator with respect toxi . Since the integration
is over an arbitrary volume, we conclude that

∂t(ρI ) + ∂i(ρIvi ) = 0 . (28.2)

The choiceI ≡ 1 yields thecontinuity equationfor the density:

∂tρ + ∂i(ρvi) = 0 . (28.3)
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We have used here the language of fluid mechanics to ease the visualization,
but, as we already saw in (16.25), our previous derivation ofthe continuity equa-
tion, any deterministic state space flow satisfies the continuity equation.

28.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly green molecules, embedded
in a denser gas of light molecules. Assume that the density oftracer moleculesρ
compared to the background gas density is low, so we can neglect green-green col-
lisions. Each green molecule, jostled by frequent collisions with the background
gas, executes its own Brownian motion. The molecules are neither created nor
destroyed, so their number within an arbitrary volumeV changes with time only
by the current densityj i flow through its surface∂V (with n̂ its outward normal):

∂t

∫

V
dxρ = −

∫

∂V
dσ n̂i j i . (28.4)

The divergence theorem turns this into the conservation lawfor tracer density:

∂tρ + ∂i j i = 0 . (28.5)

The tracer densityρ is defined as the average density of a ‘material particle,’ av-
eraged over a subvolume large enough to contain many green (and still many
more background) molecules, but small compared to the macroscopic observa-
tional scales. What isj? If the density is constant, on the average as many
molecules leave the material particle volume as they enter it, so a reasonable phe-
nomenological assumption is that theaveragecurrent density (not the individual
particle current densityρvi in (28.3)) is driven by the density gradient

j i = −D
∂ρ

∂xi
. (28.6)

This is theFick law, with the diffusion constantD a phenomenological parame-
ter. For simplicity here we assume thatD is a scalar; in generalD → Di j (x, t)
is a space- and time-dependent tensor. Substituting thisj into (28.5) yields the
diffusion equation

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (28.7)

This linear equation has an exact solution in terms of an initial Dirac delta density
distribution,ρ(x, 0) = δ(x− x0),

ρ(x, t) =
1

(4πDt)d/2
e−

(x−x0)2

4Dt =
1

(4πDt)d/2
e−

ẋ2
4Dt . (28.8)
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The average distance covered in timet obeys the Einstein diffusion formula

〈

(x− x0)2
〉

t
=

∫

dxρ(x, t)(x− x0)2 = 2dDt . (28.9)

28.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics which is purely Brownian,
with no deterministic “drift.” Consider next a deterministic flow ẋ = v(x) per-
turbed by a stochastic termξ(t),

ẋ = v(x) + ξ(t) . (28.10)

We shall refer to equations of this type asLangevin equations. Assume thatξ(t)’s
fluctuate around [ ˙x− v(x)] with a Gaussian probability density

P(ξ, δt) =
(

δt
4πD

)d/2

e−
ξ2

4D δt , (28.11)

and are uncorrelated in time (white noise)

〈

ξ(t)ξ(t′)
〉

= 2dDδ(t − t′) . (28.12)

The normalization factors in (28.8) and (28.11) differ, asp(ξ, δt) is a probabil-
ity density for velocityξ, andρ(x, t) is a probability density for positionx. The
material particle now drifts along the trajectoryx(t), so the velocity diffusion fol-
lows (28.8) for infinitesimal timeδt only. As D → 0, the distribution tends to the
(noiseless, deterministic) Dirac delta function.

The phenomenological Fick law current (28.6) is now a sum of two compo-
nents, the material particle center-of-mass deterministic drift v(x) and the weak
noise term

j i = ρvi − D
∂ρ

∂xi
, (28.13)
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Substituting thisj into (28.5) yields theFokker-Planck equation

∂tρ + ∂i(ρvi) = D ∂2ρ. (28.14)

The left hand side,dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (28.3) recovered in the weak noise limitD → 0. The right hand side
describes the diffusive transport in or out of the material particle volume. Ifthe
density is lower than in the immediate neighborhood, the local curvature is posi-
tive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature diffusion
lowers the local density, thus smoothing the variability ofρ. Where is the density
going globally?

If the system is bound, the probability density vanishes sufficiently fast outside
the central region,ρ(x, t)→ 0 as|x| → ∞, and the total probability is conserved

∫

dxρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
invariant density

ρ0(x) = lim
t→∞
ρ(x, t) , (28.15)

an eigenfunctionρ(x, t) = est ρ0(x) of the time-independent Fokker-Planck equa-
tion

(

∂ivi − D ∂2 + sα
)

ρα = 0 , (28.16)

with vanishing eigenvalues0 = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunction of the Fokker-Planck
equation tends to natural measure (16.17) of the corresponding deterministic flow,
the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting,s0 < 0, and the density
of the system tends to zero. In this case the leading eigenvalue s0 of the time-
independent Fokker-Planck equation (28.16) can be interpreted by saying that a
finite density can be maintained by pumping back probabilityinto the system at
a constant rateγ = −s0. The value ofγ for which any initial probability density
converges to a finite equilibrium density is called theescape rate. In the noiseless
limit this coincides with the deterministic escape rate (17.15).

We have introduced noise phenomenologically, and used the weak noise as-
sumption in retaining only the first derivative ofρ in formulating the Fick law
(28.6) and including noise additively in (28.13). A full theory of stochastic ODEs
is much subtler, but this will do for our purposes.
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28.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study theevolution of the
probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (28.17)

The time evolution ofR is given by

∂tR+ v∂R+ (∂R)2 = D∂v+ D∂2R.

Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR+ H(x, ∂R) = 0

is known as the Hamilton-Jacobi equation . The functionR can be interpreted as
the Hamilton’s principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v+ p

ṗ = −∂xH = −AT p , (28.18)

whereA is the stability matrix (4.3)

Ai j (x) =
∂vi(x)
∂x j

.

The noise Lagrangian is then

L(x, ẋ) = ẋ · p− H =
1
2

[ ẋ− v(x)]2 . (28.19)

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (28.11) for noiseξ2 = [ ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two pointsx0 and x. Which noisy
path is the most probable path that connects them in timet? The probability of a
given pathP is given by the probability of the noise sequenceξ(t) which generates
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the path. This probability is proportional to the product ofthe noise probability
functions (28.11) along the path, and the total probabilityfor reachingx from x0

in time t is given by the sum over all paths, or the stochastic path integral (Wiener
integral)

P(x, x0, t) ∼
∑

P

∏

j

p(ξ(τ j), δτ j ) =
∫

∏

j

dξ j

(

δτ j

4πD

)d/2

e−
ξ(τ j )

2

4D δτi

→ 1
Z

∑

P
exp

(

− 1
4D

∫ t

0
dτ ξ2(τ)

)

, (28.20)

whereδτi = τi − τi , and the normalization constant is

1
Z
= lim

∏

i

(

δτi

2πD

)d/2

.

The most probable path is the one maximizing the integral inside the exponential.
If we express the noise (28.10) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min
∫ t

0
dτ[ ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a givenx, x′ andt the probability is maximized by
a solution of Hamilton’s equations (28.18) that connects the two pointsx0 → x′

in time t.

Résum é

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strengthD, the deterministic dynamics is recovered in the weak noise
limit D → 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Commentary

Remark 28.1 Literature. The theory of stochastic processes is a vast subject, spanning
over centuries and over disciplines ranging from pure mathematics to impure finance.
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We enjoyed reading van Kampen classic [28.1], especially his railings against those who
blunder carelessly into nonlinear landscapes. Having committed this careless chapter to
print, we shall no doubt be cast to a special place on the long list of van Kampen’s sinners
(and not for the first time, either). A more specialized monograph like Risken’s [28.2] will
do just as well. The standard Langevin equation is a stochastic equation for a Brownian
particle, in which one replaces the Newton’s equation for force by two counter-balancing
forces: random accelerationsξ(t) which tend to smear out a particle trajectory, and a
damping term which drives the velocity to zero. Here we denote by ‘Langevin equation’
a more general family of stochastic differential equations (28.10) with additive weak noise
limit.

If a flow is linear (in Hamiltonian case, with harmonic oscillator potential) with an
attractive fixed point,Lt

D describes a version of the Ornstein-Uhlenbeck process [28.20],
(introduced already by Laplace in 1810, see ref. [28.21]). Gaussians are often redis-
covered, so Onsager-Machlup seminal paper [28.18], which studies the same attractive
linear fixed point is in literature often credited for being the first to introduce a variational
method - the “principle of least dissipation” - based on the Lagrangian of form (28.19).
They, in turn, credit Rayleigh [28.19] with introducing theleast dissipation principle in
hydrodynamics. Onsager-Machlup paper deals only with a finite set of linearly damped
thermodynamic variables, and not with a nonlinear flow or unstable periodic orbits. In
our exposition the setting is much more general: we study fluctuations over a state space
varying velocity fieldv(x). Schulman’s monograph [28.11] contains a very readable sum-
mary of Kac’s [28.12] exposition of Wiener’s integral over stochastic paths.
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Exercises

28.1. Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2a =
√

a , a > 0 .

assuming only that you know to integrate the exponen-
tial function e−x. Hint, hint: x2 is a radius-squared of
something.π is related to the area or circumference of
something.

28.2. D-dimensional Gaussian integrals. Show that the
Gaussian integral inD-dimensions is given by

1
(2π)d/2

∫

ddφe−
1
2φ

T ·M−1·φ+φ·J = |detM| 12 e
1
2 JT ·M·J ,(28.21)

whereM is a real positive definite [d × d] matrix, i.e.,
a matrix with strictly positive eigenvalues.x, J areD-
dimensional vectors, andxT is the transpose ofx.

28.3. Convolution of Gaussians. Show that the Fourier
transform of convolution

[ f ∗ g](x) =
∫

ddy f(x− y)g(y)

of two Gaussians

f (x) = e−
1
2 xT · 1

∆1
·x
, g(x) = e−

1
2 xT · 1

∆2
·x

factorizes as

[ f ∗ g](x) =
1

(2π)d

∫

dk F(k)G(k)eik·x , (28.22)

where

F(k) =
1

(2π)d

∫

ddx f(x)e−ik·x = |det∆1|1/2e
1
2 kT ·∆1·k

G(k) =
1

(2π)d

∫

ddx g(x)e−ik·x = |det∆2|1/2e
1
2 kT ·∆2·k .

Hence

[ f ∗ g](x) =
1

(2π)d
|det∆1det∆1|1/2

∫

ddp e
1
2 pT ·(∆1+∆

=

∣

∣

∣

∣

∣

det∆1det∆2

det (∆1 + ∆2)

∣

∣

∣

∣

∣

1/2

e−
1
2 xT ·(∆1+∆2)−1·x . (28.23)
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