
Appendix D

Symbolic dynamics techniques

T   for unimodal mappings is developed in sect. D.1. The
prime factorization for dynamical itineraries of sect. D.2illustrates the
sense in which prime cycles are “prime” - the product structure of zeta func-

tions is a consequence of the unique factorization propertyof symbol sequences.

D.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The transition graph methods outlined in chapter 11 are wellsuited for
symbolic dynamics of finite subshift type. A sequence of welldefined rules leads
to the answer, the topological zeta function, which turns out to be a polynomial.
For infinite subshifts one would have to go through an infinitesequence of graph
constructions and it is of course very difficult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the goalcan be reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal
maps with one external parameterfΛ(x) = Λg(x). As usual, symbolic dynamics is
introduced by mapping a time series. . . xi−1xixi+1 . . . onto a sequence of symbols
. . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (D.1)

andxc is the critical point of the map (i.e., maximum ofg). In addition to the usual
binary alphabet we have added a symbolC for the critical point. The kneading
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I(C) ζ−1
top(z)/(1− z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1− z2n

)
10111C
1011111C
101∞ (1− 2z2)/(1+ z)
10111111C
101111C
1011C
101101C
10C (1− z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1− z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1− 2z)/(1− z)

Table D.1: All ordered kneading sequences up to length seven, as well assome longer kneading
sequences. Harmonic extensionH∞(1) is defined below.

sequenceKΛ is the itinerary of the critical point (11.13). The crucial observation
is that no periodic orbit can have a topological coordinate (see sect. D.1.1) beyond
that of the kneading sequence. The kneading sequence thus inserts a border in
the list of periodic orbits (ordered according to maximal topological coordinate),
cycles up to this limit are allowed, all beyond are pruned. All unimodal maps
(obeying some further constraints) with the same kneading sequence thus have the
same set of periodic orbitsand the same topological zeta function. The topological
coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftern iterations. If so, we adopt the
convention to terminate the kneading sequence with aC, and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose thetent map

x 7→ f (x) =

{

Λx x ∈ [0, 1/2]
Λ(1− x) x ∈ (1/2, 1] , (D.2)

where the parameterΛ ∈ (1, 2]. The topological entropy ish = logΛ. This
follows from the fact any trajectory of the map is bounded, the escape rate is
strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(

1− znp

|Λp|

)

=
∏

p

(

1−
( z
Λ

)np
)

= 1/ζtop(z/Λ)
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has its leading zero atz = 1.

The set of periodic points of the tent map is countable. A consequence of this
fact is that the set of parameter values for which the kneading sequence (11.13) is
periodic or preperiodic are countable and thus of measure zero and consequently
the kneading sequence is aperiodic for almost all Λ. For general unimodal maps
the corresponding statement is that the kneading sequence is aperiodic for almost
all topological entropies.

For a given periodic kneading sequence of periodn, K
Λ
= PC =

s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then
the expanded zeta function is a polynomial of degreen

1/ζtop(z) =
∏

p

(1− zn
p) = (1− z)

n−1
∑

i=0

aiz
i , ai =

i
∏

j=1

(−1)s j (D.3)

anda0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply
replacingn by∞.

Example. Consider as an example the kneading sequenceKΛ = 10C. From
(D.3) we get the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2), see
table D.1. This can also be realized by redefining the alphabet. The only forbidden
subsequence is 100. All allowed periodic orbits, except0, can can be built from
a alphabet with letters 10and 1. We write this alphabet as{10, 1; 0}, yielding the
topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2). The leading zero is the
inverse golden meanz0 = (

√
5− 1)/2.

Example. As another example we consider the preperiodic kneading se-
quenceKΛ = 101∞. From (D.3) we get the topological zeta function 1/ζtop(z) =
(1 − z)(1 − 2z2)/(1 + z), see table D.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forbidden subsequences,
namely 1012n0 wheren ≥ 0. These pruning rules are respected by the alphabet
{012n+1; 1, 0}, yielding the topological zeta function above. The pole in the zeta
functionζ−1

top(z) is a consequence of the infinite alphabet.

An important consequence of (D.3) is that the sequence{ai} has a periodic tail
if and only if the kneading sequence has one (however, their period may differ
by a factor of two). We know already that the kneading sequence is aperiodic for
almost allΛ.

The analytic structure of the function represented by the infinite series
∑

aizi

with unity as radius of convergence, depends on whether the tail of {ai} is periodic
or not. If the period of the tail isN we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1− zN
,
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for some polynomialsp(z) andq(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. An aperiodic sequence of
coefficients would formally correspond to infiniteN and it is natural to assume
that the singularities will fill the unit circle. There is indeed a theorem ensuring
that this is the case [12.58], provided theai’s can only take on a finite number of
values. The unit circle becomes anatural boundary, already apparent in a finite
polynomial approximations to the topological zeta function, as in figure 15.2. A
function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the
unit circle as a natural boundary for almost all topologicalentropies and for the
tent map (D.2), for almost allΛ.

Let us now focus on the relation between the analytic structure of the topolo-
gical zeta function and the number of periodic orbits, or rather (15.8), the number
Nn of fixed points off n(x). The trace formula is (see sect. 15.4)

Nn = tr T n =
1

2πi

∮

γr

dz z−n d
dz

logζ−1
top

whereγr is a (circular) contour encircling the originz = 0 in clockwise direction.
Residue calculus turns this into a sum over zerosz0 and poleszp of ζ−1

top

Nn =
∑

z0:r<|z0|<R

z−n
0 −

∑

zp:r<|zp |<R

z−n
0 +

1
2πi

∮

γR

dz z−n d
dz

logζ−1
top

and a contribution from a large circleγR. For meromorphic topological zeta func-
tions one may letR → ∞ with vanishing contribution fromγR, andNn will be a
sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in
chapter 15.

We have also seen that for preperiodic kneading there will bepoles on the unit
circle.

To appreciate the role of natural boundaries we will consider a (very) special
example. Cascades of period doublings is a central concept for the description of
unimodal maps. This motivates a close study of the function

Ξ(z) =
∞
∏

n=0

(1− z2n
) . (D.4)

This function will appear again when we derive (D.3).

The expansion ofΞ(z) begins asΞ(z) = 1− z− z2+ z3− z4+ z5 . . .. The radius
of convergence is obviously unity. The simple rule governing the expansion will

chapter/dahlqvist.tex 30nov2001 ChaosBook.org version13, Dec 31 2009



APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 776

effectively prohibit any periodicity among the coefficients making the unit circle
a natural boundary.

It is easy to see thatΞ(z) = 0 if z = exp(2πm/2n) for any integerm andn.
(Strictly speaking we mean thatΞ(z) → 0 whenz → exp(2πm/2n) from inside).
Consequently, zeros are dense on the unit circle. One can also show that singular
points are dense on the unit circle, for instance|Ξ(z)| → ∞whenz→ exp(2πm/3n)
for any integerm andn.

As an example, the topological zeta function at the accumulation point of
the first Feigenbaum cascade isζ−1

top(z) = (1 − z)Ξ(z). Then Nn = 2l+1 if n =
2l, otherwiseNn = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thatNn cannot be a sum of exponentials, the contourγR

cannot be pushed away to infinity,R is restricted toR ≤ 1 and Nn is entirely
determined by

∫

γR
which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we
know that the unit circle is a natural boundary for almost allΛ. But how does
it look out there in the complex plane for some typical parameter values? To
explore that we will imagine a journey from the originz = 0 out towards the unit
circle. While traveling we let the parameterΛ change slowly. The trip will have a
distinct science fiction flavor. The first zero we encounter isthe one connected to
the topological entropy. Obviously it moves smoothly and slowly. When we move
outward to the unit circle we encounter zeros in increasing densities. The closer
to the unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyedthrough bizarre
bifurcations. For some special values of the parameter the unit circle suddenly gets
transparent and and we get (infinitely) short glimpses of another world beyond the
horizon.

We end this section by deriving eqs (D.5) and (D.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chapter 11, namely for that finite kneading sequence
of lengthn the topological polynomial is of degreen. The graph contains a node
which is connected to itself only via the symbol 0. This implies that a factor
(1− z) may be factored out andζtop(z) = (1− z)

∑n−1
i=0 aizi. The problem is to find

the coefficientsai.

The ordered list of (finite) kneading sequences table D.1 andthe ordered list of
periodic orbits (on maximal form) are intimately related. In table D.2 we indicate
how they are nested during a period doubling cascade. Every finite kneading
sequencePC is bracketed by two periodic orbits,P1 andP0. We haveP1 < PC <
P0 if P contains an odd number of 1’s, andP0 < PC < P1 otherwise. From
now on we will assume thatP contains an odd number of 1’s. The other case
can be worked out in complete analogy. The first and second harmonic of PC
are displayed in table D.2. The periodic orbitP1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antiharmonic extension ofPC
(denotedA∞(P)) and the accumulation point of the cascade is called the harmonic
extension ofPC [11.8] (denotedH∞(P)).
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periodic orbits finite kneading sequences
P1 = A∞(P)

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓
H∞(P) H∞(P)

Table D.2: Relation between periodic orbits and finite kneading sequences in a harmonic cascade.
The stringP is assumed to contain an odd number of 1’s.

A central result is the fact that a period doubling cascade ofPC is not in-
terfered by any other sequence. Another way to express this is that a kneading
sequencePC and its harmonic are adjacent in the list of kneading sequences to
any order.

I(C) ζ−1
top(z)/(1− z)

P1 = 100C 1− z − z2 − z3

H∞(P1) = 10001001100. . . 1− z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .

P′ = 10001C 1− z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001. . . 1− z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .

P2 = 1000C 1− z − z2 − z3 − z4

Table D.3: Example of a step in the iterative construction of the list ofkneading sequencesPC.

Table D.3 illustrates another central result in the combinatorics of kneading
sequences. We suppose thatP1C and P2C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequenceP′C betweenP1C andP2C is
longer than 5.) The important result is thatP′ (of lengthn′ = 6) has to coincide
with the firstn′ − 1 letters of bothH∞(P1) and A∞(P2). This is exemplified in
the left column of table D.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pointH∞(P1) is

ζ−1
P1

(z)Ξ(zn1) , (D.5)

and just beforeA∞(P2)

ζ−1
P2

(z)/(1− zn2) . (D.6)

A short calculation shows that this is exactly what one wouldobtain by apply-
ing (D.3) to the antiharmonic and harmonic extensions directly, provided that it
applies toζ−1

P1
(z) andζ−1

P2
(z). This is the key observation.

Recall now the product representation of the zeta functionζ−1 =
∏

p(1 −
znp ). We will now make use of the fact that the zeta function associated with

chapter/dahlqvist.tex 30nov2001 ChaosBook.org version13, Dec 31 2009



APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 778

P′C is a polynomial of ordern′. There is no periodic orbit of length shorter than
n′ + 1 betweenH∞(P1) andA∞(P2). It thus follows that the coefficients of this
polynomial coincides with those of (D.5) and (D.6), see Table D.3. We can thus
conclude that our rule can be applied directly toP′C.

This can be used as an induction step in proving that the rule can be applied
to every finite and infinite kneading sequences.

Remark D.1 How to prove things. The explicit relation between the kneading se-
quence and the coefficients of the topological zeta function is not commonly seenin the
literature. The result can proven by combining some theorems of Milnor and Thurston
[11.14]. That approach is hardly instructive in the presentcontext. Our derivation was
inspired by Metropolis, Stein and Stein classical paper [11.8]. For further detail, consult
[15.14].

D.1.1 Periodic orbits of unimodal maps

A periodic point (cycle point) xk belonging to a cycle of periodn is a real solution
of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (D.7)

Thenth iterate of a unimodal map has at most 2n monotone segments, and there-
fore there will be 2n or fewer periodic points of lengthn. Similarly, the backward
and the forward Smale horseshoes intersect at most 2n times, and therefore there
will be 2n or fewer periodic points of lengthn. A periodic orbit of lengthn cor-
responds to an infinite repetition of a lengthn = np symbol string, customarily
indicated by a line over the string:

S p = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string itinerary
S p = s1s2s3 . . . sn stands for infinite repetition of a finite block, and routinely omit
the overline.x0, its cyclic permutation
sk sk+1 . . . sn s1 . . . sk−1 corresponds to the pointxk−1 in the same cycle. A cyclep
is calledprime if its itinerary S cannot be written as a repetition of a shorter block
S ′.

Each cyclep is a set ofnp rational-valued full tent map periodic pointsγ. It
follows from (11.9) that if the repeating strings1s2 . . . sn contains an odd number
“1”s, the string of well ordered symbolsw1w2 . . .w2n has to be of the double
length before it repeats itself. The cycle-pointγ is a geometrical sum which we
can rewrite as the fraction

γ(s1s2 . . . sn) =
22n

22n − 1

2n
∑

t=1

wt/2
t (D.8)
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Using this we can calculate the ˆγ(S ) for all short cycles. For orbits up to length 5
this is done in table 11.1.

Here we give explicit formulas for the topological coordinate of a periodic
point, given its itinerary. For the purpose of what follows it is convenient to com-
pactify the itineraries by replacing the binary alphabetsi = {0, 1} by the infinite
alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (D.9)

In this notation the itineraryS = aia jakal · · · and the corresponding topological
coordinate (11.9) are related byγ(S ) = .1i0j1k0l · · ·. For example:

S = 111011101001000. . . = a1a1a2a1a1a2a3a4 . . .

γ(S ) = .101101001110000. . . = .1101120111021304 . . .

Cycle points whose itineraries start withw1 = w2 = . . . = wi = 0, wi+1 = 1 remain
on the left branch of the tent map fori iterations, and satisfyγ(0 . . . 0S ) = γ(S )/2i.

Periodic points correspond to rational values ofγ, but we have to distinguish
even andodd cycles. The even (odd) cycles contain even (odd) number ofai in
the repeating block, with periodic points given by

γ(aia j · · · akaℓ) =















2n

2n−1.1
i0j · · · 1k even

1
2n+1

(

1+ 2n × .1i0j · · · 1ℓ) odd
, (D.10)

wheren = i+ j+ · · ·+ k+ ℓ is the cycle period. The maximal value periodic point
is given by the cyclic permutation ofS with the largestai as the first symbol,
followed by the smallest availablea j as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101. . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value
periodic point is

γ̂(1101110)= γ(a2a1a2a1a1) = .11011010010010= 100/129.

Maximal values of all cycles up to length 5 are given in table!?
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D.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be
used to manipulate ordered sets of noncommuting objects such as symbol strings.
Let P = {p1, p2, p3, · · ·} be an ordered set ofprime strings, and

N = {n} =
{

pk1
1 pk2

2 pk3
3 · · · p

k j

j

}

,

j ∈ N, ki ∈ Z+, be the set of all stringsn obtained by the ordered concatenation of
the “primes” pi. By construction, every stringn has a unique prime factorization.
We say that a string has a divisord if it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingtn := tk1

p1
tk2
p2
· · · tk j

p j
we can write the inverse dynamical zeta function

(20.2) as

∏

p

(1− tp) =
∑

n

µ(n)tn ,

and, if we care (we do in the case of the Riemann zeta function), the dynamical
zeta function as .

∏

p

1
1− tp

=
∑

n

tn (D.11)

A striking aspect of this formula is its resemblance to the factorization of nat-
ural numbers into primes: the relation of the cycle expansion (D.11) to the product
over prime cycles is analogous to the Riemann zeta (exercise19.10) represented
as a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively
binary strings into ordered concatenations of prime strings. There are 2 strings of
length 1, both prime:p1 = 0, p2 = 1. There are 4 strings of length 2: 00, 01,
11, 10. The first three are ordered concatenations of primes:00= p2

1, 01= p1p2,
11 = p2

2; by ordered concatenations we mean thatp1p2 is legal, butp2p1 is not.
The remaining string is the only prime of length 2,p3 = 10. Proceeding by
discarding the strings which are concatenations of shorterprimes pk1

1 pk2
2 · · · p

k j

j ,
with primes lexically ordered, we generate the standard list of primes, in agree-
ment with table 15.1: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 10001,
10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100110, 100111,
101100, 101110, 101111,. . .. This factorization is illustrated in table D.4.
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factors string
p1 0
p2 1

p2
1 00

p1p2 01
p2

2 11
p3 10

p3
1 000

p2
1p2 001

p1p2
2 011

p3
2 111

p1p3 010
p2p3 110
p4 100
p5 101

factors string
p4

1 0000
p3

1p2 0001
p2

1p2
2 0011

p1p3
2 0111

p4
2 1111

p2
1p3 0010

p1p2p3 0110
p2

2p3 1110
p2

3 1010
p1p4 0100
p2p4 1100
p1p5 0101
p2p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5

1 00000
p4

1p2 00001
p3

1p2
2 00011

p2
1p3

2 00111
p1p4

2 01111
p5

2 11111
p3

1p3 00010
p2

1p2p3 00110
p1p2

2p3 01110
p3

2p3 11110
p1p2

3 01010
p2p2

3 11010
p2

1p4 00100
p1p2p4 01100
p2

2p4 11100
p3p4 10100

factors string
p2

1p5 00101
p1p2p5 01101
p2

2p5 11101
p3p5 10101
p1p6 01000
p2p6 11000
p1p7 01001
p2p7 11001
p1p8 01011
p2p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table D.4: Factorization of all periodic points strings up to length 5 into ordered con-
catenationspk1

1 pk2
2 · · · p

kn
n of prime stringsp1 = 0, p2 = 1, p3 = 10, p4 = 100, . . . ,

p14 = 10111.

D.2.1 Prime factorization for spectral determinants

Following sect. D.2, the spectral determinant cycle expansions is obtained
by expandingF as a multinomial in prime cycle weightstp

F =
∏

p

∞
∑

k=0

Cpk tk
p =

∞
∑

k1k2k3···=0

τ
p

k1
1 p

k2
2 p

k3
3 ···

(D.12)

where the sum goes over all pseudocycles. In the above we havedefined

τ
p

k1
1 p

k2
2 p

k3
3 ···
=

∞
∏

i=1

Cpi
ki t

ki
pi . (D.13)

exercise 19.10

A striking aspect of the spectral determinant cycle expansion is its resem-
blance to the factorization of natural numbers into primes:as we already noted in
sect. D.2, the relation of the cycle expansion (D.12) to the product formula (19.9)
is analogous to the Riemann zeta represented as a sum over natural numbers vs.
its Euler product representation.

This is somewhat unexpected, as the cycle weights factorizeexactly with re-
spect tor repetitions of a prime cycle,tpp...p = tr

p, but only approximately (shad-
owing) with respect to subdividing a string into prime substrings, tp1p2 ≈ tp1tp2.
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The coefficientsCpk have a simple form only in 1− dimensional, given by the
Euler formula (23.5). In higher dimensionsCpk can be evaluated by expanding
(19.9),F(z) =

∏

p Fp, where

Fp = 1−














∞
∑

r=1

tr
p

rdp,r















+
1
2















∞
∑

r=1

tr
p

rdp,r















2

− . . . .

Expanding and recollecting terms, and suppressing thep cycle label for the mo-
ment, we obtain

Fp =

∞
∑

r=1

Cktk, Ck = (−)kck/Dk,

Dk =

k
∏

r=1

dr =

d
∏

a=1

k
∏

r=1

(1− ur
a) (D.14)

where evaluation ofck requires a certain amount of not too luminous algebra:

c0 = 1

c1 = 1

c2 =
1
2

(

d2

d1
− d1

)

=
1
2

















d
∏

a=1

(1+ ua) −
d

∏

a=1

(1− ua)

















c3 =
1
3!













d2d3

d2
1

+ 2d1d2 − 3d3













=
1
6

















d
∏

a=1

(1+ 2ua + 2u2
a + u3

a)

+2
d

∏

a=1

(1− ua − u2
a + u3

a) − 3
d

∏

a=1

(1− u3
a)

















etc.. For example, for a general 2-dimensional map we have

Fp = 1− 1
D1

t +
u1 + u2

D2
t2 −

u1u2(1+ u1)(1+ u2) + u3
1 + u3

2

D3
t3 + . . . . (D.15)

We discuss the convergence of such cycle expansions in sect.I.4.

With τ
p

k1
1 p

k2
2 ···p

kn
n

defined as above, the prime factorization of symbol strings is

unique in the sense thateach symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Möbius inversion, sect. D.2.

How is the factorization of sect. D.2 used in practice? Suppose we have com-
puted (or perhaps even measured in an experiment) all prime cycles up to length
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n, i.e., we have a list oftp’s and the corresponding Jacobian matrix eigenvalues
Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained by gener-
ating all strings in order of increasing lengthj allowed by the symbolic dynamics
and constructing the multinomial

F =
∑

n

τn (D.16)

wheren = s1s2 · · · s j, si range over the alphabet, in the present case{0, 1}. Fac-

torizing every stringn = s1s2 · · · s j = pk1
1 pk2

2 · · · p
k j

j as in table D.4, and sub-
stituting τ

p
k1
1 p

k2
2 ···

we obtain a multinomial approximation toF. For example,

τ001001010101= τ001001010101 = τ0012τ013, andτ013, τ0012 are known functions of
the corresponding cycle eigenvalues. The zeros ofF can now be easily determined
by standard numerical methods. The fact that as far as the symbolic dynamics is
concerned, the cycle expansion of a Selberg product is simply an average over all
symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings as
concatenations of prime factors. We start by computingNn, the number of terms
in the expansion (D.12) of the total cycle lengthn. SettingCpk tk

p = znpk in (D.12),
we obtain

∞
∑

n=0

Nnzn =
∏

p

∞
∑

k=0

znpk =
1

∏

p(1− znp)
.

So the generating function for the number of terms in the Selberg product is the
topological zeta function. For the complete binary dynamics we haveNn = 2n

contributing terms of lengthn:

ζtop =
1

∏

p(1− znp)
=

1
1− 2z

=

∞
∑

n=0

2nzn

Hence the number of distinct terms in the expansion (D.12) isthe same as the
number of binary strings, and conversely, the set of binary strings of lengthn
suffices to label all terms of the total cycle lengthn in the expansion (D.12).
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