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Abstract. The theory of period doublings for one-parameter families of iterated
real mappings is generalized to period n-tuplings for complex mappings. An
n-tupling occurs when the eigenvalue of a stable periodic orbit passes through
the value ω = exp(2τπm/n) as the parameter value is changed. Each choice of m
defines a different sequence of rc-tuplings, for which we construct a period
ft-tupling renormalization operator with a universal fixpoint function, a
universal unstable manifold and universal scaling numbers. These scaling
numbers can be organized by Farey trees. The present paper gives a general
description and numerical support for the universality conjectured above.

Introduction

Tn this article we develop in some detail the generalization of the period-doubling
universality for real mappings [1, 2] to the complex case. This universality was
discovered by Goldberg et al. [3] and by us [4]. The conjecture is that the fixed
points of period ft-tupling operators associated with infinite sequences of m/n
period n-tuplings of complex mappings with quadratic critical points are universal
and that each such "m/n" renormalization operator has a single unstable
eigenvalue δmjn. Furthermore, we show that the infinity of universal scaling
numbers so obtamed can be organized by the underlying number-theoretic Farey
trees, and that the space and parameter scaling numbers amjn and δm/n have well
defined n-^oo limits. For example, the Feigenbaum number (5 = 4.66... can be
interpreted as the n = 2 case of the asymptotic estimate \δ1/n\ = n2. There exist a
large mathematical literature on iterations of complex functions, some of which we
review in Sect. 1. The difference between the present investigation (together with
[3, 5, 6]), and the previous work is that we concentrate on the metric properties of
complex iterations, rather than on their topological and analytic structure.

The period n-tuplings that we study here are a direct generalization of the
period-doubling phenomenon known from one-dimensional real unimodal



226 P. Cvitanovic and J. Myrheim

mappings (period doublings are reviewed in [7-11]). A complex function can be
viewed as a two-dimensional mapping, and iterative two-dimensional mappings
are important tools for modeling dynamical systems [12, 13]. Period n-tuplings
are also common in hamiltonian systems [14] and for coupled non-linear
oscillators [15,16], and, at least for the hamiltonian mappings, sequences of period
π-tuplings exhibit universal scalings [14,17]. There are further striking similarities
between universal scaling behavior of circle maps [18-20] and the universality for
complex maps discussed here, such as their organization by the Farey sequences
(Sect. 7). At first sight, one could think that the area preserving. Hamiltonian
mappings present the same universality as the (angle preserving) complex
mappings discussed here. However, we argue in Sect. 2 that analytic mappings
viewed as two-dimensional mappings are atypical (unless they arise from some
particular physical situation [21]), and that we do not expect our universal
numbers to characterize the general two-dimensional case.

1. Complex Iterations - A Brief Review

In this paper we shall study metric properties (both in iteration and parameter
space) of the asymptotic iterates of

where f(z) is an analytic function in the complex variable z with a quadratic critical
point zc, i.e., a power series expansion of the form

f(z) = ao + a2(z-zc)
2 + ..., α 2 φ0. (1.2)

Typical model mappings of this type are the Fatou [22] mapping

f(z) = P + z2 (1.3)

and the Julia [23] mapping

f(z) = λz(l-z). (1.4)

While in our numerical investigations we always use polynomial mappings, we
expect the results to apply to a wider class of mappings (such as the polynomial-
like mappings of Douady and Hubbard [28,29]). When such mappings are used to
model dynamical systems [24], with real variable z and real "non-linearity"
parameter p, the asymptotic attractor can be conveniently represented by a
"bifurcation tree," i.e., by a two-dimensional plot with p on one axis and values of
the asymptotic iterates for given p plotted along the other axis [25, 7].

It is not possible to describe asymptotics of complex iterations in this way, as
their iteration space has two (real) dimensions, and period π-tuplings are induced
by adjusting a pair of (real) parameters.

In order to describe the properties of asymptotic iterates of complex mappings,
we proceed in two steps.

First, we will describe the parameter dependence in terms of the associated
Mandelbrot set M. The Mandelbrot set [26, 27] is the set of all values of the
parameter of a quadratic mapping (parameter p in (1.3)) for which the iterates of
the finite critical point do not escape to infinity. (A critical point zc is a value of z for
which the mapping f(z) has vanishing derivative, f'(zc) = 0. In (1.3) z = 0 and z = oo
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Fig. 1.1. The Mandelbrot set M is the region in the complex parameter plane for which the critical
point of the mapping (1.4) does not iterate away to infinity. Inside the big circle (left open for
clarity) iterations converge to a fixed point. The full region has two symmetry axes, Re/V= 1 and
Im/ = 0, so only one quarter is shown. The usual period-doubling sequence is on the real axis. The
winding numbers of the periodic orbits corresponding to larger leafs of M are indicated. See [27]
for detailed scans of this region
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Fig. 1.2. The basin of attraction for the superstable 3-cycle of the Julia mapping (1.4). Any initial z
from the black region converges toward the superstable 3-cycle, denoted by the three white dots.
The basin of attraction for the Fatou mapping (1.3) superstable 3-cycle is the same, up to a co-
ordinate shift and rescaling

are the critical points.) The Mandelbrot set for the mapping (1.4) is plotted in
Fig. 1.1.

As explained below, what we actually use here is only the "Mandelbrot cactus,"
defined with respect to one particular critical point zc, the associated fixed point
and all of its bifuractions to attractive periodic orbits. The Mandelbrot cactus is
well defined for general mappings (with higher order terms in (1.2)), even when the
notion of "escape to infinity" is not meaningful.
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Fig. 1.3 (a) The attractor for the superstable 1/13-cycle of the Fatou mapping (1.3). (b) The
attractor for the superstable 1/53-cycle. Any initial z from the basin of attraction converges
asymptotically to the attractor.

Second, we describe the asymptotic iterates for a given value of the parameter
by investigating either their attractor or their basin of attraction. In our
applications the attractor L is always an attractive periodic orbit (cycle) z0,
z l 5 . . . ,z n _ 1 . An orbit is periodic if the nth iterate zn = fn(z0) = z0. If

df%
dzk

< 1 (1.5)

the orbit is attractive. If the derivative (1.5) is vanishing, the orbit is superstable,
and (by the chain rule) a critical point is one of the cycle points. For polynomial
mappings z = oo plays a special role; it is always a superstable fixed point. A typical
attractor is plotted in Fig. 1.3.

The general theory of iterations of analytic mappings is a rich and intricate
subject. Here we investigate only periodic orbits associated with a given critical
point (zc in (1.2)). The following theorem due to Fatou [22] eases attractor
searches:

Theorem. The basin of attraction K of an attractive periodic orbit contains at least
one critical point.

The precise shape of the Mandelbrot set M depends on the particular mapping,
but its core always resembles a self-similar cactus, see Fig. 1.1. The Mandelbrot
cacuts is the set of connected components of M generated from a single fixed point
attractor by all possible sequences of all possible period rc-tuplings (see Sect. 3).
The distinction between the Mandelbrot set and the Mandelbrot cactus is crucial;
our arguments and our numerical evidence for universal scalings applies only to
the cactuses. The Mandelbrot set is not self-similar; each level of magnification
reveals more and more "hair."

The structure of the Mandelbrot set has been studied in detail by Douady and
Hubbard [28, 29]. They have proven that M is connected, i.e., that the small
Mandelbrot cactuses visible away from the main cactus in Fig. 1.1 are all
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connected to the main cactus [30]. They have furthermore succeeded in
characterizing Julia sets associated with various parts of M by unique com-
binatorial "trees" [31]. A particularly interesting Douady-Hubbard result is their
determination of exterior angles associated with the boundary of M; for example,
they have shown that the exterior angles associated with the period doubling
sequence converge to the Thue-Morse number. The Thue-Morse number encodes
the self-similar nature of period doublings in a direct way; it is defined by a self-
similarity algorithm. This is the first analytic number in the universality theory for
period rc-tuplings; unfortunately, it is a measure of the exterior of the Mandelbrot
set, and is unrelated to the physically interesting scaling of the interior, the
Feigenbaum [1, 32] δ.

To summarize, the parameter dependence of asymptotic iterates of mapping
f(z) is described by the Mandelbrot set M. For each point inside the Mandelbrot
cactus, the asymptotic iterates can be described by their basin of attraction K, the
Julia set J and the attractor L.

2. Two-Dimensional Mappings

In this section we briefly discuss general two-dimensional mappings. This analysis
is not new, but it is cast in a form suited to our purposes. Our conclusion will be
that the analytic mappings are atypical and that we do not expect the universal
properties of iterates of complex functions (developed in the remainder of this
article) to be characteristic of general two-dimensional systems.

Consider a two-dimensional mapping,

x . ^ x ; = /.(x)? /=1 5 2. (2.1)

We shall be interested in the stability of the periodic orbits (cycles) of such
mappings. The elements of a cycle of length n are fixed points of the nih iterate of

/(*),

(here we have suppressed the vector index ί; the subscript k labels the /cth cycle
point). In this way the problem of determining the stability of a periodic orbit
reduces to the study of the stability of fixed points of g(x) = fn(x). Stability of a fixed
point is determined by the eigenvalues of the Jacobi matrix (except when the
eigenvalue or largest modulus is exactly on the unit circle)

A -u = -^- (2 3)
Λjk 5 V {Z.3)

The orbit is stable (attractive) if | A J | < 1 , j=\,2. Since A is a real matrix, the
eigenvalues )Ί are either real, or form a complex conjugate pair /, 2*.

A stable orbit becomes unstable when one or more eigenvalues cross the unit
circle. If a single real eigenvalue dominates, the transition must occur at either / = 1
or λ = — 1. For λ = — 1 the system undergoes a period-doubling bifurcation which
can be understood in terms of a one-dimensional real mapping [7]. Here we shall
be interested in the case of the pair of complex eigenvalues λ, λ* crossing the unit
circle simultaneously.
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To bring a general two-dimensional real mapping to a standard form in the
neighborhood of a fixed point, we first shift the origin to the fixed point, and then
use the eigenvalues of the Jacobi matrix (2.3) to construct projection operators

P = (A - λ*t)/{λ - λ*), P* = {A- λt)/(λ* - λ)

onto the two eigenvectors u, u*\ Px = zu, P*x = z*w*. Then the action of the linear
part of the mapping (2.1), i.e., the Jacobi matrix A, is just multiplication of z by λ:

Ax = λzu + λ*z*u* .

In terms of the complex variable z the nonlinear mapping (2.1) is given by

z ^ ' = lz + α 2 Oz 2 + α 1 1 z z H α o / 2 + α3Oz3 + α 3 1 z V + .... (2.4)

A general two-dimensional mapping is non-analytic, i.e., it depends on both z and
z*

The next step in turning the mapping into a standard form is a non-linear
change of variables [33, 34]

z-->w = z + b2Oz2 + bιιzz* + bO2z*2 + b3Oz3 + b3lz
2z* + .... (2.5)

In terms of the new variable w the iteration is given by

w' = ?.w+ Y cikw
jw*k,

L-ι JK •>

J + k l (2.6)

In the last sum "..." represents terms containing blm with / + m < j + /c. For
increasing values of j + k the coefficients bjk can be chosen successively so as to
make cjk = 0 in (2.6), except at the resonances

λ j - k ~ ί = l. (2.7)

If/ is close to a resonance, the resonant terms in (2.6) must be kept, as otherwise the
change of variable from z to w is a singular function of the parameter /.

To study the way in which a fixed point turns into a stable n-cycle, consider /
with value close to the nxh root of unity

ω = Qxp(i2πm/n). (2.8)

For λ close to the resonance the leading resonant terms in (2.6) are (changing the
notation back to z instead of w)

4+...)+.... (2.9)

Depending on the nature of leading terms, this mapping can exhibit various types
of bifurcations. The mapping

z-*z' = λz{l+C\z\2), (2.10)

which represents the leading terms in (2.9) for n > 4, exhibits a Hopf bifurcation.
The fixed point z = 0, which is stable for \λ\<l, gives birth to a stable invariant
circle for R e C < 0 and \?,\ > 1. If R e C > 0 and |/| < 1 there is an unstable invariant
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circle, which is absorbed by the fixed point at \λ\ = 1, so that for Re C > 0 and \λ\ > 1
there is no stable region close to z = 0.

The mapping

z-^z'^λz + z*"-1 (2.11)

represents the leading terms in (2.9) for n = 3. It has an n-cycle zo,z1,...,zn = zo with

zk = ωkz09 zn

k = (ω*-λ*)\zk\
2 (2.12)

which coincides with the fixed point z = 0 when λ = ω (λ is then the nth root of unity,
(2.8)). This ft-cycle is always unstable, and there is an explosive transition as soon as
the fixed point becomes unstable.

The analytic mapping (set B = 1 in (2.9) by rescaling z)

z-+z' = λz + zn + ι (2.13)

represents the leading terms in (2.9) only if an extra symmetry of the mapping (2.1)
makes the non-analytic terms in (2.9) vanish. The properties of analytic mappings
that we shall develop here depend crucially on the analyticity assumption, and are
thus atypical of general two-dimensional mappings. (See Sect. 7 for comments on
non-analytic perturbations).

3. Period fi-Tupling

In this section we study the way in which a fixed point of the complex mapping (1.1)
branches into an ft-cycle. As in (2.3), the stability of a fixed point is given by

Q=ϊr> (3-D
dz0

and we take, without loss of generality, the fixed point to be at z = 0, and f(z) with a
power series expansion

f(z) = ρz + Σ a?j. (3-2)

As in (2.5), we change the variable

w = z + Σ bjz* (3.3)
j^2

and eliminate from (3.2) all terms with ρj — ρ Φ 0 by fixing successively b2, b 3 , . . . . If
ρ is sufficiently close to an nth root of unity, ω = exp(i2πm/n), and z is close to 0, the
generic behavior of the new iteration function is the same as

f(z) = ρz + zn+ί. (3.4)

In our numerical studies we assume the generic situation. This function has an
A2-cycle

zj = ωjzθ9 zn

0 = ω-ρ. (3.5)
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For ρ = ω this n-cycle coincides with the fixed point z = 0. In the neighborhood of
ρ = ω we have

= (ρ + (n + l)zn

0)
n = 1 - (ρ - ω)n2/ω + .... (3.6)

For ρ = (l +ε)ω the n-cycle (3.5) of the mapping (3.4) is stable if

| l - n ε | < l , (3.7)

while the fixed point is stable if

| l + ε | < l . (3.8)

The normal form mapping (3.4) is equivalent to (3.2) only for small z, and we do
not rely on this equivalence in our numerical studies. However, (3.4) provides a
good qualitative illustration of how a fixed point of (3.2) becomes unstable and
branches into n-cycle.

In conclusion, in a generic situation, whenever a fixed point becomes unstable
at ρ = nth root of unity, it branches into an π-cycle which immediately becomes
stable. As any stable cycle becomes unstable in the same fashion, branching into a
new stable cycle with a multiple of the original cycle length, and as any such cycle is
stable inside a disklike region in the complex parameter plane, the union of all
these stability regions is a self-similar Mandelbrot cactus, introduced in Sect. 1.

4. Universal Equations for Period /ι-Tuplings

We now start with the analysis of infinite sequences of period n-tuplings, and give
evidence for their conjectured universality.

As discussed above, a stable nk-cycle becomes unstable and branches into an
nk+1 -cycle when the parameter λ passes through a value such that the stability ρk(λ)
(as defined in (3.1)) attains the critical value

ρ(λ) = ω = Qxp(i2πm/n). (4.1)

For ρ sufficiently close to this value the system is modeled by (3.4). From (3.6) it
follows that near the transition from an nk-cycle to an nk+1 -cycle

2

ρ f c + 1 = l — ( ρ Λ — ω ) — + . . . , (4.2)

h e n c e

dρ,k+ 1

dλ

2
n

ω dλ
(4.3)

and at the transition there is a scale change by the complex factor [35] —n2/ω
which is independent of k.

Each leaf of the Mandelbrot cactus Fig. 1.1 corresponds to an m/n cycle, and
the parameter value for the superstable m/n cycle corresponds to the center of the
leaf. The above argument suggests that the leaf is n2 times smaller than the cactus,
and that it is rotated by a phase factor — 1/ω. The very geometry of the
Mandelbrot cactus Fig. 1.1 suggests such scaling [36]. This scaling is not exact,
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because the above analysis applies only to the infinitesimal neighborhood of the
junction of a leaf to the cactus; however, the evaluation of the exact scaling
numbers shows that this is a rather good approximation.

The exact scaling is obtained by comparing values of the parameter λ
corresponding to successive (m/n)k superstable cycles, i.e., λ values such that
ρk(λk) = 0. As each cactus leaf is similar to the entire cactus, we expect the ratios of
the sizes of the successive stability regions corresponding to successive (m/nf-
cycles to tend to a limit as fc->oo:

o t λj, Au _ 1

δmln= lim -f h / (4.4)

The scaling number δ tells us by how much we have to change the parameter λ in
order to cause the next m/n period n-tupling. In particular, <51/2 = 4.669... is the
Feigenbaum δ for the period doublings in real one-dimensional mappings [1, 32].

An alternative definition of δ is

δm/n = lim
dλ

dλ

(4.5)

Here we compare the scales of successive stability regions at given stability ρ. For
ρ = l Eq. (4.3) yields the approximation

dnlH

~ _ M 2 -i2π(m/H-l/2)

=---ne
(4.6)

We conclude that <5m/n-» — n2/ω as m/n->05 exactly. This conjecture is supported by
the numerical evaluation of δ's, Sect. 6.
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Fig. 4.1. The basin of attraction for the superstable 9-cycle for iterates of the model mapping (1.4).
The scaled down version of the 3-cycle basin of attraction, Fig. 1.2, is visible in the center
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Fig. 4.2. The first 30,000 points of the attractor for l/lS^-cycle, or the "universal 1/13 horseshoe."
The smaller horseshoe at the origin is identical to the full horseshoe, except for a scaling and
rotation by the complex scaling factor α 1 / 1 3

Scaling in the parameter space (generalized Feigenbaum's S) is suggested by the
apparent self-similarity of the Mandelbrot cactuses [37]. In the same way the self-
similarity of the Jula sets (or the asymptotic attractors) suggests a scaling law in the
iteration space z, which we discuss next. This law will characterize the scales of
successive trajectory splittings (generalized Feigenbaum's α).

The self-similarity we are alluding to can be seen by comparing the basin of
attraction for the superstable 3-cycle, Fig. 1.2, and for the superstable 9-cycle,
Fig. 4.1. In the latter figure the 3-cycle basin of attraction is visible in the center,
rotated and scaled down by a factor whose asymptotic limit is the generalization of
Feigenbaum's a to period triplings.

This scaling number α can be computed by comparing the successive
superstable cycles, at successive parameter values λk, λk + 1. As k -> oo, the sequence
of /lfc's converges to λ^ and the superstable n^-cycles converge to an n°°-cycle which
looks typically like a series of nested horseshoes, Fig. 4.2.

In Fig. 4.2 the sequence zo-^z 1-^z 2->...-^z 1 2 traces out a large horeseshoe.
The sequence z o -^z 1 3 -^z 2 6 ->.. .-^z 1 5 6 traces out a smaller horseshoe, and so
forth. The attractor is self-similar: the horseshoes on succeeding levels are related
by rescaling and rotation by a complex number which asymptotically approaches

V^im^Λ (4-7)
Z Z

a characterizes the scale of trajectory splitting at each period n-tupling. (For
m/n = l/2 this is Feigenbaum's [1] α = -2.5029....)
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We do not have as good an intuitive picture for estimating α's as we have for δ's.
Very roughly, the size of α is inversely proportional to the gap of the "horseshoe,"
as the successive horseshoes have to be fitted within each other. For 1/n-tuplings
the size of the gap is insensitive to n, as the two cycle points which define the gap,
the critical point and its first preimage, depend weakly on n. For this reason the
1/53 cycle, Fig. 1.3b, does not look very different from the 1/13 cycle, Fig. 1.3a, and
the corresponding α's converge to finite limits in the n-»oo limit.

We can use the results of Sect. 3 to argue that α1 / n approaches a finite limit as
tt->oo, and that the convergence is logarithmic. Close to the period n-tupling
parameter value ρ = ω in (3.4), the cycle points (3.5) are uniformly spaced with
angle 2π/n at radius |ρ — ω\1/n. Close to the period n-tupling parameter value px the
cycle points of the original mapping (consider for concreteness the Fatou mapping
(1.3)) behave similarly. As the parameter value in (1.3) is smoothly changed from px

to the superstable n-cycle value ps, the cycle fans out. Let zo(p) be that periodic
point which eventually falls onto the critical point, zo(ps) = zc. For the superstable
cycle the distances between the critical point, its image and its preimage are of
order 1, and (because the critical point is quadratic) the three cycle points subtend
an angle of π/2 (see Fig. 1.3). Consider next the parameter value p2 corresponding
to the period n-tupling of the n-cycle. Then

zo(Pι)-zc

α 0 C

In what follows we assume that the transformation (3.3) is valid up to the critical
point zc, in order to be able to estimate zo(p2) from the model mapping (3.4). The
corresponding parameter value ρ2 in the model mapping (3.4) is determined by
setting the derivative (3.6) equal to ω. This yields a cycle point zo(ρ2) located
between the superstable cycle point zo(ρj and the fixed point zo(ω). In the model
mapping the critical point, its image and its preimage subtend an angle of nearly π,
and zo(ρ2) lies at an angle of approximately π/2 with respect to zc and its image. If
the original mapping has a quadratic critical point, the angles at the critical point
are approximately halved by the inverse of transformation (3.3). On the basis of
above arguments we expect that: the phase of aljn in (4.8) is approximately π/4, that
\aljn\ approaches a non-zero constant (as the exact location of zo(ρ2) depends on
the mapping, a simple analytic expression for the limit of aljn is unlikely), and that
the convergence should be logarithmic, aί/n — a1/o0 = O(l/n). We have checked this
numerically for n up to 50, and find \alιin + 1) — a1/n\ocn~2'0U". The above
arguments can be straightforwardly generalized to other families of period
n-tuplings (such as those discussed in Sect. 7).

For m/ίt-cycles with m> 1 the horseshoe gap is smaller, because some of the
cycle points fall between the critical point and its preimage, and correspondingly
the α's are larger. The extreme case obtains for m/n's approximants to irrational
numbers. In Fig. 4.3 we have plotted the attractor for the superstable 987/1597
cycle. 987/1597 is an approximation to the golden mean, and the attractor does not
resemble a horseshoe at all: as for m/n-»(|/5~—1)/2 the cycle points become dense
[34], the gap at the critical point is very small, and correspondingly the α is very
large.
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Fig. 4.3. The attractor for the superstable 987/1597 cycle for mapping (1.3). 987/1597 is an
approximation to the golden mean. In the limit m/n->(]/5 —1)/2 the cycle points fill out the
trajectory densely

Denote by T the operation of iterating π-times (in the above example n— 13)
and rescaling by α:

= otfn(z/a) (4.8)

The operation T encodes the self-similarity of the asymptotic cycle; it maps each
horseshoe into a horseshoe on the preceding level.

After iterating and magnifying the neighborhood of the critical point by T
infinitely many times, all information about the global shape of the starting
function f(z) is lost, and we expect to be left with a universal function g(z) = gm/n(z)
which is self-reproducing under rescaling and iteration:

) = agn(z/ot). (4.9)

This university equation describes the asymptotics of infinite sequences of (m/n)
period ft-tuplings. It determines the universal scaling numbers a and δ; we shall
solve it numerically in Sect. 6. The universality equation for period doubling [38]
is the special, n = 2, case of this equation.

Similar universality equations can be defined for other itineraries of period
n-tuplings. (We have not pursued this further, other than with a cursory
investigation of the 1/3 —>2/3 -> 1/3 —>2/3 —>... sequence.)

5. Unstable Manifold

In this section we describe the elegant formulation of the universality theory due to
Vul et al. [39, 3, 40, 41].

The universality equation (4.9) encodes the self-similarity of the asymptotic
superstable orbit. However, the self-similarity extends to the parameter space as
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well: not only does the asymptotic orbit resemble itself under rescaling and
rotation by α, but also each leaf of the Mandelbrot cactus resembles the entire
cactus under rescaling and rotation by δ.

These self-similarities can be described by means of the following three
operations:

The first operation is a rescaling of the parameter and iteration spaces:

[RΠp(z) = afpld(z/a). (5.1)

With the appropriate choice of complex numbers d (a), a leaf of the Mandelbrot
cactus (a horseshoe within the attractor) can be rescaled and rotated to the size and
the orientation of the entire cacuts (entire attractor).

We fix the origin of p and z by requiring that z = 0 be a critical point of the
mapping fp(z), and, for the parameter value p = 05 a superstable fixed point as well
(the Fatou mapping (1.3) is an example of such a mapping). We fix the scale of/? and
z by requiring that the superstable m/n cycle occurs for the parameter value p = 1
and that

/ i ( 0 ) = l . (5.2)

The second operation shifts the origin of the parameter space to the center of
the m/n-leaf of the Mandelbrot cactus (p corresponding to the superstable m/n
cycle):

p z) = / 1 + p (z) . (5.3)

The third operation iterates fp(z) n times:

[N/]p(z) = /;(z). (5.4)

By definition, [<S/lo(z) = /i(z) n a s a superstable m/n cycle, so its nth iterate has a
superstable fixed point, [iVS/] 0(0) = 0.

The parameter shift S overlays the Mandelbrot cactus over its m/n leaf, and the
Julia set for [Nfj^z) resembles the Julia set for the superstable fixed point fo(z) (see
Fig. 1.2 and Fig. 1.4, for example). Finally we adjust the scale of the new M, J sets
by requiring that the scale factors α, d in (5.1) are such that [RNSf~\p(z) satisfies the
same normalization condition (5.2) as the initial function fp(z). This shifting and
rescaling is illustrated in Fig. 5.1.

The combined effect of the rescaling, parameter shift and iteration is
summarized by the operator T* = RNS;

lT*np(z) = af1\p/d(z/a). (5.5)

If we take a polynomial fp(z) and act on it with T*, the result will be a
polynomial of higher degree with similar M and J sets. For a finite number of T*
operations the scaling numbers d and a depend on the choice of the initial mapping
fp(z). If we apply 7"* infinitely many times, we expect that a and d will converge to
the universal limits a and δ, and T*nfp(z) will converge to a universal one-
parameter family which is a fixed point of the operator T*:

φ) = ίT*g]p{z) = ag\ 4 p/δ(φ). (5.6)
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9- cycle

3-cycle

Fig. 5.1. The unstable manifold method illustrated by period triplings. The parameter is shifted
from the center of a cactus leaf to its 1/3 leaf, the 1/3 leaf is rescaled and rotated by δ, and the basin
of attraction of third iterates is rescaled and rotated by α. The Mandelbrot cactus and the basin of
attraction for the unstable manifold gp are self-similar under such shifting and rescaling

This universality equation determines both gp(z) and the universal numbers a and
δ. Our original universality equation (4.9) is a special case of the above equation:
g(z) = gp*(z\ where

p* = 1-f-p*/<5. (5-7)

p* is the parameter value corresponding to the asymptotic (rn/n)*-cycle. The
family of universal functions gp(z) is called the unstable manifold because it is
invariant under the T-operation (4.8) which drives p away from the fixed point
value p*:

ΛΦ) (5-8)

To summarize, the T* operation encodes simultaneously the self-similarity in
the parameter space (Mandelbrot cactuses) and in the iteration space (Julia sets).
Being no more than a redefinition of variables, it is exact, and it is an explicit
implementation of the above self-similarities; T* magnifies the nth iterate of the
(m/n)k+ί-cycle and overlays it onto the (m/ri)k-cyc\Q (see Fig. 5.1). Asymptotically
we expect that the self-similarity will become exact, and hence that the procedure
will converge to the unstable manifold, a one dimensional line of universal
functions gp.

Not only are the JV, S, R operations a natural encoding of the complex
universality, but, as we shall see in the next section, they are also useful
computational tools.
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6. Numerical Solutions of Universality Equations

In the neighborhood of the critical point z = 0, the universal function g(z) is
basically a parabola, and is well approximated by a truncated power series. This
observation leads to a simple and efficient method [42] for solving (4.9).
Approximate g(z) by an 2nth order polynomial,

g(z) = l + Σ > / 2 J (6.1)

The universal equation (4.9) determines g(z) up to an overall scale, which we fix by
the normalization condition

g(0)=l . (6.2)

The renormalization operator T from (4.8) maps (6.1) into a new polynomial,
which we also truncate to the order 2N:

[Tg] (z) = 1 + Σ bjz J (6-3)

With this truncation, the universality equation (4.9) reduces to a set of N
equations obtained by equating the coefficients in (6.1) and (6.3). These equations
can be solved by the standard Newton-Raphson method, provided one starts with
a sufficiently good guess. The Newton-Raphson method requires inversion of the
N xN jacobian matrix

We choose a1 in the starting approximation g(z) = 1 +a1z
2 corresponding to the

(m/n)00 cycle (an extrapolation from the m/n and (m/n)2 cycle is sufficient), and carry
out the first few iterations without Newton-Raphson correction. As in the period-
doubling case [2], iteration without Newton-Raphson correction would eventu-
ally diverge, because Djk has a single unstable eigenvalue, namely δ. (Needless to
say, in each calculation we have verified that there is only one unstable eigenvalue,
and no marginal eigenvalues.)

When the solution for au a2,..., aN of the desired accuracy is found, a follows
from the normalization (6.2) and the universal equation (4.9),

l/α = gn(0), (6.5)

and δ = δmjn is the single eigenvalue of the jacobian matrix D with norm greater
than 1.

The α's and <5's computed this way are listed in Table 6.1. The universal
function coefficients for m/n =1/3 and 1/63 are listed in Tables 6.2 and 6.3.
Typically a 12 term approximation to g(z) for a short cycle (n small), with 17
significant digits precision, yields α to 8 significant digits and δ to 6 significant
digits. For long cycles, such as 71 = 60, the precision goes down and a 15 term
approximation is needed to obtain 4 significant digits for α and 2 significants digits
for δ.

The unstable manifold universal equation (5.6) provides an alternative method
for computing the scaling numbers α and δ.
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Table 6.1. Universal numbers α and δ

m/n

1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11
1/12
1/13
1/14
1/15
1/17
1/19
1/20
1/22
1/23
1/25
1/27
1/29
1/33
1/38
1/43
1/48
1/53
1/58
1/63
2/5
2/7
2/9
2/11
2/13
2/15
2/17
2/19
2/21
2/23
2/25
2/27
2/29
2/31
2/33
2/35
2/37
2/39
2/41
2/43
3/7

Re(α)

- 2.5029079
- 2.0969199
- 1.1315
- 0.3800

0.1600
0.5524
0.8455
1.0704
1.2474
1.3898
1.5065
1.6036
1.6856
1.7556
1.8688
1.9561
1.9926
2.0549
2.0816
2.1282
2.1673
2.2006
2.254
2.305
2.342
2.372
2.396
2.415
2.431

- 3.8741
- 2.3939
- 1.0781
- 0.1323

0.5452
1.0438
1.4219
1.7166
1.9516
2.1429
2.3013
2.4343
2.5476
2.645
2.730
2.804
2.870
2.928
2.980
3.027

- 4.9851

Im(α)

2.3583
3.2600
3.5539
3.6264
3.6152
3.5724
3.5191
3.4641
3.4113
3.3619
3.3165
3.2750
3.2371
3.1709
3.1154
3.0910
3.0477
3.0284
2.9938
2.9638
2.9374
2.893
2.850
2.817
2.790
2.767
2.749
2.733
2.1810
4.3486
5.0877
5.3170
5.3563
5.3219
5.2597
5.1889
5.1179
5.0500
4.9868
4.9285
4.8750
4.826
4.781
4.740
4.702
4.667
4.635
4.606
2.1097

Re(<5)

4.669202
4.600225

- 0.8527
- 9.520
- 20.657
- 33.991
- 49.413
- 66.875
- 86.35
- 107.84
- 131.33
- 156.82
- 184.30
- 231.79
- 278.74
- 351.69
- 391.16
- 476.1
- 521.5
- 618.5
- 723.4
- 836.3
-1086.0
-1443.0
-1851.0
-2309.0
-2817.0
-3376.0
-3979.0

18.969
6.681

- 20.805
- 59.07
- 106.55
- 162.62
- 227.01
- 299.57
- 380.2
- 469.0
- 565.7
- 670.5
- 783.3
- 904.0
-1033.0
-1170.0
-1315.0
-1468.0
-1628.0
-1797.0

39.855

Im(S)

8.981226

18.1097

26.371

34.009

41.238

48.195

54.965

61.60

68.14

74.61

81.02

87.38

93.71

106.29

118.78

125.01
137.4

143.6

156.0

168.3

180.7

205.0

236.0

267.0

297.0

328.0

359.0

389.0

14.564

47.499

78.221

106.71

133.68

159.63

184.88

209.65

234.1

258.2

282.1

305.6

329.6

353.0

377.0

400.0

423.0

447.0

470.0

493.0

17.345
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Table 6.1 (continued)

m/n

3/8
3/10
3/11
3/13
3/14
3/16
3/17
3/19
3/20
3/22
3/23
3/25
3/26
3/28
3/29
4/9
4/11
4/13
4/15
4/17
4/19
4/21
4/23
4/25
4/27
4/29
5/11
5/12
5/13
5/14
5/16
5/17
5/18
5/19
5/21
5/22
5/23
5/24
5/26
5/27
5/28
5/29
6/13
6/17
6/19
6/23
6/25
6/29
7/15
7/16

Re(α)

- 4.7509
- 3.1205
- 2.9301
- 1.3347
- 1.3985
- 0.0541
- 0.2925

0.8552
0.5086
1.5190
1.1046
2.0187
1.5608
2.4058
1.9193

- 5.7943
- 5.6058
- 3.5324
- 3.5989
- 1.3190
- 1.9110
- 0.2510
- 0.6788

1.3540
0.2228
2.1518

- 6.4041
- 6.7255
- 6.3563
- 6.4061
- 3.7311
- 4.3223
- 3.7979
- 4.3015
- 1.1342
- 2.0294
- 1.6364
- 2.5054

0.6810
- 0.3642
- 0.0835
- 1.1789
- 6.8651
- 7.1224
- 3.7872
- 4.9787
- 0.8558
- 3.1121
- 7.2131
- 8.0945

Im(α)

3.3158
5.2781
5.6292
6.3452
6.4515
6.6681
6.7284
6.7201
6.7931
6.6697
6.7710
6.5817
6.7135
6.4828
6.6430
2.1951
3.9917
6.1283
6.5440
7.4041
7.5014
7.7562
7.8563
7.7832
7.9672
7.6931
2.3777
3.1835
4.3160
4.3805
6.8847
7.2268
7.6067
7.1836
8.2725
8.6464
8.7522
8.2873
8.6054
9.1168
9.1221
8.7300
2.6080
4.5767
7.5373
7.6141
8.9662
8.8593
2.8540
3.3267

Re(<5)

37.150
21.89

2.31
- 32.62
- 63.87
- 112.40
- 153.42
- 213.42
- 263.44
- 334.1
- 392.7
- 473.6
- 540.7
- 631.6
- 707.0

67.747
60.43
46.11

- 7.86
- 42.98
- 129.84
- 178.2
- 292.7
- 351.7
- 491.8
- 560.5

102.98
100.29

99.38
89.49
80.08
38.55
16.39

- 23.16
- 50.9
- 120.1
- 155.2
- 218.1
- 255.3
- 347.6
- 392.9
- 476.4

145.73
124.81
124.14

- 43.0
- 56.1
- 327.9

196.09
187.88

Im(δ)

45.836
87.04

116.75
154.24
182.82
217.03
244.60
276.63
303.47
334.0
360.4
390.0
415.9
444.8
470.4

17.723
94.38

137.06
218.56
255.14
334.39
366.2
443.1
471.9
547.0
573.8

15.93
67.29
99.70

160.62
198.07
256.40
287.29
353.86
381.8
437.7
465.4
534.3
555.6
607.8
633.1
704.0

12.13
244.72
270.55
523.1
535.1
783.1

6.44
84.51
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Table 6.1 (continued)

m/n Re(α) Im(α) RQ(δ) lm(δ)

7/17

7/18

7/19

7/20

7/22

7/23

7/24

7/25

7/26

7/27

7/29

8.3289

7.4681

7.7033

7.7453

3.7526

5.0979

5.6717

4.1468

4.7947

5.6008

0.5363

3.7122

5.3939

5.5577

4.6456

8.0885

8.7039

8.5847

9.3493

9.2319

7.8909

9.5106

190.21

197.42

178.29

166.72

178.4

100.7

57.3

51.7

10.2

67.0

58.4

154.27

168.70

241.27

346.69

354.9

445.5

525.3

528.9

604.6

726.4

715.6

8/17

8/19

8/21

8/23

8/25

8/27

8/29

7.4756

8.6799

8.6157

8.2780

3.6639

5.2800

5.4753

3.0970

4.3522

5.5690

4.6329

8.5484

9.7055

9.9420

254.11

248.37

235.4

215.4

242.9

110.6

9.0

1.03

139.33

282.8

466.5

451.3

606.2

759.0

9/19

9/20

9/22

9/23

9/25

9/26

9/28

9/29

7.6737

9.1002

9.7430

8.2064

8.9878

8.7299

3.5455

5.4627

3.3275

3.6413

3.8618

6.4631

6.2691

4.5697

8.9305

10.0265

319.80

300.39

312.5

334.8

277.8

271.1

317.5

189.9

10.23

97.89

279.5

253.6

443.3

604.1

560.0

684.3

10/21

10/23

10/27

10/29

- 7.8234

-10.1954

- 9.1320

- 9.1123

3.5413

3.8270

7.1758

4.4770

393.2

375.0

375.7

333.8

21.1

211.5

442.4

759.4

11/23

11/25

11/26

11/29

11/30

11/32

11/34

- 7.9367

-10.3086

-10.0829

-10.7052

-10.4267

- 9.436

- 3.276

3.7369

4.6906

5.6315

6.1850

6.8875

4.368

9.512

474.2

452.5

474.9

436.1

415.2

404.0

497.0

33.7

169.6

227.3

573.5

633.5

932.0

815.0
12/29

12/31

13/29

13/31

13/34

14/29

14/41

14/43

15/31

17/35

21/43

21/55

-11.3109

-10.629

-11.5666

-11.909

-11.169

- 8.1366

-10.148

- 2.885

- 8.173

- 8.221

- 8.256

-15.539

5.3929

7.374

4.1977

5.552

7.841

4.2218

4.019

10.077

4.354

4.583

4.931

9.920

539.4

530.0

614.9

625.0

622.0

763.5

656.0

842.0

875.0

1122.0

1707.0

1553.0

376.9

560.0

266.9

434.0

661.0

- 81.0

1557.0

1290.0

- 100.0

- 143.0

- 247.0

1883.0
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Table 6.2. Universal function for period triplings g1/3(z).
The first 9 coefficients in 11-term expansion (6.1). £ — 4
stands for x 10~4, etc.

243

k

0
1
2
3
4
5
6
7
8
9

Re(cfc)

1.0
0.54665

-0.24397
-0.2529
-0.8808
0,7284
0.5413
0.7364
0.7354
0.5806

£-1
£-1
£-2
£-4
£-6
£-6
£-7
£-8
£-9

lm(ck)

0.0
0.749021
0.52466
0.1197

-0.1376
-0.1829
-0.1193
-0.4772
0.2570
0.2832

£-1
£-2
£-3
£-4
£-5
£-7
£-9
£-9

Table 6.3. Universal function g1/63(z). The first 11 coeffi-
cients in 14-term expansion (6.1)

k

0
1

3
4
5
6
7
8
9
10
11

Refe)

1.0
0.316969

-0.16147
-0.98843
-0.53994
0.24356

-0.83356
0.18778

-0.25073
0.13966

-0.12662
-0.11355

£-1
£-3
£-4
£-5
£-7
£-8
£-10
£-11
£-12
£-14

lm{ck)

0.0
0.8639

-0.2718
-0.1264
0.2177

-0.2049
0.1380

-0.7286
0.3294

-0.1556
0.9537

-0.6775

£-2
£-3
£ — 3
£-4
£-5
£-6
£-8
£-9
£-10
£-12
£-13

The universality equation (5.6) can be solved numerically by approximating
[39, 3] the unstable manifold by a truncation of the double power series expansion
for gp{z):

N

V
Z (6.6)

We start with a two term approximation to gp{z): gp(z) = colp + cloz
2. Repeated

applications of the T* operation (5.5) generate a double polynomial in z and p of
higher and higher degree; this procedure converges asymptotically to the unstable
manifold gp(z). We implement the shifting and iteration operations S and N as
numerical polynomial substitution routines, truncating all polynomials as in (6.6).
The T* operation is completed by the rescaling operation R, Eq. (5.1). The scaling
numbers d and a are fixed by the normalization conditions (5.2). We use Newton's
method to find the parameter value corresponding to the superstable m/n-cycle.



Table 6.4. Universal manifold gp(z) for period doublings, m/n = \/2. The coefficients in the expansion (6.6) for j<9, k< 10 truncation

0

1

2

3

4

5

6

0.0

0.747235

0.239114

0.15297

-0.1294

-0.3162

-0.3366

£ - 1

£ - 2

£ - 3

£ - 4

-0.793586

-0.253027

-0.93379

0.4350

0.8644

0.9378

0.5115

£ - 2

£ - 2

£ - 3

£ - 4

£ - 5

0.55650

-0.3970

-0.4485

-0.8995

-0.1016

-0.3187

0.1399

£ - 1

£ - 2

£ - 2

£ - 3

£ - 3

£ - 5

£ - 5

0.2472

0.1845

0.4430

0.5241

-0.1504

-0.1888

-0.3310

E — 2
£ — 2

£ - 3

£ - 4

£ - 5

£ - 5

£ - 6

-0.2615

-0.1013

-0.1193

0.2924

0.1395

0.2159

0.3577

£ - 3

£ - 3
£ - 4

£ - 5

£ - 5

£ - 6

£ - 8

0.821

0.462

-0.150

-0.596

-0.811

0.558

0.397

£ - 5

£ - 6
£ - 5

£ - 6

£ - 7

£ - 8

£ - 8

Table 6.5. Universal manifold gp(z) for period triplings, m/n = 1/3. The coefficients in the expansion (6.6), same truncation as Table 6.4. The first number is the

real part, and the number below it is the imaginary part of cjk

0

1

2

3

4

5

6

0.0

0.0
0.776422

0.18070

0.203142

-0.8789

0.20459

-0.7044

0.3147

-0.1869

-0.2695

-0.3255

-0.5959

-0.3891

£ - 1

£ - 2

£ - 1

£ - 2

£ - 3

£ - 2

£ - 3

£ - 3

£ - 4

£ - 4

-0.777638

-0.8161

-0.289828

-0.5851

-0.40248

0.7453

-0.5605

0.4463

0.8668

0.1212

0.2186

0.2002

0.4007

0.1837

£ - 2

£ - 2

£ - 1

£ - 2

£ - 3

£ - 2

£ - 3

£ - 2

£ - 3

£ - 3

£ - 4

£ - 4

0.88152

0.6495

0.24759

-0.1244

0.7133

-0.3987

-0.1097

-0.1817

-0.3132

-0.4040

-0.7201

-0.4906

-0.1733

-0.1185

£ - 1
jβ 2

£ - 1

£ - 2

£ - 4

£ - 2

£ - 2

£ - 2

£ - 3

£ - 3

£ - 4

£ - 4

£ - 4

£ - 5

-0.5223

-0.8522

0.3096

0.1610

0.6615
0.1377

0.2153

0.4124

0.6823

0.6462

0.2317

0.4072

0.6803

-0.8909

£ - 2

£ - 3

£ - 3

£ - 2

£ - 3

£ - 2

£ - 3

£ - 3

£ - 4

£ - 4

£ - 4

£ - 5

£ - 5

£ - 6

-0.1323

-0.2932

-0.1740

-0.5237

-0.6834
-0.2247

-0.3667

-0.4695

-0.1925

-0.5207

-0.7293

-0.1336

-0.2038

0.2372

£ - 3

£ - 3

£ - 3

£ - 3
£ - 4

£ - 3

£ - 4

£ - 4

£ - 4

£ - 5

£ - 5

£ - 7

£ - 5

£ - 6

0.129

0.772

0.659

0.618

0.111

0.191

0.102

0.363

0.512

0.693

0.172

0.942

0.435

-0.520

£ - 4

£ - 4

£ - 5

£ - 4

£ - 4

£ - 4

£ - 4

£ - 5

£ - 5

£ - 6

£ - 5

£ - 7

£ - 6

£ - 7
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This determines d, and a then follows directly from the condition (5.2). The result is
a new approximation to gp(z). Asymptotically <f s converge to δ and α's converge to
α. We keep applying the truncated T* operation until the coefficients in (6.6)
repeat.

The coefficients cjk for m/n =1/2 and 1/3 unstable manifolds, given in Tables 6.4
and 6.5, are typical of our results. Here we have normalized gp by the superstable

l
g l (0) = l , g ι ( l ) = (6.7)

In our calculations we actually use the superstable m/n-cycle normalization (5.2),
but the 2-cycle normalization convention is more convenient for comparing
different m/n unstable manifolds: it aligns the universal Mandelbrot cactuses (see
the next paragraph) for different m/n sequences the same way.

In the period-doubling case the (real) universal function g(x) is easily plotted as
a function of the real variable x. In the complex case, there is no natural way to plot
the universal functions; the best we can do is to represent the unstable manifold
gp(z) by the associated Mandelbrot and Julia sets. As the universality equations are
based on the self-similarity of Mandelbrot cactuses, the "universal Mandelbrot"
cactuses (see Fig. 6.1 and Fig. 6.2) do not look very different from the starting

Fig. 6.1. Universal Mandelbrot cactus
for the unstable manifold for m/n = 1/2,
obtained by iterating g1/2

approximated by Table 6.4. As in
Fig. 1.1, the black area represents
values of the parameter p for which the
iterates of the critical point z = 0 do not
tend to infinity. However, this is an
enlargement of the asymptotic 2°° leaf
of Fig. 1.1, so the cactus continues
indefinitely to the left, each succeeding
leaf larger by the factor <5 = 4.6692...

-I

Fig. 6.2. Universal Mandelbrot cactus
for m/n = 1/3, obtained by iterating the
unstable manifold universal function,
Table 6.5. This is an enlargement of the
asymptotic 3"° leaf of Fig. 1.1; the
cactus winds indefinitely in a logarithmic
spiral. The 1/3 cactus is slightly skew,
unlike the 1/2 cactus which is
symmetric across the real axis

Rβ(z)
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Mandelbrot cactus; the radical difference is that they are infinite in extent. The
"universal Julia sets" are also infinite in extent; by construction, gp(z) has infinitely
many critical points, and each one has its own finite "universal basin of attraction,"
of the shape characteristic for the given cycle.

The first method for computing the scaling numbers, the universality equation
(4.9), requires iV-dimensional Newton-Raphson iteration, with quadratic conver-
gence. The unstable manifold method (5.6) requires only one-dimensional Newton
iteration, but also a parameterization by many more coefficients, of the order of
N2, and its convergence is only linear. In practice the first method is faster, but the
second method yields not only the scaling numbers, but also an approximation to
the unstable manifold which enables us to study the universal Mandelbrot
cactuses.

The authors of [3] have noted that numerically the solutions of the universal
equation (5.6) are stable under small non-analytic perturbations. Indeed, if we view
the iteration space as a two-dimensional real space rather than a one-dimensional
complex space, the convergence is controlled by the single unstable eigenvalue <5,
regardless of whether the perturbations are analytic or not. However, even very
small non-analytic perturbations cause drastic distortions of the leaves of the
Mandelbrot cactus, destroying in the process the cactus-self-similarity, and with it
the original rationale for formulating the universality equations. As we have
argued in Sect. 2, analyticity is a crucial ingredient for the period n-tupling
universality formulated in this article.

7. Discussion of Numerical Results

The self-similar structure of the Mandelbrot cactus, Fig. 1.1, suggests a systematic
way of presenting the universal numbers that we have computed in the previous
section. Observe that roughly halfway between any two large leaves on the
periphery of a Mandelbrot cactus (such as 1/2 and 1/3) there is the next largest leaf
(such as 2/5). Furthermore, we know from (4.6) that the size of the "cactus leaf
corresponding to period n-tupling is of order n~~2. Hence we need an interpolation
scheme which organizes rational numbers m/n into self-similar levels of increasing
period lengths n. Such a scheme is provided by Farey numbers [43,44]. (The Farey
tree is neither the only nor necessarily the best way of organizing rationals. One
could instead, for example, partition rationals into continued fraction families. We
have not attempted to apply other partitionings of rationals to this problem [45].)

Farey numbers are constructed by a simple interpolation rule: given two
rationals m/n and m'/ri, their Farey mediant is given by

m"/n" = (m + m')/(n + ή). (7.1)

Starting with the ends of the unit interval written as 0/1 and 1/1, this rule generates
the Farey tree, Fig. 7.1.

Farey trees offer one way to encode the self-similarities of the Mandelbrot
cactus. That might not be evident from the fractions listed in Fig. 7.1, but the
following alternative construction of the Farey tree makes the self-similarities
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Fig. 7.1. The Farey tree. The double line indicates the Fibonacci sequence of rational
approximations to the golden mean (more precisely to 1 — ρ, with ρ = (1 +1/5)/2). The dashed lines
are sequences of approximations to 0+ of form m/cc

more explicit. Replace each Farey number by its continued fraction representation

1

1

1

'" Pk

with Pi positive integers. The next level of the Farey tree is obtained by replacing
the "last 1" in a continued fraction by either 2 or 1/2:

(7.3)

The resulting Farey tree is given in Fig. 7.2. The continued fraction representation
shows explicitly that each branch of the Farey tree is similar to the entire tree, and
suggests scaling laws for the associated universal numbers.
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Fig. 7.2. A continued fraction representation of the Farey tree. The dotted and the full lines
indicate substituting by 2 and 1/2, respectively

4k-23 5k-28 5k-27 4k-2l
8k-42 IOk-51 IOk-49 8k-38

\ M \

Fig. 7.3. Sequences of rational
approximations to 1/2 _ of form 1/(2 4-m/w),
m fixed, n-+co

We have argued in Sect. 4 that α's and <5/n2's for ί/n sequences, n^cc, converge
to asymptotic limits. The Farey tree suggests two generalizations of this
asymptotic behavior:

1. α, δ sequences for m/n, m fixed, n-*oo, indicated by dashed lines in Fig. 7.1,
should converge to asymptotic limits.

2. α, δ sequences for m/n, n->oo, m/n-+P/Q, P/Q any rational number, should
converge to asymptotic limits. The dashed lines in Fig. 7.1 indicate sequences
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10

converging to 0/1 +. Another example are sequences converging to 1/2 _ indicated
by dashed lines in Fig. 7.3.

The universal numbers corresponding to such sequences of Farey numbers are
plotted in Figs. 7.4-7.9.

As argued in Sect. 4, the δί/n's have a simple asymptotic behavior as n—• oo. This
raises the hope that d's (maybe even Feigenbaum's <51/2) might be systematically
calculable in an \/n expansion. We have not attempted such calculation, but the
discovery that large n limits are simple was the main motivation for the extensive
numerical study of universal numbers presented here.

It is clear that sequences corresponding to approximations to different rational
numbers, such as the 0 + and the 1/2 _ sequences, Fig. 7.4 and Fig. 7.5, are similar to
each other, and that implicit in the Farey tree structure are scaling laws that relate
the universal numbers [45].

There is one interesting example of such a scaling law, due to Manton and
Nauenberg [5, 6]. While our universality generalizes period doublings, their
universality generalizes the circle-map scaling of [18-20]. In this case one studies
successive Fibonacci approximants to the golden mean winding number, and
observes that the corresponding leaves of the Mandelbrot cactus are self-similar
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Fig. 7.5. The sequences of <5's
corresponding to rational
approximations to 0+ and 1/2 _. What
is plotted is the ratio of δ and the

= § e ' m n- /2) conjectured asymptotic limit (4.6). 0 f

n , ,Λ sequences appear to converge to the
, l f τ l ^ , conjectured limit (marked by the cross)

-.24 -.16 -.08 0 .08 .16

under rescaling by the Manton-Nauenberg scaling number δ, and that the
corresponding attractors are self-similar under rescaling by the Manton-
Nauenberg α.

The Manton-Nauenberg scaling is an asymptotic scaling for our universal
numbers in the following sense. From the construction of the unstable manifold
(see Fig. 6.1 and Fig. 6.2) we know that δmjn measures the position of the center (the
superstable value) of the m/n leaf of the corresponding universal cactus. If the
universal cactuses for the consecutive ratios of Fibonacci numbers change

Fig. 7.6. The sequences of absolute values of α's corresponding to m/n, m fixed, w-> 00 sequences of
Farey numbers

Fig. 7.7. The sequences of absolute values of S/n2's corresponding to m/n, m fixed, «->oo Farey
sequences. According to the asymptotic conjecture (4.6), these sequences should converge to 1

Fig. 7.8. The deviation of the phase of δ = \δ\exp(2πίθ) from the asymptotic estimate (4.6),
Aθ = θ + m/n —1/2, for m/n, m fixed, n->oo sequences

Fig. 7.9. The phase of α = |α|exp(2πi0) plotted as a deviation from its empirical limit, A0 = θ
+ 3m/4n + l/8, for m/n, m fixed, n->oo sequences
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smoothly, the Manton-Nauenberg δ is the limit of the ratio (δa — δb)/(δb — δc), for a,
b, c successive Fibonacci approximants to the golden mean.

Similarly, we know that inverse α's measure the distance by which the nth iterate
of the universal function misses the starting (i.e., the critical) point. This distance
falls off rapidly for the cycles corresponding to the Fibonacci approximants to the
golden mean (see Fig. 4.3), and the corresponding α's grow (see Fig. 7.4). The
Manton-Nauenberg α is the limit of the ratio aa/(xb for α, b successive ratios of
Fibonacci numbers. For example, from our tables the absolute value of this ratio
for a = 34/55, b = 21/34 is 0.74..., while the Manton-Nauenberg a is 0.7419.... The
superstable trajectories for the successive Fibonacci approximants, Fig. 4.3,
converge asymptotically to the fractal studied by Manton, Nauenberg and
Widom.

While in the case of period rc-tupling the conjectured universality is due to the
infinite magnification of asymptotic cactuses, here the conjectured universality is
due to the infinite magnification of the neighborhood of the golden mean winding
number. Beyond these examples, there is infinity of other types of scaling laws
hiding in the complex iterations. One can generalize Misiurewicz sequences [4],
one can follow any sequence of islands (such as period triplings along the real axis)
and so forth.

8. Summary

We have provided numerical evidence and heuristic arguments that the period-
doubling universality generalizes to iterations of complex polynomials and
polynomial-like mappings. This is summarized by the universal equations (4.9)
and (5.6). We have solved these equations for a large number of different sequences
of period n-tuplings; results of these numerical investigations are summarized by
Table 6.1. The universal numbers can be organized by Farey numbers, Fig. 7.4 to
Fig. 7.9.

Period doubling, the special case of the above theory, is an important route for
transitions to chaos, observed experimentally in many different physical systems.
Physical applications of complex universality are more uncertain. We do not know
of a physical system modeled by complex iterations; as we argue in Sect. 2, we do
not expect infinite sequences of period n-tuplings in a generic two-dimensional
system. If such physical systems exist, experimental observation of sequences of
period rc-tuplings will be made difficult both by the n4 reduction of the area in
parameter space for each successive n-tupling, and by the |α| 2 reduction of the
basin of attraction, implying the need for very precise adjustment of initial
conditions. The experimental precision for observing one period tripling is roughly
the same as is required for observing two period doublings, so several period
triplings could be observed.

Acknowledgements. We are grateful to Adrian Douady, Bodil Branner Jorgensen, J. Hamal
Hubbard, Oscar Lanford, and Mitchell J. Feigenbaum for patient instruction.
Note to the revised manuscript. Since submission of this paper in January 1984 we have received a
preprint by John Guckenheimer and Richard McGehee entitled "A proof of the Mandelbrot N2

conjecture." The authors prove that the genericity assumption (3.4) and hence the relation (4.3)
holds for the Fatou mapping (1.3).
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