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Symbolic Dynamics and Markov Partitionsfor the Stadium BilliardKai T. Hansen�Fakult�at f�ur Physik, Universit�at FreiburgHermann-Herder-Strasse 3, D-79104 Freiburg, Germanye-mail: k.t.hansen@fys.uio.noandPredrag Cvitanovi�cCenter for Chaos and Turbulence Studies, Niels Bohr Institute,Blegdamsvej 17, DK-2100 Copenhagen �, DenmarkFebruary 6, 1995AbstractWe investigate the Bunimovich stadium dynamics and �nd that inthe limit of in�nitely long stadium the symbolic dynamics is a subshiftof �nite type. For a stadium of �nite length the Markov partitions arein�nite, but the inadmissible symbol sequences can be determinedexactly by means of the appropriate pruning front. We outline aconstruction of a sequence of �nite Markov graph approximations bymeans of approximate pruning fronts with �nite numbers of steps.1 IntroductionGood symbolic dynamics is a prerequisite to analysis of the dynamics ofchaotic systems. For one-dimensional mappings the theory is well developed:�Also at: Physics Department, University of Oslo, Box 1048, Blindern, N-0316 Oslo,Norway. 1



for example, the kneading theory of Milnor and Thurston[1] yields a completedescription of admissible orbits of unimodal maps. In higher dimensions theSmale horseshoe[2] is an example of a class of dynamical systems describedby a complete binary symbolic dynamics. Some progress has also been madein the description of generic smooth two-dimensional maps. For example,it has been conjectured that the admissible orbits of the H�enon map canbe described by a subset of binary symbol sequences by means of the socalled pruning fronts[3, 4, 5, 6]. Di�erent billiard systems have also beeninvestigated, and some of them can be exactly described by suitable pruningfronts[7, 8]. Symbolic dynamics is closely related to Markov partitions ofthe dynamical phase space; crudely speaking, an alphabet labels the distinctregions of the phase space, and a Markov graph or a transition matrix in-dicates how these are interconnected by the dynamics. Systems which canbe described by simple symbolic dynamics, such as the horseshoe, the wellseparated 3-disk pinball[9], and the cat map[10], have simple Markov parti-tions. For a variety of more generic ergodic billiards it has been proved bySinai, Bunimovich and others[11, 12, 13] that there exist in�nite but count-able Markov partitions. Such systems can be approximated by more andmore re�ned �nite Markov partitions, and correspondingly more and morecomplicated symbolic dynamics.In this paper we give an example of such procedure by constructing asymbolic dynamics for the Bunimovich stadium[14]. The �rst such symbolicdynamics was introduced by Biham and Kvale[15]; ours is essentially contin-uation of their work, resulting in a more compact, desymmetrized coveringsymbolic dynamics. Meiss[16] has o�ered a rather di�erent classi�cation ofa subset of stadium billiard orbits by their rotation numbers. While this isthe natural labeling scheme in the integrable limit of collapsing the stadiuminto a circle, Biham-Kvale's and our symbolic dynamics is natural in the longstadium limit. Also, in contrast to the rotation number labeling, our sym-bolic dynamics labels all orbits. The main new results presented here are acomplete Markov partition for the in�nitely long stadium and constructionof a pruning front that gives the exact description of all admissible orbits fora given �nite length stadium.The paper is organized as follows: In sect. 2 we describe the stable/unstablemanifold structure for the stadium billiard. In sect. 3 we �rst describe avariant of the Biham-Kvale symbolic dynamics, and then introduce a morecompact symmetry reduced covering symbolic dynamics for an 1/4 stadium2



of in�nite length. In sect. 4 we explain the relation between this symbolicdynamics and Markov partitions of the phase space, and in sect. 5 we usethe topology of such Markov partitions to construct a topologically faithfulsymbol plane representation of the dynamics. This enables us to constructthe exact pruning front for a given �nite length stadium in sect. 6. We thenshow how these pruning fronts can be approximated by �nite grammar cycleexpansions, and apply these to estimate the topological entropy of a �nitelength stadium.2 Stable/unstable manifoldsThe stadium billiard consists of a point particle moving freely within a twodimensional domain, reected elastically at the border which consists of twosemi-circles of radius 1 connected by two straight walls of length 2a. Atthe points where the straight walls meet the semi-circle, the curvature ofthe border changes discontinuously; these are the only singular points on theborder. The length a is the only parameter, and we are interested in studyingthe dynamics at di�erent values of a.Typical structure of the stable/unstable manifolds structure of orbits isillustrated by the unstable period-2 cycle manifolds at a = 1 drawn in Fig. 1.We draw the manifolds in the Poincar�e map (x; �), where x is a distance alongthe border to the bounce point and � is the outgoing angle of the bounce.Alternatively, we could have used the (x; cos�) area preserving coordinates,but for the discussion here this is not important. The unstable manifolds forthe straight wall phase space are drawn in Fig. 1 (a), and for the semi-circlephase space in Fig. 1 (b). In Figs. 1 (c) and (d) both the stable and theunstable manifolds are drawn.All intersections of the stable and the unstable manifolds for this hy-perbolic map are transverse (at non-zero angles). In this type of billiard thesmooth sections of the manifolds end at points with discontinuous derivative.The manifolds are folded with a sharp corner, a turning point, when they hita singular point, because the derivative of the reection of point particle isdiscontinuous here. However, the limit rays from each side of the singularityconverge to the same orbit, so the manifolds are continuous, but with sharpbreaks.The stable and the unstable manifolds intersections, Fig. 1 (c) and (d),3



yield the orbits homoclinic to this period-2 cycle. These are dense in thephase space. As a, the length of the stadium decreases, the manifolds move insuch a way that in�nite families of the stable/unstable manifolds intersectionsare lost. This occurs at the turning points of the manifolds, and this pointwhere a smooth section is touching a turning point is the analogue of ahomoclinic tangency for a smooth dissipative di�eomorphism. Newhouse hasshown that for a parameter sweep through a homoclinic tangency of a smoothdi�eomorphism there will also occur an in�nity of stable orbits[17]. For astadium any �nite change of the parameter a sweeps through bifurcationsof an in�nite number of periodic orbits, but no stable orbits occur. A moreappropriate dissipative map analogue in this case is the Lozi map[18] whosestable/unstable manifolds also have sharp turning points.The turning points break up the manifolds into in�nite chains of piece-wise smooth folds. The length of a smooth section may be arbitrarily shortand this leads to di�culties in proving the ergodicity of the system and con-structing Markov partitions[14]. Our strategy is to single out one family ofturning points which we call the primary turning points; this family is the2-d billiards analogue of the critical point of a unimodal mapping. All otherturning points are then (pre-)images of the primary ones. We then map theprimary turning points into a symbol plane (de�ned below), and refer to thisset of points as the pruning front. The area on one side of the pruning frontcorresponds to symbol sequences that are inadmissible for the given �nitelength stadium. These sequences are \pruned"; what remains is the set ofall admissible symbol sequences for the system. Prerequisite to implement-ing this procedure is existence of a covering symbolic dynamics, such thatnot more than one dynamical orbit correspond to a given symbol string, butthere may be many symbol strings that correspond to no dynamical orbits.3 Covering symbolic dynamicsThe covering symbolic dynamics has to allow for the description of all orbits,including those which, for a given stadium length a, lie on the forbiddenside of the turning points of the manifold. These are orbits which exist fora su�ciently long stadium, but not necessarily for small a. The coveringsymbolic dynamics may also include symbol strings which never correspondto a dynamical orbit. The �rst example of such symbolic dynamics for the4



stadium was given by Biham and Kvale[15]. They associate t-th bounce ofan orbit with 6-letter alphabet St 2 f0; 1; 2; 3; 4; 5g de�ned as follows (seeFig. 2):
St =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
0 a bounce o� the bottom wall.1 a clockwise bounce o� the left semi-circle ora single anticlockwise bounce o� the left semi-circle.2 a bounce o� the upper wall.3 an anticlockwise bounce o� the right semi-circle ora single clockwise bounce o� the right semi-circle.4 a not single anticlockwise bounce o� the left semi-circle.5 a not single clockwise bounce o� the right semi-circle. (1)

A bounce o� a semi-circle is a single bounce if both the preceding and thefollowing bounces are not o� the same semi-circle. Biham and Kvale hadtested this de�nition numerically and found that for all orbits they have triedno two di�erent periodic orbits were described by the same symbol string.They showed that the periodic orbits which only exist for large values of acan also be found numerically for small a if one allows for bounces in thesemi-circle inside the stadium and bounces o� the straight walls outside thestadium. They also gave the \geometric" pruning rules, ie. a description ofsymbol strings that correspond to orbits that never exist in stadium of anylength.Here we reduce the symmetry and reduce the number of symbols in twosteps. First we choose a slightly di�erent 5-letter alphabet �t 2 f0; 1; 2; 3; 4g(see Fig. 3):
�t =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
0 the bounce is the �rst bounce in a semi-circle(ie., the previous bounce was not in the same semi-circle).1 the bounce is clockwise in a semi-circle,but not the �rst bounce in this semi-circle.2 the bounce is anticlockwise in a semi-circle,but not the �rst bounce in this semi-circle.3 the bounce is o� the bottom wall going rightor o� the top wall going left.4 the bounce is o� the bottom wall going leftor o� the top wall going right.

(2)
5



A �nite Markov graph is constructed from a �nite list of subsequenceswhich can never occur[5]; in this case there are four such rules. An orbitcannot have two consecutive bounces o� the same straight wall or changethe sense of direction along stadium between two straight wall bounces. Thisforbids the substrings 33 and 44 . From the de�nitions it follows that thesymbol 1 can only follow after a symbol 1 or 0, and the symbol 2 can onlyfollow after a symbol 2 or 0. A Markov graph that excludes these substrings isdrawn in Fig. 4. This graph does allow symbol dynamics �xed points 1 = 11and 2 = 21, which do not exist in a stadium, but are approached by the\whispering gallery" periodic orbits with subsequences of 1k , 2j bouncesof arbitrary length. Such families of orbits, as well as the orbits with 3k ,4j subsequences which approach the \bouncing ball" orbits, have positivebut arbitrarily small Lyapunov exponents and require special treatment inapplications such as computation of semiclassical spectra. The �xed point0 corresponds to the unstable 2-cycle along the stadium, so the �t reducedsymbolic dynamics corresponds to a 1/2 stadium.3.1 Desymmetrized symbolic dynamicsThe symmetry of the Markov graph in Fig. 4 is due to the C2v symmetry ofthe stadium itself. Following ref. [19] we now reduce the symbolic dynamicsto that appropriate to the fundamental domain, ie. the 1/4 stadium. Themain idea is to relabel the trajectories so instead of keeping track of the labelsfor individual boundary segments we label the types of transitions betweenbounces.There is a symmetry between symbol 1 and 2 and between 3 and 4, but wecannot simply identify these pairs of symbols. For example, it is clear by in-spection that the string 101 � � � corresponds to an orbit topologically distinctfrom that labeled by the string 102 � � �. The �rst string corresponds to anorbit which keeps the clockwise rotation, while the second string correspondsto an orbit which changes the sense of rotation from clockwise to anticlock-wise. However, the strings 101 � � � and 202 � � � yield orbits which are identicalexcept for a reection or time reversal. Hence in de�ning new symbols wehave to control the sense of rotation. In table 1 the symmetry reduced alpha-bet st is de�ned from the two symbol combinations �t�1�t. Since the symbol0 does not distinguish between a clockwise or an anticlockwise bounce, wealso have to keep track of the symbol preceding a string of repeated 0's in6



order to decide which new symbol to use.In applications it might be more convenient to use in�nite alphabets[20]by lumping repeats of symbol a's and f 's together with the preceding symbolinto a single symbol, sak ! s(k�1) etc., but we shall not do that here.The Markov graph for the symmetry reduced alphabet s 2 fa; b; c; � � � ; kgis drawn in Fig. 5. This graph implements the \geometric" pruning rules,ie. excludes symbol sequences that cannot occur for any value of a, andprovides a covering symbolic dynamics for the stadium, the starting point forour analysis of the �nite length billiards. In contrast to the Markov graph ofFig. 4, here the symbols label paths from one node to the next, and there canbe several paths connecting the nodes. The 3 nodes correspond to bounceseither o� the straight wall (I), o� the semi-circle as a �rst bounce in the semi-circle (II), or o� the semi-circle as a second or later bounce (III). Thoughit might seem that going from a 5-letter alphabet to an 11-letter alphabetis only a complication, the contrary is true: desymmetrization factorizesand simpli�es the associated zeta functions and Fredholm determinants, andgreatly improves convergence of computations over chaotic sets[19].4 Markov partitionsIn order to develop better intuition about this symbolic dynamics and itsapplicability to stadia of �nite length a, we �rst explain how this Markovgraph relate to a Markov partition of the phase space.To each of the three nodes in Fig. 5 corresponds a partition of the threedi�erent parts of the phase space. This partition is obtained by letting thearrows into and out from the node de�ne an area in the phase space whichwe shall call a rectangle. The points in a rectangle s0:s1s2 correspond toorbits containing a subsequence � � � s0:s1s2 � � �, where all explicitly indicatedst symbols are �xed.Node I corresponds to bounces o� the straight wall, with a position �a <x < a (with x = 0 on the center of the straight wall), and an outgoing angle0 < � < �=2. There are 5 ways to enter the node and 2 ways to leave. Thisyields a partition into 10 rectangles in the phase space I, Fig. 6.Node II corresponds to a �rst bounce o� the semi-circle with a position0 < x < � (with the two singular end points at x = 0, x = �) and an outgoingangle x=2 < � < �=2 + x=2. There are 3 ways to enter the node and 5 ways7



to exit. This yields a partition of the phase space into 15 rectangles. Becausewe do not know the orientation of the preceding bounces, the past orientationdoubles the partition of the phase space II into 30 rectangles, Fig. 7.Node III corresponds to a second or later bounce o� the semi-circle witha position 0 < x < �, and an outgoing angle 0 < � < x=2. This is the partof the phase space for the semi-circle not covered by the node II. There are 3ways to enter this node and 4 ways to exit, yielding a partition of the phasespace III into 12 rectangles, Fig. 8.In the in�nite length limit a!1 this partitioning of the stadium phasespace is complete. As a decreases the rectangles decrease (in the sense ofcontaining fewer orbits, not in any metric sense), and for su�ciently smallparameter values some rectangles may be completely lost. This loss of orbitswill be described below in terms of the pruning front.The borders between the rectangles drawn in Figs. 6, 7 and 8 are foundnumerically. Most of these partition curves consist of the points from wherean orbit goes to or came from the singular point of the wall after the requiredintenerary. Other curves are the points with a speci�c intenerary belonging tothe stable or unstable manifold of the hyperbolic period-2 cycle. We indicateformer borders by solid curves, and the latter by dashed curves. These curvespartition the phase space into rectangles. Each rectangle in the phase spaceis labeled by the two symbols st�1:st.The phase space partition I, Fig. 6, is drawn by noting that the �vearrows going into the node I in Fig. 5 are j:, h:, i:, k: and f:, and thatthe two outgoing arrows are :g and :f . The partition curve between :g and:f is given by the orbits bouncing straight into the singular point, and thepartition curve between f: and k: is given by orbits arriving directly from thesingular point. The partition curves between k: and i: and between h: andj: are the given by orbits arriving at a point on the semi-circle wall from thesingular point and then bouncing once o� this semi-circle before reaching thestraight wall. The partition curve between i: and h: is a part of the unstablemanifold of the hyperbolic period-2 cycle (dashed curve). Points on thispartition curve correspond to the orbits which hit the straight wall segmentafter having bounced an in�nite number of times from one semi-circle to theother.In phase space partition II, Fig. 7, three arrows g:, c:, and b: go into thenode II in Fig. 5, and there are �ve outgoing arrows :d, :h, :b, :i, and :e. If� < x=2 or � > �=2 + x=2, then the previous bounce was o� the same semi-8



circle, ie. this bounce is not the �rst bounce o� the semi-circle, and thusnot belonging to phase space II. The partition curves between the rectanglesare given by orbits going into the singular point directly, or after one bouncein the other semi-circle. The partition curves between the symbols :d and:h and between :i and :e are simply the straight lines � = �=2 � x=2, � =��x=2. In addition to these partition curves we have drawn the �rst smoothfold of the unstable manifold of the 2-cycle which has a point in the centerof this plane at x = �=2, � = �=2. This curve (dashed line in Fig. 7)determines the orientation of a bounce and hence the fundamental domain.Each symbol string st�1:st is here drawn in two disconnected rectangles, butany two rectangles with the same labeling are symmetric to each other.In the phase space III, Fig. 8, there are three arrows a:, d:, and e: goinginto the node in Fig. 5, and there are four outgoing arrows :a, :j, :c, and:k. If x=2 < � < �=2 + x=2 the previous bounce was not o� the same semi-circle, so such points belong to the phase space II. We then only have to lookat � < x=2. The partition curve separating a: and d: is the line � = x=4.The curve separating d: and e: is one fold of the unstable manifold of thehorizontal 2-cycle (dashed curve). This particular fold consist of all orbitswhich bounce back and forth between the two semi-circles and then twice o�the same semi-circle wall, with the second bounce o� the semi-circle yieldinga point in the fold. The curve separating :a and :j is the line � = �=2� x=2,and the curves separating :j, :c and :k correspond to the orbits bouncingstraight into a singular point of the other semi-circle.The rectangles map into each other with the partition lines mappinginto the partition lines, and in the limit a ! 1 the borders are invariantmanifolds, as required for a complete Markov partition.As the length a decreases, the rectangles change, and at a = 1 the rect-angle j:f in phase space I and the rectangle a:k in phase space III disap-pear completely. This is the bifurcation point for the 011022 = cea cycleand the associated family of orbits (see ref.[8]) which includes the orbits234010 = jfgdce and 113020 = akgdce with points in these rectangles. Alsoother rectangles partly disappear and become smaller. This is not easily seenin the phase space �gures because there the metric area might sometimesgrow even while the number of orbits of given length within the rectangledecreases. The point is that the phase space is not a convenient space touse when investigating admissibility of symbolic dynamics orbits. It is mucheasier to work in a symbol plane, where each orbit occupies a �xed position9



independent of the parameter a.5 Well-ordered symbols and the symbol planeWe now construct a topologically faithful symbol plane representation of eachof the three phase spaces introduced above. In the symbol plane any pointbelonging to any orbit existing for a = 1 maps into a square (�; ), with0 � � � 1 and 0 �  � 1. From now on we will de�ne a point on an orbit byits position in the symbol plane, without bothering to compute its positionin the phase space coordinates. The phase space partitions of the precedingsection will be needed only to motivate the topologically correct ordering ofdi�erent symbols in the (; �) plane.In Fig. 9 (a), (b) and (c) the �rst generation of the partition is drawn inthe (�; ) planes for the three phase spaces. Note that the ordering of thedi�erent rectangles is the same as the ordering of the corresponding phasespaces rectangles, Figs. 6, 7 and 8. In the symbol plane we simply dividethe � and  axes into equal intervals for each in and out arrow from thenodes of Fig. 5. In Fig. 9 (a) the vertical -axis is divided in two for thetwo possible future symbols :g and :f : 0 �  < 1=2 corresponds to :g, and1=2 �  � 1 corresponds to :f . The horizontal �-axis is divided into �veequal intervals for the �ve possible past symbols j:, h:, i:, k:, and f:, withthe ordering of the �ve symbols the same as in the phase space I, Fig. 6. Theintervals are 0 � � < 1=5 ! j:, 1=5 � � < 2=5 ! h:, 2=5 � � < 3=5 ! i:,3=5 � � < 4=5! k:, and 4=5 � � � 1! f:.We then associate an integer vt to each of the symbols, ordered as thecorresponding rectangles in the (�; ) plane: :g ! 0 and :f ! 1 for the futureand: j:! 0, h:! 1, h:! 2, k:! 3 and f:! 4 for the past. This is the �rststep in constructing well ordered symbols; we denote the �rst future symbolby v1, and the �rst past symbol by v0.Figs. 9 (b) and (c) show the corresponding construction for the sym-bol planes II and III. The symbol plane is divided into rectangles, and therectangles are labelled with the future and past symbols, ordered as the cor-responding phase space rectangles. The well ordered symbols vt obtainedfrom the symbols st for all three nodes are given in table 2. Note that asymbol st may correspond to a di�erent symbol vt, depending on whether itis a future or a past symbol. 10



The next generation of partition is obtained by using the next partition of and � from the node that one moves to (respectively came from) in Fig. 5.We illustrate this by an example.Consider the rectangle j:f in symbol plane I, Fig. 9 (a). All points inthis rectangle correspond to a future symbol f . From the Markov graphFig. 5 we �nd that f returns to node I and we therefore use the partitionof  of Fig. 9 (a). This yields the second generation partition of  into thetwo intervals (0:5; 0:75) and (0:75; 1:0). All points in the rectangle j:f alsocorrespond to a past symbol j, and Fig. 5 shows that the previous node wasnode III. The partition of � is then made according to Fig. 9 (c) which yieldsthree intervals (0; 1=15), (1=15; 2=15) and (2=15; 1=5). The rectangle j:f nowsplits into a second generation partition of 6 rectangles, with the labelingof each rectangle given in Fig. 10 (a). Note that the ordering of the pastsymbols aj:, dj: and ej: is reversed compared to Fig. 9 (c). If we analyze thesecond generation partition of the rectangle k:f which also comes from nodeIII, we get three intervals along the �-axis, but in this case the ordering ofFig. 9 (c) is preserved; ek:, dk: and ak:. The �rst and second generations ofthe partition of the whole symbol plane I are drawn in Fig. 10 (b).Whether the arrow connecting the nodes in Fig. 5 implies order reversal orpreservation has to be incoded in the construction of the symbol plane (�; ).It is easy to verify that for future symbols the symbols c, d, h and k reversethe ordering, while e, h and j reverse the ordering for the past symbols.The remaining symbols preserve the ordering. The ordering can be reversedbecause bounces o� the straight wall reverse the ordering of two neighboringorbits, while the bounces o� the semi-circles preserve the ordering.We can now calculate the symbol plane coordinates (; �) of any orbitgiven its symbol string representation. The algorithm for computing the val-ues  and � is more complicated than for a simple horseshoe map[4] becausehere the symbol plane is partitioned into rectangles of di�erent sizes (seeFig. 10 (b)).Let Aini and Aouti be the number of arrows into and out from the node i:AinI = 5, AoutI = 2, AinII = 3, AoutII = 5, AinIII = 3 and AoutIII = 4. The orbitis given by the symbol string � � � s�1s0:s1s2 � � �. Let it be the node to whichthe arrow st arrives at for t � 0, or from which it leaves for t > 0. LetV � = � � � v�2v�1v0 be given by the past values v from Table 2 obtained fromthe symbols � � � s�2s�1s0, and V + = v1v2v3 � � � be given by the future valuesv obtained from the symbols s1s2s3 � � �.11



The \past" coordinate � is given by � = limt!�1 �t ; where �t with t � 1 iscomputed iteratively bymt�1 = mt=Ainit�1 ; m1 = 1:0pt�1 = ( pt if st 2 fa; b; c; d; f; g; i; kg�pt if st 2 fe; h; jg ; p0 = 1�t�1 = �t + ( vt�1mt�1 if pt�1 = 1(Ainit�1 � 1� vt�1)mt�1 if pt�1 = �1 ; �1 = 0:0 : (3)The \future" coordinate  is given by  = limt!1 t where t with t � 0 iscomputed iteratively bymt+1 = mt=Aoutit+1 ; m0 = 1:0pt+1 = ( pt if st 2 fa; b; e; f; g; i; jg�pt if st 2 fc; d; h; kg ; p1 = 1t+1 = t + ( vt+1mt+1 if pt+1 = 1(Aoutit+1 � 1� vt+1)mt+1 if pt+1 = �1 ; �0 = 0:0 : (4)6 The pruning frontWe are now �nally in position to draw the pruning front and determine theinadmissible orbits for a �nite length stadium. This way of describing sym-bolic dynamics of 2-d hyperbolic systems was introduced by Cvitanovi�c et al.for the H�enon map[4, 5], and applied to dispersive billiards in ref. [8]. Thesingular point on the border determines whether a given symbol sequencecorresponds to an admissible orbit. All orbits which are pruned as the sta-dium length decreases disappear as a bounce in the orbit hits the singularpoint.The pruning front is constructed by scanning through all orbits starting(or ending) at the singular point at di�erent angles, and mapping the corre-sponding future and past symbol sequences into the symbol planes I, II andIII by algorithms (3) and (4). The resulting pruning fronts, Figs. 11, 12 and13, are fractal sets of points in the (�; ) plane: the area outside the pruningfront, the primary forbidden region, contains points corresponding to all in-admissible orbits. In Fig. 14 points belonging to several long chaotic orbitsare plotted in the symbol plane I; as expected, the pruning front in Fig. 11 isthe border between these points and the primary forbidden region. All white12



regions in this �gure correspond to the forbidden symbol sequences, but oneneeds to de�ne only the primary forbidden regions as all other regions areimages or preimages of these.The pruning front is monotone in the symbol plane since the symbol planeis constructed with well ordered symbols which respect the foliation of thestable/unstable manifolds.The primary forbidden region is rather small for a = 5. It increaseswith decreasing a and is already quite large for a = 0:5, see Fig. 14. Inthe integrable limit a ! 0 only the rotation orbits existing in the circlesurvive[16]. For small a the pruning front description is still correct butprobably not convenient for calculations.We now approximate the pruning front by partitioning the symbol planeinto an integer lattice, and tracing out approximate pruning fronts along thelattice lines of this partition. In Fig. 15 the symbol plane I partition lines ofthe �rst and second generation are drawn together with the pruning front.The rectangles completely in the primary forbidden regions are shaded andcorrespond to the symbol substrings j:f , f:gd, aj:ge, gh:ff , ch:ff , kf:gh,ff:gh and ak:gd. From the other symbol planes we get further forbiddensubstrings: all completely forbidden substrings up to length 4 arejf; akfgd; geaajge; gh�; ch�; kfgh; �gh; cdkf; gdkf; aace; acea; kgej; fgej: (5)Given such list we can construct a Markov diagram which generates all ad-missible orbits in this approximation. As only the fully pruned rectangleshave been removed, this approximation underestimates the number of prunedorbits.7 An application: construction of topologi-cal zeta functionsThe Markov diagrams can be applied to calculating averages and spectraof classical and quantum mechanical systems. As an illustration, we nowdetermine the topological entropy h in a few simple approximations. Thetopological entropy is a measure of how fast the number of periodic orbits13



grows as the cycle length increases. The number of periodic orbits withsymbol string length l in the limit l !1 is given by N(l) � ehl, where thevalue of h is given by the logarithm of the inverse of the smallest zero of thetopological zeta function[21].For �nite Markov graph the topological zeta function is given by the char-acteristic polynomial of the graph. The characteristic polynomial is obtainedby counting the number of non-self intersecting closed paths on the graph,and combinations of such closed paths without common nodes[5].The characteristic polynomial for the a =1 graph of Fig. 5 is1=�top(z) = 1� 3z � z2 � z3 ; (6)with leading eigenvalue z = eh,h = ln 3:38298 : : : = 1:21875 : : :This is the upper bound on the topological entropy of any stadium billiard.The Markov diagram for two forbidden strings of length 2 approximationto the a = 1 symbolic dynamics, Fig. 16 yields1=�top(z) = 1� 3z � z2 � z3 + 4z4with the slightly smaller topological entropyh = ln 3:28428 : : : = 1:18915 : : :The Markov diagram with the four forbidden strings of lengths 2 and 3from the list (5) yields1=�top(z) = 1� 3z � 3z3 + 5z4 + 2z5 + 6z6 + z7with the even smaller topological entropyh = ln 3:10061 : : : = 1:131600 : : :For comparison, the numbers of points in cycles listed in the table I of ref. [15]for the a = 1:6 yields h � 1:1.As more and more forbidden sequences are taken into account, the con-struction of topological zeta functions becomes more laborious, but not im-possible. The most detailed evaluation of topological entropy from a pruning14



front has been implemented by Grassberger et al.[22] for the H�enon attrac-tor. However, while in the case of almost purely hyperbolic systems suchas the H�enon attractors and repellers, organization of cycles by �nite alpha-bet symbolic dynamics also reects their relative importance in evaluationof chaotic averages, for nonhyperbolic systems �nite alphabet symbolic dy-namics is rather less useful, as it does not account correctly for itermittencye�ects.8 ConclusionsWe have introduced a symmetry reduced symbolics dynamics for the stadiumbilliard, obtained an exact description of all admissible orbits in terms ofa pruning front, and shown how to construct approximate �nite Markovpartitions of the stadium phase space. The symbolic dynamics is a slightimprovement of the Biham-Kvale description, and the construction of theMarkov graph for an in�nitely long stadium and a pruning front for a �nitelength stadium are new results. While the stadium billiard is one of themost commonly used examples of an ergodic dynamical system, its symbolicdynamics is more complicated than that of other systems analyzed in detailin literature, such as the n-disk pinballs and the H�enon map. Nevertheless, itis possible to obtain useful �nite approximations to the symbolic dynamics,and guarantee that all periodic orbits up to given length have been takeninto account. We have concentrated here on purely topological descriptionof the dynamics, and have not attempted any measure dependent periodicorbit calculations. Depending on the quantity computed, those might su�erfrom the usual ills of nonhyperbolic dynamical systems, such as intermittencye�ects due to the presence of bouncing ball and whispering gallery orbits.KTH gratefully acknowledge �nancial support by the A. von Humboldtfoundation and the Norwegian Research Council.
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st �t�1�t �t�n�10n�ta 1122b 00c 1020d 01 10n101 40n102 20n202 30n2e 01 20n101 30n102 10n202 40n2f 3443

st �t�1�t �t�n�10n�tg 3040h 03 20n303 30n304 10n404 40n4i 03 10n303 40n304 20n404 30n4j 2314k 2413Table 1: De�nition of the reduced symmetry 1/4 stadium symbols s from thesymbols �. The second column de�nes the orientation dependent symbols byindicating the last symbol that preceeds a string of 0's.s v:g 0:f 1j: 0 (r)h: 1 (r)i: 2k: 3f: 4
s v:d 0 (r):h 1 (r):b 2:i 3:e 4b: 0c: 1g: 2

s v:k 0 (r):c 1 (r):j 2:a 3e: 0 (r)d: 1a: 2Table 2: De�nition of the well-ordered symbols vt from the symbols st for thethree phase spaces I, II and III. The letter r indicates that this symbol reversesthe ordering of the following (or preceding) symbols.18
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