Chapter 36

Chaotic multiscattering

(A. Wirzba and P. Cvitanovit)

number of non-overlapping finite scattering regions. Whthis inter-

esting at all? The semiclassics of scattering systems haadivantages
compared to the bound-state problems such as the heliuntization discussed
in chapter 37.

WE pIscuss HERE the semiclassics of scattering in open systems with a finite

e For bound-state problem the semiclassical approximataes ahot respect
guantum-mechanical unitarity, and the semi-classicareigergies are not
real. Here we construet manifestly unitangemiclassical scattering matrix.

e The Weyl-term contributions decouple from the multi-segttg system.
e The close relation to the classical escape processes ségtiurschapter 1.

e For scattering systems the derivation of cycle expansiensore direct and
controlled than in the bound-state case: the semiclassjci expansion
is the saddle point approximation to the cumulant expansidhe determi-
nant of the exact quantum-mechanical multi-scatteringimat

e The region of convergence of the semiclassical spectraitiom is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a ppeaticle from finite
collection of non-overlapping scattering regions in tewhthe standard textbook
scattering theory, and then develop the semiclassicaiesiceg trace formulas and
spectral determinants for scatterinfj B disks in a plane.
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CHAPTER 36. CHAOTIC MULTISCATTERING 653

36.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point parfrom finite collection
of N non-overlapping reflecting disks in a 2-dimensional plakethe point par-
ticle moves freely between the static scatterers, the tidependent Schrodinger
eqguation outside the scattering regions is the Helmholtzaton:

(VZ+K)y(")=0,  routside the scattering regions. (36.1)

Herey(F) is the wave function of the point particle at spatial pasiti andE =
72K2/2m s its energy written in terms of its massand the wave vectdt of the
incident wave. For reflecting wall billiards the scatteripigoblem is a boundary
value problem with Dirichlet boundary conditions:

y(P) =0, " on the billiard perimeter (36.2)

As usual for scattering problems, we expand the wave funati@) in the
(2-dimensional) angular momentum eigenfunctions basis

p(r) = ). uk(r)e ™, (36.3)
mM=—co
wherek and®y are the length and angle of the wave vector, respectivelylaAg
wave in two dimensions expaned in the angular momentum Isasis

gkt _ dkr cos@r—a) _ Z Jm(kr)g@m(@r =) (36.4)

mM=—oc0

wherer and®, denote the distance and angle of the spatial vatés measured
in the global 2-dimensional coordinate system.

Themth angular componeniy(kr)é™® of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional sphengaVves by decompos-
ing the ordinary Bessel functiody,(2) into the sum

In(?) = %(Hr(%)(z) +HP @) (36.5)

of the Hankel function$iY(2) andH®(2) of the first and second kind. Fiat > 1
the Hankel functions behave asymptotically as:

2 1 s n . .

M@ ~ |2t incoming,
2 1 s n .

HY@) ~ ,/—Ze“(z‘im‘z) outgoing. (36.6)
T
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CHAPTER 36. CHAOTIC MULTISCATTERING 654

Thus forr — o andk fixed, themth angular componenim(kr)é™® of the plane
wave can be written as superposition of incoming and outg@+dimensional
spherical waves:

In(kr)e™ it . glo-§m-)] g (36.7)

1 [
V2rkr

In terms of the asymptotic (angular momentum) compongfitsf the wave
functiony (), the scattering matrix (35.3) is defined as

(o8]

1 I e
K ~ — mZ e =2 -5) 4 S k2D M (36.8)

The matrix elemenSmy describes the scattering of an incoming wave with an-
gular momentumm into an outgoing wave with angular momentum. If there
are no scatterers, théh= 1 and the asymptotic expression of the plane wele

in two dimensions is recovered frog(r).

36.1.1 1-disk scattering matrix

In general,S is nondiagonal and nonseparable. An exception is the 1latiak
terer. If the origin of the coordinate system is placed atdimter of the disk, by
(36.5) themth angular component of the time-independent scatteringsviianc-
tion is a superposition of incoming and outgoing 2-dimenaispherical waves
exercise 35.2

Wy = 5 (HOW) + SanHP(kn) &

(Jm(kr) - lZTmmH,(TP(kr)) gmer
The vanishing (36.2) of the wave function on the disk peranet
_ i (1)
0= Jm(ka) = 5 TmmHm’(ka)

yields the 1-disk scattering matrix in analytic form:

Smnt » (36.9)

zam(kas)) ~ HP(kas)
m - _T m
Hn’(kas)

SS (k=|1-———>
i (1) [ HY (kas)

wherea = aq is radius of the disk and the fix S indicates that we are dealing
with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 36.3.
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CHAPTER 36. CHAOTIC MULTISCATTERING 655
36.1.2 Multi-scattering matrix

Consider next a scattering region consisting\ohon-overlapping disks labeled

se {1,2,---,N}, following the notational conventions of sect. 11.6. Thatsgy

is to construct the fullT-matrix (35.3) from the exact 1-disk scattering matrix
(36.9) by a succession of coordinate rotations and traoekisuch that at each

step the coordinate system is centered at the origin of a diekn theT-matrix

iN S = dmnt — | Tmny €an be split into a product over three kinds of matrices,

N 00
Tom@® = > > C oM D LK)

Islgs
s,8'=1lg,lg=—c0

The outgoing spherical wave scattered by the disk obtained by shifting the
global coordinates origin distand®, to the center of the disk, and measuring
the angle®s with respect to directiork of the outgoing spherical wave. As in
(36.9), the matrixCs takes form

s 2i Jm—ls(kRS) eim(Ds .

= — (36.10)
mls mas H|(Sl)(kas)

If we now describe the ingoing spherical wave in the diskoordinate frame by
the matrixD¥

DY 1 = —7as -1, (KRs) 3, (ks )& ™ %, (36.11)

and apply the Bessel function addition theorem

Iny+2 = D In-c)A(,

{=—c0

we recover thél -matrix (36.9) for the single disk = s’, M = 1 scattering. The
Bessel function sum is a statement of the completness optierisal wave basis;
as we shift the origin from the disk to the disks’ by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsmandn refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systerdls, |s refer to the
(angular momentum) basis fixed at thi ands’th scatterer, respectively. Thus,
Cs andD® depend on the origin and orientation of the global coordirsistem
of the 2-dimensional plane as well as on the internal coatdms of the scatterers.
As they can be made separable in the scatterer Igbisley describe the single
scatterer aspects of what, in general, is a multi-scatgrioblem.
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Figure 36.1: Global and local coordinates for a gen-

eral 3-disk problem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatterdy] is simply the unit matrixMEf’s/ = 6555|S|S,.
For scattering from more than one scatterer we separate ‘mihgle traversal’
matrix A which transports the scattered wave from a scattering negiQ to the
scattering regiontMy,

MSS

lslg

=561, - A (36.12)

sls/ ’

The matrixASS reads:

_ 558 as Ji;(kas) e

ss
- (1 S HY
as HO(ka)

e =

(kRsg) lsessTls(ess=m)  (36.13)

Here, as is the radius of thesth disk. Ry and®g are the distance and angle,
respectively, of the ray from the origin in the 2-dimensibplane to the center of
disk s as measured in the global coordinate system. Furtherriee~= Ry is
the separation between the centers ofdifieands’th disk andxg s of the ray from
the center of disks to the center of disls’ as measured in the local (body-fixed)
coordinate system of disk(see figure 36.1).

Expanded as a geometrical series about the unit matike inverse matrix
M~1 generates a multi-scattering series in powers of the simglersal matriA.
All genuine multi-scattering dynamics is contained in thatmx A; by construc-
tion A vanishes for a single-scatterer system.

36.2 N-scatterer spectral deter minant

In the following we limit ourselves to a study of the specirabperties of thes-
matrix: resonances, time delays and phase shifts. Theaases are given by the
poles of thes-matrix in the lower complex wave numbd) plane; more precisely,

by the poles of thé& on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its totalgske shiftr(k)
defined by de® = exp?®. The time-delay is proportional to the derivative of
the phase shift with respect to the wave number
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CHAPTER 36. CHAOTIC MULTISCATTERING 657

As we are only interested in spectral properties of the edagy problem, it
sufices to study des. This determinant is basis and coordinate-system indepen-
dent, whereas th8-matrix itself depends on the global coordinate system and o
the choice of basis for the point particle wave function.

As the S‘matrix is, in general, an infinite dimensional matrix, itriet clear
whether the corresponding determinant exists at all.-fhatrix is trace-class, the
determinant does exist. What does this mean?

36.2.1 Trace-classoperators

An operator (an infinite-dimensional matrix) is callgdce-classif and only if,
for any choice of orthonormal basis, the sum of the diagonatrisn elements
converges absolutely; it is called “Hilbert-Schmidt,” ife&t sum of the absolute
squared diagonal matrix elements converges. Once an opé&aliagnosed as
trace-class, we are allowed to manipulate it as we maniptiaite-dimensional
matrices. We review the theory of trace-class operatorppeadix J; here we
will assume that th@ -matrix (35.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{zA), as defined by the cumulant
expansion, exists and is an entire functiorzofFurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation é40f expansion in
the book-keeping variabt® of the determinant

det(L — zA) = exp[tr In(d - zA)] = exp[— i gtr (AN .
n=1
That means
det(l — zA) = i Z"Qm(A) , (36.14)
m=0

where the cumulant®,(A) satisfy the Plemelj-Smithies recursion formula (J.19),
a generalization of Newton’s formula to determinants ofnité-dimensional ma-
trices,

Qo(A) 1

Qm(A)

- D Qn (A (Al form>1, (36.15)
m =t

in terms of cumulants of order < m and traces of ordemn < m. Because of the
trace-class property &, all cumulants and traces exist separately.
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For the general case df < oo non-overlapping scatterers, tliematrix can be
shown to be trace-class, so the determinant ofSmeatrix is well defined. What
does trace-class property mean for the corresponding ceat@i®, DS and ASS?
Manipulating the operators as though they were finite medrieve can perform
the following transformations:

detS

det(1-iCM~'D)
Det(1-iM~'DC) = Det(M~*(M —iDC))
Det(M —iDC)

Det(M)

(36.16)

In the first line of (36.16) the determinant is taken over $rfigthe angular mo-
mentum with respect to the global system). In the remainfié3&16) the deter-
minant is evaluated over the multiple indices = (s,1s). In order to signal this
difference we use the following notation: det and tr... refer to the|f) space,
Det... and Tr... refer to the multiple index space. The matrices in the mialtip
index space are expanded in the complete Qdsis} = {|s, ¢s)} which refers for
fixed indexs to the origin of thesth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinantsttod subsystems
from the determinant of the total system (36.16):

Det(M - iDC)

ety

Det(M - iDC) [Ty, detS®
DetM 1Y, detss

N Det(M —iDC)/ [TV, detSs
[ ]detse v M ey . (36.17)
ol DetM

detS

The final step in the reformulation of the determinant of 8matrix of the N-
scatterer problem follows from the unitarity of tf®matrix. The unitarity of
S'(k*) implies for the determinant

det S(k*)") = 1/detS(K), (36.18)

where this manipulation is allowed because Thmatrix is trace-class. The uni-
tarity condition should apply for th&matrix of the total system$, as for the
each of the single subsystenss, s = 1,---, N. In terms of the result of (36.17),
this implies

Det(M (k) — iD(K)C(K))

_ #\ T
T de -~ PetMEO)
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CHAPTER 36. CHAOTIC MULTISCATTERING 659

since all determinants in (36.17) exist separately ancedime determinants deg
respect unitarity by themselves. Thus, we finally have

N DetM (k)'
detsKk) = { [ | (detss(k)} ——— 2 | (36.19)
{£1 } DetM (k)

where all determinants exist separately.

In summary: We assumed a scattering system &ihise number ofnon-
overlappingscatterers which can be offtérent shape and size, but are all of
finite extent. We assumed the trace-class character of #matrix belonging to
the total system and of the single-traversal ma#&iand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromitefnumber of
scatterers of arbitrary shape and size? As long as ealh<ofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite, diee total system
has a finite spatial extent as well. Therefore, it too can ldnmided a circular
domain of finite radiud, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thgkds larger than the disk
size (actually larger thare(2) x b), then thel matrix elements of th&l-scatterer
problem become very small. If the wave numlids kept fixed, the modulus of
the diagonalmatrix elements|T | with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

36.2.2 Quantum cycle expansions

In formula (36.19) the genuine multi-scattering terms aygesated from the single-
scattering ones. We focus on the multi-scattering ternas, @n the ratio of the
determinants of the multi-scattering mathk = 1 — A in (36.19), since they are
the origin of the periodic orbit sums in the semiclassicaluaion. The reso-
nances of the multi-scattering system are given by the zaef@etM (k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical redactice express the
determinant of the multi-scattering matrix in terms of tihaces of the powers
of the matrixA, by means of the cumulant expansion (36.14). Because of the
finite numberN > 2 of scatterers tiA") receives contributions corresponding to
all periodic itinerariess; $S3 - - - $h-1S, of total symbol lengtm with an alphabet
s €{L12,...,N}. of N symbols,

tr ASIZADS .. A1 ASS: (36.20)
= +2»<> io io A15152 $2S3 ...Aﬁ“-lsﬂ ShSL
L | sils " Isls srealsn” Talsy
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Remember our notation that the trace tr) refers only to thdl) space. By con-
struction A describes only scatterer-to-scatterer transitions, essyimbolic dy-
namics has to respect the no-self-reflection pruning raeadimissible itineraries
the successive symbols have to b@adent. This rule is implemented by the factor
1-6%% in (36.13).

The trace tA" is the sum of all itineraries of lengtin,

AT = ) IrASRARS . ASISASS (36.21)
{S192°+5n}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.

For periodic orbits with creeping sections the symbolichalpet has to be
extended, see sect. 36.3.1. Furthermore, depending oretmeeiry, there might
be nontrivial pruning rules based on the so called ghostsyrbee sect. 36.4.1.

36.2.3 Symmetry reductions

The determinants over the multi-scattering matrices ruer tive multiple index.
of the multiple index space. This is the proper form for thenmyetry reduction
(in the multiple index space), e.g., if the scatterer comégan is characterized
by a discrete symmetry group, we have

DetM = [ | (detMp, ()*

where the indexy runs over all conjugate classes of the symmetry gréugnd
D, is theath representation of dimensiath,. The symmetry reduction on the
exact quantum mechanical level is the same as for the chssiolution oper-
ators spectral determinant factorization (21.17) of s&ti4.2.

36.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. lreotd be concrete, we
will consider the semiclassical reduction of the scattgnha single disk in plane.

Instead of calculating the semiclassical approximatiothéodeterminant of
the one-disk system scattering matrix (36.9), we do so for

4 = — T IndetSi(ka) = ==t (InSi(ka) (36.22)

2ri dk 271 dk
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the so calledime delay

g o 1o (HOKa) d HR (ka)
A0 = g (IndetS'a) = 25 ) (H,ﬁ?(ka) a<Hr(%)(ka>)

m

ay HY (ka) H,‘%)’(ka)]
2 S\ HP k) H(ka) )

(36.23)

Here the prime denotes the derivative with respect to theraemt of the Hankel
functions. Let us introduce the abbreviation

_HPka HY (ka)

= - . (36.24)
HPka)  HY(ka)
We apply the Watson contour method to (36.23)
a; +x a; 1 e—iwr
dk) = — =—=Qpdv—x,. 36.25
® =2 m;m XM= oni 2i 9§ Y Sinpn)* (36.25)

Here the contou€ encircles in a counter-clockwise manner a small semiirginit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginamgirection. The contou€ is then
split up in the path above and below the realxis such that

a +oo+ie e—iwr +oo—ie e—iV”
i) = Ari {j:ooﬂe d Sin(wr)Xv - f—oo—ie & Sin(WT)XV} .

Then, we perform the substitution— —v in the second integral so as to get

a +oo+ie —ivr e+iWT
) = 72 {fm Y Sinea” Y singy" }

a +oo+ie eZiwr +00
- 2 dy———y, dvy, b 36.26
o { f_mie \% 1—e2'V”X +£m VX } ( )

where we used the fact that, = y,. The contour in the last integral can be de-
formed to pass over the realaxis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line of (36.26jfdr by
the presence or absence of the Watson denominator, theiavid to be handled
semiclassically in dferent ways: the first will be closed in the upper complex

multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 662

plane and evaluated at the polegofthe second integral will be evaluated on the
realv-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles @f, in the upper complex
plane are given by the zeros BfY(ka) which will be denoted by, (ka) and by
the zeros oHSZ)(ka) which we will denote by-v,(ka), £ = 1,2, 3,---. In the Airy
approximation to the Hankel functions they are given by

ve(ka)
—ve(ka)

ka+ia(ka) , (36.27)
—ka+i(a k) = - (ve(k'a)" (36.28)

with

lekd) = é3(6) G - e (ka) 180  70ka|-~ 30

3 4
+ é%(g) 1 (quf— 2814, ] T (36.29)

ka/ 3150( 62 180-68

Hereq, labels the zeros of the Airy integral
Ag) = f dr cos@r — 1-3) = 3_1/371Ai(—3‘1/3q) ,
0

with Ai(2) being the standard Airy function; approximately, ~ 6%3[3x(¢ —
1/4)]%2/2. In order to keep the notation simple, we will abbreviate= v,(ka)
andvy; = v¢(kd). Thus the first term of (36.26) becomes finally

(o0

a +oo+ie e2iwr ezi,,m e—2i17m
—<32 dv ———y,; =2a : — .
27” { j:oo+i5 v 1 — 62"’” X } ; (1 — e2|V[’7T + 1 — e—2IV[7T)

In the second term of (36.26) we will insert the Debye apprations for the
Hankel functions:

HSl/z)(x) ~ S — exp(il VX2 =2 F ivarccos. ¥ |E) for [x| > v
TNX2 =2 x 4
(36.30)
_ 2
HSl/z)(x) ~ F o — exp(— V2 — X2 + vArCCOShZ) for|x <v.
T Vv2 — X2 X

Note that fory > kathe contributions iny, cancel. Thus the second integral of
(36.26) becomes

+00 +ka
%f dvy, 2 dv( 2) d (Vk2a2—v2—varccos—)

27 a dk ka

2
- ——f dv vVikeaZ — 2 + - :—%k+---, (36.31)

multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 663

where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thimtegration.

In summary, the semiclassical approximatiord{k) reads

g eziV[ﬂ e—2i17[7r a2
d(k) = ZaZ; (1_ e e_wm) - Sk
(=

Using the definition of the time delay (36.22), we get thedwihg expression for
detSt(ka):

In detS'(ka) — I(I(imo In detSt(koa) (36.32)

k ~ 0 j2rve(ka) ~i2rv;(ka)
:27riafdk —a—k+22 el_ — + © — +
0 2 = 1—g2veka) 1 - gi2o(ka)

~ —27riN(k)+2i fo ik d% {~In (1-62 ) 1 |n (1-g 2@ 4 ...
=1

where in the last expression it has been used that sem'ccaﬂys{f—kw(ka) ~
%ﬂ(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(k) = na’k?/(4n) + --- (the next terms come from the boundary terms in the
v-integration in (36.31)). Note that for the lower limityg — 0, we have two
simplifications: First,

~Hi/(ko?)
lim St a) = lim —™ " = 1x6 vm, m’
Ko—0 mI’H(kO) ko0 Hr(%)(koa) mm mm

Il
=

; 1
- kl(!TodetS (koa)
Secondly, folky — 0, the two terms in the curly bracket of (36.32) cancel.

36.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detemtS'(ka) is given
by

e, (1 _ e—2im7[(ka))2
e, (- ezim(ka))Z ’

detS!(ka) ~ eZ™NK (36.33)

with
vi(ka) = ka+iaika = ka+ei™3(ka/6) 3+
ve(ka) = ka-—i(ae(k@)* = ka+e™3(ka/6)Y3q, + -
= (ve(k@)”
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Figure 36.2: Right- and left-handed firactive
creeping paths of increasing mode numiseior
a single disk.

andN(ka) = (rak?)/4r + --- the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues imigleinterior. From
the point of view of the scattering particle, the interiomains of the disks are
excluded relatively to the free evolution without scattgriobstacles. Therefore
the negative sign in front of the Weyl term. For the same neaiee subleading
boundary term has here a Neumann structure, although tke Héve Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. of (36.33) for a dgslts

2 Z;(K'as)” Z(k'as)”

detSS(kag) ~ (eNKka))™ L _ ,
( ) Z)(kas)  Z(kas)

(36.34)

Whereztf(kas) andZ’(kas) are thediffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functionsth diffractive corrections by a
tilde) for creeping orbits around theth disk in the left-handed sense and the right-
handed sense, respectively (see figure 36.2). The two atiens of the creeping
orbits are the reason for the exponents 2 in (36.33). Equd86.33) describes
the semiclassical approximation to the incoherent pathé curly bracket on the
r.h.s.) of the exact expression (36.19) for the case thaidhterers are disks.

In the following we will discuss the semiclassical resorema the 1-disk
scattering problem with Dirichlet boundary condition. ithe so-called shape
resonances. The quantum mechanical resonances are tseptiieS-matrix in
the complexk-plane. As the 1-disk scattering problem is separableStheatrix
is already diagonalized in the angular momentum eigentzaxgistakes the sim-
ple form (36.9). The exact quantummechanical poles of taexing matrix are
therefore given by the zerdgS;, of the Hankel functions—lr(#)(ka) in the lower
complexk plane which can be labeled by two indicesandn, wherem denotes
the angular quantum number of the Hankel function and a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot
use the usual Debye approximation as semiclassical appatixin for the Hankel
function, since this approximation only works in case thek& function is dom-
inated by only one saddle. However, for the vanishing of thekel function, one
has to have the interplay of two saddles, thus an Airy appnakbn is needed as
in the case of the creeping poles discussed above. The Ainprimation of the
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Hankel functionHﬁl)(ka) of complex-valued index reads

2 i:(6\"
M) ~ 2 () A
/s

with
o = it (E)m (v —ka) + O ((ka)™")
ka .

Hence the zeros, of the Hankel function in the complex plane follow from
the zerogy, of the Airy integral A(q) (see (36.3). Thus if we set = m (with m
integer), we have the following semiclassical conditiork#

m ~ K%+ ia/(k%)
_ é%(kresa)l/gqg - e—i%( 6 )1/3q_§ S [1_q_?]
6 ) Kea) 180  70kesa|” 30
+ ei"é( 6 )% 1 (qu[— 281q§]+ =
kesa) 3150( 62  180- 6 ’
with 1 = 1,2,3, . (36.35)

For a given index this is equivalent to

0~ 1 - gike-an2m

the de-Broglie condition on the wave function that encsdiee disk. Thus the
semiclassical resonances of the 1-disk problem are givahéyeros of the fol-
lowing product

(o)

1—[ (1 _ e(ik—a/)Zna) ,

=1

which is of course nothing else thii-disk(k), the semiclassical firaction zeta
function of the 1-disk scattering problem, see (36.34). eNlbat this expression
includes just the pure creeping contribution and no gengeemetrical parts.
Because of

HO (k) = (-1)"H{M(ka),

the zeros are doubly degeneratenif« 0, corresponding to right- and left handed
creeping turns. The case = 0 is unphysical, since all zeros of the Hankel func-
tion H(()l)(ka) have negative real value.

multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 666

Figure 36.3: The shape resonances of the 1-disk
system in the complek plane in units of the disk
radiusa. The boxes label the exact quantum me-
chanical resonances (given by the zerolslﬂf(ka)
form = 0, 1, 2), the crosses label thefflactional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(36.35) up to the ordad([ka]'/?)).

QM (exact).
Semiclass.(creeping): +

Imk [1a]
=

ot

4
Re k[/a]

Figure 36.4: Same as in figure 36.3. However,
the subleading terms in the Airy approximation
(36.35) are taken into account up to the order
O([ka]~3) (upper panel) and up to ordéx[kal )
(lower panel).

T T T T T T T T
QM (exacty © QM (exact: ©

Im k [1/a]
3
Im k [1/a]

Semiclass. creeping (w. st Alry corr.): + Semiclass. creeping (w. 2nd Alry corr.): +

4
Rek[1/a]

From figure 36.3 one notes that the creeping terms in the Adgrad([ka]/3),
which are used in the Keller construction, systematicatigarestimate the magni-
tude of the imaginary parts of the exact data. However, theging data become
better for increasing Reand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figure 36.4 one sees the change, wherettteorder
in the Airy approximation (36.35) is taken into account. Tdmproximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using (36.35) up to ordé([ka] ™) is perfect up to the drawing
scale of figure 36.4 (lower panel).
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Figure 36.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed. Nt

ltinerary: . .
111 )a
\*/

36.4 From quantum cycleto semiclassical cycle

The procedure for the semiclassical approximation of aiggmperiodic itinerary
(36.20) of lengthn is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depehbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

S1S2 ... ASmSL — S1%2 . ASnSL
trA A= ) > AT, AL

|51:—c>o lgm=—00

still has the structure of a “multi-trace” with respect tagatar momentum.

Each of the squ]f;’:_oo — as in the 1-disk case — is replaced byatson
contourresummation in terms of complex angular momentumThen the paths
below the real s -axes are transformed to paths above these axes, and thelste
split into expressionsvith andwithoutan explicit Watson sing ) denominator.

1. In the sin¢sm) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theesspn in
the saddle point approximation: either left or rigdgecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the sings ) -dependent integrals, we close the contour in the upger
plane and evaluate the integral at the resieﬂig(kas):o. Then we use
the Airy approximation for\]vS (kag) and Hg)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometricad papear. If
they do show up, the analysis has to be extended to the casmintiding saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contacthe point particle
with the disks:

1. either geometrical which in turn splits into three aledives
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(a) specular reflectiorto the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turns

see figure 36.5. The specular reflection to the right is linkeléft-handed creep-
ing paths with at least one knot. The specular reflection éoléfit matches a
right-handed creeping paths with at least one knot, wheteashortest left- and
right-handed creeping paths in the ghost tunneling caséopmogically trivial.
In fact, the topology of the creeping paths encodes the ehoétween the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positivaigefn length: the
creeping amplitude has to decrease during the creepinggspas tangential rays
are constantly emitted. In mathematical terms, it meansttigacreeping angle
has to be positive. Thus, the positivity of ttveo creeping angles for the shortest
left and right turn uniquely specifies the topology of the creepinctisas which
in turn specifies which of the three alternatives, eithercsfze reflection to the
right or to the left or straight “ghost” tunneling throughs#ij, is realized for the
semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in thédieing to the scat-
tering fromN < oo non-overlappinglisksfixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

trASI2 A SRS ... AS-15 ASSL

becomes a standard periodic orbit labeled by the symboksegs; s, - - - s,. De-
pending on the geometry, the individual legs, — § — S.1 result either from a
standard specular reflection at dslor from a ghost path passing straight through
disk 5. If furthermore creeping contributions are taken into asdpthe symbolic
dynamics has to be generalized from single-letter sym{sglso triple-letter sym-
bols {s, i x ¢} with ¢ > 1 integer valued and = 0, +1 ! By definition, the
valueo; = 0 represents the non-creeping case, such{thdix ¢} = {s,0} = {s}
reduces to the old single-letter symbol. The magnitude obrzerof; corre-
sponds to creeping sections of mode numbgmwhereas the sigor; = =1 signals
whether the creeping path turns around the disk the positive or negative sense.
Additional full creeping turns around a diskcan be summed up as a geometrical
series; therefore they do not lead to the introduction ofrth&r symbol.

multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 669

Figure 36.6: (a) The ghost itinerary (2,3, 4). (b) °
The parent itinerary (13, 4).

36.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk discan be shown to
have the same weight as the corresponding itinerary withiweits th symbol.
Thus, semiclassically, they cancel each other in the fr W) expansion, where
they are multiplied by the permutation factofr with the integer counting the
repeats. For example, let,@, 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trads.tr By convention,
an underlined disk index signals a ghost passage (as in fBfufa), with cor-
responding semiclassical ghost traversal matrices alderlined, A" +2ALi+2,
Then its semiclassical, geometrical contribution to tidlr(A) cancels exactly
against the one of its “parent” itinerary,@3, 4) (see figure 36.6b) resulting from
the 3rd-order trace:

_% (461,262,3A3,4A4,1) _ % (3A1’3A3’4A4’1)

= (+1-1)A3A34A% = 0.

The prefactors-1/3 and-1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic peatmn of the periodic
itineraries, and the cancellation stems from the rule

o AMHIARLIZ ...(_Ai,i+2)... ) (36.36)

The reader might study more complicated examples and coawiarself that the
rule (36.36).is sfiicient to cancel any primary or repeated periodic orbit witle 0
or more ghost sections completely out of the expansion af(fr+ A) and there-
fore also out of the cumulant expansion in the semiclassitet: Any periodic
orbit of lengthm with n(< m) ghost sections is cancelled by the sum of all ‘par-
ent’ periodic orbits of lengtm — i (with 1 < i < nandi ghost sections removed)
weighted by their cyclic permutation factor and by the pecéda resulting from
the trace-log expansion. This is the way in which the nontrivial pruning floe
N-disk billiards can be derived from the exact quantum meidahrexpressions
in the semiclassical limit. Note that there must exist asteme index in any
given periodic itinerary which corresponds to a non-ghost section, sirtbere
wise the itinerary in the semiclassical limit could only leaght and therefore
nonperiodic. Furthermore, the series in the ghost canoaldias to stop at the

1Actually, these are double-letter symbolscasandl; are only counted as a product.
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2nd-order trace, th2, as trA itself vanishes identically in the full domain which
is considered here.

36.5 Heisenberg uncertainty

Where is the boundarya ~ 2™1L/a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicdatapy of the 3-disk
repeller. When the wave numbkis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicales n. The quantum wave
packet which explores the repelling set has to disentangldifierent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ordaxr
between any two successive disk collisions. SuccessiVisiook are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxineakgble truncation in
the cycle expansion order by the highest quantum resolatiamable for a given
wavenumbek.

Commentary

Remark 36.1 Sources. This chapter is based in its entirety on ref. [J.1]; the reade
is referred to the full exposition for the proofs and diséossof details omitted here.
sect. 36.3 is based on appendix E of ref. [J.1]. We follow Eif@b.19] in applying the
Watson contour method [35.20] to (36.23). The Airy and Deagproximations to the
Hankel functions are given in ref. [35.21], the Airy expamsdf the 1-disk zeros can be
found in ref. [35.22].For details see refs. [35.19, 35.2223, J.1]. That the interior do-
mains of the disks are excluded relatively to the free evofuvithout scattering obstacles
was noted in refs. [35.24, 35.15].

The procedure for the semiclassical approximation of a ggmeeriodic itinerary
(36.20) of lengthn can be found in ref. [J.1] for the case of thedisk systems. The
reader interested in the details of the semiclassical t@mucs advised to consult this
reference.

The ghost orbits were introduced in refs. [35.12, 35.24].

Remark 36.2 Krein-Friedel-Lloyd formula.  In the literature (see, e.g., refs. [35.14,
35.15] based on ref. [35.11] or ref. [35.1]) the transitisani the quantum mechan-
ics to the semiclassics of scattering problems has beeprpeet] via the semiclassical
limit of the left hand sides of the Krein-Friedel-Lloyd sumrfthe (integrated) spectral

density [J.5, J.6, 35.8, 35.9]. See also ref. [35.13] for alemo discussion of the Krein-

Friedel-Lloyd formula and refs. [35.1, 35.17] for the contien of (35.17) to the Wigner

time delay.

The order of the two limits in (35.18) and (35.17) is essénsae e.g. Balian and
Bloch [35.11] who stress that smoothed level densitiesIshoeliinserted into the Friedel
sums.
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The necessity of theie in the semiclassical calculation can be understood by purel
phenomenological considerations: Without théerm there is no reason why one should
be able to neglect spurious periodic orbits which solelythese because of the introduc-
tion of the confining boundary. The subtraction of the sec@mpty) reference system
helps just in the removal of those spurious periodic orbhglv never encounter the scat-
tering region. The ones that do would still survive the finstilt b — oo, if they were not
damped out by theie term. exercise 35.1

Remark 36.3 T, CS, DS and ASS matrices are trace-class  In refs. [J.1] it has ex-
plicitly been shown that th&-matrix as well as theCs, DS and ASS-matrices of the
scattering problem frooN < co non-overlapping finite disks are all trace-class. The
corresponding properties for the single-disk systemsiisquéary easy to prove.
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