Chapter 32

WK B quantization

HE WAVE FUNCTION for a particle of energye moving in a constant potentis
I is

W = AeiPd (32.1)

with a constant amplitudd, and constant wavelength= 2r/k, k = p/h,
andp = + v2m(E - V) is the momentum. Here we generalize this solution
to the case where the potential varies slowly over many veagghs. This

semiclassical (or WKB) approximate solution of the Sclim@édr equation fails at
classical turning points, configuration space points wlhteegoarticle momentum
vanishes. In such neighborhoods, where the semiclasgigabximation fails,

one needs to solve locally the exact quantum problem, inrdocdeompute con-
nection coéicients which patch up semiclassical segments into an ajppad

global wave function.

Two lessons follow. First, semiclassical methods can bg pewerful - classi-
cal mechanics computations yield surprisingly accuratieneses of quantal spec-
tra, without solving the Schrodinger equation. Secondhiskassical quantization
does depend on a purely wave-mechanical phenomena, theenblaeldition of
phases accrued by all fixed energy phase space trajectbaesdnnect pairs of
coordinate points, and the topological phase loss at euemng point, a topolog-
ical property of the classical flow that plays no role in cleasmechanics.

32.1 WKB ansatz
Consider a time-independent Schrodinger equation in fisdgmension:

hz " _
~om?” (@ +V(@y (@) = Ey(a), (32.2)
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V(x)

Figure 32.1: A 1-dimensional potential, location of
the two turning points at fixed enerdy.

with potential V(g) growing suficiently fast asq — +oo so that the classical
particle motion is confined for ant. Define the local momenturp(g) and the
local wavenumbek(q) by

p(a) = = v2m(E - V(d)), p(a) = 7k(q). (32.3)
The variable wavenumber form of the Schrodinger equation
Y+ Ky =0 (32.4)

sugests that the wave function be written/as Aeiﬁs, A andS real functions of
g. Substitution yields two equations, one for the real an@otbr the imaginary
part:

(S')? = p2+h2A— (32.5)
A
7 I N _ l d VA
S"A+25'A" = Adq(SA)—O. (32.6)

The Wentzel-Kramers-BrillouifWKB) or semiclassicabpproximation consists
of dropping thei? term in (32.5). Recalling that = 7k, this amounts to assuming
thatk? > AT”, which in turn implies that the phase of the wave functiorhianging
much faster than its overall amplitude. So the WKB approxiomecan interpreted
either as a short wavelengtiigh frequency approximation to a wave-mechanical
problem, or as the semiclassicalx 1 approximation to quantum mechanics.

SettingZ = 0 and integrating (32.5) we obtain the phase increment of\@wa
function initially atq, at energye

q
S8 = [ dd'pia). (327)

This integral over a particle trajectory of constant energlled theaction will
play a key role in all that follows. The integration of (32i§)even easier

= o C=Ip@)Eu(d), (32.8)

A(Q) = T
Ip(Q)I2
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where the integration consta@tis fixed by the value of the wave function at the
initial point g'. The WKB (or semiclassicdlansatzwave function is given by

w%mJﬁE):_leésmma' (32.9)
Ip(a)I2

In what follows we shall suppress dependence on the inibait@and energy in
such formulas,q, ', E) — (q).

The WKB ansatz generalizes the free motion wave functionl{3avith the
probability density]A(g)? for finding a particle atj now inversely proportional
to the velocity at that point, and the phabe p replaced by: [ dq p(a), the in-
tegrated action along the trajectory. This is fine, exce gt turning pointgo,
figure 32.1, where all energy is potential, and

p(@—0 as g-— qo, (32.10)

so that the assumption thiet > £ fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslogs the job.
In theq coordinate, the turning points are defined by the zero kirertiergy con-
dition (see figure 32.1), and the motion appears singulas i§mot so in the full
phase space: the trajectory in a smooth confining 1-dimeakiootential is al-
ways a smooth loop, with the “special” role of the turningmisig_, gr seen to be
an artifact of a particular choice of the, (o) coordinate frame. Maslov’s idea was
to proceed from the initial pointy(, p’) to a point Qa, pa) preceding the turning
point in they(q) representation, then switch to the momentum representati

S Fiap
o = = f dqeH9Py(q). (32.11)

continue from @a, pa) to (gs, ps), switch back to the coordinate representation,

1 Lap 7
0o = f dpe®i(p). (32.12)

and so on.

The only rub is that one usually cannot evaluate these wamsfexactly. But,
as the WKB wave function (32.9) is approximate anyway, ffises to estimate
these transforms to leading order finaccuracy. This is accomplished by the
method of stationary phase.
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Figure 32.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential. » Jf)

32.2 Method of stationary phase

All “semiclassical” approximations are based on saddl@pevaluations of inte-
grals of the type

| = f dx AX) €5*®) | x ®d(X) R, (32.13)

wheresis assumed to be a large, real parameter, @&l is a real-valued function.
In our applicationss = 1/% will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” eveeya/
except at thextremal pointsb’(Xp) = 0. The method of approximating an integral
by its values at extremal points is called thethod of stationary phas€onsider
first the case of a 1-dimensional integral, and expégy + 5§X) aroundxp to
second order idXx,

| = f dX A(X) @5P00)+507 (000X +) (32.14)

Assume (for time being) thab”’ (xp) # O, with either sign, sgip’’] = @ /|D”| =
+1. If in the neighborhood ok the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain kbading term in the
Taylor expansion of the amplitude, and approximate thegialeup to quadratic
terms in the phase by

| ~ A(xo)g5200) f dx eis?” () (x-x0)? (32.15)
Using theFresnel integral formula exercise 32.1
_f dxe% = Via = [a2 5 a (32.16)
we obtain
| ~ A(Xo ‘ gsrioHy 32.17
(x0) S@,,(Xo) (32.17)

wherez+ corresponds to the positireegative sign os®” (o).
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32.3 WKB quantization

We can now evaluate the Fourier transforms (32.11), (32d.#)e same order in
h as the WKB wave function using the stationary phase method,

F.d6) f e (S@-ap)
V2r Ip(Q)I2
C eh(S(Q) q'p) qu i S (0")(a-q )2 (3218)
V2rh |p(er)|E

whereq* is given implicitly by the stationary phase condition
0=S(a@)-p=pd)-p

and the sign ofS”(g") = p’(q") determines the phase of the Fresnel integral
(32.16)

Tedp) = —— S ehlS@)-a i+ Fsons @) (32.19)
Ip(ar) P ()12

As we continue fromda, pa) to (gs, ps), Nothing problematic occursp(q*) is
finite, and so is the acceleratigri(q*). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as égehdre transform

S(p) = S(a(p) - a(P)p

which can be used to expresses everything in terms op tregiable,

. d dpdo(p)
q = q(p). a9 =1= dq dp_ =q(PpP'@). (32.20)

As the classical trajectory crossas the weight in (32.19),

%pz(qo - 2p(a)p (L) = ~2mV(Q). (32.21)

is finite, andS” (q*) = p’(q*) < 0 for any point in the lower left quadrant, includ-
ing (da, pa). Hence, the phase loss in (32.19)-%. To go back from thep to the

g representation, just turn figure 32.2°dnticlockwise. Everything is the same if
you replaced, p) — (—p, g); so, without much ado we get the semiclassical wave
function at the pointdg, pg),

er S(P)+ap)-% _ C
Usd@) = ————— Dsdp’) = —— e S@-F (32.22)
lg*(p)I2 Ip(g)!?
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Figure 32.3: Sy(E), the action of a periodic orbj at
energyE, equals the area in the phase space traced (
by the 1-dof trajectory.

The extralp’(g*)*? weight in (32.19) is cancelled by the (p*)|*/? term, by the
Legendre relation (32.20).

The message is that going through a smooth potential tupaing the WKB
wave function phase slips by7. This is equally true for the right and the left
turning points, as can be seen by rotating figure 32.2 by,180d flipping co-
ordinates ¢, p) — (—g,—p). While a turning point is not an invariant concept
(for a suficiently short trajectory segment, it can be undone by @tdfn), for a
complete periodd, p) = (¢, p’) the total phase slip is alway2 - /2, as a loop
always hasn = 2 turning points.

TheWKB quantization conditiofollows by demanding that the wave function
computed after a complete period be single-valued. Witmtmalization (32.8),
we obtain

o) = ot = [BD &t frasy(q).

The prefactor is 1 by the periodic orbit condition= ¢, so the phase must be a
multiple of 2r,

%9§p(q)dq = Zﬂ(n + ?) : (32.23)

wheremis the number of turning points along the trajectory - fosthidof prob-
lem,m= 2.

The action integral in (32.23) is the area (see figure 32.8Josed by the
classical phase space loop of figure 32.2, and the quantizatindition says that
eigen-energies correspond to loops whose action is aneintegltiple of the unit
quantum of action, Planck’s constant The extra topological phase, which, al-
though it had been discovered many times in centuries pasittdwait for its
most recent quantum chaotic (re)birth until the 1970’s. fitesits derivation in a
noninvariant coordinate frame, the final result involveyaanonically invariant
classical quantities, the periodic orbit actiBnand the topological indem.
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Figure 32.4: Airy function Ai(q). . - y* 4
32.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only Jase®se quantum
mechanics we fully understand: the harmonic oscillator

E= %n(p%(ran)z) -

The loop in figure 32.2 is now a circle in thenq, p) plane, the action is its area
S = 2nE/w, and the spectrum in the WKB approximation

En = iw(n + 1/2) (32.24)

turns out to be thexactharmonic oscillator spectrum. The stationary phase condi-
tion (32.18) keep¥(q) accurate to ordey?, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problerhe tWKB spectrum
turns out to be very accurate all the way down to the grounig.staurprisingly
accurate, if one interprets dropping thé term in (32.5) as a short wavelength
approximation.

32.4 Beyond the quadratic saddle point

We showed, with a bit of Fresn®#aslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by/& for each turning point.
Thisz/2 came from aVi in the Fresnel integral (32.16), one such factor for every
time we switched representation from the configuration sgache momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (32.14) fails when@/d) = 0, or, in
our the WKB ansatz (32.18), whenever the momentifn) = S”(q) vanishes.
In that case we have to go beyond the quadratic approximé@i5s) to the first
nonvanishing term in the Taylor expansion of the expondnb’I(xg) # 0, then

. 0 o (xxg)3
| ~ A(x)eSP00) f dx &0 00 > (32.25)
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Airy functions can be represented by integrals of the form

ﬁ).

+00 )
Ai(x) = % f dy 607 (32.26)

Derivations of the WKB gquantization condition given in sland quantum
mechanics textbooks rely on expanding the potential clo$leet turning point

V() = V(o) + (@-qo)V'(qo) + - - - ,

solving the Airy equation

v =y, (32.27)

and matching the oscillatory and the exponentially deaayforbidden” region
wave function pieces by means of KB connection formulas That requires
staring at Airy functions and learning about their asymiptot a challenge that we
will have to eventually overcome, in order to incorporatérdction phenomena
into semiclassical quantization.

The physical origin of the topological phase is illustratgdthe shape of the
Airy function, figure 32.4. For a potential with a finite slog&q) the wave func-
tion penetrates into the forbidden region, and accommedateit more of a sta-
tionary wavelength then what one would expect from the @dakajectory alone.
For infinite walls (i.e., billiards) a dierent argument applies: the wave function
must vanish at the wall, and the phase slip due to a spectilectien is—r, rather
than—m/2.

Résum é

The WKB ansatz wave function for 1-degree of freedom proBldails at the
turning points of the classical trajectory. While in theepresentation the WKB
ansatz a turning point is singular, along thelirection the classical trajectory in
the same neighborhood is smooth, as for any smooth boundt@btie classical
motion is topologically a circle around the origin in theg ) space. The simplest
way to deal with such singularities is as follows; follow ttlassical trajectory in
g-space until the WKB approximation fails close to the tughpoint; then insert
fdp|p><p| and follow the classical trajectory in thespace until you encounter
the nextp-space turning point; go back to tlgespace representation, an so on.
Each matching involves a Fresnel integral, yielding ansextf”/4 phase shift, for
a total ofe™ phase shift for a full period of a semiclassical particle ingvin a
soft potential. The condition that the wave-function begirvalued then leads to
the 1-dimensional WKB quantization, and its lucky coudie Bohr-Sommerfeld
quantization.
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Alternatively, one can linearize the potential around tivaing pointa, V(q) =
V(@)+(g—a)V’(a)+- - -, and solve the quantum mechanical constant linear potentia
V(q) = gF problem exactly, in terms of an Airy function. An approxiraavave
function is then patched together from an Airy function atteturning point, and
the WKB ansatz wave-function segments in-between via theBVéBnnection
formulas. The single-valuedness condition again yieléslttdimensional WKB
quantization. This a bit more work than tracking the claasi@jectory in the full
phase space, but it gives us a better feeling for shapes afuueaeigenfunctions,
and exemplifies the general strategy for dealing with otlivegldarities, such as
wedges, bifurcation points, creeping and tunneling: ptagether the WKB seg-
ments by means of exact QM solutions to local approximatiorssngular points.

Commentary

Remark 32.1 Airy function. The stationary phase approximation is all that is needed

for the semiclassical approximation, with the proviso thah (33.36) has no zero eigen-

values. The zero eigenvalue case would require going befftn@aussian saddle-point
approximation, which typically leads to approximationgtod integrals in terms of Airy

functions [32.10]. exercise 32.4

Remark 32.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condi-
tion was the key result of the old quantum theory, in whichdleztron trajectories were
purely classical. They were lucky - the symmetries of the I&eproblem work out in
such a way that the total topological index= 4 amount &ectively to numbering the
energy levels starting with = 1. They were unlucky - because the hydrogen- 4
masked the topological index, they could never get the hreipectrum right - the semi-
classical calculation had to wait for until 1980, when Lelopand Percival [A.5] added
the topological indices.

Exercises

) value ofn! for largen using the stationary phase approx-
32.1. WKB ansatz. J Try to show that no other imation. Hint:n!gz f“’ dtge—t. yP PP
ansatz other than (33.1) gives a meaningful definition of 0
the momentum in thé — 0O limit. y
32.4. Airy function for large arguments. J Impor-

32.2. Fresnel integral. Derive the Fresnel integral L ; . .
tant contributions as stationary phase points may arise

1 © e . Y2 s s from extremal points where the first non-zero term in a

\/—Z j:oo dx ez = Via=|a"/?d%®n. Taylor expansion of the phase is of third or higher order.

Such situations occur, for example, at bifurcation points

32.3. Sterling formula for nl. Compute an approximate or in diffraction dfects, (such as waves near sharp cor-
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ners, waves creeping around obstacles, etc.). In such Calculate the Airy functiorAi(x) using the stationary
calculations, one meets Airy functions integrals of the phase approximation. What happens when considering
form the limit x — 0. Estimate for which value ok the

_ 1 [t 00-2) stationary phase approximation breaks down.
Ai(x) = > dy X3 (32.28)
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