Chapter 37

Helium atom

“But,” Bohr protested, “nobody will believe me unless |
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

other curious but rather idealized dynamical systems. If jave become

impatient and started wondering what good are the meth@uisdd so far
in solving real physical problems, we have good news for ydée will show
in this chapter that the concepts of symbolic dynamics,almetperiodic orbits,
and cycle expansions are essential tools to understandadowate classical and
quantum mechanical properties of nothing less than thenela dreaded three-
body Coulomb problem.

SFAR much has been said about 1-dimensional maps, game of pauiocll

This sounds almost like one step too much at a time; we all kmowrich and
complicated the dynamics of the three-body problem is — canaally jump from
three static disks directly to three charged particles mgwinder the influence of
their mutually attracting or repelling forces? It turns owe can, but we have to
do it with care. The full problem is indeed not accessiblelinta detail, but we
are able to analyze a somewhat simpler subsystem — collitiam. This system
plays an important role in the classical dynamics of the thulee-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of heliumderaiclassi-
cal treatment of collinear helium lies in understanding wieyare allowed to do
so. We will not worry about this too much in the beginningeaftll, 80 years and
many failed attempts separate Heisenberg, Bohr and othéhe i1920ties from
the insights we have today on the role chaos plays for helinthits quantum
spectrum. We have introduced collinear helium and learred to integrate its
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Figure 37.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. rl

trajectories in sect. 6.3. Here we will find periodic orbitsdadetermine the rele-
vant eigenvalues of the Jacobian matrix in sect. 37.1. Weewilain in sect. 37.5
why a quantization of the collinear dynamics in helium wilbble us to find parts
of the full helium spectrum; we then set up the semiclassipattral determinant
and evaluate its cycle expansion. A full quantum justifamatf this treatment of
helium is briefly discussed in sect. 37.5.1.

37.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect. 6.3: theige#ir helium system
consists of two electrons of masg and charge-e moving on a line with respect
to a fixed positively charged nucleus of charge, as in figure 37.2.

The Hamiltonian can be brought to a non—dimensionalizegh for

Py
H:_ _— - — :—l. 371
2+2 r r2+r1+r2 ( )

The case of negative energies chosen here is the most tirigrese for us. It
exhibits chaos, unstable periodic orbits and is respoasdsithe bound states and
resonances of the quantum problem treated in sect. 37.5.

There is another classical quantity important for a seragtal treatment of
quantum mechanics, and which will also feature promineintiye discussion in
the next section; this is the classical action (33.15) wkicdles with energy as

P

S©) = P aa(E)-p(E) = T S (37.2)

with S being the action obtained from (37.1) f&r = -1, and coordinateq =
(r1,r2), p = (p1, p2). For the Hamiltonian (37.1), the period of a cycle and its
action are related by (33.17), = 3S.
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Figure 37.3: (a) A typical trajectory in ther; —
r, plane; the trajectory enters here along the o
axis and escapes to infinity along theaxis; (b) 0 ) : ‘ ‘
Poincaré maprg=0) for collinear helium. Strong
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chaos prevails for smaith near the nucleus. n
After a Kustaanheimo—Stiefel transformation
P P
2 2 1 2
rn. = ra = = — = — 37.3
1 Ql ’ 2 Q2 ’ pl 2Ql ’ p2 2Q2 ’ ( )
and reparametrization of time ¢ = dt/r1r», the equations of motion take form
(6.19) exercise 37.1
. P2 Q2 .1
P, =20:|2- -2 - Q21+ =2]|: = ZP,Q2 37.4
1 Ql[ 8 Qz( + Réllz)] Q1 2 1Q5 (37.4)
. P2 Q? .1
Po=2Q|2- 2 - Q%1+ =2 ||; = —P,Q%.
2 QZ [ ) Ql( + R?le)] ) QZ 4 2Q1

Individual electron—nucleus collisions mt= Q2 = 0 orr, = Q5 = 0 no longer
pose a problem to a numerical integration routine. The égusit(6.19) are sin-

gular only at the triple collisiorR;» = 0, i.e., when both electrons hit the nucleus

at the same time.

The new coordinates and the Hamiltonian (6.18) are veryulisdien calcu-
lating trajectories for collinear helium; they are, howevess intuitive as a visual-
ization of the three-body dynamics. We will therefore rdfethe old coordinates
ri1, r> when discussing the dynamics and the periodic orbits.

37.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helitihe electrons are at-
tracted by the nucleus. During an electron—nucleus coilishomentum is trans-
ferred between the inner and outer electron. The innerreledtas a maximal
screening fect on the charge of the nucleus, diminishing the attradtvee on
the outer electron. This electron — electron interactiondgligible if the outer
electron is far from the nucleus at a collision and the oVelahamics is regular
like in the 1-dimensional Kepler problem.
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Figure 37.4: The cycle 011 in the fundamental domain o~ :; —
r; > rp (full line) and in the full domain (dashed line).

Things change drastically if both electrons approach theeus nearly si-
multaneously. The momentum transfer between the electtepends now sen-
sitively on how the particles approach the origin. Intwtiy these nearly missed
triple collisions render the dynamics chaotic. A typicalj¢ctory is plotted in fig-
ure 37.3 (a) where we useg andr, as the relevant axis. The dynamics can also
be visualized in a Poincaré surface of section, see figu@(BY. We plot here the
coordinate and momentum of the outer electron whenevemiher iparticle hits
the nucleus, i.ery orro = 0. As the unstructured gray region of the Poincaré sec-
tion for smallr illustrates, the dynamics is chaotic whenever the outatle is
close to the origin during a collision. Conversely, regutations dominate when-
ever the outer electron is far from the nucleus. As one of lbet®ns escapes for
almost any starting condition, the system is unbounded:etawron (say electron
1) can escape, with an arbitrary amount of kinetic energeridiy the fugative.
The remaining electron is trapped in a Kepler ellipse witaltenergy in the range
[-1, —c0]. There is no energy barrier which would separate the bouwoich fthe
unbound regions of the phase space. From general kinemigtimants one de-
duces that the outer electron will not return whan> 0,r, < 2 atp, = 0, the
turning point of the inner electron. Only if the two electsompproach the nucleus
almost symmetrically along the limg = r,, and pass close to the triple collision
can the momentum transfer between the electrons be larggkrio kick one of
the particles out completely. In other words, the electrscape originates from
the near triple collisions.

The collinear helium dynamics has some important propextibich we now
list.

37.2.1 Reflection symmetry

The Hamiltonian (6.10) is invariant with respect to elentrelectron exchange;
this symmetry corresponds to the mirror symmetry of the ipimé along the line
ri{ = rp, figure 37.4. As a consequence, we can restrict ourselvée tdynamics
in thefundamental domain r; > ro and treat a crossing of the diagomal=r, as
a hard wall reflection. The dynamics in the full domain camthe reconstructed
by unfolding the trajectory through back-reflections. Aplained in chapter 21,
the dynamics in the fundamental domain is the key to the fixetioon of spectral
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determinants, to be implemented here in (37.15). Note Aksagitmilarity between
the fundamental domain of the collinear potential figurél3@nd the fundamental
domain figure 12.12 (b) in the 3—disk system, a simpler problégth the same
binary symbolic dynamics.

F in depth:
3 sect. 21.6, p. 411
37.2.2 Symbolic dynamics

We have already made the claim that the triple collisionsleeithe collinear he-
lium fully chaotic. We have no proof of the assertion, but #mlysis of the
symbolic dynamics lends further credence to the claim.

The potential in (37.1) forms a ridge along the line= r,. One can show
that a trajectory passing the ridge must go through at le@stwo-body collision
ri = 0 orrp, = 0 before coming back to the diagomal = r,. This suggests
a binary symbolic dynamics corresponding to the dynamics in the dnmehtal
domainry > ry; the symbolic dynamics is linked to the Poincaré map- 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the limg = r, between two collisions
with the nucleus, = 0;

1: if a trajectory is reflected from the lime = r, between two collisions with
the nucleus, = 0.

Empirically, the symbolic dynamics is complete for a Pongcenap in the
fundamental domain, i.e., there exists a one-to-one quuretence between bi-
nary symbol sequences and collinear trajectories in thédmental domain, with
exception of thé cycle.

37.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easytmtcthe num-
ber of periodic orbits in the fundamental domain, as in s&bt7.2. However,
mere existence of these cycles does ndficeito calculate semiclassical spectral
determinants. We need to determine their phase spacettnégscand calculate
their periods, topological indices and stabilities. A nesion of the periodic orbit
search to a suitable Poincaré surface of section,re.g.0 orry = r,, leaves us
in general with a 2-dimensional search. Methods to find g@iorbits in multi-
dimensional spaces have been described in chapter 13. €pend sensitively on
good starting guesses. A systematic search for all orbiidhesachieved only af-
ter combining multi-dimensional Newton methods with ipt@ation algorithms
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Figure 37.5: Some of the shortest cycles in T
collinear helium. The classical collinear electron -
motion is bounded by the potential barriel =
—2/r1—2/r,+1/(r1 + rp) and the conditiom; > 0.
The orbits are shown in the full—, domain, the
itineraries refers to the dynamics in the > r,
fundamental domain. The last figure, the 14-cycle

001011 |

011111

0010110
0110111

00101100110111, is an example of a typical cycle
with no symmetry.

based on the binary symbolic dynamics phase space pairgioAll cycles up to
symbol length 16 (some 8000 prime cycles) have been comfytesdich meth-
ods, with some examples shown in figure 37.5. All numericédence indicates
that the dynamics of collinear helium is hyperbolic, and &ibperiodic orbits are
unstable.

Note that the fixed poind cycle is not in this list. Th@ cycle would corre-
spond to the situation where the outer electron sits at rdistitely far from the
nucleus while the inner electron bounces back and forth imonucleus. The
orbit is the limiting case of an electron escaping to infinitigh zero kinetic en-
ergy. The orbit is in the regular (i.e., separable) limitloé tdynamics and is thus
marginally stable. The existence of this orbit is also edab intermittent behav-
ior generating the quasi—regular dynamics for largéhat we have already noted
in figure 37.3 (b).

Search algorithm for an arbitrary periodic orbit is quitentaersome to pro-
gram. There is, however, a class of periodic orbits, orbith @ymmetries, which
can be easily found by a one-parameter search. The only simnieé for the
dynamics in the fundamental domain is time reversal symmaettime reversal
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symmetric periodic orbit is an orbit whose trajectory in phaspace is mapped
onto itself when changingog, p2) — (—p1, —p2), by reversing the direction of the
momentum of the orbit. Such an orbit must be a “libration” elfsetracing cy-
cle, an orbit that runs back and forth along the same patheifrihr,) plane. The
cycles1, 01 and001 in figure 37.5 are examples of self-retracing cycles kilyc
the shortest cycles that we desire most ardently have thisrstry.

Why is this observation helpful? A self-retracing cycle mstart perpen-
dicular to the boundary of the fundamental domain, that fiseither of the axis
rz = 0 orry = ry, or on the potential boundary2 - 2 + L = -1. By
shooting @ trajectories perpendicular to the boundaries and monigdtie orbits
returning to the boundary with the right symbol length wel #id time reversal
symmetric cycles by varying the starting point on the boundss the only pa-
rameter. But how can we tell whether a given cycle is selahg or not? All
the relevant information is contained in the itinerariegyale is self-retracing if
its itinerary is invariant under time reversal symmetrg (i.read backwards) and
a suitable number of cyclic permutations. All binary stsngp to length 5 fulfill
this condition. The symbolic dynamics contains even moferination; we can
tell at which boundary the total reflection occurs. One fildd &in orbit starts out
perpendicular

e to the diagonat; = r if the itinerary is time reversal invariant and has an
odd number of 1's; an example is the cyflel in figure 37.5;

e to the axisr, = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cy@lL1 in figure 37.5;

e to the potential boundary if the itinerary is time reversalariant and has
an odd number of symbols; an example is the cgdi# in figure 37.5.

All cycles up to symbol length 5 are time reversal invaridhg first two non-time
reversal symmetric cycles are cycle81011 andd01101 in figure 37.5. Their
determination would require a two-parameter search. Tlecieles are mapped
onto each other by time reversal symmetry, i.e., they hagestime trace in the
r1—ro plane, but they trace out distinct cycles in the full phasscsp

We are ready to integrate trajectories for classical cedimhelium with the
help of the equations of motions (6.19) and to find all cyclesodength 5. There exercise 37.5
is only one thing not yet in place; we need the governing egngatfor the matrix
elements of the Jacobian matrix along a trajectory in ordezalculate stability
indices. We will provide the main equations in the next settiwith the details
of the derivation relegated to the appendix B.5.

37.3 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion foe thacobian matrix
along a collinear helium trajectory. The Jacobian matriX¥-idimensional; the
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two trivial eigenvectors corresponding to the conservatibenergy and displace-
ments along a trajectory can, however, be projected out hglde orthogonal
coordinates transformations, see appendix B. We will dieettansformation to
local coordinates explicitly, here for the regularized @hinates (6.17), and state
the resulting equations of motion for the reduceck[2] Jacobian matrix.

The vector locally parallel to the trajectory is pointingthre direction of the
phase space velocity (7.7)

. oH
Vi = Xm(t) = wmnﬂ = (Hp,, Hp,, —Hq,, _HQz)T’

with Hg = 4G, and Hp, = 45, i = 1,2. The vector perpendicular to a trajec-
tory x(t) = (Qq(t), Qa(t), P1(t), P2(t)) and to the energy manifold is given by the
gradient of the Hamiltonian (6.18)

y = VH = (Ho,, Ho,» Hp,, Hp,)T .

By symmetryVmym = ome 2 = 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O

(y1,72,7/RV) (37.5)

-Hp,/R  Hg, Hq,//R Hp,
Hp,/R —-Hqg, Hq,/R Hp,
-Hgq,/R -Hp, Hp, /R —Hg,
Ho,/R Hp, Hp,/R -Hg,

with R = [VH[? = (Hg +Hg +HZ + HZ ), which provides a transformation to

local phase space coordinates centered on the trajex(@mlong the two vectors

(7,V). The vectorsy; , are phase space vectors perpendicular to the trajectory exadise 37.6
to the energy manifold in the 4-dimensional phase spacelliiear helium. The

Jacobian matrix (4.6) rotated to the local coordinate sydy O then has the

form

M1 Mo * 0

Mp1 My = 0 _ AT
m = 0 0 1 0 , M=0"mO

% % * 1

The linearized motion perpendicular to the trajectory om ¢éimergy manifold is
described by the [ 2] matrix m; the ‘trivial’ directions correspond to unit eigen-
values on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced Jacobian matrexe given by

i = 1m(), (37.6)
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with m(0) = 1. The matrixl depends on the trajectory in phase space and has the
form

i1 112 = O
| = o1 I % O
-1 O O 0 0}
* *+ % 0

where the relevant matrix elemenisare given by

1

|11 = ﬁ[ZHQle(HQszl + HQlHF’z) (37.7)
+(HQ1HP1 - HQZHPZ)(HQlQl - HQzQz - Hp,p, + HP2P2)]

EPIES _ZHQle(HQlHQz —Hp,Hp,)

+(Hél * H%Z)(HQZQZ * HP1P1) + (Héz + Hsl)(HQlQl + HPsz)
1
by = E[Z(Hle2 + Hszl)(HQsz1 + HQalg)

_(ngl + HI%Z)(HQlQl + HQzQz) - (H(zgl + H(zgz)(lepl + szpz)]
oo = —l11.

HereHqq;, Hpip;, I, ] = 1,2 are the second partial derivativestofwith respect
to the coordinate®);, P;, evaluated at the phase space coordinate of the classical
trajectory.

37.4 Getting ready

Now everything is in place: the regularized equations ofiamotan be imple-
mented in a Runge—Kutta or any other integration schemedalete trajectories.
We have a symbolic dynamics and know how many cycles theraratéow to

find them (at least up to symbol length 5). We know how to complugé Jacobian
matrix whose eigenvalues enter the semiclassical spetgtaiminant (34.12). By
(33.17) the actiorsy, is proportional to the period of the orb,, = 2T),.

There is, however, still a slight complication. Collinealibm is an invariant
4-dimensional subspace of the full helium phase space. tégtect the dynamics
to angular momentum equal zero, we are left with 6 phase smaireinates. That
is not a problem when computing periodic orbits, they arévahls to the other di-
mensions. However, the Jacobian matrix does pick up extraibations. When
we calculate the Jacobian matrix for the full problem, we talso allow for dis-
placements out of the collinear plane, so the full Jacobiatrirafor dynamics for
L = 0 angular momentum is 6 dimensional. Fortunately, the tined dynamics
in and df the collinear helium subspace decouple, and the Jacobiixroan
be written in terms of two distinct [& 2] matrices, with trivial eigen-directions
providing the remaining two dimensions. The submatrixtezlao displacements
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Table 37.1: Action S, (in units of 2r), Lyapunov exponeni\ |/ T, for the motion in the collinear
plane, winding numbes-, for the motion perpendicular to the collinear plane, andttmological
indexm, for all fundamental domain cycles up to topological length 6

p Sp/2r  In|Ay| op My
1| 1.82900 0.6012 0.5393
01| 3.61825 1.8622 1.0918
001| 5.32615 3.4287 1.6402
011| 5.39451 1.8603 1.6117
0001| 6.96677 4.4378 2.1710
0011| 7.04134 23417 21327
0111| 7.25849 3.1124 2.1705
00001| 8.56618 5.1100 2.6919
00011| 8.64306 2.7207 2.6478
00101| 8.93700 5.1562 2.7291
00111| 8.94619 45932 2.7173
01011| 9.02689 4.1765 2.7140
01111| 9.07179 3.3424 2.6989
000001| 10.13872 5.6047 3.2073
000011| 10.21673 3.0323 3.1594
000101| 10.57067 6.1393 3.2591
000111| 10.57628 5.6766 3.2495
001011| 10.70698 5.3251 3.2519
001101| 10.70698 5.3251 3.2519
001111| 10.74303 4.3317 3.2332
010111} 10.87855 5.0002 3.2626
011111] 10.91015 4.2408 3.2467
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off the linear configuration characterizes the linearized dyina in the additional
degree of freedom, th®@-coordinate in figure 37.1. It turns out that the linearized
dynamics in the® coordinate is stable, corresponding to a bending type matio
the two electrons. We will need the Floquet exponents fodedjrees of freedom
in evaluating the semiclassical spectral determinantdh £2.5.

The numerical values of the actions, Floquet exponentbijlisgaangles, and
topological indices for the shortest cycles are listed bid&7.1. These numbers,
needed for the semiclassical quantization implementeldeméxt section, an also
be helpful in checking your own calculations.

37.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium twrarenergy levels
let us have a brief look at the overall structure of the spmetr This will give us
a preliminary feel for which parts of the helium spectrum aceessible with the
help of our collinear model — and which are not. In order togktkee discussion as
simple as possible and to concentrate on the semiclassigatts of our calcula-
tions we dfer here only a rough overview. For a guide to more detailedauts
see remark 37.4.

37.5.1 Structure of helium spectrum

We start by recalling Bohr's formula for the spectrum of hyglen like one-
electron atoms. The eigenenergies form a Rydberg series

e*me Z2

En= -t
N "2 2N2

(37.8)

whereZeis the charge of the nucleus ang is the mass of the electron. Through
the rest of this chapter we adopt the atomic uaitsme =7 = 1.

The simplest model for the helium spectrum is obtained batimg the two
electrons as independent particles moving in the poteotidile nucleus neglect-
ing the electron—electron interaction. Both electronsthes bound in hydrogen
like states; the inner electron will see a chalje 2, screening at the same time
the nucleus, the outer electron will move in a Coulomb paaéntith effective
chargeZ — 1 = 1. In this way obtain a first estimate for the total energy

2

Enp = —— — —
NN TNZ T o

with n> N. (37.9)

This double Rydberg formula contains already most of thermation we need to
understand the basic structure of the spectrum. The (dplimdzations thresh-
oldsEy = —é are obtained in the limih — oo, yielding the ground and excited
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states of the helium ioHe". We will therefore refer tdN as the principal quantum
number. We also see that all stai&g,, with N > 2 lie above the first ionization
threshold forN = 1. As soon as we switch on electron-electron interactiosdhe
states are no longer bound states; they turn into resoratessivhich decay into
a bound state of the helium ion and a free outer electron. Mgkt not come as

a big surprise if we have the classical analysis of the prtes/gection in mind: we
already found that one of the classical electrons will alnabsays escape after
some finite time. More remarkable is the fact that the fixst: 1 series consists
of true bound states for atl, an d@fect which can only be understood by quantum
arguments.

The hydrogen-like quantum energies (37.8) are highly degee; states with
different angular momentum but the same principal quantum nuhhlsbare the
same energy. We recall from basic quantum mechanics of ggdratom that
the possible angular momenta for a gividrspanl = 0,1...N — 1. How does
that dfect the helium case? Total angular momentufor the helium three-body
problem is conserved. The collinear helium is a subspacheotlassical phase
space forL = 0; we thus expect that we can only quantize helium stateg-corr
sponding to the total angular momentum zero, a subspectfuiredull helium
spectrum. Going back to our crude estimate (37.9) we may ttilbige angular
momenta to the two independent electrdasandl, say. In order to obtain total
angular momentunh = 0 we need; = I, = | andl,; = —l», that is, there are
N different states corresponding lto= 0O for fixed quantum numben, n. That
means that we exped different Rydberg series converging to each ionization
thresholdEy = —2/N2. This is indeed the case and thedifferent series can
be identified also in the exact helium quantum spectrum, sgeefi37.6. The
degeneracies between thdfdirentN Rydberg series corresponding to the same
principal quantum numbeX, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse steuattine spectrum.

In the next step, we may even speculate which parts of.teke0 spectrum
can be reproduced by the semiclassical quantization oihealt helium. In the
collinear helium, both classical electrons move back amthfalong a common
axis through the nucleus, so each has zero angular momententherefore
expect that collinear helium describes the Rydberg seridisw= 1, = [, = 0.
These series are the energetically lowest states for fiXed)( corresponding to
the Rydberg series on the outermost left side of the spedmuigure 37.6. We
will see in the next section that this is indeed the case amidltle collinear model
holds down to theN = 1 bound state series, including even the ground state
of helium! We will also find a semiclassical quantum numbetresponding to
the angular momenturhand show that the collinear model describes states for
moderate angular momentunas long a$ < N. . remark 37.4

37.5.2 Semiclassical spectral determinant for collineardlium

Nothing but lassitude can stop us now from calculating owt flemiclassical
eigenvalues. The only thing left to do is to set up the spedeterminant in terms
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Figure 37.6: The exact quantum helium spectrum
for L = 0. The energy levels denoted by bars
have been obtained from full 3-dimensional quan-
tum calculations [37.3].
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of the periodic orbits of collinear helium and to write ouétfirst few terms of its
cycle expansion with the help of the binary symbolic dynamithe semiclassic-
al spectral determinant (34.12) has been written as praakastall cycles of the
classical systems. The energy dependence in collineamhealnters the classical
dynamics only through simple scaling transformations diesd in sect. 6.3.1
which makes it possible to write the semiclassical sped&trminant in the form

eir(sSp—mp’—zr)

~ - 1
det (i-E)s: = exp[- ; 2,7 Caet @ My ) det i MEI2

with the energy dependence absorbed into the variable

_ ¢ [me
STANTE

,(37.10)

obtained by using the scaling relation (37.2) for the actiols explained in
sect. 37.3, the fact that the 4] Jacobian matrix decouples into two ¥22]
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submatrices corresponding to the dynaniitthe collinear space arkrpendic-
ular to it makes it possible to write the denominator in terms of@dpct of two
determinants. Stable and unstable degrees of freedom thetémace formula in
different ways, reflected by the absence of the modulus sign enaitius sign
in front of det(1- M_). The topological indexn, corresponds to the unstable
dynamics in the collinear plane. Note that the fac6MN® present in (34.12)
is absent in (37.10). Collinear helium is an open system, the eigenenergies
are resonances corresponding to the complex zeros of thielassical spectral
determinant and the mean energy stairdd$éE) not defined. In order to obtain
a spectral determinant as an infinite product of the formi@pwe may proceed
as in (19.9) by expanding the determinants in (37.10) in $eofithe eigenvalues
of the corresponding Jacobian matrices. The matrix reptagg displacements
perpendicular to the collinear space has eigenvalues dbthe exp&2rio), re-
flecting stable linearized dynamics. is the full winding number along the orbit
in the stable degree of freedom, multiplicative under rplédtirepetitions of this
orbit .The eigenvalues corresponding to the unstable digsaatong the collinear
axis are paired ag\, 1/A} with [A| > 1 and real. As in (19.9) and (34.18) we may
thus write

[~det (1- MY )det (1- M| (37.11)
[-(@- AN~ AL - )L - e

— i ; e—ir(f+l/2)a-
|Ar |1/2Ark '
k(=0

The =+ sign corresponds to the hyperbgiiverse hyperbolic periodic orbits with
positivegnegative eigenvalues. Using the relation (37.12) we see that the sum
overr in (37.10) is the expansion of the logarithm, so the semiatas spectral
determinant can be rewritten as a product over dynamical zetctions, as in
(19.9):

det@ - E)g = ﬁ ﬁ Gt = . ﬁ ]—[(1 — llemy (37.12)
= p

k=0 m=0 k=0 m=0

where the cycle weights are given by

(km) _ 1 i(sSp—mp X —4n(£+1/2)
b = |A|1/2Aké( e~/ (87.13)

andm, is the topological index for the motion in the collinear pamhich equals
twice the topological length of the cycle. The two indepeatidBrections perpen-
dicular to the collinear axis lead to a twofold degeneradhis degree of freedom
which accounts for an additional factor 2 in front of the wimglnumbero. The
values for the actions, winding numbers and stability indiof the shortest cycles
in collinear helium are listed in table 37.1.
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The integer indiceg andk play very diferent roles in the semiclassical spec-
tral determinant (37.12). A linearized approximation af fftow along a cycle cor-
responds to a harmonic approximation of the potential invtbimity of the trajec-
tory. Stable motion corresponds to a harmonic oscillatdepiial, unstable mo-
tion to an inverted harmonic oscillator. The indéxhich contributes as a phase
to the cycle weights in the dynamical zeta functions canetioee be interpreted
as a harmonic oscillator quantum number; it correspondsbi@tional modes in
the ® coordinate and can in our simplified picture developed irt.s&¢.5.1 be
related to the quantum numblet |, = |, representing the single particle angular
momenta. Every distindt value corresponds to a full spectrum which we obtain
from the zeros of the semiclassical spectral determinafitkeeping? fixed. The
harmonic oscillator approximation will eventually breakwh with increasing
off-line excitations and thus increasifigThe indexk corresponds to ‘excitations’
along the unstable direction and can be identified with loesbnances of the in-
verted harmonic oscillator centered on the given orbit.  &y@e contributions
tg(’m) decrease exponentially with increasikgHigherk terms in an expansion of
the determinant give corrections which become importaht for large negative
imaginarysvalues. As we are interested only in the leading zeros ofl@7i.e.,
the zeros closest to the real energy axis, it isient to take only thé& = 0 terms
into account.

Next, let us have a look at the discrete symmetries discussedct. 37.2.
Collinear helium has &, symmetry as it is invariant under reflection across
thery = r, line corresponding to the electron-electron exchange sgtryn As
explained in sects. 21.1.1 and 21.5, we may use this symrtefigctorize the
semiclassical spectral determinant. The spectrum carrebpg to the states sym-
metric or antisymmetric with respect to reflection can beaotetd by writing the
dynamical zeta functions in the symmetry factorized form

10 =]]a-w?] |Ja-1). (37.14)

Here, the first product is taken over all asymmetric primeeyci.e., cycles that
are not self-dual under th& symmetry. Such cycles come in pairs, as two equiv-
alent orbits are mapped into each other by the symmetryfoamation. The sec-
ond product runs over all self-dual cycles; these orbitsetbe axis, = ro twice

at a right angle. The self-dual cycles close in the fundaaiatmainr; < r;
already at half the period compared to the orbit in the fulinéin, and the cy-
cle weightstz in (37.14) are the weights of fundamental domain cycles. The

symmetry now leads to the factorization of (37.14) 1= £;%~%, with

[la-]]a-t9.

[Ja-t)] [a+tw. (37.15)

120

1/9

settingk = 0 in what follows. The symmetric subspace resonances aengiv
by the zeros of M([), antisymmetric resonances by the zeros ,tgff&l, with the
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two dynamical zeta functions defined as products over oibitae fundamental
domain. The symmetry properties of an orbit can be refidlioectly from its
symbol sequence, as explained in sect. 37.2. An orbit withdghnumber of 1's

in the itinerary is self-dual under th& symmetry and enters the spectral deter-
minant in (37.15) with a negative or a positive sign, depegdin the symmetry
subspace under consideration.

37.5.3 Cycle expansion results

So far we have established a factorized form of the semickdsspectral det-
erminant and have thereby picked up tgaod quantum numbers; the quantum
numberm has been identified with an excitation of the bending vibraj the
exchange symmetry quantum numbelr corresponds to states being symmetric
or antisymmetric with respect to the electron-electronhexge. We may now
start writing down the binary cycle expansion (20.7) ancedatne the zeros of
spectral determinant. There is, however, still anotheblaenm: there is no cycle 0
in the collinear helium. The symbol sequerficeorresponds to the limit of an outer
electron fixed with zero kinetic energym@t= oo, the inner electron bouncing back
and forth into the singularity at the origin. This introdgcatermittency in our
system, a problem discussed in chapter 24. We note that tievioe of cycles
going far out in the channel orr, — o is very diferent from those staying in the
near core region. A cycle expansion using the binary alphedmroduces states
where both electrons are localized in the near core regitrese are the lowest
states in each Rydberg series. The states converging toatimus ionization
thresholdsEy = —2/N? correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionizatthannelr;,ro, — oo.

To include those states, we have to deal with the dynamicleimit of large
r1,r». This turns out to be equivalent to switching to a symbolinatyics with an
infinite alphabet. With this observation in mind, we may wiie cycle expansionremark 37.5
(....) for a binary alphabet without tieecycle as

179 = 1 =t 1) - 11, + 1§, - 1

O 10 _ {00, 0 _ 00
~[t001 + too11 ~ tooals” * toaas ~foasts 1=+ - (37.16)

The weightstff) are given in (37.12), with contributions of orbits and corsip®

orbits of the same total symbol length collected within sgquaackets. The cycle
expansion depends only on the classical actions, stalnlitices and winding
numbers, given for orbits up to length 6 in table 37.1. To geicquainted with
the cycle expansion formula (37.16), consider a truncabiotine series after the
first term

1/0O() ~ 1-t;.
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Table 37.2: Collinear helium, real part of the symmetric subspace rasoes obtained by a cycle
expansion (37.16) up to cycle lengith The exact quantum energies [37.3] are in the last column.
The states are labeled by their principal quantum numberdagh as an entry indicates a missing
zero at that level of approximation.

3.0970 2.9692 29001 2.9390 2.9248 2.9037
0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
— 0.5698 0.5906 0.5916 0.5902 0.5899
— — — 0.5383 0.5429 0.5449
0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
— — 0.2812 0.2808 0.2808 0.2811
— — 0.2550 0.2561 0.2559 0.2560
— — — 0.2416 0.2433 0.2438
0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
— 0.1655 0.1650 0.1654 0.1657 0.1657
— — 0.1508 0.1505 0.1507 0.1508
— — 0.1413 0.1426 0.1426 0.1426

ARNDMNIMNWWWWNNNR Z
~N~No RN~ WAWNR >

The quantization condition/z(9(s) = 0 leads to

S 2
Emn = — 1( 1/27) ——. mN=012..., (37.17)
[m+ 35 +2(N + 3)o1]?

with S1/27 = 1.8290 for the action anat; = 0.5393 for the winding number, see
table 37.1, the 1 cycle in the fundamental domain. This cyalebe described as
theasymmetric stretch orbit, see figure 37.5. The additional quantum nunitbér
(37.17) corresponds to the principal quantum number defimedct. 37.5.1. The
states described by the quantization condition (37.17)er®e centered closest to
the nucleus and correspond therefore to the lowest statescim Rydberg series
(for a fixedm and N values), in figure 37.6. The simple formula (37.17) gives
already a rather good estimate for the ground state of héliResults obtained
from (37.17) are tabulated in table 37.2, see the 3rd coluntienj = 1 and the
comparison with the full guantum calculations.

In order to obtain higher excited quantum states, we needdode more
orbits in the cycle expansion (37.16), covering more of thage space dynamics
further away from the center. Taking longer and longer cyatg#o account, we
indeed reveal more and more states in ddeseries for fixedn. This is illustrated
by the data listed in table 37.2 for symmetric states obthinem truncations of
the cycle expansion of/Z,. exercise 37.7

Results of the same quality are obtained for antisymmetsites by calculat-
ing the zeros of Mff). Repeating the calculation with= 1 or higher in (37.15)
reveals states in the Rydberg series which are to the rigihieagnergetically low-
est series in figure 37.6.
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Résum é

We have covered a lot of ground starting with consideratifribe classical prop-
erties of a three-body Coulomb problem, and ending with #maislassical he-
lium spectrum. We saw that the three-body problem resttittethe dynamics
on a collinear appears to be fully chaotic; this implies tinatlitional semiclassi-
cal methods such asKBquantization will not work and that we needed the full
periodic orbit theory to obtain leads to the semiclassipaictrum of helium. As
a piece of unexpected luck the symbolic dynamics is simpid,the semiclassi-
cal quantization of the collinear dynamics yields an imaottpart of the helium
spectrum, including the ground state, to a reasonable acguA sceptic might
say: “Why bother with all the semiclassical consideratibisstraightforward nu-
merical quantum calculation achieves the same goal witieetecision.” While
this is true, the semiclassical analysit¥eos new insights into thsiructure of the
spectrum. We discovered that the dynamics perpendiculdret@ollinear plane
was stable, giving rise to an additional (approximate) quamumber. We thus
understood the origin of thefierent Rydberg series depicted in figure 37.6, a fact
which is not at all obvious from a numerical solution of theagtum problem.

Having traversed the long road from the classical game diglirall the way
to a credible helium spectrum computation, we could declctry and fold
down this enterprise. Nevertheless, there is still muclhitikiabout - what about
such quintessentially quantunftects as dtraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of intetegitter.

Commentary

Remark 37.1 Sources. The full 3-dimensional Hamiltonian after elimination ofth
center of mass coordinates, and an account of the finite msicleass fects is given in
ref. [37.2]. The general two—body collision regularizingstaanheimo—Stiefel transfor-
mation [37.5], a generalization of Levi-Civita’s [37.13h#&i matrix two—body collision
regularization for motion in a plane, is due to KustaanhejBi12] who realized that
the correct higher-dimensional generalization of the &@guoot removal” trick (6.15),
by introducing a vecto with propertyr = |Q|?, is the same as Dirac’s trick of getting
linear equation for spin/2 fermions by means of spinors. Vector spaces equipped with a
product and a known satisf@- Q| = |QJ2 definenormed algebras. They appear in various
physical applications - as quaternions, octonions, sgin@he technique was originally
developed in celestial mechanics [37.6] to obtain numébyiséable solutions for plane-
tary motions. The basic idea was in place as early as 1931y Whelopf [37.14] used a
KS transformation in order to illustrate a Hopf’s invariaithe KS transformation for the
collinear helium was introduced in ref. [37.2].

Remark 37.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collineglidm cycles have been found
in numerical investigations. A proof that all cycles are tabhée, that they are uniquely

helium - 27dec2004 ChaosBook.org version13, Dec 31 2009



CHAPTER 37. HELIUM ATOM 690

labeled by the binary symbolic dynamcis, and that this dyinais complete is, however,
still missing. The conjectured Markov partition of the paapace is given by the triple
collision manifold, i.e., by those trajectories which star or end at the singular point
r; =rp = 0. See also ref. [37.2].

Remark 37.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamicfibets due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Elets are fermions and that deter-
mines the symmetry properties of the quantum states. Théweatve function, including
the spin degrees of freedom, must be antisymmetric undeldoéron-electron exchange
transformation. That means that a quantum state symmettt@iposition variables must
have an antisymmetric spin wave function, i.e., the spiasatiparallel and the total spin
is zero (singletstate). Antisymmetric states have symimsfin wave function with total
spin 1 (tripletstates). The threefold degeneracy of spitaties is lifted by the spin-orbit
coupling.

Remark 37.4 Helium quantum numbers.  The classification of the helium states in
terms of single electron quantum numbers, sketched in 8&d5.1, prevailed until the
1960’s; a growing discrepancy between experimental resuitl theoretical predictions
made it necessary to refine this picture. In particular, tiiebnt Rydberg series sharing
a givenN-quantum number correspond, roughly speaking, to a queidiz of the inter
electronic angle®, see figure 37.1, and can not be described in terms of singi¢reh
guantum numbers, |,. The fact that something is slightly wrong with the singleatton
picture laid out in sect. 37.5.1 is highlighted when consitgthe collinear configuration
where both electrons are on tkame side of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quantatessshould also belong
to single electron quantum numbelsg [2) = (0, 0). However, the single electron picture
breaks down completely in the lim& = O where electron-electron interaction becomes
the dominant ffect. The quantum states corresponding to this classicdigtmation are
distinctively diferent from those obtained from the collinear dynamics widitteons on
different sides of the nucleus. The Rydberg series related wdhksical® = 0 dynamics
are on the outermost rigth side in ealshsubspectrum in figure 37.6, and contain the
energetically highest states for givélin quantum numbers, see also remark 37.5. A
detailed account of the historical development as well a®dam interpretation of the
spectrum can be found in ref. [37.1].

Remark 37.5 Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace ssubsed in refs. [37.7, 37.8,
37.9]. Classical and semiclassical considerations beydmat has been discussed in
sect. 37.5 follow several other directions, all outsidertren of this book.

A classical study of the dynamics of collinear helium wheothtelectrons are on the
same side of the nucleus reveals that this configurationlisstable both in the collinear
plane and perpendicular to it. The corresponding quantatestcan be obtained with
the help of an approximate EBK-quantization which revealtum resonances with ex-
tremely long lifetimes (quasi - bound states in the continju These states form the
energetically highest Rydberg series for a given princgueantum numbeN, see fig-
ure 37.6. Details can be found in refs. [37.10, 37.11].
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In order to obtain the Rydberg series structure of the spatti.e., the succession
of states converging to various ionization thresholds, wedto take into account the
dynamics of orbits which make large excursions alongrther r, axis. In the chaotic
collinear subspace these orbits are characterized by dysaoences of fornaQ") where
a stands for an arbitrary binary symbol sequence dhid @ succession af 0’s in a row.

A summation of the forn};taor, Wheret, are the cycle weights in (37.12), and cy-
cle expansion of indeed yield all Rydberg states up the uarionization thresholds, see
ref. [37.4]. For a comprehensive overview on spectra of lextron atoms and semiclas-
sical treatments ref. [37.1].

Exercises

37.1.

37.2.

37.3.

37.4.

exerHelium - 16apr2002

Kustaanheimo—Stiefel transformation.
Kustaanheimo-Stiefel regularization for collinear he-
lium; derive the Hamiltonian (6.18) and the collinear
helium equations of motion (6.19).

Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
Mhe = o0, and angular momentuin = 0, show that the
three body problem can be written in terms of three inde-
pendent coordinates only, the electron-nucleus distances
r; andr; and the inter-electron angé®, see figure 6.1.

Helium trajectories. Do some trial integrations of the
collinear helium equations of motion (6.19). Due to the
energy conservation, only three of the phase space coor-
dinates Q1, Q2, P1, P2) are independent. Alternatively,
you can integrate in 4 dimensions and use the energy
conservation as a check on the quality of your integra-
tor.

The dynamics can be visualized as a motion in the orig-
inal configuration spacer{,ry), ri > 0 quadrant, or,
better still, by an appropriately choser-Zimensional
Poincaré section, exercise 37.4. Most trajectories wij
run away, do not be surprised - the classical collinear he--
lium is unbound. Try to guess approximately the short-
est cycle of figure 37.4.

A Poincaré section for collinear Helium.  Construct

a Poincaré section of figure 37.3b that reduces the he-
lium flow to a map. Try to delineate regions which cor-
respond to finite symbol sequences, i.e. initial condi-
tions that follow the same topological itinerary in fig-
ure 37.3a space for a finite number of bounces. Such
rough partition can be used to initiate 2—dimensional
Newton-Raphson method searches for helium cycles,
exercise 37.5.

Check the 37.5. Collinear helium cycles.

6. Collinear helium cycle stabilities.

The motion in the 1(z, ry)
plane is topologically similar to the pinball motion in a
3-disk system, except that the motion is in the Coulomb
potential.

Just as in the 3-disk system the dynamics is simplified
if viewed in thefundamental domain, in this case the
region betweem; axis and the'; = r, diagonal. Mod-

ify your integration routine so the trajectory bouncés o
the diagonal asf6a mirror. Miraculously, the symbolic
dynamics for the survivors again turns out to be binary,
with 0 symbol signifying a bouncefibther; axis, and

1 symbol for a bouncefdthe diagonal. Just as in the
3-disk game of pinball, we thus know what cycles need
to be computed for the cycle expansion (37.16).

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either return:
ing to the same; axis or reflecting & the diagonal.
Now either Use special symmetries of orbits such as
self-retracing to find all orbits up to length 5 by a 1-
dimensional Newton search.

Compute the
eigenvalues for the cycles you found in exercise 37.5, as
described in sect. 37.3. You may either integrate the re-
duced 2x 2 matrix using equations (37.6) together with
the generating functiohgiven in local coordinates by
(37.7) or integrate the full &« 4 Jacobian matrix, see
sect. K.1. Integration in 4 dimensions should give
eigenvalues of the form (1, Ap, 1/Ap); The unit eigen-
values are due to the usual periodic orbit invariances;
displacements along the orbit as well as perpendicular
to the energy manifold are conserved; the latter one
provides a check of the accuracy of your computation.
Compare with table 37.1; you should get the actions and
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37.7.

Lyapunov exponents right, but topological indices and
stability angles we take on faith.

Helium eigenenergies. Compute the lowest eigenen-
ergies of singlet and triplet states of helium by substi-
tuting cycle data into the cycle expansion (37.16) for

the symmetric and antisymmetric zeta functions (37.15).

Probably the quickest way is to plot the magnitude of
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the zeta function as function of real energy and look
for the minima. As the eigenenergies in general have a
small imaginary part, a contour plot such as figure 20.1,
can yield informed guesses. Better way would be to
find the zeros by Newton method, sect. 20.2.3. How
close are you to the cycle expansion and quantum re-
sults listed in table 37.2? You can find more quantum
data in ref. [37.3].
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