Chapter 23

Why doesit work?

Bloch: “Space is the field of linear operators.”

Heisenberg: “Nonsense, space is blue and birds fly

through it.”
—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovic)

s WE SHALL seg, the trace formulas and spectral determinants work well,

A sometimes very well. The question is: Why? And it still is.€Tieuris-
tic manipulations of chapters 18 and 6 were naive and reskéeswe are
facing infinite-dimensional vector spaces and singulagrdl kernels.

We now outline the key ingredients of proofs that put thedrand determi-
nant formulas on solid footing. This requires taking a ctdsek at the evolution
operators from a mathematical point of view, since up to nowhave talked
about eigenvalues without any reference to what kind of atfan space the cor-
responding eigenfunctions belong to. We shall restrictanmsiderations to the
spectral properties of the Perron-Frobenius operator fapsnas proofs for more
general evolution operators follow along the same linesaiMre refer to as a “the
set of eigenvalues” acquires meaning only within a pregispecified functional
setting: this sets the stage for a discussion of the anijypecoperties of spectral
determinants. In example 23.1 we compute explicitly the®rsgectrum for the
three analytically tractable piecewise linear exampleselct. 23.3 we review the
basic facts of the classical Fredholm theory of integralatigms. The program
is sketched in sect. 23.4, motivated by an explicit studyigérspectrum of the
Bernoulli shift map, and in sect. 23.5 generalized to pigseweal-analytic hy-
perbolic maps acting on appropriate densities. We show @myasimple example
that the spectrum is quite sensitive to the regularity pridge of the functions
considered.

For expanding and hyperbolic finite-subshift maps anatytiteads to a very
strong result; not only do the determinants have bettelyéiody properties than
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the trace formulas, but the spectral determinants areesinmlit as entire functions

in the complexs plane. remark 23.1

The goal of this chapter is not to provide an exhaustive rewitthe rigorous the-
ory of the Perron-Frobenius operators and their spectr@raénants, but rather
to give you a feeling for how our heuristic considerations t& put on a firm
basis. The mathematics underpinning the theory is both draddorofound.

If you are primarily interested in applications of the pelimorbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 13, p. 249
23.1 Linear maps. exact spectra

We start gently; in example 23.1 we work out teeacteigenvalues and eigen-
functions of the Perron-Frobenius operator for the sintpéeample of unstable,
expanding dynamics, a linea1dimensionaimap with one unstable fixed point.
. Ref. [23.6] shows that this can be carried ovedidimensions. Not only that,
but in example 23.5 we compute the exact spectrum for thelegnpxample of a
dynamical system with ainfinity of unstable periodic orbits, the Bernoulli shift.

Example 23.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 19.2, let us work out a

trivial example: a repeller with only one expanding linear branch

f)=Ax,  |JAl>1,

and only one fixed point Xq = 0. The action of the Perron-Frobenius operator (16.10) is

£60) = f dxaly - AX) 6(x) = ﬁay//\). (23.1)

From this one immediately gets that the monomials y* are eigenfunctions:

1
[.yk = m
What are these eigenfunctions? Think of eigenfunctionshefSchrodinger
equation:k labels thekth eigenfunctiorxX in the same spirit in which the number
of nodes labels thith quantum-mechanical eigenfunction. A quantum-mecladnic
amplitude with more nodes has more variability, hence adridtnetic energy.

Analogously, for a Perron-Frobenius operator, a higheigenvalue LIA|AK is
getting exponentially smaller because densities thatwverme rapidly decay more
rapidly under the expanding action of the map.

converg - 9nov2008 ChaosBook.org version13, Dec 31 2009

¥, k=0,1,2... (23.2)



CHAPTER 23. WHY DOES IT WORK? 433

Example 23.2 The trace formula for a single fixed point: The eigenvalues A™%t

fall off exponentially with k, so the trace of L is a convergent sum

1 < 1 1
rL=— > Ak= = ,
Al Z; A@-AD) ~ [fOy -1

in agreement with (18.7). A similar result follows for powers of L, yielding the single-

fixed point version of the trace formula for maps (18.10):

& e S 7 1
= Sk —
g 1-ze ; AR 233)

The left hand side of (23.3) is a meromorphic function, wita teading zero
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f(x)

atz=|A|. So what?

Example 23.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

Figure 23.1: The Bernoulli shift map. X
Example 23.4 The spectral determinant for a single fixed point: The spectral
determinant (19.3) follows from the trace formulas of example 23.2:

= z S z
det(1- = 1-——|= -)"Qn, t=—, 23.4
-z ]_[( |A|Ak) 2. =i (e2.4)

k=0 n=0
where the cummulants Q, are given explicitly by the Euler formula

1 AL AN+
Qn =

exercise 23.3

(23.5)

Z—a
h@ =75

with a, b real and positive and a < b. Within the spectral radius |2 < b the function h

can be represented by the power series

)

h@z) = Z o,

k=0

where og = a/b, and the higher order coefficients are given by oj = (a— b)/bi*t,

Consider now the truncation of order N of the power series

N a za-b)1-2V/bN)
@ = ) o = B wa g

k=0

Let 2y be the solution of the truncated series hy(zy) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*2, so finite order

estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pblke Ieading
eigenvalue of£) from a finite truncation of a trace formula converges expene
tially, and (2) the non-leading eigenvalues fflie outside of the radius of con-
vergence of the trace formula and cannot be computed by nafasisch cycle
expansion. However, as we shall now see, the whole spectrueachable at no
extra dfort, by computing it from a determinant rather than a trace.
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The main lesson to glean from this simple example is that tihenculantsQ,
decay asymptoticallfasterthan exponentially, aA "("-1/2, For example, if we
approximate series such as (23.4) by the first 10 terms, tbeiarthe estimate of
the leading zero is 1/A%

So far all is well for a rather boring example, a dynamicakegswith a single
repelling fixed point. What about chaos? Systems where thebeu of unstable
cycles increases exponentially with their length? We nom to the simplest
example of a dynamical system with an infinity of unstablequiic orbits.

Example 23.5 Eigenfunction of Bernoulli shift map. (continued from example 11.7) The

Bernoulli shift map figure 23.1

fo(x) = 2. lo=[0,1/2
f<X>={fi§§§:z§71, iil?:h/z,ﬁ

(23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-

ator (16.9) assembles p(y) from its two preimages

wo- Y b3

(23.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B,(X). These polynomials are

generated by the Taylor expansion of the generating function

tex S t 1
G(xt) = 5 = g B®)g. Bo®)=1. B9 =x-5....
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The Perron-Frobenius operator (23.7) acts on the generating function G as

LG(x 1) =

1192 tee%2) t e & (2
2le-1" e ) T 2e7-1° kZ; BT

hence each By(x) is an eigenfunction of £ with eigenvalue 1/2X.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1)™* for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

PR z
det(1-z£) = exp[— >z ﬂ] =[1(e- ?) , (23.8)
n=1 k=0
verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, ...,

12", ...

The Bernoulli map spectrum looks reminiscent of the singledipoint spec-
trum (23.2), with the dierence that the leading eigenvalue here is 1, rather than
1/|Al. The diference is significant: the single fixed-point map is a repeléh
escape rate (1.7) given by theleading eigenvalug = In|A|, while there is no
escape in the case of the Bernoulli map. As already notedsicudsion of the
relation (19.23), for bound systems the local expansioa faere IHA| = IN2) section 19.4
is balanced by the entropy (here In2, the log of the numbereihmmgesFs),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formatascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixeoint, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We cheakfeunulas on a
2 — dimensionahyperbolic map next.

Example 23.6 The simplest of 2 — dimensionalmaps - a single hyperbolic fixed
point: We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f(X) = (fi(Xa, X2), f2a(X1, X2)) = (AsXe, AuX2), O <|Ag <1, |[Ay >1.

The Perron-Frobenius operator (16.10) acts on the 2—dimensionablensity functions as

Lo(xa.x) = m—j\ulp(xlms, Xe/Au) (23.9)

What are good eigenfunctions? Cribbing the 1 — dimensionaleigenfunctions for the
stable, contracting x; direction from example 23.1 is not a good idea, as under the
iteration of L the high terms in a Taylor expansion of p(Xy, Xo) in the x1 variable would
get multiplied by exponentially exploding eigenvalues 1/A§. This makes sense, as in
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the contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

Pk (X, %) = X2/ Xk k=012, (23.10)

a mixture of the Laurent series in the contraction x; direction, and the Taylor series in
the expanding direction, the x, variable. The action of Perron-Frobenius operator on
this set of basis functions

o Al;l
Lok, (X1, X2) = Ad A Prako (X1, X2) » o =As/IAd
ul Ay

is smoothing, with the higher ki, ko eigenvectors decaying exponentially faster, by
A'§1 /AL",ZJ'1 factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det@ - M)| = 1/|(1 - Ay)(1— Ag)l, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized

around the fixed point of form f(Xy...., Xa) = (A1X1, A2X, . . ., AdXd).

So far we have checked the trace and spectral determinantfas derived
heuristically in chapters 18 and 19, but only for the case efdimensionaland
2-dimensionalinear maps. But for infinite-dimensional vector spaces tfame
is fraught with dangers, and we have already been misleademgpise linear
examples into spectral confusions: contrast the spectexaple 16.1 and ex-
ample 17.4 with the spectrum computed in example 18.2.

We show next that the above results do carry over to a sizaddds of piece-
wise analytic expanding maps.

23.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes agtioe way to look at
operators is through their matrix representations. Evmftubperators are moving
density functions defined over some state space, and as énajjeve can imple-
ment this only numerically, the temptation is to discretihe state space as in
sect. 16.3. The problem with such state space discretizafiproaches that they
sometimes yield plainly wrong spectra (compare examplé with the result of
example 18.2), so we have to think through carefully what ihat wereally
measure.

An expanding mapf (x) takes an initial smooth density,(x), defined on a
subinterval, stretches it out and overlays it over a langarival, resulting in a new,
smoother density,.1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

N ¥ N Y
)= 2O dnahe= a0

(=0
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8,0 = [ a0y 1], x=170.

and substitute the two Taylor series into (16.6):

Prar(y) = (L) (¥) = j;w dxa(y - £(x)) ¢n(¥) .

Figure 23.2: A nonlinear one-branch repeller with a

The matrix elements follow by evaluating the integral single fixed poiniv. 05 1
w
L= o dx.L(y, X) X (23.11)
k= ayt Y0 =0 ’ In order to illustrate how this works, we work out a few exaeml
btai . ) fth uti In example 23.7 we show that these results carry over to aaly@mnsingle-
Wwe obtain a matrix representation of the evolution operator branch 1- dimensionarepeller. Further examples motivate the steps that lead to
) a proof that spectral determinants for general analyticdimensionakxpanding
deL(y, Al Z il_k,k’ KK =012... maps, and - in sect. 23.5, forHimensionahyperbolic mappings - are also entire
k! n k! functions.
which maps the component of the density of trajectorigg(X) into they com- Example 23.7 Perron-Frobenius operator in a matrix representation: As in ex-

ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = =1, sign of the derivative
o =o(F’) = F’/IF’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = W,

ponent of the densityy.1(y) one time step later, withi = f(x).

We already have some practice with evaluating derivaifeg)) = ;i,é(y) from
sect. 16.2. This yields a representation of the evolutioerator centered on the

fixed point, evaluated recursively in terms of derivativéshe mapf: Lo(y) = fdxé(y— £00) (3 = o F'(y) S(F(¥).

w) Assume that F is a contraction of the unit disk in the complex plane, i.e.,
k

k
f dx6O(x - f(x))% (23.12)
Ix=f(x) IF(@l<0<1 and |[F'(9l<C<co for |7<1, (23.14)
o 1l(d 1 \x
- W(&W) K

and expand ¢ in a polynomial basis with the Cauchy integral formula

x=f(x)
dw gw) L dw ()

as(z):nz:;wn: 5 e = P o

The matrix elements vanish f@r < k, soL is a lower triangular matrix. The
diagonal and the successivé-diagonal matrix elements are easily evaluated it-

g Combining this with (23.22), we see that in this basis Perron-Frobenius operator L is
eratively by computer algebra

represented by the matrix

" dw o F’/(w)(F(w))"
P T 2.0 ) A L6 = X Wloy, Lun= b o 7 FONEWDT (23.15)
kk IAAK k+Lk KIAAR2 e
Taking the trace and summing we get:
For chaotic systems the map is expanding,> 1. Hence the diagonal terms drop ,
off exponentially, as AA[*L, the terms below the diagonal falffeeven faster, and tr £= Z Lon = d_W TFW X
truncatingL to a finite matrix introduces only exponentially small egor =0 2ri w-F(w)
The trace formula (23.3) takes now a matrix form This integral has but one simple pole at the unique fixed point w* = F(w") = f(W*)..
Hence exercise 23.6
2L L L= o F'w) 1

tr T2 = trH. (23.13) 1-Fw)  [Fw)-1"
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This super-exponential decay of cummula@s ensures that for a repeller
consisting of a single repelling point the spectral deteant (23.4) isentire in
the complexz plane.

In retrospect, the matrix representation method for sgjthe density evolu-
tion problems is eminently sensible — after all, that is theywne solves a close
relative to classical density evolution equations, ther&dimger equationWhen
available, matrix representations fdr enable us to compute many more orders
of cumulant expansions of spectral determinants and mamg eigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas sucfil@s25) imply that
the dynamical zeta function is a meromorphic function. Thecpcal import of
this observation is that it guarantees that finite ordemnests of zeroes of dyn-
amical zeta functions and spectral determinants convexgenentially, or - in
cases such as (23.4) - super-exponentially to the exacesaand so the cycle
expansions to be discussed in chapter 20 represtené perturbativeapproach to
chaotic dynamics.

Before turning to specifics we summarize a few facts abowsital theory
of integral equations, something you might prefer to skipfiest reading. The
purpose of this exercise is to understand that the Fredhoéory, a theory that
works so well for the Hilbert spaces of quantum mechanics ame necessarily
work for deterministic dynamics - the ergodic theory is mietnder.

fast track:
W sect. 23.4, p. 441
23.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.
—John BunyanPilgrim’s Progress

J The Perron-Frobenius operator
2609 = [ dystx= 1))
has the same appearance as a classical Fredholm integratape
Ket) = | dyroeyen). (23.16)

and one is tempted to resort too classical Fredholm theonrder to establish
analyticity properties of spectral determinants. Thishptt enlightenment is
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blocked by the singular nature of the kernel, which is a itigtion, whereas the
standard theory of integral equations usually concerredf itgith regular kernels
K(x,y) € L2(M?). Here we briefly recall some steps of Fredholm theory, leefor
working out the example of example 23.5.

The general form of Fredholm integral equations of the sédand is
o9 = [ ayKeuen) + €9 (23.17)

where#(x) is a given function i.2(M) and the kermnekK (x, y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(23.16), acting on the Hilbert spat&(M): the fundamental property that follows
from the L2(Q) nature of the kernel is that such an operatocésnpact that is
close to a finite rank operator.A compact operator has thpeuty that for every
6 > 0 only afinite number of linearly independent eigenvectors exist coordp
ing to eigenvalues whose absolute value exceed® we immediately realize
(figure 23.5) that much work is needed to bring Perron-Fralsenperators into
this picture.

We rewrite (23.17) in the form
Te =€, T=1-%K. (23.18)

The Fredholm alternative is now applied to this situatioficdisws: the equation
T¢ = & has a unique solution for evegy e L?(M) or there exists a non-zero
solution of7 ¢ = 0, with an eigenvector ok corresponding to the eigenvalue 1.
The theory remains the same if insteadofve consider the operatar, = 1-A1K
with 2 # 0. AsK is a compact operator there is at most a denumerable adbof
which the second part of the Fredholm alternative holdsrtepam this set the
inverse operator (2.17°)~! exists and is bounded (in the operator sense). When
is suficiently small we may look for a perturbative expression faetsan inverse,
as a geometric series

(1-29)7Y = 142K + PKP 4 = 1+ AW, (23.19)
wherek™ is a compact integral operator with kernel

K(xy) = fM Lz dz K% 2) K1),

andW is also compact, as it is given by the convergent sum of cotrquaarators.
The problem with (23.19) is that the series has a finite radfusonvergence,
while apart from a denumerable set 8§ the inverse operator is well defined.
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A fundamental result in the theory of integral equationssists in rewriting the
resolving kernefW as a ratio of twaanalytic functions ofd

D(X.Y; 2)

W) = =505

If we introduce the notation

(o) - ‘ e KO
VeI T e yn) e K Yi)

we may write the explicit expressions

= A" Z...7
D) = 1+ (—1)”—f dzl...dzﬂ((
; n! MP ... 7

0 m
= exp[—z l—tr‘Km] (23.20)
m=1 m
N X o (-A)" X z ... Zn
DXy, ) = 7<(y)+n21 o an dzl...dzﬂ((y a ... 7

The quantityD(1) is known as the Fredholm determinant (see (19.24)):it is an
entire analytic function oft, andD(1) = O if and only if 1/1 is an eigenvalue of
K.

Worth emphasizing again: the Fredholm theory is based ondhgactness
of the integral operator, i.e., on the functional proper{isummability) of its ker-
nel. As the Perron-Frobenius operator is not compact, tiseeebit of wishful
thinking involved here.

234 Analyticity of spectral deter minants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrable!, or square-integrabl&? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opesait in both cases
the constant functiogo = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention orL.! we also have a family df* eigenfunctions,

daly) = g exp(ariky)% (23.21)
=
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with complex eigenvalue &, parameterized by complexwith Re § > 0. By
varying 6 one realizes that such eigenvalues fill out the entire usi.diSuch
essential spectrunthe casek = 0 of figure 23.5, hides all fine details of the
spectrum.

What's going on? Spaceas andL? contain arbitrarily ugly functions, allow-
ing any singularity as long as it is (square) integrable - tage is no way that
expanding dynamics can smooth a kinky function with a ndfedéntiable singu-
larity, let's say a discontinuous step, and that is why tlyeespectrum is dense
rather than discrete. Mathematicians love to wallow in kimsl of muck, but there
is no way to prepare a nowherefgirentiablel ! initial density in a laboratory. The
only thing we can prepare and measure are piecewise smeaathamalytic) den-
sity functions.

For a bounded linear operatofl on a Banach spac®, the spectral radius
is the smallest positive numbpgpec Such that the spectrum is inside the disk of
radius pspeo While the essential spectral radius is the smallest pesiiumber
pessSuch that outside the disk of radipgssthe spectrum consists only of isolated

eigenvalues of finite multiplicity (see figure 23.5). exercise 23.5

We may shrink the essential spectrum by letting the Perrobdhius oper-
ator act on a space of smoother functions, exactly as in teeboanch repeller
case of sect. 23.1. We thus consider a smaller sgat'€, the space ok times
differentiable functions whodéth derivatives are Holder continuous with an ex-
ponent O< @ < 1: the expansion property guarantees that such a space ethap
into itself by the Perron-Frobenius operator. In the strip Re 6 < k+ @ mostg,
will cease to be eigenfunctions in the spate®; the functiong, survives only for
integer valued = n. In this way we arrive at a finite set @folatedeigenvalues
1,271, ..., 27K and an essential spectral radjugs= 2-+),

We follow a simpler path and restrict the function space duether, namely
to a space of analytic functions, i.e., functions for whibk Taylor expansion is
convergent at each point of the interva) 1. With this choice things turn out easy
and elegant. To be more specific, ¢ebe a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedR)}2 < R so all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift (23.6), the corresponding action of the®afFrobenius operator
is given by Lsh(y) = o F5(y) ho Fs(y), using the Cauchy integral formula along
the D boundary contour:

dw  h(W)F4(y)

Lsh(y) = o 27 PW_Fuy)

(23.22)

For reasons that will be made clear later we have introducgdrar = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shift= 1,
but in general one is not allowed to take absolute values iasctuld destroy
analyticity. In the above formula one may also replace thealo D by any
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domaincontaining [01] such that the inverse branches maps the closuikinfo

the interior of D. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevemw € gD andy € Cl D. The problem

is now reduced to the standard theory for Fredholm detemtéaect. 23.3. The
integral kernel is no longer singular, traces and deternigare well-defined, and
we can evaluate the trace 6f by means of the Cauchy contour integral formula:

dw oF’'(w)
tr = - . =7
Lr 2ri w— F(w)
Elementary complex analysis shows that sifcenaps the closure db into its
own interior,F has a unique (real-valued) fixed pokitwith a multiplier strictly
smaller than one in absolute value. Residue calculus trergfelds exercise 23.6

TF/(X) 1

R

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 23.8 Perron-Frobenius operator in a matrix representation: As in ex-
ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = =1, sign of the derivative
o=0(F)=F/F|

Lo(d) = fdxé(Z— f(X))¢(X) = o F'(2 6(F(2).
Assume that F is a contraction of the unit disk, i.e.,
IF(@9l<0<1 and |[F'(9l<C<co for |7<1, (23.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

dw gw)  _ rdw ¢w)

¢(Z):Z:‘)f¢n: 7 w_z’ n = 2wl
>

Combining this with (23.22), we see that in this basis L is represented by the matrix

LoW) = Y WLy, Lin = ;i"_mi/ w (23.24)
mn

Taking the trace and summing we get:

B _ dw o F'(w)
”L*HZ(;L”“* 27 W-FW)

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence

cFw) 1
1-Fw)  [fw)-1"

tr L=
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We worked out a very specific example, yet our conclusionsbeagener-
alized, provided a number of restrictive requirements aet by the dynamical
system under investigation: exercise 23.6

1) the evolution operator iswltiplicativealong the flow,

2) the symbolic dynamics isfaite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) iseal analytig i.e., it has a piecewise ana-
lytic continuation to a complex extension of the state space

These assumptions are romantic expectations not satisfiéiuebdynamical
systems that we actually desire to understand. Still, threyat devoid of physical
interest; for example, nice repellers like our 3-disk garhpinball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topeaa a finite
matrix in an appropriate basis; properties 3 and 4 enable umtnd the size
of the matrix elements and control the eigenvalues. To sex wdn go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by tb#ofving
weighted evolution operator

Ly, %) = INFs(y - 1'(9)

whereA'(x) is an eigenvalue of the Jacobian matrix transverse to the S@mi-
classical quantum mechanics suggest operators of this fatmg = 1/2.The
problem with such operators arises from the fact that whersidering the Ja-
cobian matricesly, = JaJp for two successive trajectory segmeatandb, the
corresponding eigenvalues are in genexa multiplicative, Aap # AaAp (Unless
a, b are iterates of the same prime cygeso JaJ, = J[,“‘”"). Consequently, this
evolution operator is not multiplicative along the trajagt The theorems require
that the evolution be represented as a matrix in an apptepp@ynomial basis,
and thus cannot be applied to non-multiplicative kerneés, kernels that do not
satisfy the semi-group propertg! £t = £+,

Property 2 is violated by the 4 dimensionatent map (see figure 23.3 (a))
f()=a(l - 11-2x), 1/2<a<1.

All cycle eigenvalues are hyperbolic, but in general théical point x; = 1/2

is not a pre-periodic point, so there is no finite Markov gemti and the sym-
bolic dynamics does not have a finite grammar (see sect. @Rdefinitions). In
practice, this means that while the leading eigenvalug€ afight be computable,
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cause these endpoints are fixed points of the map, the nurhbgcles of length
1 1 n decreases by 1. The determinant becomes:
2" 2"-1
f f —z)=expl-Y S |=1- .
0 J | 0] | det(1- z£) exp( Z o 1) 1-z (23.25)
The valuez = 1 still comes from the constant eigenfunction, but the Belino
Figure 23.3: (a) A (hyperbolic) tent map without o d o5 i 0 o5 Yy polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
afinite Markov pattition. (b) A Markov map with X b L of these facts, however, ardfitiult if one sticks to the space of analytic functions.
a marginal fixed point. (a) (b)

the rest of the spectrum is very hard to control; as the paemeis varied, the
non-leading zeros of the spectral determinant move wilBiyua

Property 3 is violated by the map (see figure 23.3 (b))

_ [ x+2 | xelg=[0,3]
f()()_{2—2x . xely=[31] -

Here the interval [01] has a Markov partition into two subintervdigandl,, and

f is monotone on each. However, the fixed poinkat 0 has marginal stability
Ao = 1, and violates condition 3. This type of map is called “imétent” and
necessitates much extra work. The problem is that the dyssaimithe neighbor-
hood of a marginal fixed point is very slow, with correlaticshscaying as power
laws rather than exponentially. We will discuss such flowshapter 24.

Property 4 is required as the heuristic approach of cha@éades two major
hurdles:

1. The trace (18.8) is not well defined because the integrakkés singular.

2. The existence and properties of eigenvalues are by nosiobear.

Actually, property 4 is quite restrictive, but we need ithretpresent approach,
so that the Banach space of analytic functions in a disk sgoved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter akpeoblems. First,
in higher dimensions life is not as simple. Multi-dimensibresidue calculus is
at our disposal but in general requires that we find poly-doméirect product
of domains in each coordinate) and this need not be the casmn8, and per-
haps somewhat surprisingly, the ‘counting of periodic tlpresents a dicult
problem. For example, instead of the Bernoulli shift coasithe doubling map
(11.8) of the circlex — 2x mod 1,x € R/Z. Compared to the shift on the interval

[0, 1] the only diference is that the endpoints 0 and 1 are now glued together. Be
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Third, our Cauchy formulas priori work only when considering purely ex-
panding maps. When stable and unstable directions coggistave to resort to
stranger function spaces, as shown in the next section.

235 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.
—Federico BonnettdBanach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followia@ggox: If f is an
area-preserving hyperbolic and real-analytic map of, xaneple, a 2-dimensional
torus then the Perron-Frobenius operator is unitary on plaees ofL2 functions,
and its spectrum is confined to the unit circle. On the otherdhavhen we
compute determinants we find eigenvalues scattered armsimkithe unit disk.
Thinking back to the Bernoulli shift example 23.5 one woukklIto imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make thergpestaller so this
is obviously not what happens. Instead one needs to inteodumixed’ function
space where in the unstable direction one resorts to aodlytctions, as before,
but in the stable direction one instead considers a ‘dualesp distributions on
analytic functions. Such a space is neither included in nolutlesL? and we
have thus resolved the paradox. However, it still remainset@seen how traces
and determinants are calculated.

The linear hyperbolic fixed point example 23.6 is somewhateaiding, as we
have made explicit use of a map that acts independently #hengfable and unsta-
ble directions. For a more general hyperbolic map, ther@igay to implement
such direct product structure, and the whole argument égdést. Her comes an
idea; use the analyticity of the map to rewrite the PerraobEnius operator acting
as follows (wherer denotes the sign of the derivative in the unstable direftion

_ o h(wy, wy) dwy dw,
Lh(z.2) = 56 56 @ W) (oW —2) 20 20 2320)
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Figure 23.4: For an analytic hyperbolic map, specify-
ing the contracting coordinate, at the initial rectangle
and the expanding coordinateat the image rectangle W,
defines a unique trajectory between the two rectangles.
In particular,w, andz, (not shown) are uniquely spec-
ified.

Here the functionp should belong to a space of functions analytic respectively
outsidea disk andinsidea disk in the first and the second coordinates; with the

additional property that the function decays to zero as tis¢ ¢bordinate tends
to infinity. The contour integrals are along the boundarie¢hese disks. It is
an exercise in multi-dimensional residue calculus to yetifit for the above lin-
ear example this expression reduces to (23.9). Such opefaton the building
blocks in the calculation of traces and determinants. Ongpoave the following:

Theorem: The spectral determinant f@-dimensional hyperbolic analytic maps

is entire. remark 23.8

The proof, apart from the Markov property that is the sameoashfe purely
expanding case, relies heavily on the analyticity of the nmathe explicit con-
struction of the function space. The idea is to view the higpkeity as a cross
product of a contracting map in forward time and another@mting map in back-
ward time. In this case the Markov property introduced alim®to be elaborated
a bit. Instead of dividing the state space into interval® divides it into rectan-
gles. The rectangles should be viewed as a direct productt@dfvals (say hori-
zontal and vertical), such that the forward map is contnacin, for example, the
horizontal direction, while the inverse map is contractimghe vertical direction.
For Axiom A systems (see remark 23.8) one may choose codedares close
to the stabl@instable manifolds of the map. With the state space divideal i
N rectangleg M, Mo, ..., Mn}, Mi = Iih x I/ one needs a complex extension
Dih x Dy, with which the hyperbolicity condition (which simultanesly guaran-
tees the Markov property) can be formulated as follows:

Analytic hyperbolic propertyEither f(M;) N Int(M;) = 0, or for each pair
Wh € CI(Dih), Z, € CI(D‘j’) there exist unique analytic functions wf,, z,: w, =
Wy(Wh, 2) € Int(D}), z, = Zn(Wh, %) € Int(D?), such thatf(wh, wy) = (zn, 2).
Furthermore, ifw, € 1" andz, € 1Y, thenwy € 1Y andz, e Ijh (see figure 23.4).

In plain English, this means for the iterated map that onéaoss the coor-
dinatesz,, z, at timen by the contracting pair,, wy, wherew, is the contracting
coordinate at time + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functiamesydic outside
Dih in the horizontal direction (and tending to zero at infinig)d insideD] in
the vertical direction. The contour integrals are pregisgbng the boundaries of
these domains.
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A map f satisfying the above condition is calleshalytic hyperbolicand the
theorem states that the associated spectral determinantiis, and that the trace
formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by snradlyic pertur-
bations of the cat map, the 3-disk repeller, and thedmensionabaker's map.

23.6 Thephysics of eigenvalues and eigenfunctions

§
J We appreciate by now that any honest attempt to look at thetrsp@rop-
erties of the Perron-Frobenius operator involves hard erattics, but theféort
is rewarded by the fact that we are finally able to control thal\ticity properties
of dynamical zeta functions and spectral determinants,tlnsl substantiate the
claim that these objects provide a powerful and well-fouhgerturbation theory.

Often (see chapter 17) physically important part of the Bpet is just the
leading eigenvalue, which gives us the escape rate fromedleepor, for a gen-
eral evolution operator, formulas for expectation valueshservables and their
higher moments. Also the eigenfunction associated to thdig eigenvalue has
a physical interpretation (see chapter 16): it is the dgmdithe natural measures,
with singular measures ruled out by the proper choice ofdinetfon space. This
conclusion is in accord with the generalized Perron-Fraketheorem for evolu-
tion operators. In the finite dimensional setting, such ar® is formulated as

follows: remark 23.7

e Perron-Frobenius theorem: Let Lj; be a nonnegative matrix, such that
somen exists for which [");; > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate neglp@asitive

2. The corresponding eigenvector (defined up to a constasthbnneg-
ative coordinates

We may ask what physical information is contained in eigkres beyond the
leading one: suppose that we have a probability conserwiates (so that the
dominant eigenvalue is 1), for which the essential spectmius satisfies O<
pess< 6 < 1 on some Banach spage Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiudVe denote byly, 1,..., Au
the eigenvalues outside of this disk, ordered by the siz&eif Bbsolute value,
with 23 = 1. Then we have the following decomposition

M
Lo = ) Awilwe + PLy (23.27)
i=1

whenL; are (finite) matrices in Jordan canomical forhy & 0 is a [1x 1] matrix,
asAp is simple, due to the Perron-Frobenius theorem), whefe&sa row vector
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whose elements form a basis on the eigenspace correspotediigandy; is
a column vector of elements @ (the dual space of linear functionals ov8)y
spanning the eigenspace 6f corresponding tol;. For iterates of the Perron-

CHAPTER 23. WHY DOES IT WORK? 450

Thus, —log A, gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-

Frobenius operator, (23.27) becomes mula
1 Gl (m-1) 1) — (m-1), 0
" 0@ = fo dwiw) + %Bm(z). (23.32)
Ll = 3 ANyillyie + PL. (23.28) m
i=1

As we are considering functions with zero average, we have from (23.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

If we now consider, for example, correlation between ihigizvolvedn steps and o - )
. © 2-MN (KM (1) — H(M(Q
final £, Couny = 3 EED =17 O) fo 42028 .

|
m=1 m

The decomposition (23.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

@L) = fM dy£y) (L) () = fM dw(Eo fMWew),  (23.29)

it follows that oD = Z B U],
m=0
L
EL ) = AwiE, @) + Z /IFwi(”) (& ¢) +0@"), (23.30) we see that these functionals are of the form

i=2 1
vilel = f dw¥i(w)e(w),
where 0
where

o) = [ avemLiuie. -

¥i(w) = (_“ (69 Dw-1)- 6 D(w)) , (23.33)
wheni > 1 and Wo(W) = 1. This representation is only meaningful when the function &

The eigenvalues beyond the leading one provide two piec&saimnation:
is analytic in neighborhoods of w,w — 1.

they rule the convergence of expressions containing higiepoof the evolution

operator to leading order (th&; contribution). Moreover ifw1(&,¢) = 0 then exercise 23.7
(23.29) defines a correlation function: as each term in (B3vanishes exponen-

tially in then — oo limit, the eigenvaluesly, ..., Ay determine the exponential

decay of correlations for our dynamical system. The prefaab depend on the 23.7 Troubles ahead
choice of functions, whereas the exponential decay ratesr(dy logarithms of

Ai) do not: the correlation spectrum is thusiaiversalproperty of the dynamics

(once we fix the overall functional space on which the PeFarbenius operator The above discussion confirms that for a series of examplexafasing gener-

ality formal manipulations with traces and determinantsjastified: the Perron-

acts).
) Frobenius operator has isolated eigenvalues, the tranaifas are explicitly ver-
ified, and the spectral determinant is an entire function seheeroes yield the
Example 23.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift ex- eigenvalues. Real life is harder, as we may appreciate ghraolie following
ample (23.6) on the space of analytic functions on a disk: apart from the origin we have considerations:

only simple eigenvalues x = 2%, k = 0,1,.... The eigenvalue 1o = 1 corresponds to
probability conservation: the corresponding eigenfunction By(x) = 1 indicates that the
natural measure has a constant density over the unit interval. If we now take any ana-
Iytic function n(x) with zero average (with respect to the Lebesgue measure), it follows
that w1(n,n7) = 0, and from (23.30) the asymptotic decay of the correlation function is
(unless also wi(n,n) = 0)

e Ourdiscussion tacitly assumed something that is phygieallirely reason-
able: our evolution operator is acting on the space of aicdiynctions, i.e.,
we are allowed to represent the initial dengity) by its Taylor expansions
in the neighborhoods of periodic points. This is howevefffam being the exercise 23.1

C,() ~ explnlog2). (23.31) only possible choice: mathematicians often work with thecfion space
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measure sits on a fractal set and is singular everywhere.pdim of this book
is that you neveneed to construct the natural measure, cycle expansiohsavil
that job.

essential spectrum

A theory of evaluation of dynamical averages by means ofetfacmulas
and spectral determinants requires a deep understanditigpiofanalyticity and

Figure 23.5: Spectrum of the Perron-Frobenius oper ~ SPgctral radius isoZted eigénvalue convergence. We worked here through a series of examples:

ator acting on the space @*** Holder-continuous

functions: onlyk isolated eigenvalues remain betwee . . . .
the spectral radius, and the essential spectral rad 1. exact spectrum (but for a single fixed point of a linear map)

which bounds the “essential,” continuous spectrum. . . .
2. exact spectrum for a locally analytic map, matrix repnésgon

ck j.e., the space df times diferentiable functions whoséth deriva- 3. rigorous proof of existence of discrete spectrum ferdmensionahyper-
tives are Holder continuous with an exponent @ < 1: then every” with bolic maps
Ren > kis an eigenfunction of the Perron-Frobenius operator antiave
1 In the case of especially well-behaved “Axiofti systems, where both the
Ly = my”, neC. symbolic dynamics and hyperbolicity are under control,sitpossible to treat
traces and determinants in a rigorous fashion, and strosigtseabout the ana-
This spectrum dfers markedly from the analytic case: only a small number lyticity properties of dynamical zeta functions and spalotieterminants outlined
of isolated eigenvalues remain, enclosed between therapeadius and a above follow.
smaller disk of radius AA[<*1, see figure 23.5. In literature the radius of . . .
this disk is called thessential spectral radius Most systems of interest aret of the “axiom A’ category; they are neither

purely hyperbolic nor (as we have seen in chapters 11 and @2hey have finite

grammar. The importance of symbolic dynamics is generaibsgly unappreci-

ated; the crucial ingredient for nice analyticity propestiof zeta functions is the
existence of a finite grammar (coupled with uniform hypeidity).

In sect. 23.4 we discussed this point further, with the aic ¢éss trivial

1 - dimensionalexample. The physical point of view is complementary
to the standard setting of ergodic theory, where many cbaotiperties of

a dynamical system are encoded by the presenceofitnuousspectrum,
used to prove asymptotic decay of correlations in the spade square- The dynamical systems which areally interesting - for example, smooth
integrable functions. exercise 23.2 bounded Hamiltonian potentials - are presumably nevey feiflaotic, and the
central question remains: How do we attack this problem ilysiesnatic and
controllable fashion?

A deceptively innocent assumption is hidden beneath muahwias dis-
cussed so far: that (23.1) maps a given function space isedf.itTheex-

panding property of the map guarantees that: f{f) is smooth in a do-
main D then f(x/A) is smooth on darger domain, providedA| > 1. For

higher-dimensional hyperbolic flows this is not the casel, @s we saw in
sect. 23.5, extensions of the results obtained for expgrntlindimensional
maps are highly nontrivial.

o Itis not at all clear that the above analysis of a simple orth, one fixed
point repeller can be extended to dynamical systems withtdCasets of
periodic points: we showed this in sect. 23.4.

Résumé

Examples of analytic eigenfunctions for-Ildimensionamaps are seductive, and
make the problem of evaluating ergodic averages appear gasyntegrate over
the desired observable weighted by the natural measutg?rigo, generic natural
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 23.1 Surveys of rigorous theory. We recommend the references listed in re-
mark 1.1 for an introduction to the mathematical literatonethis subject. For a physicist,
Driebe’s monograph [1.19] might be the most accessibl@dhiction into mathematics
discussed briefly in this chapter. There are a number of wex/i& the mathematical ap-
proach to dynamical zeta functions and spectral deternsnaiith pointers to the original
references, such as refs. [23.1, 23.2]. An alternative@gg to spectral properties of the
Perron-Frobenius operator is given in ref. [23.3].

Ergodic theory, as presented by Sinai [23.14] and othenspte one to describe the
densities on which the evolution operator acts in terms tifegiintegrable or square-
integrable functions. For our purposes, as we have alresgly, shis space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrfeind Fomin [23.15]; more
advanced old-fashioned presentations are Walters [2ari@Penker, Grillenberger and
Sigmund [23.16]; and a more formal one is given by Peters8ri[Z. W. Tucker [23.28,
23.29, 23.30] has proven rigorously via interval arithrodhiat the Lorentz attractor is
strange for the original parameters, and has a long stabiedie orbit for the slightly
different parameters.

Remark 23.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [23.4]. A technical introduction dfet theory from an operator
point of view is given in ref. [23.5]. The theory is presentach more general form in
ref. [23.6].

Remark 23.3 Bernoulli shift. ~ For a more in-depth discussion, consult chapter 3 of
ref. [1.19]. The extension of Fredholm theory to the case emBulli shift onCk+

(in which the Perron-Frobenius operatorrist compact — technically it is onlguasi-
compact That is, the essential spectral radius is strictly smahan the spectral radius)
has been given by Ruelle [23.7]: a concise and readablevstateof the results is con-
tained in ref. [23.8]. We see from (23.31) that for the Bedfiahift the exponential
decay rate of correlations coincides with the Lyapunov exgmb: while such an identity
holds for a number of systems, it is by no means a generaltresud there exist explicit
counterexamples.

Remark 23.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dynaalmng the unstable direc-
tions. As mentioned in the text this can be quite involveditécally, as such unstable
foliations are not characterized by strong smoothnesseptigs. For such an approach,
see ref. [23.3].

Remark 23.5 Spectral determinants for smooth flows. ~ The theorem on page 446
also applies to hyperbolic analytic mapsdndimensions and smooth hyperbolic ana-
lytic flows in (d + 1) dimensions, provided that the flow can be reduced to a ywisee
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analytic map by a suspension on a Poincaré section, coneplewh by an analytic “ceil-
ing” function (3.5) that accounts for a variation in the secteturn times. For example, if
we take as the ceiling functiay(x) = 5™, whereT(x) is the next Poincaré section time
for a trajectory staring ax, we reproduce the flow spectral determinant (19.13). Proofs
are beyond the scope of this chapter.

Remark 23.6 Explicit diagonalization. For 1-dimensionatepellers a diagonalization
of an explicit truncatedl,, matrix evaluated in a judiciously chosen basis may yieldynan
more eigenvalues than a cycle expansion (see refs. [233101. The reasons why one
persists in using periodic orbit theory are partially aesithand partially pragmatic. The
explicit calculation ofLm, demands an explicit choice of a basis and is thus non-inviaria
in contrast to cycle expansions which utilize only the i&at information of the flow. In
addition, we usually do not know how to constrigt, for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of séc8, whereas periodic
orbit theory is true in higher dimensions and straightfaha apply.

Remark 23.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theo-
rem may be found in ref. [23.12]. For positive transfer openrs, this theorem has been
generalized by Ruelle [23.13].

Remark 23.8 Axiom A systems. The proofs in sect. 23.5 follow the thesis work of
H.H. Rugh [23.9, 23.18, 23.19]. For a mathematical intraiducto the subject, consult
the excellent review by V. Baladi [23.1]. It would take us faoafield to give and explain
the definition of Axiom A systems (see refs. [1.27, 1.28]).i@m A implies, however,
the existence of a Markov partition of the state space frorthvthe properties 2 and 3
assumed on page 435 follow.

Remark 23.9 Left eigenfunctions. We shall never use an explicit form of left eigen-
functions, corresponding to highly singular kernels liR8.33). Many details have been
elaborated in a number of papers, such as ref. [23.20], witareng physical interpreta-
tion.

Remark 23.10 Ulam’s idea. The approximation of Perron-Frobenius operator defined
by (16.14) has been shown to reproduce the spectrum for eiqamaps, once finer
and finer Markov partitions are used [23.21]. The subtle pofrchoosing a state space
partitioning for a “generic case” is discussed in ref. [23.2
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Exercises

23.1. What space does £ act on? Show that (23.2) is a
complete basis on the space of analytic functions on a
disk (and thus that we found tlmpleteset of eigen-
values).

23.2. What space does £ act on?  What can be said about
the spectrum of (23.1) ob'[0, 1]? Compare the result
with figure 23.5.

23.3. Euler formula.
lul < 1:

= t t?
1_[(1 +t) = 14— u
k=0

Derive the Euler formula (23.5),

Iu @ ua-® 235

t3u®
Tua-we-w

K(k-1)

}:ﬁ———lii———r. 23.6
o 1-u- (1=

23.4. 2-dimensionaproduct expansion*. We conjecture 23.7.
that the expansion corresponding to exercise 23.3 is in
the 2— dimensionatase given by

l_[(l + Ukt
k=0

References

ji Fi(u) «
L (L-W2(1-w?)2--- (1 -2
1 2u )
fTowt a v er
u(1+4u+u?) B
@-vPa-wra-wy

=1

F(u) is a polynomial inu, and the cogéicients fall df
asymptotically a€, ~ u™”. Verify; if you have a proof

to all orders, e-mail it to the authors. (See also solu-
tion 23.3).

Bernoulli shift on L spaces. Check that the family
(23.21) belongs td.}([0,1]). What can be said about
the essential spectral radius bA([0, 1])? A useful ref-
erenceis [23.24].

Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

Escaperate. Consider the escape rate from a strange
repeller: find a choice of trial functions and ¢ such
that (23.29) gives the fraction on particles surviving afte
n iterations, if their initial density distribution igg(x).
Discuss the behavior of such an expression in the long
time limit.
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