
Chapter 17

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

W   the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by in-
tegrating its value along a trajectory. The integral along trajectory can

be split into a sum of over integrals evaluated on trajectorysegments; if expo-
nentiated, this yields amultiplicativeweight for successive trajectory segments.
This elementary observation will enable us to recast the formulas for averages in
a multiplicative form that motivates the introduction of evolution operators and
further formal developments to come. The main result is thatanydynamicalav-
erage measurable in a chaotic system can be extracted from the spectrum of an
appropriately constructed evolution operator. In order tokeep our toes closer to
the ground, in sect. 17.3 we try out the formalism on the first quantitative diagnosis
that a system’s got chaos, Lyapunov exponents.

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainableis a description of the
geometry of the set of possible outcomes, and evaluation of long time averages.
Examples of such averages are transport coefficients for chaotic dynamical flows,
such as escape rate, mean drift and diffusion rate; power spectra; and a host of
mathematical constructs such as generalized dimensions, entropies and Lyapunov
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exponents. Here we outline how such averages are evaluated within the evolu-
tion operator framework. The key idea is to replace the expectation values of
observables by the expectation values of generating functionals. This associates
an evolution operator with a given observable, and relates the expectation value of
the observable to the leading eigenvalue of the evolution operator.

17.1.1 Time averages

Let a = a(x) be anyobservable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reportson a property of
the dynamical system. It is a device, such as a thermometer orlaser Doppler
velocitometer. The device itself does not change during themeasurement. The
velocity field ai(x) = vi(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an experiment at instantτ are
examples of scalar observables. We define theintegrated observable At as the
time integral of the observablea evaluated along the trajectory of the initial point
x0,

At(x0) =
∫ t

0
dτa( f τ(x0)) . (17.1)

If the dynamics is given by an iterated mapping and the time isdiscrete,t → n,
the integrated observable is given by

An(x0) =
n−1
∑

k=0

a( f k(x0)) (17.2)

(we suppress possible vectorial indices for the time being).

Example 17.1 Integrated observables. If the observable is the velocity, ai(x) =
vi(x), its time integral At

i(x0) is the trajectory At
i(x0) = xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point x0 = [q(0), p(0)] is:

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (17.3)

Thetime averageof the observable along a orbit is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (17.4)

If a does not behave too wildly as a function of time – for example,if ai(x) is the
Chicago temperature, bounded between−80oF and+130oF for all times –At(x0)
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Figure 17.1: (a) A typical chaotic trajectory ex-
plores the phase space with the long time visitation
frequency building up the natural measureρ0(x).
(b) time average evaluated along an atypical tra-
jectory such as a periodic orbit fails to explore the
entire accessible state space. (A. Johansen) (a)

x

M (b)

is expected to grow not faster thant, and the limit (17.4) exists. For an example
of a time average - the Lyapunov exponent - see sect. 17.3.

The time average depends on the orbit, but not on the initial point on that
orbit: if we start at a later state space pointf T(x0) we get a couple of extra finite
contributions that vanish in thet → ∞ limit:

a( f T (x0)) = lim
t→∞

1
t

∫ t+T

T
dτa( f τ(x0))

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτa( f τ(x0)) −

∫ t+T

t
dτa( f τ(x0))

)

= a(x0) .

The integrated observableAt(x0) and the time averagea(x0) take a particularly
simple form when evaluated on a periodic orbit. Define exercise 4.6

Ap =















apTp =
∫ Tp

0 dτa( f τ(x0)) for a flow
apnp =

∑np

i=1 a( f i(x0)) for a map
, x0 ∈ Mp , (17.5)

where p is a prime cycle,Tp is its period, andnp is its discrete time period in
the case of iterated map dynamics.Ap is a loop integral of the observable along
a single traversal of a prime cyclep, so it is an intrinsic property of the cycle,
independent of the starting pointx0 ∈ Mp. (If the observablea is not a scalar but
a vector or matrix we might have to be more careful in defining an average which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtainAp repeatedr times. Evaluation of the asymptotic time
average (17.4) requires therefore only a single traversal of the cycle:

ap = Ap/Tp . (17.6)

However,a(x0) is in general a wild function ofx0; for a hyperbolic system it
takes the same value〈a〉 for almost all initial x0, but a different value (17.6) on
any periodic orbit, i.e., on a dense set of points (figure 17.1(b)).
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Example 17.2 Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 25.1)
is dense with initial points that correspond to periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)2 ∼ t2, and its contri-
bution to the diffusion rate D ∝ x(t)2/t, (17.4) evaluated with a(x) = x(t)2, diverges.
Seemingly there is a paradox; even though intuition says the typical motion should be
diffusive, we have an infinity of ballistic trajectories. (continued in example 17.3)

For chaotic dynamical systems, this paradox is resolved by robust averag-
ing, i.e., averaging also over the initialx, and worrying about the measure of the
“pathological” trajectories.

17.1.2 Space averages

Thespace averageof a quantitya that may depend on the pointx of state space
M and on the timet is given by thed-dimensional integral over thed coordinates
of the dynamical system:

〈a〉(t) =
1
|M|

∫

M

dx a( f t(x))

|M| =

∫

M

dx = volume ofM . (17.7)

The spaceM is assumed to have finite volume (open systems like the 3-diskgame
of pinball are discussed in sect. 17.1.3).

What is it wereally do in experiments? We cannot measure the time aver-
age (17.4), as there is no way to prepare a single initial condition with infinite
precision. The best we can do is to prepare some initial density ρ(x) perhaps con-
centrated on some small (but always finite) neighborhood, soone should abandon
the uniform space average (17.7), and consider instead

〈a〉ρ(t) =
1
|M|

∫

M

dxρ(x) a( f t(x)) . (17.8)

For the ergodic and mixing systems that we shall consider hereanysmooth initial
density will tend to the asymptotic natural measuret → ∞ limit ρ(x, t) → ρ0(x),
so we can just as well take the initialρ(x) = const. and define theexpectation
value〈a〉 of an observablea to be the asymptotic time and space average over the
state spaceM

〈a〉 =
1
|M|

∫

M

dxa(x) = lim
t→∞

1
|M|

∫

M

dx
1
t

∫ t

0
dτa( f τ(x)) . (17.9)

We use the same〈· · ·〉 notation as for the space average (17.7), and distinguish the
two by the presence of the time variable in the argument: if the quantity〈a〉(t)

average - 20oct2008 ChaosBook.org version13, Dec 31 2009



CHAPTER 17. AVERAGING 333

being averaged depends on time, then it is a space average, ifit does not, it is the
expectation value〈a〉.

The expectation value is a space average of time averages, with everyx ∈ M
used as a starting point of a time average. The advantage of averaging over space is
that it smears over the starting points which were problematic for the time average
(like the periodic points). While easy to define, the expectation value〈a〉 turns
out not to be particularly tractable in practice. Here comesa simple idea that
is the basis of all that follows: Such averages are more conveniently studied by
investigating instead of〈a〉 the space averages of form

〈

eβ·A
t〉

=
1
|M|

∫

M

dx eβ·A
t(x). (17.10)

In the present contextβ is an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space average by differentiation,

〈

At
〉

=
∂

∂β

〈

eβ·A
t〉
∣

∣

∣

∣

∣

β=0
.

In most applicationsβ is a scalar, but if the observable is ad-dimensional vector
ai(x) ∈ Rd, so isβ ∈ Rd; if the observable is ad × d tensor,β is also a rank-2
tensor, and so on. Here we will mostly limit the considerations to scalar values of
β.

If the limit a(x0) for the time average (17.4) exists for “almost all” initialx0

and the system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the
time average along almost all trajectories to tend to the same valuea, and the
integrated observableAt to tend tota. The space average (17.10) is an integral
over exponentials, and such integral also grows exponentially with time. So as
t →∞ we would expect the space average of exp(β · At(x)) to grow exponentially
with time

〈

eβ·A
t〉

→ (const)ets(β) ,

and its rate of growth to be given by the limit

s(β) = lim
t→∞

1
t

ln
〈

eβ·A
t〉

. (17.11)

Now we understand one reason for why it is smarter to compute
〈

exp(β · At)
〉

rather than〈a〉: the expectation value of the observable (17.9) and the moments of
the integrated observable (17.1) can be computed by evaluating the derivatives of
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s(β)

∂s
∂β

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
〉

= 〈a〉 ,

∂2s

∂β2

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

AtAt
〉

−
〈

At
〉 〈

At
〉)

= lim
t→∞

1
t

〈

(At − t 〈a〉)2
〉

,

(17.12)

and so forth. We have written out the formulas for a scalar observable; the vectorexercise 17.2

case is worked out in the exercise 17.2. If we can compute the function s(β), we
have the desired expectation value without having to estimate any infinite time
limits from finite time data.

Suppose we could evaluates(β) and its derivatives. What are such formulas
good for? A typical application is to the problem of determining transport coeffi-
cients from underlying deterministic dynamics.

Example 17.3 Deterministic diffusion. (continued from example 17.2) Con-
sider a point particle scattering elastically off a d-dimensional array of scatterers. If
the scatterers are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion constant
〈

x(t)2
〉

≈ 4Dt. In contrast to D estimated numerically from trajectories x(t) for finite
but large t, the above formulas yield the asymptotic D without any extrapolations to the
t → ∞ limit. For example, for ai = vi and zero mean drift 〈vi〉 = 0, in d dimensions the
diffusion constant is given by the curvature of s(β) at β = 0, section 25.1

D = lim
t→∞

1
2dt

〈

x(t)2
〉

=
1
2d

d
∑

i=1

∂2s

∂β2
i

∣

∣

∣

∣

∣

∣

β=0

, (17.13)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in chapter 25, periodic orbit theory
yields an explicit closed form expression for D.

fast track:

sect. 17.2, p. 337

17.1.3 Averaging in open systems

If theM is a compact region or set of regions to which the dynamics
is confined for all times, (17.9) is a sensible definition of the expectation value.
However, if the trajectories can exitM without ever returning,

∫

M

dyδ(y− f t(x0)) = 0 for t > texit , x0 ∈ M ,
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Figure 17.2: A piecewise-linear repeller (17.17): All
trajectories that land in the gap between thef0 and f1
branches escape (Λ0 = 4,Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

we might be in trouble. In particular, for a repeller the trajectory f t(x0) will even-
tually leave the regionM, unless the initial pointx0 is on the repeller, so the
identity

∫

M

dyδ(y− f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (17.14)

might apply only to a fractal subset of initial points a set ofzero Lebesgue measure
(non–wandering setis defined in sect. 2.1.1). Clearly, for open systems we need to
modify the definition of the expectation value to restrict itto the dynamics on the
non–wandering set, the set of trajectories which are confined for all times.

Note byM a state space region that encloses all interesting initial points, say
the 3-disk Poincaré section constructed from the disk boundaries and all possible
incidence angles, and denote by|M| the volume ofM. The volume of the state
space containing all trajectories which start out within the state space regionM
and recur within that region at the timet

|M(t)| =
∫

M

dxdyδ
(

y− f t(x)
)

∼ |M|e−γt (17.15)

is expected to decrease exponentially, with the escape rateγ. The integral over section 1.4.3

x takes care of all possible initial points; the integral overy checks whether their
trajectories are still withinM by the timet. For example, any trajectory that fallssection 22.1

off the pinball table in figure 1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for any
finite time we can construct a normalized measure from the finite-time covering
volume (17.15), by redefining the space average (17.10) as

〈

eβ·A
t〉

=

∫

M

dx
1
|M(t)|

eβ·A
t(x) ∼

1
|M|

∫

M

dx eβ·A
t(x)+γt . (17.16)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factoreγt. What
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does this mean? Once we have computedγ we can replenish the density lost to
escaping trajectories, by pumping ineγt in such a way that the overall measure is
correctly normalized at all times,〈1〉 = 1.

Example 17.4 A piecewise-linear repeller: (continuation of example 16.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2×2] matrix. Assume the expanding
1−dimensionalmap f (x) of figure 17.2, a piecewise-linear 2–branch repeller with slopes
Λ0 > 1 and Λ1 < −1 :

f (x) =



















f0 = Λ0x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (17.17)

Both f (M0) and f (M1) map onto the entire unit intervalM = [0, 1]. Assume a piece-
wise constant density

ρ(x) =

{

ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (17.18)

There is no need to define ρ(x) in the gap betweenM0 andM1, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (16.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] “transfer” matrix with matrix elementsexercise 16.1

exercise 16.5
(

ρ0

ρ1

)

→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

) (

ρ0

ρ1

)

, (17.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|

intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (17.20)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix rep-
resentation of the Perron-Frobenius operator is a consequence of the piecewise lin-
earity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (continued
in example 23.5)

We now turn to the problem of evaluating
〈

eβ·A
t
〉

.
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Figure 17.3: Space averaging pieces together the
time average computed along thet → ∞ orbit
of figure 17.1 by a space average over infinitely
many shortt trajectory segments starting at all ini-
tial points at once.

17.2 Evolution operators

The above simple shift of focus, from studying〈a〉 to studying
〈

exp
(

β · At)〉 is the
key to all that follows. Make the dependence on the flow explicit by rewriting this
quantity as

〈

eβ·A
t〉

=
1
|M|

∫

M

dx
∫

M

dyδ
(

y− f t(x)
)

eβ·A
t(x) . (17.21)

Hereδ
(

y− f t(x)
)

is the Dirac delta function: for a deterministic flow an initial
point x maps into a unique pointy at timet. Formally, all we have done above is
to insert the identity

1 =
∫

M

dyδ
(

y− f t(x)
)

, (17.22)

into (17.10) to make explicit the fact that we are averaging only over the trajec-
tories that remain inM for all times. However, having made this substitution we
have replaced the study of individual trajectoriesf t(x) by the study of the evo-
lution of density ofthe totalityof initial conditions. Instead of trying to extract
a temporal average from an arbitrarily long trajectory which explores the phase
space ergodically, we can now probe the entire state space with short (and con-
trollable) finite time pieces of trajectories originating from every point inM.

As a matter of fact (and that is why we went to the trouble of defining the gen-
erator (16.27) of infinitesimal transformations of densities) infinitesimallyshort
time evolution induced by the generatorA of (16.27) suffices to determine the
spectrum and eigenvalues ofLt.

We shall refer to the kernel of the operation (17.21) as theevolution operator

Lt(y, x) = δ
(

y− f t(x)
)

eβ·A
t(x) . (17.23)

The simplest example is theβ = 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 16.2. Another example - designed to deliver the Lyapunov exponent
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- will be the evolution operator (17.36). The action of the evolution operator on a
functionφ is given by

(Ltφ)(y) =
∫

M

dxδ
(

y− f t(x)
)

eβ·A
t(x)φ(x) . (17.24)

In terms of the evolution operator, the space average of the generating function
(17.21) is given by

〈

eβ·A
t〉

=
1
|M|

∫

M

dx
∫

M

dyφ(y)Lt(y, x)φ(x) .

whereφ(x) is the constant functionφ(x) = 1. If the linear operatorLt can be
thought of as a matrix, high powers of a matrix are dominated by its fastest grow-
ing matrix elements, and the limit (17.11)

s(β) = lim
t→∞

1
t

ln
〈

Lt
〉

.

yields the leading eigenvalue ofs0(β), and, through it, all desired expectation
values (17.12).

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observableAt in the exponential. Its job
is deliver to us the expectation value ofa, but before showing that it accomplishes
that, we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observablea is additive along the tra-
jectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2(x0) =
∫ t1

0
dτa( f τ(x)) +

∫ t1+t2

t1
dτa( f τ(x))

= At1(x0) + At2( f t1(x0)) .
exercise 16.3

As At(x) is additive along the trajectory, the evolution operator generates a semi-
group section 16.5

Lt1+t2(y, x) =
∫

M

dzLt2(y, z)Lt1(z, x) , (17.25)

as is easily checked by substitution

Lt2Lt1a(y) =
∫

M

dxδ(y− f t2(x))eβ·A
t2(x)(Lt1a)(x) = Lt1+t2a(y) .

This semigroup property is the main reason why (17.21) is preferable to (17.9) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.
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Figure 17.4: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range. δ  x

  xδ

  xδ

2

x(t )1

1

x(0)

0

x(t )2

17.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this sub-
ject: Is a given system “chaotic”? And if so, how chaotic? If all points in a neigh- example 2.3

borhood of a trajectory converge toward the same trajectory, the attractor is a fixed
point or a limit cycle. However, if the attractor is strange,any two trajectories section 1.3.1

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) (17.26)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible state space. This
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx0| (17.27)

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.

17.3.1 Lyapunov exponent as a time average

We can start out with a smallδxand try to estimateλ from (17.27), but now that we
have quantified the notion of linear stability in chapter 4 and defined the dynamical
time averages in sect. 17.1.1, we can do better. The problem with measuring the
growth rate of the distance between two points is that as the points separate, the
measurement is less and less a local measurement. In study ofexperimental time
series this might be the only option, but if we have the equations of motion, a
better way is to measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance|δx(t)|/|δx0| between neighboring trajec-
tories (17.27) is given by theLyapunov exponent

λ = lim
t→∞

1
t

ln |δx(t)|/|δx0| (17.28)
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Figure 17.5: The symmetric matrixJ =
(

Jt)T Jt maps
a swarm of initial points in an infinitesimal spherical
neighborhood ofx0 into a cigar-shaped neighborhood
finite time t later, with semiaxes determined by the lo-
cal stretching/shrinking |Λ1|, but local individual tra-
jectory rotations by the complex phase ofJt ignored.
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(For notational brevity we shall often suppress the dependence of quantities such
as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the timet). One
can take (17.28) as is, take a small initial separationδx0, track distance between
two nearby trajectories until|δx(t1)| gets significantly bigger, then recordt1λ1 =

ln(|δx(t1)|/|δx0|), rescaleδx(t1) by factor|δx0|/|δx(t1)|, and continue add infinitum,
as in figure 17.4, with the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑

i

tiλi . (17.29)

However, we can do better. Given the equations of motion, forinfinitesimalδx we
know theδxi(t)/δx j(0) ratio exactly, as this is by definition the Jacobian matrix
(4.43)

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j (x0) ,

so the leading Lyapunov exponent can be computed from the linear approximation
(4.29)

λ(x0) = lim
t→∞

1
t

ln

∣

∣

∣Jt(x0)δx0

∣

∣

∣

|δx0|
= lim

t→∞

1
2t

ln
(

n̂T (

Jt)T Jtn̂
)

. (17.30)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector ˆn = δx0/|δx0| matters. The eigenval-
ues ofJ are either real or come in complex conjugate pairs. AsJ is in general
not symmetric and not diagonalizable, it is more convenientto work with the
symmetric and diagonalizable matrixM =

(

Jt)T Jt, with real positive eigenval-
ues {|Λ1|

2 ≥ . . . ≥ |Λd|
2}, and a complete orthonormal set of eigenvectors of

{u1, . . . , ud}. Expanding the initial orientation ˆn =
∑

(n̂ · ui)ui in theMui = |Λi |
2ui

eigenbasis, we have

n̂TM n̂ =
d

∑

i=1

(n̂ · ui)
2|Λi |

2 = (n̂ · u1)2e2µ1t
(

1+O(e−2(µ1−µ2)t)
)

, (17.31)

wheretµi = ln |Λi(x0, t)|, with real parts of characteristic exponents (4.19) ordered
by µ1 > µ2 ≥ µ3 · · ·. For long times the largest Lyapunov exponent dominates
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Figure 17.6: A numerical estimate of the leading Lya-
punov exponent for the Rössler flow (2.17) from the
dominant expanding eigenvalue formula (17.30). The
leading Lyapunov exponentλ ≈ 0.09 is positive, so
numerics supports the hypothesis that the Rössler at-
tractor is strange. (J. Mathiesen) 0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

exponentially (17.30), provided the orientation ˆn of the initial separation was not
chosen perpendicular to the dominant expanding eigen-direction u1. The Lya-
punov exponent is the time average

λ(x0) = lim
t→∞

1
t

{

ln |n̂ · u1| + ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)
}

= lim
t→∞

1
t

ln |Λ1(x0, t)| , (17.32)

whereΛ1(x0, t) is the leading eigenvalue ofJt(x0). By choosing the initial dis-
placement such that ˆn is normal to the first (i-1) eigen-directions we can define
not only the leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (17.33)

The leading Lyapunov exponent now follows from the Jacobianmatrix by
numerical integration of (4.9).

The equations can be integrated accurately for a finite time,hence the infinite
time limit of (17.30) can be only estimated from plots of1

2 ln(n̂TM n̂) as function
of time, such as figure 17.6 for the Rössler flow (2.17).

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor,an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a very difficult problem. The approximately monotone
part of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (17.32) directly.First of all, the state
space is dense with atypical trajectories; for example, ifx0 happened to lie on a
periodic orbitp, λ would be simply ln|Λp|/Tp, a local property of cyclep, not a
global property of the dynamical system. Furthermore, evenif x0 happens to be a
“generic” state space point, it is still not obvious that ln|Λ(x0, t)|/t should be con-
verging to anything in particular. In a Hamiltonian system with coexisting elliptic
islands and chaotic regions, a chaotic trajectory gets captured in the neighborhood
of an elliptic island every so often and can stay there for arbitrarily long time; as
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there the orbit is nearly stable, during such episode ln|Λ(x0, t)|/t can dip arbitrar-
ily close to 0+. For state space volume non-preserving flows the trajectorycan
traverse locally contracting regions, and ln|Λ(x0, t)|/t can occasionally go nega-
tive; even worse, one never knows whether the asymptotic attractor is periodic or
“strange,” so any finite estimate ofλ might be dead wrong. exercise 17.1

17.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect. 17.2. We shall now replace time
averaging along a single orbit by action of a multiplicativeevolution operator on
the entire state space, and extract the Lyapunov exponent from its leading eigen-
value. If the chaotic motion fills the whole state space, we are indeed computing
the asymptotic Lyapunov exponent. If the chaotic motion is transient, leading
eventually to some long attractive cycle, our Lyapunov exponent, computed on
non-wandering set, will characterize the chaotic transient; this is actually what
any experiment would measure, as even very small amount of external noise will
suffice to destabilize a long stable cycle with a minute immediatebasin of attrac-
tion.

Example 17.5 Lyapunov exponent, discrete time 1-dimensional dynamics. Due
to the chain rule (4.52) for the derivative of an iterated map, the stability of a 1 −
dimensionalmapping is multiplicative along the flow, so the integral (17.1) of the observ-
able a(x) = ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory
of x0 is additive:

An(x0) = ln
∣

∣

∣ f n′(x0)
∣

∣

∣ =

n−1
∑

k=0

ln
∣

∣

∣ f ′(xk)
∣

∣

∣ . (17.34)

The Lyapunov exponent is then the expectation value (17.9) given by a spatial integral
(17.8) weighted by the natural measure

λ =
〈

ln | f ′(x)|
〉

=

∫

M

dxρ0(x) ln | f ′(x)| . (17.35)

The associated (discrete time) evolution operator (17.23) is

L(y, x) = δ(y− f (x)) eβ ln | f ′(x)| . (17.36)

Here we have restricted our considerations to 1− d maps, as for higher-
dimensional flows only the Jacobian matrices are multiplicative, not the individual
eigenvalues. Construction of the evolution operator for evaluation of the Lya-
punov spectra in the general case requires more cleverness than warranted at this
stage in the narrative: an extension of the evolution equations to a flow in the
tangent space.

All that remains is to determine the value of the Lyapunov exponent

λ =
〈

ln | f ′(x)|
〉

=
∂s(β)
∂β

∣

∣

∣

∣

∣

β=0
= s′(0) (17.37)
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from (17.12), the derivative of the leading eigenvalues0(β) of the evolution oper-
ator (17.36). example 20.1

The only question is: how?

Résum é

The expectation value〈a〉 of an observablea(x) measuredAt(x) =
∫ t

0 dτa(x(τ))
and averaged along the flowx→ f t(x) is given by the derivative

〈a〉 =
∂s
∂β

∣

∣

∣

∣

∣

β=0

of the leading eigenvalueets(β) of the corresponding evolution operatorLt.

Instead of using the Perron-Frobenius operator (16.10) whose leading eigen-
function, the natural measure, once computed, yields expectation value (16.20) of
any observablea(x), we construct a specific, hand-tailored evolution operator L
for each and every observable. However, by time we arrive to chapter 20, the scaf-chapter 20

folding will be removed, bothL’s and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expectation values of observables
will remain.

The next question is: how do we evaluate the eigenvalues ofL? We saw in ex-
ample 17.4, in the case of piecewise-linear dynamical systems, that these operators
reduce to finite matrices, but for generic smooth flows, they are infinite-dimensi-
onal linear operators, and finding smart ways of computing their eigenvalues re-
quires some thought. In chapter 11 we undertook the first step, and replaced the
ad hocpartitioning (16.14) by the intrinsic, topologically invariant partitioning.
In chapter 15 we applied this information to our first application of the evolution
operator formalism, evaluation of the topological entropy, the growth rate of the
number of topologically distinct orbits. This small victory will be refashioned in
chapters 18 and 19 into a systematic method for computing eigenvalues of evolu-
tion operators in terms of periodic orbits.

Commentary

Remark 17.1 “Pressure.” The quantity
〈

exp(β · At)
〉

is called a “partition function”
by Ruelle [19.1]. Mathematicians decorate it with considerably more Greek and Gothic
letters than is the case in this treatise. Ruelle [17.1] and Bowen [17.2] had given name
“pressure”P(a) to s(β) (wherea is the observable introduced here in sect. 17.1.1), defined
by the “large system” limit (17.11). As we shall apply the theory also to computation of
the physical gas pressure exerted on the walls of a containerby a bouncing particle, we
prefer to refer tos(β) as simply the leading eigenvalue of the evolution operatorintroduced
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in sect. 16.5. The “convexity” properties such asP(a) ≤ P(|a|) will be pretty obvious
consequence of the definition (17.11). In the case thatL is the Perron-Frobenius operator
(16.10), the eigenvalues{s0(β), s1(β), · · ·} are called theRuelle-Pollicott resonances[17.3,
17.4, 17.5], with the leading one,s(β) = s0(β) being the one of main physical interest.
In order to aid the reader in digesting the mathematics literature, we shall try to point out
the notational correspondences whenever appropriate. Therigorous formalism is replete
with lims, sups, infs,Ω-sets which are not really essential to understanding of thetheory,
and are avoided in this presentation.

Remark 17.2 Microcanonical ensemble. In statistical mechanics the space average
(17.7) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx= dqdpδ(H(q, p)− E) of volumeω(E) =

∫

M
dqdpδ(H(q, p)− E)

〈a(t)〉 =
1
ω(E)

∫

M

dqdpδ(H(q, p)− E)a(q, p, t) (17.38)

is called themicrocanonical ensemble average.

Remark 17.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Os-
eledec [17.6] states that the limits (17.30–17.33) exist for almost all pointsx0 and all
tangent vectors ˆn. There are at mostd distinct values ofλ as we let ˆn range over the
tangent space. These are the Lyapunov exponents [17.8]λi(x0).

We are doubtful of the utility of Lyapunov exponents as meansof predicting any
observables of physical significance, but that is the minority position - in the literature
one encounters many provocative speculations, especiallyin the context of foundations of
statistical mechanics (“hydrodynamic” modes) and the existence of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic systems.

There is much literature on numerical computation of the Lyapunov exponents, see for
example refs. [17.14, 17.15, 17.17]. For early numerical methods to compute Lyapunov
vectors, see refs. [17.16, 17.17]. The drawback of the Gram-Schmidt method is that
the vectors so constructed are orthogonal by fiat, whereas the stable/ unstable eigen-
vectors of the Jacobian matrix are in general not orthogonal. Hence the Gram-Schmidt
vectors are not covariant, i.e., the linearized dynamics does not transport them into the
eigenvectors of the Jacobian matrix computed further downstream. For computation of
covariant Lyapunov vectors, see refs. [17.18, 17.20].

Remark 17.4 State space discretization. Ref. [17.21] discusses numerical discretiza-
tons of state space, and construction of Perron-Frobenius operators as stochastic matrices,
or directed weighted graphs, as coarse-grained models of the global dynamics, with trans-
port rates between state space partitions computed using this matrix of transition proba-
bilities; a rigorous discussion of some of the former features is included in ref. [17.22].

Exercises
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17.1. How unstable is the H́enon attractor?

(a) Evaluate numerically the Lyapunov exponentλ by
iterating some 100,000 times or so the Hénon map

[

x′

y′

]

=

[

1− ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219,b = 0.3. How much do you trust
now your result for the part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?

17.2. Expectation value of a vector observable.
Check and extend the expectation value formulas
(17.12) by evaluating the derivatives ofs(β) up to 4-th
order for the space average

〈

exp(β · At)
〉

with ai a vector
quantity:

(a)

∂s
∂βi

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
i

〉

= 〈ai〉 , (17.39)

(b)

∂2s
∂βi∂β j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

At
i A

t
j

〉

−
〈

At
i

〉 〈

At
j

〉)

= lim
t→∞

1
t

〈

(At
i − t 〈ai〉)(At

j − t
〈

a j

〉

)
〉

.

Note that the formalism is smart: it automatically
yields thevariance from the mean, rather than
simply the 2nd moment

〈

a2
〉

.

(c) compute the third derivative ofs(β).

(d) compute the fourth derivative assuming that the
mean in (17.39) vanishes,〈ai〉 = 0. The 4-th order
moment formula

K(t) =

〈

x4(t)
〉

〈

x2(t)
〉2
− 3 (17.40)

that you have derived is known askurtosis: it mea-
sures a deviation from what the 4-th order moment
would be were the distribution a pure Gaussian
(see (25.22) for a concrete example). If the ob-
servable is a vector, the kurtosisK(t) is given by

∑

i j

[〈

AiAiA jA j

〉

+ 2
(〈

AiA j

〉 〈

A jAi

〉

− 〈AiAi〉
〈

A jA
(∑

i 〈AiAi〉
)2

17.3. Pinball escape rate from numerical simulation∗.
Estimate the escape rate forR : a = 6 3-disk pinball
by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison, a
numerical simulation of ref. [8.3] yieldsγ = .410. . ..

17.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponentλe of the Rössler attractor (2.17).

(b) Plot your own version of figure 17.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.3.)

(c) Give your best estimate ofλe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponentλc.
Even though it is much smaller thanλe, a glance
at the stability matrix (4.4) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.47).
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