Appendix H

Discrete symmetries of dynamics

ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtrseki.

The key result is the construction of projection operatoosnf invariant ma-
trices. The basic idea is simple: a hermitian matrix can lagalalized. If this
matrix is an invariant matrix, it decomposes the reps of tioeig into direct sums
of lower-dimensional reps. Most of computations to follomplement the spectral
decomposition

M =/11P1+/12P2+‘”+/1rpr,

which associates with each distinct rogtof invariant matrixM a projection
operator (H.17):

M -1

P = .
/li—ﬂj

j#i

Sects. H.3 and H.4 develop Fourier analysis as an applicafithe general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanovit)

We definegroup, representationsymmetry of a dynamical systeamdinvariance
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APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 805

Group axioms. A groupG is a set of elementsgy, g, g3, . . . for which compo-
sition or group multiplication g o g; (which we often abbreviate @pg;) of any
two elements satisfies the following conditions:

1. Ifg1,02 € G, thengo o g1 € G.
2. The group multiplication is associativgs o (g2 © g1) = (gs © 92) © 0.

3. The groups containsidentityelemente such thago e = eog = gfor every
elementg € G.

4. For every elemeng € G, there exists a unique == g~ € G such that
hog=goh=e

A finite group is a group with a finite number of elements

G={ed,....0¢]},

where|G|, the number of elements, is theder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in applica-
tions:
e C, (also denoted Z): the cyclic group of order n.

e Dy the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

e S,: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:
e S! (also denoted T*): circle group of dimension 1.
e Tpm=StxSt... xS mtorus, of dimension m.
e SQQ2): rotations in the plane, dimension 1. Isomorphic to S*.
e O(2) = S(O2) x Dy: group of rotations and reflections in the plane, of dimension
1

e U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SO2).

e S(3): rotation group of dimension 3.

e S U(2): unitary group of dimension 3. Isomorphic to SQ(3).

e GL(n): general linear group of invertible matrix transformations, dimension n.
e S(n): special orthogonal group of dimension n(n — 1)/2.

e O(n) = SAn) x D1: orthogonal group of dimension n(n — 1)/2.

e S n): symplectic group of dimension n(n+ 1)/2.

e S U(n): special unitary group of dimensionn® — 1.
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Example H.3 Cyclic and dihedral groups:  The cyclic group C, ¢ SO2) of order n
is generated by one element. For example, this element can be rotation through 2 /n.

The dihedral group D, c O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take o corresponding to reflection in
the x-axis. o> = €; such operation o is called an involution. C to rotation through 2z /n,
then D, = (o, C), and the defining relations are 0> = C" = ¢, (Co)? = e.

Groups are defined and classified as abstract objects byrthdiiplication
tables (for finite groups) or Lie algebras (for Lie groups).h&Y concerns us in
applications is theiactionas groups of transformations on a given space, usually a
vector space (see appendix B.1), but sometimedfareaspace, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of up-
perlower indices are always summed over

n
Gabxb = Z Gabxb ) (H.1)
b=1

unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(n,F)={g:F" —> F"|det@) # 0} . (H.2)

UnderGL(n, F) a basis set o¥ is mapped into another basis set by multiplication
with a [nxn] matrix g with entries in fieldF (F is eitherR or C),

¢2=e(g ).

As the vectorx is what it is, regardless of a particular choice of basis,aurtdis
transformation its coordinates must transform as

X;:gabxb-

Standard rep. We shall refer to the set ohjkn] matricesg as astandard rep
of GL(n, F), and the space of ati-tuples &, X2, ..., X,)", X € F on which these
matrices act as thetandard representation space V

Under a general linear transformatigne GL(n,F), the row of basis vectors
transforms by right multiplication a8 = eg™?, and the column oky’s trans-
forms by left multiplication as<’ = gx. Under left multiplication the column
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(row transposed) of basis vectog§ transforms a®'’ = gfe’, where thedual
repd = (g7 is the transpose of the inverse @f This observation motivates
introduction of adual representation spadé, the space on whictL(n, F) acts
via the dual rem’.

Dual space. If V is a vector representation space, thendhal spaceV is the
set of all linear forms oV over the fieldF.

If (&b, ..., e} is a (right) basis o/, thenV is spanned by theual basis
(left basis){eq), - - - , &q)}, the set of linear formsegj) such that

e(i) . e(J) — 5|J ,

wheres? is the Kronecker symbok® = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will herdisgtinguished by
upper indices

LA LY. (H.3)

They transform undeGL(n, F) as
Y= (g’ (H.4)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroups®t.(n, C). g can be distinguished from
g’ by meticulously keeping track of the relative ordering af thdices,

®R-0", @)E- . (H.5)

Defining space, dual space. In what followsV will always denote thelefining
n-dimensional complex vector representation space, thatsay the initial, “el-
ementary multiplet” space within which we commence ourloghtions. Along
with the defining vector representation spateomes thelual ndimensional vec-
tor representation spade We shall denote the corresponding elemenY diy
raising the index, as in (H.3), so the components of definpags vectors, resp.
dual vectors, are distinguished by lower, resp. upper aglic

X = (X, X2,..., %), vV
O %2, xXY) XeV. (H.6)

|
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Defining rep. LetG be a group of transformations acting linearly\énwith the
action of a group elemergte G on a vectorx € V given by an pxn] matrix g

X, =0’ ab=12....n. (H.7)

We shall refer tag,” as thedefining repof the groupG. The action ofy € G on a
vectorq e V is given by thedual rep[nxn] matrix g':

X/a — b(gT)ba — gabxb. (H.8)

In the applications considered here, the gr@will almost always be assumed
to be a subgroup of thenitary group in which caseg = g, and indicates
hermitian conjugation:

(@a" = (@) = da- (H.9)

Hermitian conjugation is efected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and lowdices; transposition
reverses their order. A matrix lermitianif its elements satisfy

(M2 =M. (H.10)

For a hermitian matrix there is no need to keep track of thatiked ordering of
indices, adVlp? = (M")p2 = M3,

Invariant vectors. The vectorg € V is aninvariant vectorif for any transfor-
mationg € G

g=gq. (H.11)
If a bilinear formM (X, y) = x2MPyy, is invariant for allg € G, the matrix
Mab = gacgbd Iv'cd (H.12)

is aninvariant matrix Multiplying with g,® and using the unitary condition (H.9),
we find that the invariant matriceemmutewith all transformationg € G:

[g.M] =0. (H.13)
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Invariants. We shall refer to an invariant relation betweprvectors inV and
g vectors inV, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(xy,zr,9) = habcdexbyaSerdzc ) (H.14)

as aninvariant in V9 ® VP (repeated indices, as always, summed over). In this
example, the cdicientsh®®.4e are components of invariant tengoe V3 ® V2.

Matrix group on vector space. We will now apply these abstract group defini-
tions to the set ofd x d]-dimensional non-singular matricédg B, C, ... € GL(d)
acting in ad-dimensional vector spadé € RY. The product of matriced andB
gives the matrixC,

Cx=B(AX) = (BA)x eV, VX e V.

The identity of the group is the unit matrik which leaves all vectors iv un-
changed. Every matrix in the group has a unique inverse.

Matrix representation of a group. Let us now map the abstract groGshome-
omorphicallyon a group of matrice®(G) acting on the vector spadé, i.e., in
such a way that the group properties, especially the grodpptication, are pre-
served:

1. Anyg e Gis mapped to a matrilo(g) € D(G).

2. The group produat, o g1 € G is mapped onto the matrix produbi(g; o
01) = D(92)D(91).

3. The associativity is preserved(gs o (gz o g1)) = D(g3)(D(g2)D(01)) =
(D(93)(D(92))D(gy).

4. The identity elemeng € G is mapped onto the unit matrix(e) = 1 and
the inverse elemerg™ € G is mapped onto the inverse matiXg™?) =

[D(g)]* = D~X(g).

We call this matrix grou(G) a linear or matrixrepresentatiorof the groupG
in therepresentation space.WVe emphasize hefénear’ in order to distinguish
the matrix representations from other representatiortsdihaot have to be linear,
in general. Throughout this appendix we only consider limepresentations.

If the dimensionality ol is d, we say the representation is dfdimensional
representation We will often abbreviate the notation by writing matridegg)
D(G) asg, i.e., X" = gxcorresponds to the matrix operatiah= Z?zl D(9)ij Xj-
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Character of a representation. The character of,(g) of ad-dimensional rep-
resentatiorD(g) of the group elemerg € G is defined as trace

d
Xa(9) = rD(g) = )" Di(Q).
i=1
Note thaty(e) = d, sinceD;j(e) = 6 for 1 <, j < d.

Faithful representations, factor group. If the mappingG on D(G) is an iso-
morphism, the representation is said tofhihful. In this case the order of the
group of matricedD(G) is equal to the ordelG| of the group. In general, how-
ever, there will be several elemerfits G that will be mapped on the unit matrix
D(h) = 1. This property can be used to define a subgrbug G of the group
G consisting of all elementls € G that are mapped to the unit matrix of a given
representation. Then the representation is a faithfulesgrtation of théactor
group G/H.

Equivalent representations, equivalence classesA representation of a group
is by no means unique. If the basis in thdimensional vector spadéis changed,
the matrice(g) have to be replaced by their transformati@igg), with the new
matricesD’(g) and the old matriceB(g) are related by an equivalence transfor-
mation through a non-singular matix

D’(g) = CD(g)C™.

The group of matrice®’(g) form a representatio®’(G) equivalent to the rep-
resentatiorD(G) of the groupG. The equivalent representations have the same
structure, although the matrices looktdrent. Because of the cylic nature of the
trace the character of equivalent representations is tine sa

x(9) = )" Dj(g) = trD'(g) = tr (CD(Q)C?) .
i=1

Regular representation of a finite group. Theregularrepresentation of a group
is a special representation that is defined as follows: Coentiie elements of a
finite group into a vectofgs, g2, . . ., §g}. Multiplication by any elemeng, per-
mutes{gi, 02, ..., gg|} entries. We can represent the elemgnby the permu-
tation it induces on the components of vectgf, g2, ...,9g}. Thus fori, j =
1,...,|G|, we define theegular representation

- _ 6j|i if 0,9 = g withlij=1,...,|G|,
Dij(9y) _{ 0 otherwise
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In the regular representation the diagonal elements of affioes are zero except
for the identity elemeng, = ewith g,g; = gi. So in the regular representation the
character is given by

_[IG] for g=e,
X(g)—{o for g=+e.

H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational geidtom Hermann
Weyl on the “so-called first main theorem of invariant théory

“All invariants are expressible in terms of a finite number amthem We
cannot claim its validity for every grou®; rather, it will be our chief task to
investigate for each particular group whether a finite iritgdbasis exists or not;
the answer, to be sure, will turn ouffiamative in the most important cases.”

It is easy to show that any rep of a finite group can be broughitnitary
form, and the same is true of all compact Lie groups. Hencehiat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitarntnreC such that

0 0
A 0 ... 0
cMCT = 0 0 4 0 : (H.15)
0 2
3 ...
0 0 o

Here 4; # A; are ther distinct roots of the minimatharacteristic(or seculaj
polynomial

]—[(M ~ A1) =0. (H.16)
i=1
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In the matrixC(M — 1,1)C" the eigenvalues correspondingtpare replaced
by zeroes:

A1 — A2
A1 — A2

A3 — A2
A3 — A

and so on, so the product over all factaé € 1,1)(M — A31) ..., with exception
of the (M — A;1) factor, has nonzero entries only in the subspace assdaidtk
Aq:

(e NeN

(ol o)

= OO
o

cl[M-ynch =] [(a-a)

j#1 j#1

M - ;1
P=]]—=. (H.17)

which acts as identity on thi¢h subspace, and zero elsewhere. For example, the
projection operator onto thé subspace is

C. (H.18)

The diagonalization matri< is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalisnthat weneverneed

to carry such explicit diagonalization; all we need are \ehat invariant matrices

M we find convenient, the algebraic relations they satisfg, @thonormality and
completeness d?;: The matriced?; areorthogonal

PiPj = 6ijPj , (no sum on;j), (H.19)
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and satisfy theompleteness relation
r
dP=1. (H.20)
i=1

As tr (CP,C") = tr P;, the dimension of theh subspace is given by
d=trpk;. (H.21)

It follows from the characteristic equation (H.16) and thenf of the projection
operator (H.17) that; is the eigenvalue d¥l on P; subspace:

MP; = A4iP; , (no sum on). (H.22)

Hence, any matrix polynomial(M) takes the scalar valug&(;) on theP; sub-
space

f(M)P; = f()P;. (H.23)

This, of course, is the reason why one wants to work with ucdole reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 lIrreducible representations

Suppose there exist several linearly independent invigiixd] hermitian matrices
M1, M»,..., and that we have usdd, to decompose thd-dimensional vector
spaceV = Vi & Vo @ ---. CanMy, Mg, ... be used to further decompodg?

Further decomposition is possible if, and only if, the ingat matrices commute:

[M1,M] =0, (H.24)

or, equivalently, if projection operatoiB; constructed fromM, commute with
projection operator®; constructed fronM 1,

PP = PP (H.25)
J J

Usually the simplest choices of independent invariant itedgrdo not com-
mute. In that case, the projection operatBrsonstructed fronM, can be used
to project commuting pieces ™ ,:

Mg) = PM2P;, (no sum on).

appendSymm - 4feb2008 ChaosBook.org version13, Dec 31 2009



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 814

ThatM g) commutes withM ; follows from the orthogonality oP;:

MY Ml = 3" 4MY. Pl = 0. (H.26)
i

Now the characteristic equation fmg) (if nontrivial) can be used to decompose
Vi subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwise jiroportional to the
unit matrix and commutes trivially with all group element&.rep is said to be
irreducibleif all invariant matrices that can be constructed are propoal to the
unit matrix.

According to (H.13), an invariant matrid commutes with group transforma-
tions [G, M] = 0. Projection operators (H.17) constructed frirnare polynomi-
als inM, so they also commute with alle G:

[G,P]=0 (H.27)

Hence, adxd] matrix rep can be written as a direct sum df*d;] matrix reps:
G=1Gl= ) PGPj= ) PGP, = ) Gi. (H.28)
i i i

In the diagonalized rep (H.18), the matgas a block diagonal form:

g 0 O
CgC'=|0 @ 0‘, g:ZCigiCi. (H.29)
0 0 ° i

The repg; acts only on thel-dimensional subspadé consisting of vector®;q,
g € V. In this way an invariantdxd] hermitian matrixM with r distinct eigenval-
ues induces a decomposition oflalimensional vector spadé into a direct sum
of d;-dimensional vector subspaces

v% vievie.. .oV, (H.30)

H.3 Lattice derivatives

Consider a smooth functiap(x) evaluated on a finitd-dimensional lattice

dr = H(X), X = al = lattice point, ¢ € Z9, (H.31)
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wherea is the lattice spacing and there & points in all. A vectorg spec-
ifies a lattice configuration. Assume the lattice is hypdsicuand letn, €
{Ay, fy, - -+, Ag} be the unit lattice cell vectors pointing along tbepositive di-
rections,|fi,| = 1 . Thelattice partial derivativeis then

p(x+ah) = ¢(x)  esn, — e
(auﬁb)f - a = a .

Anything else with the correcda — 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operatgrinbroducing the
hopping operatoior “shift,” or “step”) in the directionu

(h#)” = (S,g+ﬁwj . (H.32)

As h will play a central role in what follows, it pays to understiawhat it does,
so we write it out for the 1-dimensional case in its flll>k N] matrix glory:

01
0 1
01

h= N . (H.33)

0 1
1 0

We will assume throughout that the latticepisriodicin eachr, direction; this is

the easiest boundary condition to work with if we are intexdsn large lattices
where surfaceféects are negligible.

Applied on the lattice configuration = (¢1, ¢2, - - -, #n), the hopping operator
shifts the lattice by one sitdyg = (¢2, d3,- -, dN, ¢1). Its transpose shifts the
entries the other way, so the transpose is also the inverse

h™t=h'. (H.34)
The lattice derivative can now be written as a multiplicatiy a matrix:

1
Dupr = a(h# - 1)“_ ®;.

In the 1-dimensional case thiN] matrix representation of the lattice deriva-
tive is:
(H.35)

1 -1
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To belabor the obvious: On a finite lattice Nf points a derivative is simply a
finite [Nx N] matrix. Continuum field theory is a world in which the latiés so
fine that it looks smooth to us. Whenever someone calls songesim “operator,”
think “matrix.” For finite-dimensional spaces a linear cgter is a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In order to get rid of some of the lattice indices it is coneamito employ vector
notation for the terms bilinear in, and keep the rest lumped into “interaction,”

2
Slo] = 3070 = (N~ 1)o] - (P~ 1)+ Sig]. (H.36)

For example, for the discretized Landau HamiltonM#/2 = pmg/2, C = B/a?,
and the quartic terr, [¢] is local site-by-sitey,,r,r.e, = =41 BUSL,0,00,05005¢4+ SO
this general quartic coupling is a little bit of an overkitiut by the time we get
to the Fourier-transformed theory, it will make sense as agrtum conserving
vertex (H.62).

In the continuum integration by parts movgsaround; on a lattice this amounts
to a matrix transposition

(P~ 1) ] [(hu = D)) =47 ("~ D (- 1) 6.

If you are wondering where the “integration by parts” minignss, it is there in
discrete case at well. It comes from the identify = —h~19. The combination
A =h"192

d
:__Z(h L-1)(h,-1) = —%Z(l—%(h;uhﬂ)) (H.37)

is thelattice Laplacian We shall show below that this Laplacian has the correct
continuum limit. It is the simplest spatial derivative alled for x — —x sym-
metric actions. In the 1-dimensional case tNex[N] matrix representation of the
lattice Laplacian is:

-2 1 1
1 -2 1
1 1 -2 1
A= p 1 . (H.38)
1

1 1 -2
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The lattice Laplacian measures the second variation of d fielacross three
neighboring sites. You can easily check that it does whas#dwnd derivative
is supposed to do by applying it to a parabola restricted éddttice,¢, = ¢(¢),
where ¢(¢) is defined by the value of the continuum functip(x) = x? at the
lattice point¢.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (28.21) regsithat we come to grips
with the “free” or “bare” propagatoM . While the the Laplacian is a simple
difference operator (H.38), its inverse is a messier object. Atov@ompute is to
start expandingvl as a power series in the Laplacian

BM = rr1021 - %ZZ[ ] . (H.39)

As A is a finite matrix, the expansion is convergent foffiwiently Iarge%z. To
get a feeling for what is involved in evaluating such ser@gluateA? in the
1-dimensional case:

6 -4 1 1 -4
4 6 -4 1
, 1|1 -4 6 -4 1
M= L o4 . (H.40)
6 -4
4 1 1 -4 6

What A3, A%, - contributions look like is now clear; as we include highedan
higher powers of the Laplacian, the propagator matrix fifys while theinverse
propagator is dferential operator connecting only the nearest neighbloespitop-
agator is integral operator, connecting every lattice tsitany other lattice site.

This matrix can be evaluated as is, on the lattice, and someatiis evaluated
this way, but in case at hand a wonderful simplification fekofrom the obser-
vation that the lattice action is translationally invatiame will show how this
works in sect. H.4.

H.4 Periodic lattices

Our task now is to transfornM into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is agaiddie only totrans-
lationally invariantsaddle point configurations. bifurcation
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Consider the fiect of agp — h¢ translation on the action
1 Bgo -
= —Z6T.h"TMth. _ﬁz 4
S[h¢] = 2¢ h'M™h-¢ 2 kl(hq&)g.

As M~1is constructed fronm and its inverseM 1 andh commute, and the bilin-
ear term ish invariant. In the quartic terrh permutes cyclically the terms in the
sum, so the total action is translationally invariant

Nd

1
Stha] = S[g] = 597 - M1 p - ER 3 gt (H.41)

4l

If a function (in this case, the actids|¢]) defined on a vector space (in this case,
the configurationp) commutes with a linear operattr;, then the eigenvalues of

h can be used to decompose theector space into invariant subspaces. For a
hyper-cubic lattice the translations infiirent directions commuté,h, = h,h,,

so it is suficient to understand the spectrum of the 1-dimensional sp#trator
(H.33). To develop a feeling for how this reduction to ineauti subspaces works
in practice, let us continue humbly, by expanding the scdpmipdeliberations

to a lattice consisting of 2 points.

H.4.1 A 2-point lattice diagonalized

The action of the shift operatdr (H.33) on a 2-point latticey = (¢1, ¢») is to
permute the two lattice sites

"=( o

As exchange repeated twice brings us back to the origindigumation,h? = 1,
and the characteristic polynomial bfis

(h+1)h-1)=0,

with eigenvaluesly = 1,1; = —1. Construct now the symmetrization, antisym-
metrization projection operators

h-21 1 1/1 1
P - - Xa+n :_( ) H.42
0 = a = 5aem=5(1 g (H.42)
h-1 1 1/1 -1
P e =5( ) (H.43)
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Noting thatPg + P; = 1, we can project the lattice configuratignonto the two
eigenvectors oh:

¢ = 1¢=Po-¢+P1-9,
¢1\ _ (pr+¢2) 1 (1) (g1—-¢2) 1 (1
(¢2) - \V2 \/Q(l)+ V2 \/E(—l) (H.44)
= gioﬁo + (Zlﬁl . (H.45)

As PoP1 = 0, the symmetric and the antisymmetric configurations fans sep-
arately under any linear transformation constructed floand its powers.

In this way the characteristic equatiti? = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional gr@swhich the value of
the shift operator (shift matriX) is a numberd € {1, -1}, and the eigenvectors are
fg = %(1, 1),A; = %(1, -1). We have inserted/2 factors only for convenience,
in order that the eigenvectors be normalized unit vectors.w& shall now see,
(do, #1) is the 2-site periodic lattice discrete Fourier transfafthe field ¢, ¢-).

H.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensionalqgakci lattice withN
sites.

Each application oh translates the lattice one step;Nhsteps the lattice is
back in the original configuration

hN = 1 o ON-1,

so the eigenvalues of are theN distinct N-th roots of unity

ZI¥

N-1
N-1=[]h-o*)=0, w=¢ (H.46)
k=0

As the eigenvalues are all distinct aNdn number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expoundegpendix H.2)
associates with thlke-th eigenvalue oh a projection operator that projects a con-
figuration¢ ontok-th eigenvector oh,

h—ﬂjl

Pk = .
k Ak — A

ek

(H.47)

appendSymm - 4feb2008 ChaosBook.org version13, Dec 31 2009



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 820

A factor (h — 4;1) kills the j-th eigenvectorp; component of an arbitrary vector
in expansiong = --- + &,-goj + ---. The above product kills everything but the
eigen-directionyy, and the factov]‘[jik(/lk — 4;j) ensures thalPy is normalized as
a projection operator. The set of the projection opera®mmplete

Z Pc=1 (H.48)
k

and orthonormal
PxPj = 6kjPk (no sum ork). (H.49)

Constructing explicit eigenvectors is usually not a thet laesy to fritter one’s
youth away, as choice of basis is largely arbitrary, and fithe content of the
theory is in projection operators. However, in case at h&wedeigenvectors are
so simple that we can forget the general theory, and condtracsolutions of the
eigenvalue condition

by hand
0 1 1 1
0 1 WK WK
1 1 w2k ‘ 1 (4)2k
— . 3k |=Fw— 3k
VN K @ N| ¢
0 1
1 0/ \ ,(N-1k wN-1k

1 =1, (no sum ork)

o - e
0
1
goi = — (1, a)_k, a)_Zk, e ,w_(N_l)k) . (H.51)
The eigenvectors are orthonormal
of - @i = 6k (H.52)

as the explicit evaluation szk @i ylelds thaeK;onecker delta function for a peri-
odic lattice

(H.53)
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The sum is over th&l unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unless j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of tieaedgtors (H.50),
(H.51) as

1 2 p
(Pee = (@ )ele)e = Ne'%“ Ok (nosum ork). (H.54)

The completeness (H.48) follows from (H.53), and the ortmorality (H.49)
from (H.52).

éx, the projection of the configuration on thé-th subspace is given by

(Pe-#)e = ke, (no sum ork)
. 1 N-1 o
= o = — IR g H.55
Pk b9 N ;:O e be ( )

We recognizey as thediscrete Fourier transfornof ¢,. Hopefully rediscovering
it this way helps you a little toward understanding why Feutransforms are full
of €XP factors (they are eigenvalues of the generator of tramsigliand when
are they the natural set of basis functions (only if the thidsrtranslationally
invariant).

H.5.1 Fourier transform of the propagator

Now insert the identity}; Px = 1 wherever profitable:
M= 1M1= PMPe = D ailel - M - gi)ey, -
Kk’ Kk’

The matrix
Mie = (- M - 91 (H.56)

is the Fourier space representationMdf No need to stop here - the terms in
the action (H.41) that couple four (and, in general, 3,-4), fields also have the
Fourier space representations

Y1t ¢€1¢52 e ¢’fn = /;klkz---kn &klgzkz e &kn B
:)7k1k2-~-kn = 7€1£2~-~£n(90k1)£1(90k2)£2 e ((pkn)[n

1 _j2r
5 D Vet € RSO (H.57)
{1---Cn
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According to (H.52) the matriddys = ()¢ = ﬁé%k" is a unitary matrix, and
the Fourier transform is a linear, unitary transformatidd™ = 3 P, = 1 with
Jacobian detl = 1. The form of the action (H.41) does not change urder ¢y
transformation, and from the formal point of view, it doeg nmtter whether we
compute in the Fourier space or in the configuration spadenthatarted out with.
For example, the trace & is the trace in either representation

Z Mye = Z Z (PcM Py )
7 Kk ¢

DT @il M @) @)e = ) SN =trM . (H.58)
kk'

kk ¢

trM

From this it follows that tM" = tr M", and from the tr In= Intr relation that
detM = detM. In fact, any scalar combination ¢fs, J's and couplings, such as
the partition functiorZ[ J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what's the pay-back?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equatlon (H.50) to convernatrices into scalars. If
M commuteswith h, then (ok M - ) = Mk, and the matrixM acts as
a multiplication by the scalaMy on thek-th subspace. For example, for the
1-dimensional version of the lattice Laplacian (H.37) thejgction on thek-th
subspace is

Wodon) = 5507+ d-1) 6w
- % (cos(% k) - l) ki (H.59)

In thek-th subspace the bare propagator (H.59) is simply a humbdy,ia con-
trast to the mess generated by (H.39), there is nothing tating M

o 1 Sk’
(¢ M- i) = (Goldue = -
Pk Pk 0)kOkk B %2 - % 22:1 (cos(zﬁ”k#) - 1)

. (H.60)

wherek = (ki, ko, ---,k,) is ad-dimensional vector in th&l9-dimensional dual
lattice.

Going back to the partition function (28.21) and stickingtlie factors ofl
into the bilinear part of the interaction, we replace thetigpal, by its Fourier
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transformJy, and the spatial propagatdvlj,, by the diagonalized Fourier trans-
formed Go)x

M= e Mg - ) = D F Gk, (H.61)
k.k’ k

What's the price? The interaction ter8i[¢] (which in (28.21) was local in the

configuration space) now has a more challendindependence in the Fourier
transform version (H.57). For example, the locality of theadic term leads to

the 4-vertexnomentum conservatian the Fourier space

Nd
1
S|[¢] = m751€2[3€4 ¢[1¢€2¢[3¢[4 = _ﬁuZ(¢€)4 e
’ =1
1 . o~~~
= _ﬁuw 50,k1+k2+k3+k4 ¢k1¢k2¢k3¢k4 . (H62)

{ki}

H.6 C,, factorization

If an N-disk arrangement hasy symmetry, and the disk visitation sequence
given by disk label$e exes . . .}, only the relative incremenis = 6.1 — ¢ modN
matter. Symmetries under reflections across axes incrbasgroup toCyy and
add relations between symbolg;} and{N — ¢} differ only by a reflection. As
a consequence of this reflection increments become dectsmsetil the next re-
flection and vice versa. Consider four equal disks placedhenvertices of a
square (figure H.1). The symmetry group consists of the ityest the two re-
flectionsoy, oy acrossx, y axes, the two diagonal reflectionss, 024, and the
three rotationgC,, Co andCi by anglesrt/2, = and 3r/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute laheis{1, 2, 3, 4}
by relative incrementg; € {1,2,3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflectiois, lew sym-
bol will be called 1 Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As amplea consider
the fundamental domain cycle 112. Taking the disk 1disk 2 segment as the
starting segment, this symbol string is mapped into the diskation sequence
1,12,13,21... = 123, where the subscript indicates the increments (or decre
ments) between neighboring symbols; the period of the cyé&® is thus 3 in
both the fundamental domain and the full space. Similaly,dycle112 will be
mapped into 132 11 23 12,13,,1 = 121323 (note that the fundamental domain
symbol 1corresponds to a flip in orientation after the second and $iftihbols);
this time the period in the full space is twice that of the fam@ntal domain. In
particular, the fundamental domain fixed points corresgoritle following 4-disk
cycles:

S
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g

N
N

‘ © ‘
0
*Q& *
Q
Ry
2

N

an

X

Figure H.1: Symmetries of four disks on a square. A

fundamental domain indicated by the shaded wedge.
@ )

G=G

Z
=
Figure H.2: Symmetries of four disks on a rectangle
A fundamental domain indicated by the shaded wedc ///
4-disk reduced
12 o 1
1234 o 1
13 © 2

Conversions for all periodic orbits of reduced symbol pefiess than 5 are listed
in table H.1.

This symbolic dynamics is closely related to the group-tego structure
of the dynamics: the global 4-disk trajectory can be geeerdty mapping the
fundamental domain trajectories onto the full 4-disk spbgehe accumulated
product of theC4, group elementsy; = C, g» = C?, 01 = 0diagC = CTaxis,
whereC is a rotation byr/2. In the112 example worked out above, this yields
O112 = Q20101 = C2Coaxis = O diag listed in the last column of table H.1. Our
convention is to multiply group elements in the reverse owigh respect to the
symbol sequence. We need these group elements for our eextiseé dynamical
zeta function factorizations.

TheCy4, group has four 1-dimensional representations, either sgimen(A;)
or antisymmetric ;) under both types of reflections, or symmetric under one and
antisymmetric under the otheB{, B;), and a degenerate pair of 2-dimensional
representation&. Substituting theC,, characters
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Table H.1: C4, correspondence between the ternary fundamental domairemyclesp™
and the full 4-disk{1,2,3,4 labeled cycle9, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of thecycle. For ty-
pographical convenience, the symbobflsect. H.6 has been replaced by 0, so that the
ternary alphabet i€, 1, 2}. The degeneracy of thecycle ism, = 8nz/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotatiorm®nd a reflection across a diagonal.
The two pairs of cycles marked bg)(and @) are related by time reversal, but cannot be
mapped into each other 16, transformations.

p_p hs p p hs
0 12 oy 0001 12121414 024
1 1234 Cs 0002 12124343 oy
2 13 Cy, 013 0011 12123434 C,
01 1214 024 0012 1212 414134342323C3
02 1243 oy 0021 @) 1213414234312324 c%
12 12413423 C3 0022 1213 e
001 121232343414 Cy 0102@) 1214232134324143C,
002 121343 C, 0111 12143234 013
011 121434 oy 0112b) 12142123 ox
012 121323 013 0121b) 12132124 ox
021 124324 013 0122 12131413 024
022 124213 ox 0211 12432134 o
112 123 e 0212 12431423 024
122 124231342413 C, 0221 12421424 o2

0222 12424313

1112 123423413412 4123C4
1122 12313413 C
1222 124241313424 2313C2

e 1 1 1 1 2
C, 1 1 1 1 -2
CstCil1 1 -1 -1 0
O’axes 1 '1 1 'l 0
0-d|ag 1 ‘1 ‘1 1 0
into (21.15) we obtain:
hﬁ Aq Ay B1 B, E
e (1- tg = (1-t5) (A-t5) (1-tp) (A-tp) (1-tp)*
Cx (1-t)* = (1-tp) (Q-tp) (I-tp) (-t (L+1tp)*
CsCy (1- t‘g‘ 2 = (1-tp) (I-tp) (1+tp) (L+tp) (1+ tg 2
Oaxes (1-— tg = (1- tf)) 1+ tf)) a1- tf)) 1+ tf)) 1- tg
odiag (1-1)* = (1-tp) (L+tp) (L+tp) (1-tp) (1-t5)°

The possible irreducible segment group elemérgsare listed in the first col-
umn; oaxes denotes a reflection across either the x-axis or the y-aris 0qiag

denotes a reflection across a diagonal (see figure H.1). lii@dddegener-
ate pairs of boundary orbits can run along the symmetry lingbe full space,
with the fundamental domain group theory weights= (C, + 0x)/2 (axes) and
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hp = (Cz + 013)/2 (diagonals) respectively:
A A B. B, E
(1 - tp)(1 - Otg)(1 - tp)(1 - Otp)(1 + tp)?
(1 - tp)(L - Otp)(L - Otp)(L - t)(L + tp)*(H.63)

axes: (1-t§)?
: . 2\2
diagonals: (I t5)

(we have assumed thigtdoes not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here onlyigigenial orbits13, 24
occur; they correspond to ttiefixed point in the fundamental domain.

TheA; subspace ifC4, cycle expansion is given by

1/¢n = (1—-to)(1—t2)(1—1t2)(1 - tor)(1 - to2)(1 — t12)
(1 - too1)(1 — too2)(1 — to12)(1 — to12) (1 — to21) (1 — toz2) (1 — t112)
(1 = t122)(1 — too01) (1 — too02) (1 — too11)(1 — too12)(1 — too21) - - -
= 1-to—ty1 -tz — (tor — tots) — (toz — tot2) — (t12 — tat2)
—(too1 — toto1) — (too2 — toto2) — (to11 — tator)
—(to22 — toto2) — (t112 — tat12) — (t122 — tat12)
—(to12 + toz1 + tot1tz — totso — tatop — toloy) . ... (H.64)

(for typographical convenience, i4 replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the charactnde readfdthe symbol
strings: ya,(hp) = (1), xg,(hs) = ()™, xB,(hp) = (-1)°*™, whereng and

n; are the number of times symbols 0, 1 appear ingtsyrmbol string. FoB, all

tp with an odd total number of 0’'s and 1's change sign:

1/¢s, = (1+1to)(1+ta)(1—1t2)(1 - tor)(1 + to2)(1 + t12)
(1 + too1)(1 — too2)(1 + to11)(1 — t012)(1 — to21)(1 + to22) (1 — t112)
(1 + t122)(1 — tooo1)(1 + to002) (1 — too12)(1 + too12)(1 + too21) - - -
= 1l+to+1ty —to— (tor — tota) + (toz — totz) + (tr2 — tato)
+(too1 — toto1) — (too2 — toto2) + (to11 — tator)
+(to22 — toto2) — (t112 — tat12) + (tr22 — tot12)
—(to12 + to21 + totatz — tot12 — tatoz — totog) . . . (H.65)

The form of the remaining cycle expansions depends cryaisllthe special role
played by the boundary orbits: by (H.63) the otitloes not contribute t8, and
B,

(1 +to)(1 — t2)(1 + tor)(1 + to2)(1 - t12)

(1 = too1)(1 — too2)(L + to12)(1 + to12) (1 + toz1) (1 + toz2) (1 — t112)
(1 = t122)(1 + tooo1) (1 + too02) (1 — too11)(1 — to012)(1 — too21) - - -
= 1+to—t1+ (tox —totz) + to2 — t12

1/ §A2

—(too1 — toto1) — (too2 — toto2) + (to11 — tito1)
+1o22 — t100 — (t112 = t1t12) + (to12 + to21 — tot12 — t1to2) . . (H.66)
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and
1/B, (1 —to)(1 + t1)(1 + to1)(1 — to2)(1 + t12)
(1 + toon) (1 — too2)(1 — tor1)(1 + to12)(1 + to21)(1 — to22)(1 — t112)

(1 + t122)(1 + tooo1) (1 — too02) (1 — too11) (1 + too12)(1 + tooz1) - - -
= 1—tg+ty+ (tor — tot) —tox + t12

+(too1 — toto1) — (too2 — totoz) — (to11 — tito1)
—tooo + t122 = (t112 — tat12) + (tor2 + too1 — toti2 — t1tp2) . . (H.67)

In the above we have assumed thatioes not change sign undgi, reflections.
For the mixed-symmetry subspaEeghe curvature expansion is given by

e = 1+t+(—to® +11%) + (2ooz — tote” — 2112 + tots?)
+(2too11 — 2toozz + 2otz — to1? — too? + 2t1122 — 2tat11o
+12? — t0°t1%) + (2tooooz2 — 2too112+ 2totoo11 — 2too121— 2tooz11
+2lo0222— 2tatooz2 + 2to1012+ 201021~ 2o1102— tator” + 2toz022
~totop® + 21112~ 211020+ 2tot1102 — 212120+ tot1o? — tote’H?
+2to0a(—to® + t1%) — 2ty1a(—to® + 11%)) (H.68)

A quick test of thes = §A1§A2481§Bz§é factorization is &orded by the topo-
logical polynomial; substituting, = Z' into the expansion yields

1/§A1=1_32’ 1/§A2=1/§B;L=1, 1/482:1/§E:1+Z,

in agreement with (15.46). exercise 20.9

H.7 C,, factorization

An arrangement of four identical disks on the vertices ofaaegle ha€,, sym-
metry (figure H.2b).Cy, consists ofe, o, oy, Co}, i.e., the reflections across the
symmetry axes and a rotation by

This system fiords a rather easy visualization of the conversion of a k-dis
dynamics into a fundamental domain symbolic dynamics. Amtdeaving the
fundamental domain through one of the axis may be folded back reflection
on that axis; with these symmetry operatiams = ox andg; = oy we asso-
ciate labels 1 and 0, respectively. Orbits going to the diatjgp opposed disk
cross the boundaries of the fundamental domain twice; tbdyat of these two
reflections is jusC, = ooy, to which we assign the label 2. For example, a
ternary string 0010201. is converted into 12143123, and the associated

group-theory weight is given by. . g1009200919090-
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Table H.2: Cy, correspondence between the terngyl, 2} fundamental domain prime
cyclesp’and the full 4-disk1,2,3,4 cyclesp, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of thpecycle. The de-
generacy of the cycle ism, = 4nz/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each oth&hyransformations. The full
space orbit listed here is generated from the symmetry etloode by the rules given in
sect. H.7, starting from disk 1.

p p g p p 9
0 14 oy 0001 14143232 C;
1 12 Ox 0002 14142323 oy
2 13 C 0011 1412 e

01 1432 C 0012 14124143 oy
02 1423 Ox 0021 14134142 oy
12 1243 oy 0022 1413 e
001 141232 oy 0102 14324123 oy
002 141323 C; 0111 14343212 C,
011 143412 oy 0112 14342343 oy
012 143 e 0121 14312342 oy
021 142 e 0122 14313213 C;
022 142413 oy 0211 14212312 oy
112 121343 G, 0212 14213243 C;
122 124213 oy 0221 14243242 C,
0222 14242313 oy
1112 12124343 oy
1122 1213 e
1222 12424313 oy

Short ternary cycles and the corresponding 4-disk cyclefisted in table H.2.
Note that already at length three there is a pair of cycle® €143 and 02X 142)
related by time reversal, bubt by anyC,, symmetries.

The above is the complete description of the symbolic dyoarfor 4 suf-
ficiently separated equal disks placed at corners of a rglgtarHowever, if the
fundamental domain requires further partitioning, thenégy description is in-
suficient. For example, in the stadium billiard fundamental domone has to
distinguish between bounce#f ¢the straight and the curved sections of the bil-
liard wall; in that case five symbols ice for constructing the covering symbolic
dynamics.

The groupC,, has four 1-dimensional representations, distinguishethbly
behavior under axis reflections. Tle representation is symmetric with respect
to both reflections; thé\, representation is antisymmetric with respect to both.
The B; and By, representations are symmetric under one and antisymmeitder
the other reflection. The character table is

Cy|AL A B B

e |1 1 1 1
C;[1 1 -1 -1
ox |1 -1 1 -1
oy |1 -1 -1 1

Substituted into the factorized determinant (21.14), iwetrcbutions of peri-

appendSymm - 4feb2008 ChaosBook.org version13, Dec 31 2009



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 829

odic orbits split as follows

95
e (1-tp)?
C: (1- t%)Z

Aq
(1-1tp)
(1-1tp)
(1-1tp)
(1-1tp)

Ao
(1-tp)
(1-tp)
(1 + tf))
(1 + tf))

B
(1-1tp)
(1-1tp)
(1-1tp)
(1 + tf))

B2
(1-tp)
(1-tp)
(1 + tf))
(1-tp)

Cycle expansions follow by substituting cycles and thedugrtheory factors from
table H.2. ForA; all characters are-1, and the corresponding cycle expansion is
given in (H.64). Similarly, the totally antisymmetric sydaxe factorizatior®; is
given by (H.65), theB; factorization ofC,4,. ForB; all t, with an odd total number
of 0’'s and 2’s change sign:

1/{e, = (1+1to)(1 —ta)(1+ t2)(1 + tor)(1 — to2)(1 + t12)
(1 = too1)(L + too2)(L + to12)(1 — to12) (1 — toz1) (1 + toz2) (1 + t112)
(1 = t122)(1 + tooo1) (1 — too02) (1 — too11)(L + too12)(L + too21) - - -
= 1l+to—ty +1tx+ (tor — tots) — (toz — tot2) + (t12 — tat2)
—(too1 — toto1) + (too2 — toto2) + (to11 — tator)
+(to2z2 — toto2) + (t112 — tat12) — (tr22 — tat12)
—(to12 + to21 + totatz — tot12 — tatoz — totoa) . . . (H.69)

For B; all t, with an odd total number of 1's and 2’s change sign:

1/¢s, = (1—-1to)(1+t2)(1+1t2)(1+to1)(1 + to2)(1 - t12)
(1 + too1)(L + too2)(1 — to12)(1 — to12) (1 — toz1) (1 — toz2) (1 + t112)
(1 + t122) (1 + tooo1) (1 + too02) (1 — too11)(1 — to012)(1 — too21) - - -
= 1-to+1ty+1tx+ (tor - tots) + (toz — tot2) — (tr2 — tat2)
+(too1 — toto1) + (too2 — toto2) — (to11 — tatos)
—(to22 — toto2) + (t112 — tat12) + (tro2 — tot12)
—(to12 + toz1 + tot1tz — totso — tatop — toloy) . ... (H.70)

Note that all of the above cycle expansions group long otbigether with their
pseudoorbit shadows, so that the shadowing argumentsrigergence still apply.

The topological polynomial factorizes as

i =1-3z
gAl

1_1_
gAz_gBl_ng

1

1

—=1+z

consistent with the 4-disk factorization (15.46).
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H.8 Heénon map symmetries

We note here a few simple symmetries of the HEnon map (3A&b # 0 the
Hénon map is reversible: the backward iteration of (3.2@)iven by

o1 = ~p (L= @5 Xour). (H.71)

Hence the time reversal amountstte-> 1/b, a — a/b? symmetry in the param-
eter plane, together witk — —x/b in the coordinate plane, and there is no need
to explore the & b) parameter plane outside the sthg {-1, 1}. Forb = -1 the
map is orientation and area preserving ,

X1 = 1—ax — X1, (H.72)

the backward and the forward iteration are the same, andahewandering set
is symmetric across the,,1 = X, diagonal. This is one of the simplest models of
a Paincaré return map for a Hamiltonian flow. For the origatareversingo = 1
case we have

X1 = 1—ax + X1, (H.73)

and the non—wandering set is symmetric acrossthe= —x, diagonal.

Commentary

Remark H.1 Literature  This material is covered in any introduction to linear alge-
bra [H.1, H.2, H.3] or group theory [21.15, 10.2]. The exjpiosi given in sects. H.2.1
and H.2.2 is taken from refs. [4.9, 4.10, 9.4]. Who wrote thosvn first we do not know,
but we like Harter’s exposition [H.23, H.24, 4.15] best. téas theory of class algebra-
sdfers a more elegant and systematic way of constructing thémmadget of commuting
invariant matriceM; than the sketchfered in this section.

Remark H.2 Labeling conventions While there is a variety of labeling conventions [25.19,
9.23] for the reduce@,4, dynamics, we prefer the one introduced here because obgs cl
relation to the group-theoretic structure of the dynamihs: global 4-disk trajectory can

be generated by mapping the fundamental domain trajestorito the full 4-disk space

by the accumulated product of tlk, group elements.

Remark H.3 C,, symmetry  C,, is the symmetry of several systems studied in the
literature, such as the stadium billiard [8.10], and theirgahsional anisotropic Kepler
potential [21.3].
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Exercises

H.1.

H.2.

exerAppSymm - 1feb2008

Amlagroup?  Show that multiplication table

-~ 0O 0T O

-~ 0 OO DD
O —-~T QO olw
DO -0 oTT
OV DT OO
TO O —wala
DT A O ——

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix H.1.)

From W.G. Harter [4.15]

Three coupled pendulums with aC, symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same masws and lengtH, the one midway of same
length but diferent masd, with the tip coupled to the
tips of the outer ones with springs off§tiesk. Assume
displacements are smak,/l < 1.

(a) Show that the acceleration matkx —axis

X1 a+b -a 0 X1
¥ |=-| -¢c 2c+b -c Xo } ,
X3 0 -a a+b X3

wherea = k/ml, ¢ = k/Ml andb = g/I.

(b) Check that § R] = 0, i.e., that the dynamics is
invariant underC, = {e, R}, whereR interchanges the
outer pendulums,

0 01

0 10 } .

1 00

(c) Construct the corresponding projection operakrs
andP_, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(w)? = a+ b, and a 2-dimensional subspace, with

acceleration matrix (trust your own algebra, if it strays
from what is stated here)

-V2a

c+b

R =

a+b

-V

The exercise is simple enough that you can do it with-
out using the symmetry, so: construet, P_ first, use
them to reducato irreps, then proceed with computing
remaining eigenvalues af

(d) Does anything interesting happerMf= m?

a® =

H.3.

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimensiond gets reduced to a set of subspaces
whose dimensiond® satisfyy" d® = d. Beyond that,
love many, trust few, and paddle your own canoe.

From W.G. Harter [4.15]

Lorenz system in polar coordinates: dynamics.
(continuation of exercise 9.8.)

1. Show that (9.24) has two equilibria:

(ro,20) = (0,0), 6 undefined
(rn6nz1) = (32b(p - 1), 7/4,p (HLT4)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here
the precise numbers to help you check your pro-
grams):

EQ = (0, 12, 27) equilibrium: (and itsCY/2-
rotationE Q) has one stable real eigenvalue
AW = 13854578,

and the unstable complex conjugate pair

A@3) = 4@ + i@ = 0.093956+ 110.194505.

The unstable eigenplane is defined by eigen-
vectors

Reel = (-0.4955 —0.201Q —0.8450)

Ime® = (0.5325 —0.8464 0)

with periodT = 27/w® = 0.6163306,

radial expansion multiplier

Ar = exp(2ru®@/w®) = 1.059617,

and the contracting multiplier

Ac = exp(2ruP/w®?) ~ 1.95686x 1074

along the stable eigenvectorBfQ,

e® = (0.8557 —0.3298 —0.3988).

EQ = (0,0,0) equilibrium: The stable eigen-
vectore® = (0,0, 1) of EQy, has contraction rate
1@ = b =-2666....

The other stable eigenvector is

e = (-0.244001-0.9697750), with contract-
ing eigenvalue

1@ = _228277. The unstable eigenvector

e® = (-0.6530490.7573160) has eigenvalue
A® =118277.

3. Plot the Lorenz strange attractor both in the
Lorenz coordinates figure 2.5, and in the doubled-
polar angle coordinates (9.20) for the Lorenz pa-
rameter values- = 10,b = 8/3,p = 28. Topolog-
ically, does it resemble the Lorenz butterfly, the
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Rossler attractor, or neither? The Poincaré sec-
tion of the Lorenz flow fixed by the-axis and the
equilibrium in the doubled polar angle represen-
tation, and the corresponding Poincaré return map
(sh, sh + 1) are plotted in figure 11.8.

4. Construct the Poincaré return map, G+1),

%

20 (
0 —t-

20

wheresis arc-length measured along the unstable

manifold of EQy, lower Poincaré section of fig- H.5.

ure 11.8(b). Elucidate its relation to the Poincaré
return map of figure 11.9. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar represen-
tation Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How
do the Floquet multipliers of relative periodic or-
bits of the representations relate to each other?

6. What does the volume contraction formula (4.48)
look like now? Interpret.

H.4. Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonali@grence
operator (H.38), its inverse (the “free” propagator of sta-
tistical mechanics and quantum field theory) is a messier
object. A way to compute is to start expanding propaga-
tor as a power series in the Laplacian

1 1

o1
e Y (H.75)
mPL-A mznzz(;m2n

As A is a finite matrix, the expansion is convergent for

H.6.

832

sufficiently largenm?. To get a feeling for what is in-
volved in evaluating such series, show thats:

6 -4 1 1 -4
-4 6 -4 1
111 -4 6 -4 1
2 [ —
A = v 1 4 .(H.76)
6 -4
-4 1 1 -4 6

WhatA3, A%, - - - contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while thaversepropa-
gator is diferential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer
cise H.5.

Lattice Laplacian diagonalized. Insert the iden-
tity 3, P® = 1 wherever you profitably can, and use the
eigenvalue equation (H.50) to convert shiftmatrices
into scalars. 1M commutesvith h, then (o,i M) =
M®s.., and the matrixM acts as a multiplication by
the scalaM® on thekth subspace. Show that for the 1-
dimensional version of the lattice Laplacian (H.38) the
projection on thékth subspace is

2 2
(o A gu) = = (cos(ﬁk) - 1)5kk,. (H.77)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (H.75), there is
nothing to evaluating:

P = O
K'me1-A Y — o4 (cos 2k/N - 1)

(H.78)

wherek is a site in theN-dimensional dual lattice, and
a = L/N is the lattice spacing.

Fix Predrag’s lecture od Feb 5, 2008. Are theC;
frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.
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