Appendix C

Finding cycles

(C. Chandre)

C.1 Newton-Raphson method

C.1.1 Contraction rate

CONSIDER A d-pivensioNaL Map X' = f(X) with an unstable fixed point.. The
Newton-Raphson algorithm is obtained by iterating theofelhg map
X =909 =x- (@) - D (F)-%).
The linearization ofy nearx, leads to
X +€ =X +€e— (%) = D7H(FO) + I(x)e - X — €) + O(llell?).
wheree = x — x.. Therefore,

X =X, = O((x— X*)z).

After n steps and if the initial guess is close tox., the error decreases
super-exponentially

g"(x0) — X = O((x0 ~ x)*).
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C.1.2 Computation of theinverse

The Newton-Raphson method for findimgcycles of d-dimensional mappings
using the multi-shooting method reduces to the followingagizpn

1 —Df(Xn) 01 F1
—Df(Xl) 1 52 _ Fz

1 SEA (C.1)
~Df(Xr-1) 1 On Fn

whereDf(x) is the [d x d] Jacobian matrix of the map evaluated at the paint
andém = X, — Xm andFy = Xm — f(Xm-1) ared-dimensional vectors. By some
starightforward algebra, the vectafg, are expressed as functions of the vectors
Fm:

Om=— Zﬁk,wle ~Brm1 (=Bt [Z’Bk’"':k] , (C.2)
k=1 ic1

form=1,...,n, whereBcm = Df(Xm)Df(Xm-1) - - Df(X) fork < mandgym = 1
for k > m. Therefore, findingn-cycles by a Newton-Raphson method with multi-
ple shooting requires the inversing ofdx{d] matrix 1-D f (X,)D f (Xn-1) - - - D f(Xa).

C.2 Hybrid Newton-Raphson / relaxation method

y
J Consider a-dimensional map’ = f(x) with an unstable fixed point..
The transformed map is the following one:

X = (%) = x+¥C(F(X) - ¥,

wherey > 0 andC is ad x d invertible constant matrix. We note thatis also a
fixed point ofg. Consider the stability matrix at the fixed poixt

_d4

A= il 1+yC(Af - 1).

The matrixC is constructed such that the eigenvalued\gfare of modulus less
than one. Assume tha; is diagonalizable: In the basis of diagonalization, the
matrix writes:

Ag=1+yC(A; - 1),
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Figure C.1: lllustration of the optimal Poincaré sur- 0
face. The original surfacg = 0 yields a large distance ~ ©5
x— f(x) for the Newton iteration. A much better choice ar
isy=0.7. 0 0z o4 06 o8 1 12

whereA; is diagonal with elements;. We restrict the set of matriceS to diag-
onal matrices wittCjj = & whereg = +1. ThusA~g is diagonal with eigenvalues
vi = 1+ vy — 1). The choice of andg is such thatyi| < 1. It is easy to see
that if Refj) < 1 one has to choosg = 1, and if Refj) > 1, = -1. If 1is
chosen such that

2Re) -1
d |- 112

5

0<y< min
i=1,...,

all the eigenvalues ofy have modulus less that one. The contraction rate at the
fixed point for the mapy is then max|1 + ye (i — 1). If Re(w;) = 1, it is not
possible to stabilizex. by the set of matricegC.

From the construction of, we see that2choices of matrices are possible. For
example, for 2-dimensional systems, these matrices are

e<{loa) (0 Mo 5o )}

For 2-dimensional dissipative maps, the eigenvalueshg&ti(ui)Reu,) < detDf <
1. The case (R@g) > 1, Refu;) > 1) which is stabilized by ;" ) has to be dis-
carded. The minimal set is reduced to three matrices.

C.2.1 Newton method with optimal surface of section

Q)

(F. Christiansen)

In some systems it might be hard to find a good starting guessfixed point,
something that could happen if the topology amndhe symbolic dynamics of the
flow is not well understood. By changing the Poincaré sectine might get a
better initial guess in the sense thaand f(x) are closer together. In figure C.1
there is an illustration of this. The figure shows a Poincagétion,y = 0, an
initial guessx, the correspondind (x) and pieces of the trajectory near these two
points.

If the Newton iteration does not converge for the initial gslewe might have

to work very hard to find a better guess, particularly if tisign a high-dimensional
system (high-dimensional might in this context mean a Hami&n system with
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3 degrees of freedom.) But clearly we could easily have a nhetter guess
by simply shifting the Poincaré section yo= 0.7 where the distance — f(x)
would be much smaller. Naturally, one cannot see by eye tise fieface in
higher dimensional systems. The way to proceed is as folliMeswant to have
a minimal distance between our initial guesand the image of thig(x). We
therefore integrate the flow looking for a minimum in the disted(t) = | f'(x)—x.
d(t) is now a minimum with respect to variations if(x), but not necessarily with
respect tax. We therefore integrat either forward or backward in time. Doing
this we minimized with respect ta, but now it is no longer minimal with respect
to f'(x). We therefore repeat the steps, alternating betweenatirges and f!(x).

In most cases this process converges quite rapidly. Thét iesatrajectory for
which the vector {(X) — X) connecting the two end points is perpendicular to the
flow at both points. We can now choose to define a Poincaracidf section as
the hyper-plane that goes througland is normal to the flow at. In other words
the surface of section is determined by

X =x)-v(x)=0. (C.3)

Note thatf(x) lies on this surface. This surface of section is optimahi& $ense
that a close return on the surface is a local minimum of theadce betweenx
and f'(x). But more importantly, the part of the stability matrix trégescribes
linearization perpendicular to the flow is exactly the stgbof the flow in the
surface of section whef(x) is close tox. In this method, the Poincaré surface
changes with each iteration of the Newton scheme. Shouldtee Want to put
the fixed point on a specific Poincaré surface it will only bmatter of moving
along the trajectory.
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