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15.1 How many ways to get there from here?

In the 3-disk system of example 11.1 the number of admissibjectories dou-

bles with every iterate: there alg, = 3-2" distinct itineraries of length. If disks

are too close and a subset of trajectories is pruned, thigysam upper bound and
Chapter 15 explicit formulas might be hard to discover, but we still inigpe able to establish

a lower exponential bound of the fori, > Ce™. Bounded exponentially by

3¢""2 > K, > Ce™M the number of trajectories must grow exponentially as a

function of the itinerary length, with rate given by tt@pological entropy

Counting

.1
h= r!m ﬁln Kn . (15.1)

We shall now relate this quantity to the spectrum of the ftams matrix, with
the growth rate of the number of topologically distinct émtories given by the

I'm gonna close my eyes " . . h
J ey leading eigenvalue of the transition matrix.

And count to ten
I’'m gonna close my eyes

And when | open them again The transition matrix elemert; € {0, 1} in (14.1) indicates whether the tran-

Everything will make sense to me then sition from the starting partitior into partitioni in one step is allowed or not, and
—Tina Dico, ‘Count To Ten’ the (, j) element of the transition matrix iteratedimes exercise 15.1
TN = Tic: Tkko - - - T 1 15.2
E ARE NOW in a position to apply the periodic orbit theory to the firstan (T . k;kﬂ iky Tkiko kn-1] ( )
the easiest problem in theory of chaotic systems: cycle taogin This

is the simplest illustration of the raison d’etre of periodirbit theory;
we derive a duality transformation that relatesal information - in this case the
next admissible symbol in a symbol sequence glttbal averages, in this case
the mean rate of growth of the number of cycles with increzsiycle period. In

receives a contribution 1 from every admissible sequendmansitions, soT");;
is the number of admissiblesymbol itineraries starting witfland ending with.

chapter 14 we have transformed, by means of the transitidricesy graphs, the Example 15.1 3-disk itinerary counting. The (T2)13 = T15T23 = 1 element of T2 for

topological dynamics of chapter 11 into a multiplicativeeogtion. Here we show the 3-disk transition matrix (14.8)

that thenth power of a transition matrix counts all itineraries of g¢mn. The

asymptotic growth rate of the number of admissible itinesis therefore given 0 1 12 211

by the leading eigenvalue of the transition matrix; the legatigenvalue is in turn [1 0 (1)] = [1 2 ;] (15.3)
11 11

given by the leading zero of the characteristic determioétite transition matrix,

which is - in this context - called th®pological zeta function )
corresponds to path3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)a3 = T31T13+

e . . . S ) Ta5T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
For flows with finite transition graphs thi rminant i logical %22 9 P p
or flows wit te transition graphs this dete ant isrité topological tr72 = (Tz)ll + (Tz)zz + (T2)33 = 2T13T31 + 2T21T12 + 2T32T23 has a contribution from

polynomialwhich can be readfbthe graph. However, (a) even something as each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.
humble as the quadratic map generically requires an infpaitétion (sect. 15.5),

but (b) the finite partition approximants converge expoiadigtfast.
The total number of admissible itinerariesro$ymbols is

The method goes well beyond the problem at hand, and formsotteeof the

entire treatise, making tangible the abstract notion oét$gal determinants” yet 1
to come. :
Kn= Y (T =(L1....1) T | (15.4)
i :
1
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CHAPTER 15. COUNTING 286

We can also count the number of prime cycles and pruned pefpadhts, but
in order not to break up the flow of the argument, we relegagsdlpretty results
to sect. 15.7. Recommended reading if you ever have to canpist of cycles.

A finite [N x N] matrix T has eigenvaluegly, 41, - - -, Am-1} @nd (right) eigen-
vectors{eo, ¢1, - - -, pm-1} satisfyingTe, = A,¢,. Expressing the initial vector in
(15.4) in this basis (which might be incomplete, with< N eigenvectors),

1
. 1 . m-1 m-1 .
T = T Z bn()aar = Z bo/ln‘Pa 5
i =0 =0

and contracting witlf 1, 1,...,1), we obtain

m-1
Ky = Z Codly .
a=0

The constants, depend on the choice of initial and final partitions: In this e
ample we are sandwiching” between the vectdrl, 1,...,1) and its transpose,
but any other pair of vectors would do, as long as they are rthbgonal to the

leading eigenvectopy. In an experiment the vectdrl, 1,...,1) would be re-

placed by a description of the initial state, and the rigltteewould describe the
measurement time later.

exercise 15.3

Perron theoremstates that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalug > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore exreases, the sum
is dominated by the leading eigenvalue of the transitionrimaly > |Re,l,
a=12,---,m-1, and the topological entropy (15.1) is given by

1 n ¢ (A1)
r!mﬁlnco/lo[lJra(/l_o) 4.
~[In 1cp (A1)
= InAg+ lim [—00+—&(—1) +]
n—oo n nco /{O
= InAg. (15.5)

=
]

What have we learned? The transition maffiis a one-stepshort timeoperator,
advancing the trajectory from one partition to the next adibie partition. Its
eigenvalues describe the rate of growth of the total numbéragectories at the
asymptotic timesinstead of painstakingly countiri§;, K2, Ks, . .. and estimating
(15.1) from a slope of a log-linear plot, we have #hacttopological entropy if
we can compute the leading eigenvalue of the transitionixiatrThis is reminis-
cent of the way free energy is computed from transfer magrfoe 1-dimensional
lattice models with finite range interactions. Historigalit is this analogy with
statistical mechanics that led to introduction of evolatmperator methods into
the theory of chaotic systems.

count - 29jan2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 15. COUNTING 287

15.2 Topological trace formula

There are two standard ways of computing eigenvalues of eExmdly evaluating
the trace tT" = Y, A0, or by evaluating the determinant det{ZT). We start by
evaluating the trace of transition matrices. The main lessitl be that the trace
receives contributions only from itineraries that retuorthe initial partition, i.e.,
periodic orbits.

Consider arM-step memory transition matrix, like the 1-step memory exam
ple (14.10). The trace of the transition matrix counts thenbar of partitions that
map into themselves. More generally, each closed walk giroLconcatenated
entries of T contributes to tT" the product (15.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by symbol; the trace
ensures that the walk closes on a periodic stanBefinet, to be thelocal trace
the product of matrix elements along a cycleeach term being multiplied by a
book keeping variable. In chapters that follow, the ‘local tracg’ will take a con-
tinuum of values, so for the remainder of this chapter wekgtiche t.’ notation
rather than to the 0 & values specific to the counting problem.

The quantityztr T" is then the sum of; for all cycles of periodn. Thet.
= (product of matrix elements along cycteis manifestly cyclically invariant,
t100 = to10 = too1, SO & prime cyclep of periodn, contributesn, times, once for
each periodic point along its orbit. For the purposes ofqméd orbit counting,
the local trace takes values

= { Z% if pis an admissible cycle (15.6)

0 otherwise,

i.e., (settingz = 1) the local trace i$, = 1 if the cycle is admissible, arg = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics. For example, for the [8x8]
transition matrix Ts,s,s, s,s:5, Version of (14.10), or any refined partition [2"x2"] transition
matrix, n arbitrarily large, the periodic point 100 contributes tigo = memeo—mem
to Ztr T8, This product is manifestly cyclically invariant, tioo = to10 = toos, SO a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its

orbit. exercise 11.7

For the binary labeled non-wandering set the first few traces are given by (con-
sult tables 15.1 and 15.2)

zZtrT = to+ty,
2uT? = 3+t + 24,
z3tr T3 = tg + tf + 3ty00 + 3t101,
Z“tr T4 = tg + ti + Zti() + 4t1000+ 4t1001 + At1011. (157)

In the binary case the trace picks up only two contributions on the diagonal, Tg..00..0 +
T1..1.1..1, N0 matter how much memory we assume. We can even take infinite memory
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Table 15.1: Prime cycles for the binary symbolic dynamics up to lengtffBe numbers
of prime cycles are given in table 15.3.

Np p Np p Np p np P Np P
1 0| 7 0001001| 8 00001111 9 000001101 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
5 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011| 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101
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M — oo, in which case the contributing partitions are shrunk to the fixed points, tr T =
Taa + TT,T‘
If there are no restrictions on symbols, the symbolic dynamics is complete, and
all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 15.dxercise 11.2

Hence tiT" = N, counts the number afdmissible periodic pointsf period
n. Thenth order trace (15.7) picks up contributions from all regeat prime
cycles, with each cycle contributing, periodic points, siNy, the total number of
periodic points of perioah is given by

PN =207 =3 0ty ™ = 3 0 > Gyt (15.8)
r=1

npln p

Heremn means thamis a divisor ofn. An example is the periodic orbit counting
in table 15.2.

In order to get rid of the awkward divisibility constraint= npr in the above
sum, we introduce the generating function for numbers abplér points

= zT
PNy =tr 2 . 15.9
nZ; =TT (15.9)

The right hand side is the geometric series surpf= tr T". Substituting (15.8)
into the left hand side, and replacing the right hand sidehisyetigenvalue sum
trT" = ), A}, we obtain our first example of a trace formula, tbpological trace

formula

Table 15.2: The total numbers\l, of periodic points of periodh for binary symbolic dy-
namics. The numbers of contributing prime cycles illugisathe preponderance of long
prime cycles of period over the repeats of shorter cycles of periogswheren = rnp,.
Further enumerations of binary prime cycles are given itesti5.1 and 15.3. (L. Ron-
doni)

2, npt
= Z LAl (15.10)
p

n Ny # of prime cycles of period,
1 3 45 6 7 8 9 10
1 2 2
2 4 2
3 8 2 2
4 16 2
5 32 2 6
6 64 2 2 9
7 128 2 18
8 256 2 3 30
9 512 2 2 56
10 1024 2 6 99

A trace formula relates the spectrum of eigenvalues of anadpe- here the tran-
sition matrix - to the spectrum of periodic orbits of a dynaatisystem. Itis a
statement of duality between the short-time, local infdiora- in this case the
next admissible symbol in a symbol sequence - to long-tifehal averages, in
this case the mean rate of growth of the number of cycles witheasing cycle
period.

Thez"sumin (15.9) is a discrete version of the Laplace transfeee Gect. 18.1.2),
and the resolvent on the left hand side is the antecedeneahtre sophisticated
trace formulas (18.10) and (18.23).We shall now use thisltrés compute the
spectral determinant of the transition matrix.
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15.3 Determinant of a graph

Our next task is to determine the zeros of #ipectral determinanof an [mxm)
transition matrix

m-1
det(1-zT) = ]—[ (1-21,) . (15.11)
a=0

We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{2T) with some care; understanding this computa-
tion in detail will be the key to understanding the cycle exgian computations of
chapter 20 for arbitrary dynamical averages. Faa finite matrix, (15.11) is just
the characteristic polynomial fdr. However, we shall be able to compute this ob-
ject even when the dimension Bfand other such operators becomes infinite, and
for that reason we prefer to refer to (15.11) loosely as tipetsral determinant.”

There are various definitions of the determinant of a matwie;will view the
determinant as a sum over all possible permutation cyclegosed of the traces
tr T, in the spirit of the determinant—trace relation (1.16): exercise 4.1

det (1-zT) exp(tr In(1 - zT)) = exp[— Z %trT"]

n=1

2
= 1-2T-5 (rT?-trT?) ... (15.12)

This is sometimes called eumulantexpansion. Formally, the right hand is a
Taylor series ireaboutz = 0. If T is an fmxm] finite matrix, then the characteristic
polynomial is at most of ordem. In that case the cdiécients ofz" must vanish
exactlyfor n > m.

We now proceed to relate the determinant in (15.12) to theesponding
transition graph of chapter 14: toward this end, we starhlie usual textbook
expression for a determinant as the sum of products of athpttions

detM = " (~1)"M1, Moz, - Mg, (15.13)
{m}

whereM = 1 - zT is a [mxm] matrix, {z} denotes the set of permutationsrof
symbols,ny is the permutationr applied tok, and 1) = +1 is the parity of
permutationr. The right hand side of (15.13) yields a polynomiallimf orderm
in z a contribution of orden in z picks upm - n unit factors along the diagonal,
the remaining matrix elements yielding

(2"~ Tspnsy -~ Tsmes, (15.14)
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wherer is the permutation of the subsetmtlistinct symbolss; - - - s, indexingT
matrix elements. Asin (15.7), we refer to any combination Ts s Tss, -« Tsysys
foragivenitineranc = 515 - - - &, as thdocal traceassociated with a closed loop
c on the transition graph. Each term of the form (15.14) mayalotofed in terms

of local tracestgte, - - - tg,, that is loops on the transition graph. These loops
are non-intersecting, as each node may only be reacheddljnk, and they are
indeed loops, as if a node is reached by a link, it has to bettrérg point of
anothersingle link, as eachs; must appear exactlgnceas a row and column
index.

So the general structure is clear, a little more thinkingriyagequired to get
the sign of a generic contribution. We consider only the afdeops of length
1 and 2, and leave to the reader the task of generalizing #htigy induction.
Consider first a term in which only loops of unit length apper(15.14), i.e.,
only the diagonal elements @fare picked up. We have= mloops and an even
permutationr so the sign is given by<(1L)¥, wherek is the number of loops. Now
take the case in which we havesingle loops and loops of lengthn = 2j + i.
The parity of the permutation gives—1)! and the first factor in (15.14) gives
(-1)" = (-1)4*1. So once again these terms combine-th)f, wherek = i + j is

the number of loops. Left be the maximal number of non-intersecting loops. \Wercise 15.4

may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions 7 of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace t, carrying a minus sign:

f
det(1-2T) = > >V (-1fty, -1, (15.15)
k=0 =«

Any self-intersecting loop ishadowedby a product of two loops that share the
intersection point. As both the long lodg and its shadowaty, in the case at hand
carry the same weight™=*™ the cancelation is exact, and the loop expansion
(15.15) is finite. In the case that the local traces count @igcles (15.6)t, = 0

or 2", we refer to det (+ zT) as thetopological polynomial

We refer to the set of all non-self-intersecting lods, tp,. - - - tp, } as thefun-
damental cycle§for an explicit example, see the loop expansion of examplé)1
This is not a very good definition, as transition graphs atein@ue —the most we
know is that for a given finite-grammar language, there exastsition graph(s)
with the minimal number of loops. Regardless of how cleverlyansition graph
is constructed, it is always true that for any finite tramsitgraph the number of
fundamental cycles is finite. If the graph has nodes, no fundamental cycle is
of period longer tham, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traxesoist easily
grasped by working through a few examples. The completepihamamics tran-
sition graph of figure 14.4 is a little bit too simple, but let start humbly and
consider it anyway.
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CHAPTER 15. COUNTING 294

The determinant det (1— zT) of the transition graph in figure 14.3 can be read
off the graph, and expanded as a polynomial in z, with coefficients given by products of
non-intersecting loops (traces of powers of T) of the transition graph figure 15.1:

det(1-2zT) = 1 - (to + t2)Z— (tor — totr) Z — (too1 + tor1 — tosto — tosts) 2>
— (too11+ to111 — toorts — torato — torsts + toatots) Z°
— (too111— tornito — tooxits + toratots) 22 (15.22)
— (toozo11+ too1101— too1stor — toostors) 2

7
— (too10111+ too11101— toozo1its — toorzods — toorattor + toorstots + toostorats) 2°.

Twelve cycles up to period 7 are fundamental cycles:

out of the total of 41 prime cycles (listed in table 15.1) up to cycle period 7. The
topological polynomial t, — Z%

1Yétop@ =1-22+7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = In2. Not exactly obvious from the
partition (14.11).

15.4 Topological zeta function

What happens if there is no finite-memory transition matfithe transition graph
is infinite? If we are never sure that looking further into fheure will reveal no
further forbidden blocks? There is still a way to define theedminant, and this
idea is central to the whole treatise: the determinant is tiefined by itcumulant

expansion (15.12) exercise 4.1
det(1-zT)=1- Z &2, (15.24)
n=1
Example 15.7 Complete binary det(1- zT) expansion. (continuation of exam-
ple 14.6) consider the loop expansion of the binary 1-step memory transition graph
(14.10)

= 1-{0--(e >-1 )

1-to—t1 — [(tor — tato)] — [(too1 — tosto) + (tor1 — toats)]
~[(tooo1 — totoor) + (to111 — toasts)

+(too11 — tooats — totora + totosts)]

= 1_th -Zen =1-2z. (15.25)
f n
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For finite dimensional matrices the expansion is a finite poigial, and (15.24)
is an identity; however, for infinite dimensional operattire cumulant expansion
codficientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces forhitrary transi-
tion matrix. In order to obtain an expression for the spéctegerminant (15.11)
in terms of cycles, substitute (15.8) into (15.24) and suer the repeats of prime
cycles using In(:x) = -3, X'/r,

det(1-2zT) = exp[— Z i %] = exp[z In(1- tp)]
p

p r=1

[Ta-t), (15.26)
p

—

where for the topological entropy the weight assigned tdragcyclep of period
np istp = 2% if the cycle is admissible, dy, = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazurzeta function, conventionally denoted
by

Yaop@ = [ [a-27) =1-) &2 (15.27)
p n=1

Counting cycles amounts to giving each admissible priméegyeveightt, = Z%

and expanding the Euler product (15.27) as a power series As the precise
expression for the cdigcientsc; in terms of local traces, is more general than
the current application to counting, we shall postponeétsvdtion to chapter 20.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finitenj m] transition matrix, the
number of terms in the characteristic equation (15.15) igefirand we refer to
this expansion as thepological polynomiabf order< m. The utility of defining
the determinant by its cumulant expansion is that it worlkenevhen the partition
is infinite,m — oo; an example is given in sect. 15.5, and many more later on.

fast track:
W sect. 15.5, p. 296
15.4.1 Topological zeta function for flows

y
J We now apply the method that we shall use in deriving (18.23the
problem of deriving the topological zeta functions for flovihe time-weighted
density of prime cycles of periotis

T =) > Tpolt—rTy). (15.28)

p r=1

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 15. COUNTING 296

The Laplace transform smooths the sum over Dirac delta sifgex (18.22))
and yields theopological trace formula

DT fom dteSto(t-rTp) = > Tp i e st (15.29)
p r=1 + P r=1

and thetopological zeta functioffor flows:

Ysop(s) = [ [(1-€T)., (15.30)
P

related to the trace formula by

T, S e _ai I 1/Ziop(9) -
P o=l °

This is the continuous time version of the discrete time logical zeta function
(15.27) for maps; its leading zeso= —hyields the topological entropy for a flow.

15.5 Topological zeta function for an infinite partition
(K.T. Hansen and P. Cvitanovic)

y
J To understand the need for topological zeta function (15.24 turn a
dynamical system with (as far as we know - there is no proofjpfinite partition,
or an infinity of ever-longer pruning rules. Consider thedimensionaljuadratic
map (11.3)

f(x)=Ax1-X), A=338.

Numerically the kneading sequence (the itinerary of thécali pointx = 1/2
(11.13)) is

K =1011011110110111101011110111110

where the symbolic dynamics is defined by the partition ofrédll.12. How this
kneading sequence is converted into a series of pruning rsile dark art.For the
moment it sifices to state the result, to give you a feeling for what a “@gpic
infinite partition topological zeta function looks like. Fexample, approximating
the dynamics by a transition graph corresponding to a repefi the period 29
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0 T T T
Figure 15.2: The logarithm Iz - z| of the dif- ol
ference between the leading zero of tih polyno- %%%
mial approximation to topological zeta function anc 20 [ e o
our best estimate (15.33), as a function of order of tt  _,; | ° o
polynomialn (the topological zeta function evaluatec °°°%%o
for the closest value oA to A = 3.8 for which the “or ) ) =
quadratic map has a stable cycle of perigd (from 0 20 40 60 80

length

K.T. Hansen [12.20])

attractive cycle close to th& = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

l/{t(gg) = 1-2-2+2-2-2+P-7+82-2-
+2 -2 S AT 8 0 20

N T T AR N S o (15.31)
The smallest real root of this approximate topological Zetetion is exercise 15.20
z=0.62616120.. (15.32)

Constructing finite transition graphs of increasing lengthresponding t&A —
3.8 we find polynomials with better and better estimates forttpwlogical en-
tropy. For the closest stable period 90 orbit we obtain ouwt lestimate of the
topological entropy of the repeller:

h=-1In0.62616130424685 . = 0.46814726655867.. . (15.33)

Figure 15.2 illustrates the convergence of the truncatippr@imations to the
topological zeta function as a plot of the logarithm of thfetence between the
zero of a polynomial and our best estimate (15.33), plotted &unction of the
period of the stable periodic orbit. The error of the estienit5.32) is expected
to be of order2’ ~ e1* because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nedéving terms+z2°
and of higher order in the polynomial. Hence the convergaaaexponential,
with an exponent 0£0.47 = —h, the topological entropy itself. In figure 15.3
we plot the zeroes of the polynomial approximation to theotogical zeta func-
tion obtained by accounting for all forbidden strings ofdém 90 or less. The
leading zero giving the topological entropy is the pointselst to the origin. Most
of the other zeroes are close to the unit circle; we conclhdefor infinite state
space partitions the topological zeta function has a uniiecias the radius of
convergence. The convergence is controlled by the ratidhefléading to the
next-to-leading eigenvalues, which is in this case indegdg = 1/€" = e™.
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Im(z)
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.

-1 “forgots® E
o

Figure 15.3: The 90 zeroes of the topological zete
function for the quadratic map fok = 3.8 approxi- -1.5 S
mated by the nearest topological zeta function with e _O'Slze?z)m5 P
stable cycle of length 90. (from K.T. Hansen [12.20])

15.6 Shadowing

The topological zeta function is a pretty function, but thirite product (15.26)
should make you pause. For finite transition matrices thénkaid side is a deter-
minant of a finite matrix, therefore a finite polynomial; sowik the right hand
side an infinite product over the infinitely many prime pertodrbits of all peri-
ods?

The way in which this infinite product rearranges itself iatfinite polynomial
is instructive, and crucial for all that follows. You caneddy take a peek at the
full cycle expansion (20.7) of chapter 20; all cycles beydnel fundamentaty
andt; appear in the shadowing combinations such as

tsysps, = tsysy-sntsmns, -

For subshifts of finite type such shadowing combinationsekexactly if we are
counting cycles as we do in (15.16) and (15.25), or if the dyina is piecewise
linear, as in exercise 19.3. As we argue in sect. 1.5.4, fog hiyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shagg combina-
tionsalmostcancel, and the spectral determinant is dominated by trdafuaental
cycles from (15.15), with longer cycles contributing onmall “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the fiog s@ooth and
the symbolic dynamics being a subshift of finite type. If tlypamics requires
an infinite state space partition, with pruning rules fordi® of increasing length,
most of the shadowing combinations still cancel, but thedemesponding to new
forbidden blocks do not, leading to a finite radius of coneeice for the spectral
determinant, as depicted in figure 15.3.

One striking aspect of the pruned cycle expansion (15.3f)pesed to the
trace formulas such as (15.9) is that fiméents are not growing exponentially -
indeed they all remain of order 1, so instead having a radinemvergence™, in
the example at hand the topological zeta function has thecirle as the radius
of convergence. In other words, exponentiating the spggtadlem from a trace
formula to a spectral determinant as in (15.24) increasesthlyticity domain
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the pole in the trace (15.10) at e is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants orhehet not the sym-
bolic dynamics is a subshift of finite type is bad news. If thgtem is generic and
not structurally stable (see sect. 12.2), a smooth paramatation is in no sense
a smooth variation of topological dynamics - infinities ofipdic orbits are cre-
ated or destroyed, and transition graphs go from being ftoitafinite and back.
That will imply that the global averages that we intend to poie are generi-
cally nowhere dterentiable functions of the system parameters, and aveyagi
over families of dynamical systems can be a highly nontristaerprise; a simple
illustration is the parameter dependence of théudion constant computed in a
remark in chapter 25.

You might well ask: What is wrong with computing the entropgrh (15.1)?
Does all this theory buy us anything? An answer: If we cd(nlevel by level, we
ignore the self-similarity of the pruned tree - examine feample figure 14.5, or
the cycle expansion of (15.35) - and the finite estimatds, &f In K,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenie; hy| ~
O(1/n) as in (15.5). The determinant (15.11) is much smarter, aobgtruction
it encodes the self-similarity of the dynamics, and yielus asymptotic value of
h with no need for any finit& extrapolations.

fast track:
W sect. 16, p. 309
15.7 Counting cycles

y
J In what follows, we shall occasionally need to compute atiley up to
topological perioch, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the dfraad probably best
skipped on the first reading.

15.7.1 Counting periodic points

The number of periodic points of periads denoted\,. It can be computed from
(15.24) and (15.9) as a logarithmic derivative of the togalal zeta function

Z NnZ' = tr 24 In(1-zT)) = 29 In det (1-27

o dz dz

-z8(1/&op)

15.34
1/&top ( )

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 15. COUNTING 300

Table 15.3: Number of prime cycles for various alphabets and grammartougeriod
10. The first column gives the cycle period, the second givesdrmula (15.37) for the
number of prime cycles for complebé-symbol dynamics, and columns three through five
give the numbers of prime cycles fof = 2,3 and 4.

Mn(N) Mn(2) Ma(@B)  Mn(4)
N 2 3 4

N(N - 1)/2 1 3 6
N(N2 - 1)/3 2 8 20
N2(N2 - 1)/4 3 18 60
(NS = N)/5 6 48 204
9 116 670

(N7 = N)/7 18 312 2340
N4(N4 - 1)/8 30 810 8160
N3(NS — 1)/9 56 2184 29120

n
1
2
3
4
5
6  (N®—N3—N2+N)/6
7
8
9
10 (N*°— N5 — N2+ N)/10 99 5880 104754

Observe that the trace formula (15.10) divergeg at e, because the denomi-
nator has a simple zero there.

Example 15.8 Complete N-ary dynamics: To check formula (15.34) for the finite-
grammar situation, consider the complete N-ary dynamics (14.7) for which the number
of periodic points of period n is simply tr T{ = N". Substituting

i %trTg1 = i N =-In(1-2zN),
n=1

n=1 n

into (15.24) we verify (15.18). The logarithmic derivative formula (15.34) in this case
does not buy us much either, it simply recovers

Nz
Z No" = 1-Nz°
n=1

Example 15.9 Nontrivial pruned dynamics: Consider the pruning of figure 14.6 (e).
Substituting (15.34) we obtain
z+ 872 - 872

N = ————— . 15.35

HZ:; T 1-z-22+2 ( )

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Ny, it actually yields the exact numbers of periodic points. In case at hand it yields
a nontrivial recursive formula Ny = N, = N3 = 1, N, = 2n+ 1 forn = 4,5,6,7,8, and
Nn = Np-1 + 2Np—g — Nj_g forn > 8.
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15.7.2 Counting prime cycles

Having calculated the number of periodic points, our nexective is to evaluate
the number oprimecyclesMj, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findiniyl,, is classical in combinatorics
(counting necklaces made outrobeads ofN different kinds) and is easily solved.
There areN" possible distinct strings of lengtih composed of letters. These
N" strings include allMy prime d-cycles whose period equals or divides. A
prime cycle is a non-repeating symbol string: for exampes 011 = 101 =
110 = ...011011.. is prime, but0101 = 010101 .. = 01 is not. A primed-
cycle contributed strings to the sum of all possible strings, one for each cycli
permutation. The total number of possible periodic symeglences of period

is therefore related to the number of prime cycles by

Nn = Z dMg, (15.36)
din

whereN, equals tiT". The number of prime cycles can be computed recursively

1 d<n
My, = E[NH—Z dMy

B

din
or by theMdbius inversion formula exercise 15.10
n
M, = nt (—) Ng. 15.37
n %u §) Ne (15.37)

where the Mobius functiom(1) = 1, u(n) = 0 if n has a squared factor, and
u(p1p2... px) = (-1)Kif all prime factors are dterent.

We list the number of prime cycles up to period 10 for 2-, 3- dnrlktter
complete symbolic dynamics in table 15.3, obtained by Mslnversion (15.37).

exercise 15.11

3

Example 15.10 Counting N-disk periodic points: J A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn_disk = Tc — 1, so the
number of the N-disk periodic points is

No =t T e = (N = 1) + (—1)%(N - 1). (15.38)

Here T. is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.38), Mébius inversion (15.37) yields

R )W [ e I

= MY for n>2. (15.39)
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Table 15.4: List of 3-disk prime cycles up to period 10. Hemes the cycle periodM, is

the number of prime cycled\, is the number of periodic points, arg} the number of
distinct prime cycles unddP; symmetry (see chapter 21 for further details). Column 3
also indicates the splitting dfl, into contributions from orbits of periods that divice
The prefactors in the fifth column indicate the degeneragyf the cycle; for example,
3.12 stands for the three prime cyci&g, 13 and23 related by 2/3 rotations. Among
symmetry-related cycles, a representapmehich is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by timersasymmetry, but not by
any D3 transformation.

n M, N, Sn mp-p

1 0 O 0

2 3 632 1 312

3 2 623 1 2123

4 3 1832+34 1 31213

5 6 3065 1 612123

6 9 66=32+2:3+96 2 6121213+ 3121323

7 18 126187 3 61212123+ 6:1212313+ 6:1213123

8 30 25832+34+308 6 612121213+3-12121313+6-12121323
+ 612123123+ 6-:12123213+ 312132123

9 56 516-2-3+569 10 6121212123+ 6:(121212313- 121212323)
+6-(121213123+ 121213213) 6-121231323
+6-(121231213r 121232123) 2-121232313
+6:121321323

10 99 1022 18

There are no fixed points, so MN-91k = 0. The number of periodic points of period 2
is N2 — N, hence there are MY=9isk = N(N - 1)/2 prime cycles of period 2; for periods
n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 15.3.

s

Example 15.11 Pruning individual cycles: J Consider the 3-disk game

of pinball. The prohibition of repeating a symbol affects counting only for the fixed

points and the 2-cycles. Everything else is the same as counting for a complete binary

dynamics (15.39). To obtain the topological zeta function, just divide out the binary 1-

and 2-cycles (1 - zb)(1 - zti)(1 - Zto1) and multiply with the correct 3-disk 2-cycles

(1 - Zt12)(1 - 2ti3)(1 - Zpa): exercise 15.14
exercise 15.15

(-2
(1-2%1-2)
1-229(1+2°=1-32-22. (15.40)

(1-29

1/{3-disk

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (21.25).
As we shall see in chapter 21, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.

Example 15.12 Alphabet {a,cb’; b}:  (continuation of exercise 15.16) In the cycle
counting case, the dynamics in terms ofa — z, ¢t » z+ 2+ 2 +.--=z/(1-2 isa
complete binary dynamics with the explicit fixed point factor (1 -t,) = (1—2):  exercise 15.19
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Table 15.5: The 4-disk prime cycles up to period 8. The symbols is the sasnghown
in table 15.4. Orbits related by time reversal symmetry @€, symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have beettenmi

n M, N, Sn mp-p

1 00 0

2 6 1262 2 4124213

3 8 2483 1 8123

4 18 8462+184 4 81213+ 41214+ 21234+ 41243

5 48 24G-485 6 8(12123+ 12124)+ 812313
+8(12134+ 12143)+ 812413

6 116 73262+83+1166 17 8121213+ 8121214+ 8121234
+ 8121243+ 8121313+ 8121314
+ 4121323+ 8(121324+ 121423)
+ 4121343+ 8121424+ 4121434
+ 8123124+ 8123134+ 4123143
+ 4124213+ 8124243

7 312 2184 39

8 810 6564 108

Ysop=(1-2)(1 2 )o1-3z+2
/top = ( z)( z 1_2)_ z+ 7.
Résumé

The main result of this chapter is the cycle expansion ()502The topological
zeta function (i.e., the spectral determinant of the ttarsimatrix):

Uciop@ = 1- ) 6.
k=1

For subshifts of finite type, the transition matrix is finigad the topological zeta
function is a finite polynomial evaluated by the loop expangil5.15) of det (+
zT). For infinite grammars the topological zeta function is wled by its cycle
expansion. The topological entropyis given by the leading zem = e™. This
expression for the entropy &xact in contrast to the initial definition (15.1), no
n — oo extrapolations of IfK,,/n are required.

What have we accomplished? We have related the number dbtipally
distinct paths from one state space region to another regitime leading eigen-
value of the transition matriX. The spectrum oT is given by topological zeta
function, a certain sum over tracesTtt, and in this way the periodic orbit theory
has entered the arena through the trace formula (15.1@gdjrat the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson thkbeiconstantly
redfirmed, is that while trace formulas are a conceptually egsestep in deriving
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and understanding periodic orbit theory, the spectralrd@tent is the right object Remark 15.4 Determinant of a graph. Many textbooks fier derivations of the loop
to use in actual computations. Instead of summing all of #p@eentially many expansions of characteristic polynomials for transiticatrices and their transition graphs,
periodic points required by trace formulas at each levetwftation, spectral det- see for example refs. [15.3, 15.4, 15.5].

erminants incorporate only the small incremental coroatito what is already

known - and that makes them a more powerful tool for compuorati
Remark 15.5 Ordering periodic orbit expansions. In sect. 20.5 we will introduce an

Contrary to claims one all too often encounters in the litees, “exponential alternative way of hierarchically organizing cumulant arpions, in which the order is
proliferation of trajectories” is nothe problem; what limits the convergence of dictated by stability rather than cycle period: such a pdore may be better suited to
cycle expansions is the proliferation of the grammar rutasthe “algorithmic perform computations when the symbolic dynamics is not wetlerstood.

complexity,” as illustrated by sect. 15.5, and figure 15.panticular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammaad to analyticity

walls in the complex spectral plane. Remark 15.6 T is not trace class. Note to the erudite reader: the transition maffix

(in the infinite partition limit (15.24)) isottrace class. Still the trace is well defined in

Historically, these topological zeta functions were thepiration for applying then — oo limit.
the transfer matrix methods of statistical mechanics tptbblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chapter 18, a weighted generatinadf the topological
zeta function.

Remark 15.7 Counting prime cycles. Duval has an ficient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cydleeitaries).

Commentary
. ________________________________________________________________________|

Remark 15.1 Artin-Mazur zeta functions. Motivated by A. Weil's zeta function for

the Frobenius map [15.8], Artin and Mazur [19.11] introddi¢ee zeta function (15.27) Exercises

that counts periodic points for fieomorphisms (see also ref. [15.9] for their evaluation

for maps of the interval). Smale [15.10] conjectured radiity of the zeta functions for 15.1. A transition matrix for 3-disk pinball. Verify that a 3-disk pinball has 3, 2, 3, 6, 9, prim
Axiom A diffeomorphisms, later proved by Guckenheimer [15.11] and Nenji5.12]. cycles of length 2, 3, 4,5, 6; -.

See remark 19.4 on page 374 for more zeta function history. a) Draw the transition graph corresponding to the 3-

disk ternary symbolic dynamics, and write down5.-3. Sum of Ajj islike atrace.  Let A be a matrix wit
the corresponding transition matrix corresponding eigenvaluesy. Show that

Remark 15.2 “Entropy” The ease with which the topological entropy can be motivated to the graph. Show that iteration of the transi-
obscures the fact that our construction does not lead tovamizmt characterization of the tion matrix results in two coupled linear fitr- o= Y AT = )Gy
ence equations, - one for the diagonal and one for T K

dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat ap-

plies to other entropies.In order to obtain invariant clhtgazations we will have to work the df diagonal elements. (Hint: relateTi to

harder. Mathematicians like to define the (impossible tdusta) supremum over all pos- uT ) () Underwhat conditions do |tr A" and InTy| hav
sible partitions. The key point that eliminates the needstmh searches is the existence b) Solve the above ffierence equation and obtain the the same asymptotic bghaworms» e, i.e., the
of generatorsi.e., partitions that under the dynamics are able to prokenthole state number of periodic orbits of length. Compare ratio converges to one’
space on arbitrarily small scales. A generator is a finitéitmam M = {M; ... My} with your result with table 15.4. (b) Do eigenvaluesi need to be distinctlk # 4 fol
the following property: consider the partition built upoihgossible intersections of sets ¢) Find the eigenvalues of the transition matFifor k # 1?7 How would a degeneracy, = 1 affec
f"(M;), wheref is dynamical evolution and takes all possible integer values (positive the 3-disk system with ternary symbolic dynamics your argument for (a)?

and calculate the topological entropy. Compare

as well as negative), then the closure of such a partitionaddés with the ‘algebra of all X . | . . . .
this to the topological entropy obtained from thel5.4. Loop expansions. Prove by induction the sign rule

measurable sets.” For a thorough (and readable) discus$iganerators and how they

i binary symbolic dynamicg0, 1}. the determinant expansion (15.15):
allow a computation of the Kolmogorov entropy, see ref. 115. ey v 0.1 ! Xpansion ( )
15.2. 3-disk prime cycle counting. A primecycle p det(1-2T) = Z Z (—l)ktp,tp2 A
. . of lengthny is a single traversal of the orbit; its label is IS0 prt+p
Remark 15.3 Perron-Frobenius matrices. ~For a proof of the Perron theorem on the a non-repeating symbol string of, symbols. For ex- -
leading eigenvalue see ref. A[.1-26]- Appendix A4.1 of reb.p] offers a clear discussion ample,12 is prime, bu2121 is not, since it i21=12 15.5. Transition matrix and cycle counting. Suppose Y«
of the spectrum of the transition matrix. repeated. are given the transition graph
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EXERCISES

SSONNS

c
This diagram can be encoded by a maffixwhere the
entry Tj; means that there is a link connecting node
nodej. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a c

b 0|

b) Enumerate all the walks of length three on the
transition graph. Now compufe® and look at the

entries. Is there any relation between the terms in
T2 and all the walks?

c) Show thafTj is the number of walks from point
i to point j in n steps. (Hint: one might use the
method of induction.)

d) Estimate the numbeé,, of walks of lengthn for
this simple transition graph.

e) The topological entropymeasures the rate of ex-
ponential growth of the total number of walks,
as a function ofi. What is the topological entropy
for this transition graph?

T=

15.6. Alphabet {0,1}, prune 00_.  The transition graph ex-
ample 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2 = 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabidt2}. The
cycle expansion (15.15) becomes

1/¢ (1-t)(1-t)(1-t1)(1 - t112). ..
1ty —tp — (trz — i) (15.41)

—(t112 = taots) — (22 — ta2ty) . ..

15.11. Counting prime binary cycles.

In the original binary alphabet this corresponds to:

1/ = 1-t1—1tio— (trz0- titio) (15.42)
~(t1110 - t1zot1) — (tra010— taaotio) . - -

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 11.6.

15.7. “Golden mean” pruned map. (continuation of exer-
cise 11.6) Show that the total number of periodic orbits
of lengthn for the “golden mean” tent map is

(1+ V5" +(1- VB)"
n ’

exerCount - 13jun2008

15.8. A unimodal map with golden mean pruning.

15.9. Glitches in shadowing.

15.10. Whence Mbdbius function?

15.12. Counting subsets of cycles.

306

Continued in exercise 19.2. See also exercise 15.8.

Con-
sider the unimodal map

7
o

fix)

025 05

0o

0 025 05 075 Lo 1
X

forwhich the critical point maps into the right hand fixed
point in three iterationsS*™ = 100L. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood@fixed point, and
_00_ pruned from the recurrent set. (K.T. Hansen)

(medium dificulty) Note
that the combinatiotyog11 minus the “shadowtptogr1in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than figure 14.6 (e)?

To understand the origin
of the Mdbius function (15.37), consider the function

f(n) =" o(d)

din

(15.43)

whered|n stands for sum over all divisosof n. Invert
recursively this infinite tower of equations and derive the
M@obius inversion formula

g(n) = > u(n/d)f(d).

din

(15.44)

In order to get com-
fortable with Mobius inversion reproduce the results of
the second column of table 15.3.

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynami-
cal system with a complete binary tree, a repeller map
(11.4) with two straight branches, which we label 0 and
1. Every cycle weight for such map factorizes, with a
factort, for each 0, and factay for each 1 in its sym-

bol string. Prove that the transition matrix traces (15.7)
collapse tar(TX) = (to + t;)¥, and 2 is simply

l—[(l—tp)=1—to—t1

P

(15.45)
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EXERCISES
Substituting (15.45) into the identity

1-1tp2
H(l+tp):1:[ -1,

p

we obtain

15.16.
1-t2-t2
_ 0~ "
1_[(1+tp) e
p 15.17.
2t0t1
= l+to+t;+ ——
MR ey
= 1l+to+ty
o n-1 h-2
2 Kk,
DI

Hence forn > 2 the number of terms in the cumulant
expansion withk 0’'s andn — k 1's in their symbol se-
quencesis £°3).

In order to count the number of prime cycles in each
such subset we denote witl,x (n = 1,2,...;k =

{0,1} forn=1; k=1,...,n—1 for n > 2) the number15.18.
of prime n-cycles whose labels contaknzeros. Show

that
Mg = M3 =1, n>2,k=1...,n-1
n/m
M = 3 um (1)
m|§
where the sum is over ath which divide bothn andk.
(continued as exercise 20.7) 15.19.

15.13. Logarithmic periodicity of In Np. (medium difi-
culty) Plot (InNp, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why?

15.14. Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning &ects only the fixed points and the 2-
cycles) is given by

(1-2°

(1-231-2)3

= (1-32(1+2°

= 1-62-87-32.

Yiop™ = (1-32

(15.46)

15.15. Symmetric N-disk pinball topological zeta function.
Show that for anN-disk pinball, the topological zeta
function is given by

1/({\&;1\% _ 15.20.

1-(N-1)2) %
(1- Z2)N(N—1)/2
a- Z)N—l(l _ ZZ)(N—I)(N72)/2
= (1-(N-1)2(1+2"* .(15.47)
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The topological zeta function has a raot = N - 1
as we already know it should from (15.38) or (15.
We shall see in sect. 21.4 that the other roots refle
symmetry factorizations of zeta functions.

Alphabet {a, b, c}, prune _ab_ . Write down th
topological zeta function for this pruning rule.

Alphabet {0,1}, prune n repeats of “0” _000...00-
This is equivalent to the@ symbol alphabetl, 2, ...
n} unrestricted symbolic dynamics, with symbols cc
sponding to the possible 1000 block lengths: 2:10
3:=100,...,n:=100...00. Show that the cycle expans
(15.15) becomes

10 = 1-ti—th...—ty—(tia—tatp) ...

—(tin —tat) ... .

Alphabet {0,1}, prune -100Q, _0010Q, _0110Q
Show that the topological zeta function is given by

1i=(1-to)(1-ti—to—toz—tirg)  (15.4€
with the unrestricted 4-letter alphabgt, 2, 23 113

Here 2 and 3 refer to 10 and 100 respectively, as i
ercise 15.17.

Alphabet {0,1}, prune _100Q, -0010Q, -0110Q
_10011. (This grammar arises from Hénon r
pruning, see remark 12.3.) The first three pruning
were incorporated in the preceeding exercise.

(a) Show that the last pruning rulé0011 leads (in
way similar to exercise 15.18) to the alphal@t¥, 23
21113 1,0}, and the cycle expansion

1/¢ = (1-to)(1-ty—ta—toz+1titr3—tr113) .(15.49

Note that this says that 1, 23, 2, 2113 are the funde
tal cycles; not all cycles up to length 7 are needed,
2113.

(b) Show that the topological zeta function is
1op=(1-2(A-2z-Z -2 +2-7') (15.5C
and that it yields the entrogy= 0.522737642. ..

Alphabet {0,1}, prune only the fixed point0.  Thi
is equivalent to thenfinite alphabet{1, 2, 3, 4,...
unrestricted symbolic dynamics. The prime cycle:
labeled by all non-repeating sequences of integet
dered lexically: to,n > 0; tmn, tumn--.,N > m > 0
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ton, T > N> m> 0,... (see sect. 24.3). Now the num- - Z (tmnr + tmm — tnte
ber of fundamental cycles is infinite as well: r>n>m-0
= tmrtn = tmtnr + tmtate) - - -
_‘]_/é’ = 1,Ztn7 Z (tmn*tntm) mrin minr mnr)
n>0 n>m>0
= D" (tomn—trtmo) _ _ _

n>m>0 . As shown in table 24.1, this grammar plays an im-
portant role in description of fixed points of marginal

- Z (tmnn*tmntn)

n>m>0

15.51
( ) stability.
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