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Abstract

We develop the periodic orbit theory of Fourier power spectra for chaotic

dynamical systems. The theory is tested numerically on several 1-dimensional

mappings.
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1 INTRODUCTION

We apply the transfer operator dynamical averaging techniques to the evaluation of power spectra

of chaotic time series. The key idea is the realization that the periodic orbit description of diffusion

introduced in refs. [3, 4, 5] can be interpreted as the zero frequency component of the power spectrum

of a chaotic dynamical flow; in this paper we generalize the diffusion formalism to evaluation of the

power spectrum at any rational multiple of periods of short unstable cycles of the flow.

discus here invariant averages (Lyapunov, dimensions, etc.) vs. non-invariant ones, such as 〈xi〉.

2 DYNAMICAL AVERAGING AND TRANSFER OPERATORS

Let φ(τ, xτ ) be any “observable” evaluated on a trajectory

xτ+1 = f(xτ ) (1) {1}

of a dynamical system. The simplest example of an such observable is the trajectory itself, φ(τ, xτ ) =

xτ . If f(x) generates a chaotic time series xτ , we can think of φ(τ, xτ ) as executing a random walk,

driven by external “random number” sequence x0, x1, x2, . . . , xt. The cumulative effect of the random

walk for a given initial x is given by

Φt(x) =

t−1
∑

τ=0

φ(τ, xτ ) , x0 = x . (2) {1c}
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2Current address: Department of Physics, University of Potsdam, PF 601553, D-14415 Potsdam, Germany
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If φ is bounded, and f(x) generates a bounded time series for all initial conditions x ∈ M , a compact

region in the “phase space” of the dynamical system, Φt(x) cannot grow faster than t, and it makes

sense to study the “drift velocity” of φ(τ, xτ ),

φ(x) = lim
t→∞

1

t
Φt(x) . (3) {tim_ave}

and its higher moments [7]. However, the time average φ(x) is in general a wild function of x; for a

nice hyperbolic system it takes the same value 〈φ〉 for almost all initial x, but a different value on

any periodic orbit, ie. on a dense set of initial points. Hence for chaotic dynamical systems robust

averaging requires also averaging over the initial x. We shall denote average over the “phase space”

x ∈ M by 〈. . .〉. The expectation value 〈φ〉, the asymptotic time and space average is given by

〈φ〉 =
1

|M |

∫

dxφ(x) , |M | =

∫

dx

= lim
t→∞

1

t

t−1
∑

τ=0

1

|M |

∫

dxφ(τ, f τ (x)) . (4)

Consider the expectation value

〈

eβ·Φt
〉

=
1

|M |

∫

dx eβ·Φt(x)

=
1

|M |

∫

dxdy δ(y − f t(x)) eβ·Φt(x) . (5)

Here β is an auxilliary variable, useful for evaluation of the moments
〈

φk
〉

. The t → ∞ limit of such

averages can be related to the eigenvalues of transfer operators [1], in this case

Lt(y, x) = eβ·Φt(x)δ(y − f t(x)) . (6) {(8)}

If the limit (4) exists,

lim
t→∞

〈

eβ·Φt
〉

→ etQ(β) (7) {2}

also exists, with Q(β) given by the leading eigenvalue of Lt, λ0 = etQ(β). For β = 0, the operator

(6) is the Perron-Frobenius operator. If the system is closed, probability conservation implies that

the leading eigenvalue is exactly λ0 = 1, and consquently Q(0) = 0. The averages such as (4) are

recovered by evaluating derivatives of Q(β) at β = 0:

∂Q

∂β

∣

∣

∣

∣

β=0

= 〈φ〉 = lim
t→∞

1

t

〈

Φt
〉

, (8)

∂2Q

∂β2

∣

∣

∣

∣

β=0

= lim
t→∞

〈

(Φt)2
〉

−
〈

Φt
〉2

t
. (9)

and so forth. For example, for φi(x) = xi(t), 〈x〉 = 0, the spatial diffusion constant in i = 1, 2, . . . , d

spatial dimensions is given by [3, 4, 5]

D =
1

2d

∂2Q

∂β2

∣

∣

∣

∣

β=0

= lim
t→∞

1

2dt

〈(

t−1
∑

0

xi(t)

)2〉

, (10) {3}
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2.1 Trace formulas

Extraction of the spectrum of L commences with the evaluation of the trace

trLt =

∞
∑

α=0

λt
α =

1

|M |

∫

dx eβ·Φt(x)δ(x − f t(x)). (11) {(10)}

For discrete time and hyperbolic dynamics we obtain [1]

trLt =
∑

xi∈F ix f t

eβΦt
i

|det
(

1 − Jr
p

)

|

Using the property of additivity of observable Φt along a trajectory, we can reduce the sum to the

sum over prime cycles of f

trLt =
∑

p∈P

τp

∞
∑

r=1

δt,τpr

|det
(

1 − Jr
p

)

|e
rβ·Φp Φp = Φτp(xi), xi ∈ p (12)

where the sum is over τp periodic points xp,m of all prime cycles p whose period τp divides t, xp,m is

the m-th point on the cycle, and Jp is the cycle stability matrix. Jp = Df τp(xp,m) is, by the chain

rule, independent of the starting point xp,m. For continuous flows the trace formulas (sect. 6.1) are

of the essentially same form.

The Fredholm determinant associated with the trace formula (12) follows by the usual resumma-

tions [2]:

F = det(1 − e−Q(β)L) = exp[tr log(1 − e−QL] = exp

[

−
∞
∑

t=1

e−Qt

t
trL
]

= exp



−
∑

p∈P

∞
∑

r=1

e−Q(β)τpr+rβΦp

r

1

|det
(

1− Jr
p

)

|



 . (13)

The equation F (β,Q) = 0 implicitly defines the function Q(β). Thus the derivatives (8),(9) we are

looking for can be calculated as

∂Q

∂β
= −

∂F
∂β

∂F
∂Q

∣

∣

∣

∣

∣

β=Q=0

etc.

3



2.2 Cycle expansions

The associated with the Fredholm determinant Ruelle ζ function is obtained by replacement |det
(

1− Jr
p

)

| →
Λp =

∏

e Λp,e, the product of the expanding eigenvalues of Jp (see ref. [2] for details):

1/ζ(β,Q) =
∏

p∈P

(1 − tp)

tp =
1

|Λp|
eβΦp−Qτp , (14)

Again, the function Q(β) of (7) is the largest solution of the equation 1/ζ(β,Q(β)) = 0 which is

equivalent to F (β,Q(β)) = 0. This replacement is also correct for continuous flow [10], trace formula

(65).

The above infinite products can be rearranged as expansions with improved convergence properties

[2]. The ζ function is expanded as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 +
∑′

{p1p2...pk}

t{p1p2...pk},

t{p1p2...pk} = (−1)ktp1
tp2

. . . tpk
(15)

where the prime on the sum indicates that the sum is over all distinct non-repeating combinations of

prime cycles. For k > 1, t{p1p2...pk} are “pseudo” cycles; they are sequences of shorter cycles that

shadow a cycle with symbol sequence p1p2 . . . pk along segments p1, p2, . . . , pk. For sufficiently small

z = e−Q the sum makes sense as a power series in z.

2.3 Cycle formulas for dynamical averages

The implicit definition of Q(β), 1/ζ(β,Q(β)) = 0, together with the expression for the variation in

cycle weight (14) as function of β, Q

δtp = (Φp(ω)δβ − τpδQ)tp ,

yields the cycle expansion for 〈φ〉

〈φ〉 =
∂Q

∂β
= −

∂ζ−1

∂β

∂ζ−1

∂Q

=

∑′ Φ{p1p2...pk}t{p1p2...pk}
∑′ τ{p1p2...pk}t{p1p2...pk}

,

Φ{p1p2...pk} = Φp1
+ Φp2

· · · + Φpk
, τ{p1p2...pk} = τp1

+ τp2
· · · + τpk

, (16)

and similarly for the higher derivatives of Q(β), such as for the diffusion constant (9)

2D =
∂2Q

∂β2
= −

∂2ζ−1

∂β2

∂ζ−1

∂Q

=

∑′(−1)k(Φp1
+ · · · + Φpk

)2/|Λp1
· · ·Λpk

|
∑′(−1)k(τp1

+ · · · + τpk
)/|Λp1

· · ·Λpk
|

(17) {cexp}
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(in writing (17) we have assumed that 〈φ〉 = 0, otherwise a more complex expression with the

derivatives ∂2(ζ−1)/∂β∂Q come in play), and with sums as in (15). Formally all such averages

are of form 〈φ〉 = 〈Φ〉′ / 〈τ〉′ , but note that this average in not the one one would naively write

down [15, 6] using trace formulas; this is not an approximate sum from partition of the phase space

into neighborhoods of all periodic points of period t, but an exact sum over all prime cycles, with

prefactors (−1)k ensuring curvature cancelations.

3 FOURIER SPECTRA

3.1 Averages over Fourier transforms

If we chose as the “observable” φ(τ, xτ ) = ei2πωτφ(xτ ), the sum (2) becomes a Fourier transform

Φt(ω, x) =

t−1
∑

τ=0

ei2πωτφ(xτ ) , x0 = x , (18) {fou_tran}

and (4) becomes the space-averaged Fourier transform of the time series φ(x0), φ(x1), φ(x2), . . . ,

〈φ(ω)〉 = lim
t→∞

1

t

t−1
∑

τ=0

1

|M |

∫

dx ei2πωτ φ(f τ (x)) . (19) {exp_fou_tran

In a chaotic system the space-averaged Fourier transform usually vanishes because

1

|M |

∫

dxφ(f τ (x))

does not depend on τ . To obtain a non-vanishing quantity, we have first to take the absolute value

of the Fourier transform, and after that to perform the averaging. In this way we immediately come

to the power spectrum of the process:

〈

|Φt(ω)|2
〉

= t

t−1
∑

τ=−t+1

(1 − |τ |/t)C(τ)ei2πωτ (20) {pow_spec}

where C(m) = 〈φ(xτ )φ(xτ+m)〉 is the space-averaged time correlation function.

Generally, a power spectrum of a chaotic observable consists of a broad band noise S(ω) and of a

discrete spectrum ∆(ω) which correspond to two terms in the time growth rates of
〈

|Φt(ω)|2
〉

:4

〈

|Φt(ω)|2
〉

∼ t2∆(ω) + tS(ω). (21) {11}

Comparing with (9), (10), we see that 1
2S(ω) = D(ω) is nothing else but the diffusion constant for

quantity Φt(ω), and ∆(ω) is the drift term. With this interpretation of the observable Φt we can hope

to obtain the power spectrum from the derivatives of the corresponding leading eigenvalue Q(β) like

in (9). However, in oder to be able to apply the trace formulas machinery, we need Φt to fulfill some

requirements, such as additivity along the trajectories and periodic orbits. As we show below, these

requirements are valid with restrictions.

4Strictly speaking, this time dependence can include powers of time different from one and two, in this situation one

speaks on singular continuous spectra [].
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3.2 Fourier cycle weights

The main difficulty in applying the trace formulas to the Fourier transformsis that in the former one

needs additivity of an observable along the trajectory of a dynamical system. Let us look how the

additivity can appear in the Fourier sum.

Evaluated on the rth repeat of a prime cycle p having period τp, the Fourier sum (18) factorizes into

Φrτp(ω, xp,m) = r Φp(ω) e−i2πωm 1

r

r−1
∑

k=0

ei2πωτpk , (22)

Φp(ω) =

p−1
∑

τ=0

ei2πωτφ(xp,τ ) . (23)

The sum in (22) takes values

1

r

r−1
∑

k=0

ei2πωτpk =







1 if τpω = integer,
0 if τpω 6= integer, , rτpω = integer,
O(1/r) if rτpω 6= integer.

. (24)

In the t = rτp → ∞ limit the O(1/r) terms vanish, and the sum (18) evaluated on the rth repeat of

a prime cycle p projects out all frequencies ω which are not harmonics of the prime cycle frequency

1/τp:

Φrτp(ω, xp,m) ∼
{

r Φp e−i2πωm if τpω = integer
0 if τpω 6= integer

. (25) {Phi_om}

This formula can be interpreted in two ways. Let us first fix the periodic orbit under consideration,

i.e. fix τp. Then, this orbit according to (25) gives non-wanishing weights for frequencies 0, 1
τp

, 2
τp

, . . . .

This means that the orbit “contributes” to the power spectrum at those frequencies only, which

frequencies can be presented in the spectrum of this orbit. At the other hand, let us fix a frequency

ω. If this frequency is irrational, no periodic orbit “contributes” to it. If the frequency is rational

ω = l
q , then all orbits with periods q, 2q, 3q, . . . contribute to the power spectrum at this frequency.

Therefore, we have to consider the rational frequencies only. From (24),(25) it follows, that for these

frequencies also the additivity of the Fourier weight along the periodic orbit of the dynamical system

holds, provided the periods of orbits satisfy the relation τpω = integer. To ensure that only such

orbits come in play, we can do the following: given a rational frequency ω = l
q , let us consider the

q-th iteration of (1):

xτ+q = f q(xτ ) (26) {1q}

and as an obversable let us take

φ(q)(xτ ) =

q−1
∑

t=0

ei2πωtφ(xτ+t) (27) {phiq}
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Then the Fourier transform (18) for this frequency reduces to the sum (2), and the trace formula (12)

is valid. After finding the diffusion constant for (26),(27) one should not forget to divide it by q to

get the diffusion constant in the original time scale.

A small modification of the trace formula is still needed, because our observable (27) is complex,

and we want to average the square of its absolute value. To do this it is convenient to consider the

auxillary variable β as a complex one β = βr + iβi, and to average in (5) the real part, so that instead

of (7) we write

lim
t→∞

〈

eRe(β·Φt)
〉

= lim
t→∞

〈

eβr ·Re(Φt)−βi·Im(Φt)
〉

→ etQ(β) (28) {2r}

The diffusion constant can be then represented through the derivatives 5

∂2Q

∂β2
r

∣

∣

∣

∣

βr=βi=0

+
∂2Q

∂β2
i

∣

∣

∣

∣

βr=βi=0

= lim
t→∞

1

t

〈

|Φt(ω)|2
〉

= S(ω) . (29) {4bb-reim}

3.3 Cycle expansions for power spectrum

AP: calculations in this section not rechecked

In view of discussion above we have to apply the main cycle expansion formula to the q-th iteration

of the map to find the power spectrum at frequency ω = l
q . This means that index p in (13)-(17)

counts all prime cycles of the map f q, not of the map f . The main formula of cycle expansion of the

power spectrum now reads

S(ω) =

∑′(−1)k|Φp1
+ · · · + Φpk

|2/|Λp1
· · ·Λpk

|
∑′(−1)k(τp1

+ · · · + τpk
)/|Λp1

· · ·Λpk
|

(30) {cexp1}

Here ω is rational ω = l
q ; p are prime cycles of the q-th iteration of the map, and Φp are (complex)

Fourier sums along the cycles calculated according to (27).

As all the prime cycles of the map f q stem from cycles of the original map f , it is instructive to write

the corresponding ζ-function. It is clear that we should divide all primary cycles of f can be divided

in two classes:

1. To the set Pq belong all primary cycles of f having periods q, 2q, 3q, . . . . They appear for the

map f q as primary cycles of periods 1, 2, 3, . . . correspondingly.

2. All other primary cycles of f with periods r 6= n · q also appear as primary cycles of f q, namely

as period-s cycles where s is a minimal integer satisfying together with another integer m the

relation r · m = s · q
5We assume

˙

Φt
¸

= 0, what means that there is no discrete spectrum at the chosen frequency. For zero frequency

this can be ensured by chosing the observable φ(x) having zero mean, for other frequencies this is ensured by mixing

properties of the system. For a special consideration of non-mixing case see section 4.3 below
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Next, we note that to each primary cycle p of f of type 1 (having period τp) correspond q cycles of

f q lying on its trajectory. The factors Φp for these cycles differ by the phase shift ei2π l
q
j. Thus, to

each such cycle corresponds a product

τp−1
∏

j=0

(1 − tpj) tpj =
1

|Λp|
eβΦp(ω)ei2πωj−Qτp

For a cycle of type 2, the Fourier weight vanishes according to (25). It is equivalent to setting

β = 0 at the corresponding tp. Due to remaining additivity of the periods and multiplicativity of the

multipliers, we can write the contribution as

(1 − (tp(0))
m)

where the zero argument means that here effectively β = 0. As a result, we can write ζ-function for

the calculation of power spectrum at frequency ω = l
q as

1

ζ
=
∏

p∈Pq

τp−1
∏

j=0

(1 − tpj)
∏

p/∈Pq

(1 − (tp(0))
m) (31) {zetafreq}

4 APPLICATINS TO 1-d MAPS

There exist maps - typically 1-d piecewise-linear maps - for which the natural measure is available

in closed form. As for such maps the power spectra are known analytically, we can use them as

benchmarks for tests of cycle expansions. We start with two maps whose symbolic dynamics is

described by the full (0,1) binary shift, ie. all sequences of “0” and “1” are realizable: the Bernoulli

shift and the skew tent map. C. Beck has further results for the Ulam map, based on the Chebyshev

polynomials method of ref. [13]. While the cycle expansions do not appear to be convenient for

rederivation of the analytic results, they converge faster than exponentially in numerical evaluations,

and are also applicable to generic flows, where the natural measure is not analytically available.

4.1 Bernoulli doubling map

For the Bernoulli map f(x) = 2x mod (1) the natural measure is µ(x) = 1. Taking the observable

φ = x − 〈x〉 = x − 1/2 we obtain the variance

C(0) =
〈

(xt − 〈x〉)2
〉

=

∫ 1

0
dx(x − 1

2
)2 =

1

12
, (32) {correl_0_B

and the correlation function is

C(m) = 〈(xt − 〈x〉)(xt+m − 〈x〉)〉 =
1

12
2−m . (33) {correl_B}

The power spectrum follows from (20),(33)

S(ω) =
1

4

1

5 − 4 cos 2πω
(34)
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We shall compare this exact solution with the values obtained from cycle expansion.

The periodic points are easily computed according to the general formula:

xǫ1ǫ2...ǫk
= .ǫ1ǫ2 . . . ǫk =

2k−1ǫ1 + 2k−2ǫ2 + · · · + ǫk

2k − 1
(35) {per_B}

and are presented in the table.

Symbols x Φp for ω = 0 Φp for ω = 1/2 Φp for ω = 1/3

0 0 -1/2 0
1 1 1/2 0

01 1/3 0 -1/3
10 2/3 1/3

001 1/7 (1 + 2ξ + 4ξ2)/7
010 2/7 -1/2 (2 + 4ξ + ξ2)/7
100 4/7 (4 + ξ + 2ξ2)/7

011 3/7 (3 + 6ξ + 5ξ2)/7
110 6/7 1/2 (6 + 5ξ + 3ξ2)/7
101 5/7 (5 + 3ξ + 6ξ2)/7

0001 1/15 -1/3
0010 2/15 1/3
0100 4/15 -1
1000 8/15

0011 3/15 0 0
0110 6/15 0
1100 12/15 0
1001 9/15

0111 7/15 -1/3
1110 14/15
1101 13/15 1
1011 11/15 1/3

4.1.1 Spectrum at zero frequency

Here we have a trival calculation of the diffusion coefficient, based on the prime cycles of the Bernoulli

map. It is convenient to rewrite the general expression

S(0) =
∂2Q

∂β2
=

∑′(−1)k(Φp1
+ Φp2

+ · · · + Φpk
)2/(|Λp1 · · ·Λpk

|)
∑′(−1)k(np1

+ np2
+ · · · + npk

)2/(|Λp1 · · ·Λpk
|)

(36) {rat1}
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in the form making compensation of contributions of different cycles evident. This form follows

immediately from the product (15)

0 =
∏

p

(1 − tp)

= (1 − t0)(1 − t1)(1 − t10)(1 − t100)(1 − t101)(1 − t1000)(1 − t1001)(1 − t1011) . . .

= 1 − t0 − t1

− (t10 − t1t0)

− (t100 − t10t0) − (t101 − t10t1)

− (t1000 − t100t0) − (t1001 − t100t1) − (t1011 − t101t1) + t101t0 − t10tt1t0

. . .

Noting that the denominator in (36) is a frequency independent normalization constant

∑′
(−1)k

(np1
+ · · · + npk

)

|Λp1
· · ·Λpk

| = [−1

2
− 1

2
] + [−1

4
(2 − 1 − 1)] + [−1

8
(3− 3)− 1

8
(3− 3)] + · · · = −1 ,

we can rewrite the power spectrum at zero frequency as

1

2
(Φ2

0 + Φ2
1)

1

4
(Φ2

10 − (Φ0 + Φ1)
2)

1

8
[(Φ2

100 − (Φ10 + Φ0)
2) + (Φ2

101 − (Φ10 + Φ1)
2)]

1

16
[(Φ2

1000 − (Φ100 + Φ0)
2) + (Φ2

1001 − (Φ100 + Φ1)
2]

− 1

16
[(Φ2

1011 − (Φ101 + Φ1)
2) − ((Φ101 + Φ0)

2 − (Φ10 + Φ1 + Φ0)
2)]

· · · (37) {expsimp}

Here we should insert the values of Φp presented in the table. We this obtain for the numerator

− 1

2
(
1

4
+

1

4
)

− 1

4
(0 − 0)

− 1

8
[(

1

4
− 1

4
) + (

1

4
− 1

4
)]

− 1

16
[(1 − 1) + (0 − 0)]

− 1

16
[(1 − 1) − (0 − 0)] + · · ·

= −1

4
(38)

Here we have a perfect cancellation. The resulting value of spectrum is

S(0) =
1

4

in accordance to (34).
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4.1.2 Spectrum at frequency 1/2

Let us consider the second iteration of the Bernoulli map. For this iteration the Fourier sum according

to (27) is

φ(2)(xτ ) = φ(xτ ) − φ(xτ+1)

is a function of the state space which is additive on a trajectory. Thus, one can apply the cycle

expansion for diffusion to this map. There are four basic symbols

a = 00 , b = 01 , c = 10 , d = 11 .

We write the product (15) as

0 =
∏

(1 − tp)

= (1 − ta)(1 − tb)(1 − tc)(1 − td)(1 − tab)(1 − tac)(1 − tad)(1 − tbc)(1 − tbd)(1 − tcd) . . .

= 1 − ta − tb − tc − td

− (tab − tatb) − (tac − tatc) − (tad − tatd)

− (tbc − tbtc) − (tbd − tbtd) − (tcd − tctd)

· · · (39)

where

tp =
eβΦp−Qnp

Λp
, Φp = xp − f(xp) .

The diffusion constant is

2S(1/2) =
∂2Q

∂β2
=

∑′(−1)k(Ap1
+ Ap2

+ · · · + Apk
)2/(|Λp1 · · ·Λpk

|)
∑′(−1)k(np1

+ np2
+ · · · + npk

)2/(|Λp1 · · ·Λpk
|) , (40) {rat2}

where the factor 2 on the left hand side appears because the diffusion is calculated in the new doubled

time.

The denominator is

∑′
(−1)k

(np1
+ · · · + npk

)

|Λp1
· · ·Λpk

| (41)

= −1

4
− 1

4
− 1

4
− 1

4

− 1

16
(2 − 2) · · ·

+ · · · = −1 , (42) {time_aver2

11



The values of Φp are presented in the table We substitute this in the numerator:

− 1

4
(Φ2

a + Φ2
b + Φ2

c + Φ2
d)

− 1

16
[(Φ2

ab − (Φa + Φb)
2) + (Φ2

ac − (Φa + Φc)
2) + (Φ2

ad − (Φa + Φd)
2]

− 1

16
[(Φ2

bc − (Φb + Φc)
2) + (Φ2

bd − (Φb + Φd)
2) + (Φ2

cd − (Φc + Φd)
2]

= −1

4
(0 + (

1

3
)2 + (

1

3
)2 + 0)

− 1

16
[(

1

3
)2 − (

1

3
)2) + (

1

3
)2 − (

1

3
)2) + (0 − 0)]

− 1

16
[(

1

3
)2 − (

1

3
)2) + (

1

3
)2 − (

1

3
)2) + (0 − 0)]

= − 1

18
(43)

As a result we obtain the correct value of S(1/2) = 1/36 and a perfect cancellation of higher-order

contributions.

4.1.3 Representation of cycle formula for period 1/2 through the basic prime cycles

Because the cycles of the time-2 Bernoulli map are not the original ones, it is instructive to represent

the cycle expansion in terms of basic prime cycles of the Bernoulli map.

Because the dependence on β in ta and td disappears, we can write

ta(Q,β) = ta(Q, 0) = t00(Q, 0) = t20(Q, 0) td(Q,β) = t11(Q, 0) = t21(Q, 0)

For the product of two remaining terms we obtain

(1 − tb)(1 − tc) = 1 − t01(Q,β) − t10(Q,β) + t01(Q,β)t10(Q,β)

= 1 − t01(Q,β) − t10(Q,β) + t201(Q, 0)

Where we have used the property Φ01 + Φ10 = 0 (which can be written also as t01(Q,β) = tc(Q,−β))

Analogously, we can write

tab(Q,β) = t0001(Q,β) = t0010(Q,−β) = tac(Q,−β)

tad(Q,β) = t0011(Q,β) = t0110(Q,−β) = tbc(Q,−β)

tbd(Q,β) = t0111(Q,β) = t1011(Q,−β) = tcd(Q,−β)

and the product of primary period-4 cycles appears as

(1 − tab)(1 − tac)(1 − tad)(1 − tbc)(1 − tbd)(1 − tcd)

=(1 − t0001(Q,β) − t0010(Q,β) + t20001(Q, 0))

× (1 − t0011(Q,β) − t0110(Q,β) + t20011(Q, 0))

× (1 − t0111(Q,β) − t1101(Q,β) + t20111(Q, 0))

12



Finaly we obtain

0 =(1 − t20(Q, 0))(1 − t21(Q, 0))(1 − t01(Q,β) − t10(Q,β) + t201(Q, 0))

× (1 − t0001(Q,β) − t0010(Q,β) + t20001(Q, 0))(1 − t0011(Q,β) − t0110(Q,β) + t20011(Q, 0))

× (1 − t0111(Q,β) − t1101(Q,β) + t20111(Q, 0)) . . .

=1 − t20(Q, 0) − t21(Q, 0)

− t01(Q,β) − t10(Q,β)

− t0001(Q,β) + t20(Q, 0)t01(Q,β) − t0010(Q,β) + t20(Q, 0)t10(Q,β)

− t0011(Q,β) − t0110(Q,β) + t20(Q, 0)t21(Q, 0) + t201(Q, 0)

− t1110(Q,β) + t21(Q, 0)t10(Q,β) − t1101(Q,β) + t21(Q, 0)t01(Q,β) . . . (44)

One can see how the cancellating terms appear in the cycle expansion.

4.1.4 Spectrum at frequency 1/3

Here we have to coinsider the 3rd iteration of the Bernoulli map. It has 8 primary fixed points

a = 000 b = 001 c = 010 d = 011 e = 100 f = 101 g = 110 h = 111

corresponding to the orbits in the table. Denoting ξ = ei 2π
3 , we write also the corresponding values

of Φp in the table.

Analogously, there are 28 primary cycles of period 2 (period-6 orbits for the Bernoulli map) labeled

as

ab = 000001 ac = 000010 · · ·

Writing the zeta-function as

0 =
∏

(1 − tp)

(1 − ta)(1 − tb)(1 − tc)(1 − td)(1 − te)(1 − tf )(1 − tg)(1 − th)

× (1 − tab)(1 − tac)(1 − tad)(1 − tae)(1 − taf )(1 − tag)(1 − tah)

× (1 − tbc)(1 − tbd)(1 − tcd) . . .

=1 − ta − tb − tc − td − te − tf − tg − th

− (tab − tatb) − (tac − tatc) − (tad − tatd)

− (tae − tate) − (taf − tatf ) − (tag − tatg) − (tah − tath)

− (tbc − tbtc) − (tbd − tbtd) − (tcd − tctd)

· · · (45)

The cancellation is evident.

Because Φp are complex, we have to sum complex values of Φp along “pseudocycles”, and to take the

absolute value square of thisn sum:

3S(1/3) =
∂2Q

∂(Reβ)2
+

∂2Q

∂(Imβ)2
=

∑′(−1)k|Φp1
+ Φp2

+ · · · + Φpk
|2/(|Λp1 · · ·Λpk

|)
∑′(−1)k(np1

+ np2
+ · · · + npk

)2/(|Λp1 · · ·Λpk
|)

(46) {rat3}
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where the factor 3 appears because the diffusion is calculated in the new tripled time.

The values of |Φp|2 are the same for all cycles b . . . g:

|Φb|2 = |Φc|2 = . . . = |Φg|2 =
1

7

while for a and h |Φa| = |Φh| = 0. The denominator in (46) is −1, and we obtain

S(1/3) =
1

3
· 6 · 1

7
· 1

8
=

1

28

in accordance with (34).

Next we represent the zeta-function in terms of primary cycles of the Bernoulli map. From the cycles

above the following are primary cycles of smaller periods:

ta = t000 = t30(0) th = t111 = t31(0)

tcf = t010101 = t301(0) tfc = t101010 = t310(0) (47)

Here we have written the argument to show the absence of β-dependence in these terms.

The product (15) can be written in the terms of primary cycles, in the following we goup the terms

according to their cancellation.

0 =1 − t30(0) − t31(0)

− t001 − t010 − t100 − t011 − t110 − t101

+ (−t000001 + t30t001) + (−t000010 + t30t010) + (−t000100 + t30t100)

+ (−t000011 + t30t011) + (−t000110 + t30t110) + (−t001100 + t001t100)

+ (−t000101 + t30t101) + (−t001010 + t001t010) + (−t010100 + t010t100)

+ (−t000111 + t30t
3
1) + (−t001110 + t001t110) + (−t011100 + t011t100)

+ (−t001011 + t001t011) + (−t010110 + t010t110) + (−t101100 + t101t100)

+ (−t001101 + t001t101) + (−t011010 + t011t010) + (−t11010 + t110t100)

+ (t010t101 − t301) + (t101t010 − t310)

+ (−t011101 + t011t101) + (−t111010 + t31t010) + (−t110101 + t110t101)

+ (−t001111 + t31t001) + (−t011110 + t011t110) + (−t111100 + t31t100)

+ (−t011111 + t31t011) + (−t111110 + t31t110) + (−t111101 + t31t101)

+ · · · (48)

4.1.5 Obtaining full spectrum from cycles

As we have seen, all higher contributions cancel, so it appears that the spectrum of the Bernoulli map

can be fully represnted in the form of primary cycles.

Consider a frequency ω = p/q. The primary cycles here are all cycles of period q, such cycles can be

written as

xǫ1ǫ2...ǫq = .ǫ1ǫ2 . . . ǫq =
2k−1ǫ1 + 2k−2ǫ2 + · · · + ǫq

2q − 1
(49) {qcyc}

14



The Fourier weight for this cycle is

Φǫ1ǫ2...ǫq = xǫ1ǫ2...ǫq + e
i2π p

q xǫ2ǫ3...ǫqǫ1 + . . . e
i2π p

q
(q−1)

xǫqǫ1...ǫq−1

Substituting (49) and regrouping the terms we get

Φǫ1ǫ2...ǫq =
ǫq

2q − 1

(

1 + 2ei2π p

q + 4ei2π p

q
2 + · · · + 2q−1ei2π p

q
(q−1)

)

+
ǫq−1

2q − 1

(

2 + 4ei2π p

q + 8ei2π p

q
2 + · · · + ei2π p

q
(q−1)

)

. . .

=

1
∑

s=q

ǫse
−i2π p

q
s

2q − 1

q−1
∑

k=0

2kei2π p

q
k

=
1
∑

s=q

ǫse
−i2π p

q
s

1 − 2ei2π p

q

The power spectrum is the sum of squared absolute values of these terms:

S(
p

q
) =

1

q2q

1

5 − 4 cos 2π p
q

∑

all cycles

|
q
∑

s=1

ǫse
−i2π p

q
s|2

where the sum is over all combinations of the symbols 0, 1, i.e. the number of cycles is 2q

AP: It appears that

1

2q

∑

all 2q cycles

| 1√
q

q
∑

s=1

ǫse
−i2π p

q
s|2 =

1

4

but I cannot proove it.

4.2 Skew tent map

6 The skew tent map

f(x) =

{

ax if 0 ≤ x ≤ a−1,
a

a−1 (1 − x) if a−1 ≤ x ≤ 1.
(50) {12.1}

is another example where statistical properties can be obtained analytically. The correlation function

was calculated by Grossmann and Thomae [11]:

C(m) = 〈(xt − 〈x〉)(xt+m − 〈x〉)〉 =
1

12

(

2 − a

a

)m

(51) {correl}

The power spectrum is

S(ω) =
1

6

a − 1

a(a − 2)(1 + cos 2πω) + 2

S(0) =
1

12(a − 1)
, S(1/2) =

a − 1

12
, . . .

S(ω) =
1

12
for a = 2 . (52)

6PC: this calculation should be done more analytically?
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Consider first the zero frequency case, ω = 0. In this case the Ruelle zeta function

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)... = 1 − t0 − t1 − [t01 − t0t1]...

consists of the fundamental part and curvature corrections, and calculation of diffusion constant is

straightforward. Stability of a cycle with np,1 repeats of symbol 1 is Λp = anp/(1 − a)np,1 . The

probability conservation follows trivially from 1/|Λ0| + 1/|Λ1| = 1/a + (a − 1)/a = 1 (all curvatures

vanish for this peacewise-linear map), and the denominator in (17) is simply −1. For β = 0 the

Fredholm determinant is given by

F =

(

1 − z

|Λ0|
− z

|Λ1|

)(

1 − z

|Λ0|2
+

z

|Λ1|2
)

· · · = (1 − z)

(

1 − z
2 − a

a

)

. . . . (53)

The leading eigenvalue is 1, by probability conservation; the second eigenvalue controls the exponential

falloff of the 2-point correlations, λ1 = a/(2 − a), in agreement with (51).

The periodic points are easily computed:

x0 = 0, x1 =
a

2a − 1
, x10 =

a2

a2 + a − 1
, x01 =

a

a2 + a − 1
,

x001 =
a

a3 + a − 1
x010 =

a2

a3 + a − 1
x100 =

a3

a3 + a − 1

x011 =
a

a3 − a2 + 2a − 1
x110 =

a2

a3 − a2 + 2a − 1
x110 =

a3 − a2 + a

a3 − a2 + 2a − 1
(54)

For a = 2 we have:

x0 = 0, x1 = 2/3, x01 = 2/5, x10 = 4/5, x001 = 2/9, x010 = 4/9, x100 = 8/9,

x011 = 2/7, x110 = 4/7, x101 = 6/7, . . . (55)

(the general formula is given in the appendix). Even though the power spectrum is given explicitely

by (52), the cycle expansion does not reproduce this expression in any obvious form; (17) yields 7 8

S(0) =(0 − 1

2
)2

1

a
+

(

a

2a − 1
− 1

2

)2 a − 1

a

+

(

a

a2 + a − 1
+

a2

a2 + a − 1
− 1

)2
a − 1

a2
−
(

a

2a − 1
− 1

)2 a − 1

a2
+ . . .

=
1

4a
+

a − 1

4(2a − 1)2a

+
a − 1

a2(a2 + a − 1)2
− (a − 1)3

(2a − 1)2a2
(56)

Φ01(1/2) = x01 − x10 =
a(a − 1)

a2 + a − 1
, . . .

S(1/2) =
(a − 1)3

(a2 + a − 1)2
+ 4-cycle contributions (57)

7PC: these calculations not rechecked.
8AP: not recheked either
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We see that there appears no evident cancellation of the cycles of different periods. Even in the case

a = 2 there is no such cancellation, as one can see from the series for the S(0):

S(0) = [
1

8
+

1

8 · 9] + [
1

4 · 25 − 1

9 · 4] + . . .

Nevertheless, numerical summation of the series shows up nice convbergence to the analytic formula

(52).

The result is given in fig. 1, with fig. 2 illustrating the convergence with maximal cycle length trun-

cations. We have also checked that for the Ruelle zeta functions convergence is exponential, and that

for the Fredholm determinant the convergence is faster than exponential. 9

4.3 Pruned symbolic dynamics
{sec:psd}

If the symbolic dynamics is described by a subshift of a finite type, cycle expansions converge well [2].

An example is given by the tent map f(x) = 1− a|x|, a = (1 +
√

5)/2. This value of a corresponds to

the 001, 011 3-cycles bifurcation value, with the symbolic dynamics given by a simple pruning rule;

the repeat 00 is forbidden. Fig. 3 shows the numerical power spectrum evaluated by means of (17).

Difficulties can arise if the system is not sufficiently mixing. For example, the tent map xt+1 = 1−a|xt|
for a =

√
2 has two nonoverlaping bands. The system is not mixing, and the power spectrum contains

a delta-function peak at ω = 1/2. In the symbolic dynamics only sequences having “1” at all odd or

at all even places are allowed. Let us focus our attention on the zeta function 1/ζ at the frequency

ω = 1/2. The set of cycles with odd periods is empty (except for the fixed point “1”, and it also

disappears for a <
√

2) and

1/ζ =
∏

p∈Pe

(1 − tp(Q,β)) (58) {r2e}

The straightforward differentiation of 1/ζ does not give correct result: the drift term vanishes and the

diffusion constant diverges. The reason is that the mapping f2 is not mixing and has two symmetric

invariant sets, so the zeta function (58) is a product of two zeta functions for these sets. The

probability distribution function for Φt does not tend to a Gaussian hump as t → ∞, but instead to

two symmetric humps, drifting away from the origin in opposite directions (that is why the drift term

for 1/ζ vanishes). In order to describe the power spectrum for ω = 1/2 correctly, we must restrict the

averaging to one hump. This corresponds to considering one of the symmetric attractors of the map

f2. In terms of zeta function this means that we must consider square root of zeta function (58):

1/ζ ′ =
′
∏

p∈Pe

(1 − tp(Q,β))

From this zeta function correct values of discrete and continuous components of the power spectrum

at ω = 1/2 are obtained as the drift term and the diffusion constant.

9PC: this must be reworked so that for finite Markov graphs, long cycles are re-expressed as the repeats of the

fundamental cycles; work out in detail for 2-branch complete binary tent map?.
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5 CONCLUSIONS

Fourier analysis for chaotic sets can be recast into the transfer operator formalism, but restricted to

rational frequencies l/q. This is unsatisfactory in the sense that exponential numer of prime cycles is

required for increasing q. 10

6 APPENDIX A: Tent map cycles
{APPE}

11 For the symmetric tent map (a = 2 in (50)) it is convenient to compactify the binary sequences by

replacing si = {0, 1} by the n-ary alphabet

ni = {1, 2, 3, 4, · · · } = {1, 10, 100, 1000, . . . } (59) {dike_alph}

In this notation the itinerary of a point x, S = {n1n2n3n4 · · · }, and its binary expansion are related

by x = .1n10n21n30n4 · · · . For example:

x = .101101001110000 . . . = .1101120111021304 . . .
S = 111011101001000 . . . = 11211234 . . .

The periodic points correspond to the rational values of x, but we have to distinguish even and odd

cycles, depending on whether
∑n

k=1 sk are even or odd. For the even cycles tk = tk+n, while for the

odd cycles tk = tk+2n. The even (odd) cycles contain even (odd) number of ni in the repeating block,

and the periodic points are given by

xn1n2···nk
=

2np

2np − 1
.1n10n2 · · · 0nk , np =

k
∑

i=1

ni k even

=
4np

4np − 1
.1n10n2 · · · 1nk0n11n2 · · · 0nk k odd . (60)

For example:

x1 = x1 = .10101 . . . = .10 = 2
3

x10 = x2 = .1202 . . . = .1100 = 4
5

x100 = x3 = .1303 . . . = .111000 = 8
9

x101 = x21 = .110 = 6
7

6.1 APPENDIX B: Continuous flows {Cont_flows

For continuous flow “observable” φ(τ, x(τ)) = ei2πωτφ(x(τ)), the sum (2) becomes a continuous time

Fourier transform

Φt(ω, x) =

∫ t

0
dτei2πωτ φ(x(τ)) , x(0) = x , (61) {fou_tran_c

10PC: seems not too smart - one has to go to long cycles to evaluate spectrum at frequencies with q large, but the

spectrum itself is totally smooth. Besides, for continuous time flows this pulls out only one prime cycle at a time, as all

periods τp are distinct. Need some smearing in ω?
11PC: this appendix will probably be thrown out again...
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and (4) becomes the space-averaged Fourier transform of the observable along the flow φ(x(τ))

〈φ(ω)〉 = lim
t→∞

1

|M |

∫

dx
1

t

∫ t

0
dτei2πωτφ(f τ (x)) . (62) {exp_fou_tran_c

Evaluated on the rth repeat of a prime cycle p, the sum (61) factorizes into

Φrτp(ω, x(τ ′)) = r Φp(ω) e−i2πωτ ′ 1

r

r−1
∑

k=0

ei2πωτpk ,

Φp(ω) =

∫ τp

0
dτei2πωτφ(xp(τ)) , (63)

As in (25), only the the harmonics of the prime cycle frequency 1/τp survive the averaging:

Φrτp(ω, x(τ ′)) =

{

r Φp(ω) e−i2πωτ ′

if τpω = integer
0 if τpω 6= integer

. (64)

For continuous flows the trace (12) (with a similar to (??) separation of real and imaginary parts)

takes form [10]

trLt(ω) =
∑

p∈P

τp

∞
∑

r=1

δ(t − rτp)

|det(1 − Jr
p)|
〈

eβcRe(Φt(ω))+βsIm(Φt(ω))
〉

p

〈

eβcRe(Φt(ω))+βsIm(Φt(ω))
〉

p
=

1

τp

∫ τp

0
dτerβcReΦp(ω) cos 2πωτ+rβsImΦp(ω) sin 2πωτ

=

∫ 2π

0

dθ

2π
er(βcReΦp(ω) cos θ+βsImΦp(ω) sin θ

= J0

(

ir
√

(βcReΦp(ω))2 + (βsImΦp(ω))2
)

=
∞
∑

k=0

r2k(β2
c (ReΦp(ω))2 + β2

s (ImΦp(ω))2)k

4k(k!)2
, (65)

so only powers of |Φp(ω)|2 survive the averaging. According to this formula, the sharp frequency

Fourier transform picks out essentially a single prime cycle from the infinity of unstable cycles, the

one resonant with τpω = integer. 12
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Figure 1: Power spectrum for skew tent map (50) with a = 2.5, evaluated from the Fredholm deter-
minant (13) at all rational frequencies ω = l/q, q ≤ 14. The exact spectrum (52) is indicated by the
solid line. {fig1}
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Fig.2
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Figure 2: Error in determining the power spectrum of fig. 1 as function of the maximal cycle length
used. plus: ω = 0, square: ω = 1/2; other symbols from top to bottom correspond to frequencies
1/3, 1/4, ..., 1/14. {fig2}

Fig.3
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Figure 3: Power spectrum for the pruned symmetric tent map with a = (1 +
√

5)/2. No analytic
formula for spectrum is available for this case. {fig3}
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